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ABSTRACT 24 

Food web biomagnification is increasingly assessed by estimating trophic magnification 25 

factors (TMF) where solvent (often lipid) normalised contaminant concentration is regressed 26 

onto trophic level, and TMFs are represented by the slope of the relationship. In TMF 27 

regressions, the uncertainty in the contaminant concentrations is appreciated, whereas the 28 

trophic levels are assumed independent and not associated with variability or uncertainty 29 

pertaining to e.g. quantification. In reality, the trophic levels may vary due to measurement 30 

error in stable isotopes of nitrogen (15N) of each sample, in 15N in selected reference 31 

baseline trophic level, and in the enrichment factor of 15N between two trophic levels (N), 32 

which are all needed to calculate trophic levels. The present study used a Markov Chain 33 

Monte Carlo method, with knowledge about the food web structure, which resulted in a 34 

dramatic increase in the precision in the TMF estimates. This also lead to a better 35 

understanding of the uncertainties in bioaccumulation measures; instead of using point 36 

estimates of TMF, the uncertainty can be quantified (i.e. TMF >1, namely positive 37 

biomagnification, with an estimated X % probability). 38 

 39 

Keywords: biomagnification, trophic level, food web, contaminants 40 

  41 
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INTRODUCTION 42 

Recent reviews and studies have suggested the implementation of trophic relations in the 43 

assessment guidelines of contaminant accumulation1-4. This includes evaluating the 44 

bioaccumulation potential of contaminants by quantifying their magnification through diet, 45 

either by specific predator-prey relations (biomagnification factor - BMF) or as an average 46 

factorial change from one trophic level to the next in a specified food web (trophic 47 

magnification factor –TMF; previously also referred to as Food Web Magnification Factor). 48 

Whereas the BMF is the ratio of contaminant concentration between predator and prey 49 

(BMF=CPREDATOR/CPREY), the TMF is estimated by regressing the contaminant concentrations 50 

in representatives of a food web onto their relative trophic positions, and the TMF is the slope 51 

of the regression line 3,5,6. Although the TMF is currently recognized as the most realistic 52 

quantitative measure of food web accumulation of contaminants1,4, several issues remain 53 

regarding scientific understanding, feasibility of test protocols, and thus regulatory 54 

acceptance7,8. One of the greater challenges is to obtain a better understanding of the 55 

variability in TMF estimates and whether this variability comes about through natural 56 

variation in relevant processes or uncertainties surrounding our knowledge of them, or if it is 57 

the result of measurement errors, poorly defined concepts and statistical analyses. Despite 58 

this, the European Community Regulation on chemicals and their safe use (REACH) recently 59 

amended to Annex XIII that accumulation of chemicals from the diet (BMF) and in the food 60 

web (TMF) could be used in the weight of evidence assessment of the chemical as a 61 

contaminant of concern due to bioaccumulation (REACH, Annex XIII 9). 62 

 63 

The trophic level of a species reflects its approximate feeding position in a food web, 64 

where primary producers (plants/algae) constitute the first trophic level, followed by primary 65 

consumers (herbivore) on the second trophic level, secondary and tertiary consumers 66 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R1907:EN:NOT
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(carnivore) on the third and fourth trophic level, and so on. However, the simple concept of 67 

unidirectional linear food chains rarely apply to natural ecosystems, where more complex 68 

network models more appropriate describe the food webs10. Thus, the feeding position of a 69 

species is not an integer trophic level (e.g. 2, 3 or 4), but rather a continuous descriptor of a 70 

trophic position (e.g. 2.1, 2.7, 3.9), which can easily be calculated using a dietary matrix of 71 

the food web. Traditionally, trophic position of a species has been evaluated by stomach 72 

content analysis, but in the past decades stable nitrogen isotopes ratios (15N measured as 73 

the15N/14N ratio compared to a standard) has been more commonly used to assess a relative 74 

trophic position of organisms. The heavier isotope 15N is retained in the organism to a larger 75 

extent than 14N, with a relative increase of 15N over 14N (15N) of 3-5‰ per trophic level, 76 

depending of species comparison and ecosystem 11,12. The δ15N ratios thus provide a non-77 

discrete measure of the relative trophic positions along a continuum, and has been utilized in 78 

ecotoxicology (either as 15N or converted to trophic position) since the early 1990s 3,5,6,13,14.   79 

 80 

In studies of biomagnification, measurements of 15N and contaminants are reflecting 81 

accumulation over time. As such they are assumed to be good estimators of the average 82 

ecological (diet) and contaminant status of the respective species. Although there is increasing 83 

knowledge of ecological and analytical factors that affect the variance in the contaminants 84 

quantified, fewer ecotoxicological studies appreciate the unknowns and evaluate the 85 

uncertainty associated to measured 15N values, and the estimated trophic positions 3. In 86 

addition to a switch in diet that affect the 15N, the isotopic ratio may vary within a species 87 

depending on the productivity of the ecosystem, e.g. in phytoplankton and zooplankton the 88 

15N vary up to 5‰ depending on bloom stage 15. This difference corresponds to a difference 89 

of more than one trophic level, using the scaling factor relating relative 15N measurements 90 

with trophic levels (ΔN) 12 in the range 3-5‰. Unless other information is available, a value 91 
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of 3.4‰ is commonly applied in ecotoxicological studies for the estimation of trophic 92 

position and TMF 3,16. Lastly there are analytical considerations that affect the quantified 93 

15N, such as extraction method, and removal of lipid and carbonate or not17 . Using 94 

measurements of the isotope ratios to estimate the trophic position of individuals (as opposed 95 

to estimating trophic position of a species) will make sure that some of the natural variability 96 

in diets is taken into account, and this will directly affect the TMF, especially the precision. 97 

On the other hand, it is still a model relating the individual isotope levels to trophic positions. 98 

To our knowledge, no examination of the effect of variability in either enrichment factor 99 

(ΔN), baseline 15N or individual sample 15N on estimated trophic level has been performed. 100 

Fortunately, ecotoxicology and risk assessment is developing in the direction of appreciating 101 

and quantifying uncertainties, including an increased focus on probabilistic risk assessment 102 

e.g. 18,19. Thus, focus on assessing uncertainty and variability in bioaccumulation models e.g. 103 

20,21, methods are needed for reducing uncertainty in TMF estimates while incorporating 104 

variability in these factors. However, most TMF studies lack of appreciation of this 105 

variability, i.e. most TMFs are calculated only using traditional regression methods that only 106 

take into account (or try to minimize) error in the measured values of contaminant 107 

concentrations. Some simple methods have been performed, e.g. removing one of the 108 

measured compartments from TMF calculation, as in 5,22,23. Ways forward should include 109 

direct quantification and treatment of the trophic level variability associated with TMF 110 

estimates. 111 

 112 

In the present study, we utilized both measurements of δ15N as well as knowledge about 113 

the structure of a food web (in the form of a binary (0/1) dietary matrix) to predict δ15N values 114 

(and hence trophic levels). The model also estimated  parameters used in relating δ15N values 115 

to trophic levels (baseline/reference δ15N and enrichment factor ΔN), and the error variance of 116 
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δ15N. Together the estimated parameters use the links between dietary information and 117 

isotope enrichment to generate probability distributions of trophic levels, and these in turn are 118 

used to generate probability distribution of TMFs. 119 

 120 

THEORY AND METHODS 121 

Trophic magnification factors are assumed to reflect the magnitude of contaminant 122 

accumulation in a food web, and are defined as the estimated slope of the solvent (often lipid) 123 

normalized contaminant concentrations (Clipid) on trophic level (TL) (eq. 1); 124 

 𝑙𝑜𝑔10(𝐶𝑙𝑖𝑝𝑖𝑑) = 𝑎 + 𝑏 ∙ TL + ε, 

𝑇𝑀𝐹 = 10𝑏 

(Eq. 1) 

Regressions like these are often performed by traditional least-squares regression or other 125 

maximum likelihood measures attempting to minimize the squared error (ε), i.e. the best 126 

estimate of TMF are achieved through minimizing the (squared) difference between predicted 127 

and observed (log) contaminant concentrations. Implicitly this means that all variability in 128 

trophic levels (including measurement errors, and estimates of isotope enrichment factors etc.) 129 

are ignored; or more correctly trophic levels are seen as independent. Though methods for 130 

inclusion of errors or variability in the independent variable (so-called errors-in-variables 131 

models, e.g. Deming regression) exist, to our knowledge no such examples exist for TMF 132 

estimation.  Thus TMFs as measures of contaminant biomagnification does not include any 133 

treatment of the potential variability of trophic levels among individuals or samples of the 134 

same species or population.  135 

 136 

Trophic level estimation from food webs and isotope ratio measurements. Estimation 137 

of trophic levels using 15N is performed using equation 2: 138 



7 
 

 
𝑇𝐿𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 =  

𝛿15𝑁𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 − 𝛿15𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟

Δ𝑁
+ 𝑇𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 (Eq 2)  

where TLconsumer is the trophic level of an individual with a measured 15Nconsumer. 139 

15Nprimary consumer is the isotope ratio measured for a primary consumer assumed to occupy a 140 

trophic level of TLprimary consumer. Isotope enrichment factors (ΔN) of 3.4 ‰ are commonly 141 

used3,16.  142 

 143 

Describing the community using a food web dietary matrix yields another way to estimate 144 

trophic levels. Effective trophic levels can be defined as the weighted average length of all 145 

energetic pathways originating from outside a system to a specific compartment. For a 146 

secondary consumer feeding on only one primary consumer this corresponds to an effective 147 

trophic level of 3 (abiotic environment (TL 0) primary producer (TL 1)  primary 148 

consumer (TL 2) secondary consumer (TL 3)). With mixed diets one calculates a weighted 149 

average for each compartment in the food web matrix e.g. 24,25. For each species or population 150 

i with a diet consisting of G other species according to the fraction Fij, effective trophic level 151 

is then calculated as: 152 

 𝑇𝐿𝑖 = 1 + ∑ 𝐹𝑖𝑗𝑇𝐿𝑗.
𝑗∈𝐺

 
(Eq 3)  

Or equivalently in matrix notation for the vector of trophic levels: 153 

 𝑻𝑳 =  ∑(𝑰 − 𝑭)−1 
(Eq 4)  

where I is the identity matrix and F is the dietary matrix describing the food web.  154 

 155 

By rearranging equation 2 we can use trophic levels from a dietary matrix to predict 156 

isotope ratios: 157 
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 𝛿15𝑁𝑖 = (𝑇𝐿𝑖 − 𝑇𝐿𝑗)Δ𝑁 + 𝛿15𝑁𝑗 
(Eq 5)  

 158 

A Bayesian model of δ15N ratios inferred from food webs. In Bayesian statistics, the 159 

goal is to arrive at distributions of parameters that reflect our degree of belief in their values. 160 

The main ingredient of Bayesian analysis is Bayes rule; 161 

 
𝑝(𝜃|𝑦) =

𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
, 

(Eq 6)  

where θ represents a set of estimated parameters and y represents data or observations. Our 162 

main goal is to get an estimate of the distribution on the left-hand-side (called a posterior 163 

distribution); a probability distribution of (a set of) parameters, given our data. In a simple 164 

case it could be the estimate of a regression coefficient, given a sample and the distribution 165 

(𝑝(𝜃|𝑦)) could be described in terms of percentiles and a visual representation of the posterior 166 

distribution. Bayes rule gives us a way to calculate such posterior distributions since they are 167 

(by definition) the product of the likelihood (the probability of the observations, given the 168 

parameters, 𝑝(𝑦|𝜃)) and a prior distribution (𝑝(𝜃)). A likelihood is a formal measure of the 169 

similarity between predictions and observations, most often directly related to sums of squares 170 

and a prior distribution is reflecting our current knowledge about the probability of the 171 

parameters. In the case of estimating a regression coefficient (like the TMF), we might for 172 

instance have prior knowledge (from other studies or common sense) about its expected 173 

distribution. In the case of estimating the regression coefficient b in eq 1, we could form a 174 

prior distribution which would encapsulate our current knowledge about the system, say with 175 

a mean of 2 and a given standard deviation, if such priors were warranted based on earlier 176 

analyses. In other cases we have little information about the expected value and choose 177 

uninformative priors, distributions that are uniform or in other ways express vague 178 



9 
 

information about a parameter. In most cases the likelihood, 𝑝(𝑦|𝜃), is a combination of a 179 

mathematical model that yields predictions and a model for the distribution of the errors, i.e. 180 

the expected deviances between observed and predicted values. The denominator in eq 6 181 

gives the probability of the observations. This is independent of the parameters of the model 182 

(θ) and is therefore often reduced to an unknown constant yielding 183 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃). 
(Eq 7)  

In other words, since 𝑝(𝑦) is constant we can estimate the posterior distribution, 𝑝(𝜃|𝑦),  as 184 

proportional to the prior distribution, 𝑝(𝜃), multiplied by the likelihood 𝑝(𝑦|𝜃). 185 

A model (Figure 1) was set up using the equations 4 and 5 to predict the population means 186 

of δ15N ratios in the food web compartments, by estimating a set of parameters through 187 

Bayesian inference. The parameters to be estimated were the non-zero entries in the dietary 188 

matrix (F in eq 3), the isotope enrichment factor (Δ𝑁 in eq 5) and the population mean 15N 189 

for one of the diet matrix compartments (Daphnia, as primary consumer in eq 2). All of these 190 

parameters can be combined with an error variance (𝜎2) estimated (common for all 191 

populations) to predict 15N in an individual (technically this error variance is a combination 192 

of variance in the population and observational error). The data points of δ15N measurements 193 

(yij, i = 1,…,nj ,  j = 1,…,J ) are modelled as independently normally distributed within each 194 

population (j) with means µj and variance 𝜎2. The group or population means are assumed to 195 

be related through the food web, according to equation 5.  196 

 197 

Letting θ denote the parameters of the dietary matrix, µD the estimated population mean 198 

level of δ15N for Daphnia, σ2 the variance of the δ15N distributions (common for all 199 

populations) and ΔN the isotope enrichment factor we will explore the posterior distribution 200 
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 𝑝(𝜃, 𝜇𝐷 , Δ𝑁, 𝜎2| 𝑦)

∝ 𝑝(𝜃, 𝛿15𝑁𝐷 , Δ𝑁, 𝜎2) 𝑝(𝑦|𝜃, 𝛿15𝑁𝐷 , Δ𝑁, 𝜎2) 
(Eq 8)  

where the likelihood is defined by: 201 

 

𝑝(𝑦|𝜃, 𝜇𝐷 , Δ𝑁, 𝜎2) = ∏ ∏ 𝑝(𝑦𝑖𝑗|𝜃, 𝜇𝐷 , Δ𝑁, 𝜎2)

𝑛𝑗

𝑖=1

𝐽

𝑗=1

= ∏ (
1

2𝜋𝜎2
)

𝑛𝑗 2⁄

𝑒
(

∑ (𝑦𝑖𝑗−𝜇𝑗)
2𝑛𝑗

𝑖=1
2𝜎2 )

𝐽

𝑗=1

. 

(Eq 9)  

In equation 9, yi,j are observed isotope ratios in sample i belonging to population j, and µj 202 

are the mean isotope ratios for the population j, given by: 203 

 𝜇𝑗 = 𝑓(𝜃, ∆𝑁, 𝜇𝐷) = (𝑇𝐿𝑗(𝜃) − 𝑇𝐿𝐷(𝜃)) Δ𝑁 + 𝜇𝐷 
(Eq 10)  

where TLj is the trophic level calculated using the food web matrix as in eq 4. 204 

  205 

MCMC implementation and prior probabilities. To explore the posterior values (i.e. 206 

arriving at a distribution for the parameters in eq 8) we used standard Markov Chain Monte 207 

Carlo (MCMC) simulations where the proposal values were generated by a normal 208 

distribution around the current value 26. The proposed values were accepted using the 209 

Metropolis Hastings algorithm. The step size was in an initial run found so as to achieve well 210 

mixed chains with an acceptance rate around 0.23 and was fixed for the main analysis 26. We 211 

simulated 10 independent chains for 100 000 iterations each and used the last 25 000 212 

iterations as parameter estimates and for posterior predictive sampling. To evaluate the effect 213 

of including knowledge about the structure of the food web we also performed a Bayesian 214 

analysis of the regression in eq 1 through Gibbs sampling, also with 10 chains for 100 000 215 

iterations. This essentially copies the standard methods for TMF estimation3, which was also 216 
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applied for this specific food web23, by using a Bayesian estimation of the TMF values, while 217 

assuming the isotope enrichment factors and all other measurements to be fixed. The analysis 218 

was implemented in Matlab 27. 219 

 220 

Dirichlet distributions with concentration parameter α = 1 were used as priors for the 221 

diets; essentially this entails a uniform distribution over all possible combinations. Gaussian 222 

priors were used for the isotope enrichment factor (Δ𝑁) and mean 15N for Daphnia (µD) with 223 

means and standard deviations of (0.0035, 3×10-4) and (8, 1) respectively. For the error 224 

variance (𝜎2) a uniform prior with range [0…10] was applied. 225 

 226 

Posterior predictive sampling and TMFs estimation. The probability distributions of 227 

the estimated parameters can be used for posterior predictive sampling, essentially generating 228 

distributions of δ15N values for individual samples of the different compartments in the food 229 

web. For each of the δ15N data we also have contaminant data, and by resampling 15N values 230 

from the estimated distributions of δ15N we can thereby quantify the uncertainty in trophic 231 

magnification factors arising from the variability in the trophic levels assigned to the analysed 232 

individuals. We did this by randomly drawing n number of the last 25 000 iterations, using the 233 

parameter values at that point in the chain to draw simulated δ15N values for the individual 234 

samples (see Data sources below). Using these simulated δ15N values together with  Δ𝑁, we 235 

then performed a regression to get n number of estimates of TMFs for selected compounds. 236 

These estimates were pooled to generate a probability distribution of TMFs given the 237 

structure of the food web, the prior distributions of the parameters and observed levels of 238 

contaminant and δ15N. 239 
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Data sources and food web structure. Empirical data used in the present study are 240 

previously presented 23,28 and details on contaminant levels, sampling and analysis can be 241 

found therein. In brief, representatives of the pelagic food web of Lake Mjøsa, Norway, were 242 

collected mid-lake near Helgøya in September-October 2010. The food web representatives 243 

included the top predator piscivorous brown trout (Salmo trutta), the zooplanktivorour fish 244 

smelt (Osmerus eperlanus) and vendace (Coregonus albula). The invertebrate representatives 245 

included Mysis relicta and zooplankton (Daphina galeata and Limnocalanus macrurus). The 246 

samples were analysed for lipids and legacy persistent organic pollutants including 247 

polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and  248 

dichlorodiphenyldichloroethylene (p,p’-DDE)28. 15N and cyclic volatile methyl siloxanes 249 

(decamethylcyclopentasiloxane - D5) were analysed as described in Borgå et al. 23. 250 

 251 

Based on previous ecological studies of Lake Mjøsa, or similar lakes, a binary dietary 252 

matrix representing who eats whom (but not the proportions) for each food web representative 253 

was developed. All entries in the dietary matrix were estimated; however, which entries were 254 

non-zero was based on earlier studies and constitutes all the knowledge about the food web 255 

included in the model. In addition to the food web compartments described above that were 256 

analysed for contaminants, lipids and 15N, particulate organic matter (POM), 257 

microzooplankton, small size group of vendace (< 15 cm) and smelt (< 15 cm) were included 258 

in the binary dietary matrix.  259 

 260 

 261 

RESULTS AND DISCUSSION 262 

Our analysis consists of two major parts; the first part uses the assumed structure of the 263 

food web (i.e. who eats who), the relations in eq 4 and 5 and observations of isotope levels to 264 
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estimate the relevant parameters (diets, enrichment factor, isotope ratios for Daphnia and an 265 

error term) of our model. The second part uses these estimates to generate ranges of likely 266 

isotope ratios. These generated isotope ratios (δ15N ), baseline isotope ratios for Daphnia (µD) 267 

and enrichment factor (Δ𝑁)  are then used to calculate trophic levels and the probability 268 

distributions of TMFs. In essence we are estimating a mean isotope ratio for each 269 

compartment and then simulating likely 15N measurements given our model, and combining 270 

these simulated isotope ratios with observed contaminant concentrations to estimate TMFs. 271 

 272 

The MCMC algorithm applied was successful in estimating the posterior distribution of 273 

diets, enrichment factor, mean isotope ratio for Daphnia and the error variance of the model. 274 

The chains converged quickly and arrived at an acceptance rate of 0.189 during the last 25 275 

000 iterations of all the 10 chains. The posterior dietary matrix (Figure 2) shows that there is 276 

quite a large range of uncertainty with regard to the feeding relations in some compartments 277 

(especially the small smelt and vendace, and brown trout), whereas for other populations a 278 

narrower posterior was found. As 15N values were not available for small smelt and vendace  279 

(only large fish), this may explain the larger uncertainty for these compartments in the 280 

posterior dietary matrix, as well as for trout that assumed to have small smelt and small 281 

vendace as their main prey.  282 

Enrichment factor – Δ15N. The posterior for the isotope enrichment factor (ΔN) was not 283 

very different from the prior (Figure 3), meaning that our model and observations could not 284 

adequately narrow down the distribution, thus underlining the importance of the variability in 285 

this scaling factor. For future analyses we would recommend an even wider prior range for 286 

the enrichment factor since the analysis did not narrow down the distribution substantially. 287 

The 95% credibility interval25 for the enrichment factor spanned from 2.77 to 3.97 ‰ with a 288 

median of 3.29 ‰, lower than the commonly used value of 3.4 ‰. This suggests a lower 289 
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enrichment for the Mjøsa food web than previously have been assumed29. In general, the 290 

relationship between isotope enrichment factor and TMF is such that an increase in the 291 

enrichment factor will make the estimated TMF tend away from 1. This means that assuming 292 

a low enrichment factor will increase the risk of Type II error, i.e. increase the likelihood of 293 

classifying a magnifying compound as non-magnifying by 'pushing' the estimate towards 1. 294 

Such issues will be even more problematic in a frequentist approach, where the main 295 

questions asked is 'how probable are these contaminant observations in the food web given no 296 

magnification' where non-magnifying compounds are defined as chemicals which does not 297 

exhibit a TMF significantly above 1.  298 

The estimated ΔN in our model are generally lower than the assumed value of 3.4 ‰ used 299 

in 23, the probability of the enrichment factor being lower than 3.4 ‰  is 0.64 and the 300 

probability of the factor being lower than 3.0 ‰ is also substantial (0.13). This is one of the 301 

major factors that lead to our estimates of TMF being slightly lower (i.e. closer to 1) for all 302 

analysed compounds (Table 1) compared to the earlier analysis23 and in the simple Bayesian 303 

regression.  304 

The enrichment factor ΔN is obviously associated with variability across time, space and 305 

trophic level, and may be more appropriate on some specific trophic steps than others. This is 306 

in contrast to previous studies that report one similar enrichment factor throughout the food 307 

web30, except for birds. Experimental studies on cormorants indicate that the N from bird 308 

diet to muscle tissue is 2.4‰31, which is less than the recommended 3.4‰. A Bayesian 309 

approach (or more generally a distributional approach) to performing analyses with N has 310 

the possibility of including this uncertainty and quantifying it. Our model explicitly takes this 311 

uncertainty in N into account by using a distribution of the enrichment factor derived from 312 

our observations and the structure of the food web. Extending this approach to include 313 

distributions of N for separate groups could be valuable. 314 
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  315 

Predicted trophic level and TMF. One of the benefits of a Bayesian approach to 316 

parameter estimation is that instead of point estimates of parameters or regression 317 

coefficients, whole probability distributions are generated. These parameter distributions can 318 

then be used to generate more realistic predictions, since the natural variability in parameters, 319 

such as the enrichment factor, will be included in the estimate and the generation of the 320 

prediction distributions.  Figure 4 show the predicted trophic levels of the populations in the 321 

food web when taking the uncertainty in diets, enrichment factor and error variance into 322 

account. By using these simulated trophic levels a narrower estimate of TMFs for all 323 

compounds are achieved, when compared to a standard Bayesian regression analysis of the 324 

observations alone (Table 1, Figure 5), despite the considerable uncertainty in some of the 325 

parameters (e.g. the diets). Using such Bayesian approaches can also lead to a better 326 

understanding of the uncertainties in bioaccumulation measures. Instead of using point 327 

estimates of TMF, as previously done in most TMF studies e.g. 5,14,22, we can quantify the 328 

uncertainty. For our model here, for instance, we can quantify the total uncertainty; given our 329 

model and parameter estimates, there is a 89 % probability that the TMF for PCB-153,  is 330 

greater than 2. For the cyclic siloxane D5, there is a 56% probability that the TMF is greater 331 

than 2. 332 

 333 

In summary, we have utilized Bayesian inference on the model relating relative isotope 334 

levels and trophic levels together with the structure of the food web to reduce the uncertainty 335 

in TMF estimates. With relatively few data points the method manages to estimate the diets of 336 

the species in the system, and use these diets to restrict the plausible values of trophic position 337 

of the species, and thereby also reducing the uncertainty surrounding TMF estimates. Such 338 
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reduction of uncertainty in the TMF estimate is especially of interest in cases where TMF is 339 

close to 1, i.e. where there is a question of biomagnification, or not.  340 
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 436 

Table 1. Distributions of trophic magnification factors (TMF; 2500 draws from each chain = 437 

25000 simulated TMFs) for simple Bayesian regression (simple) and posterior predictive 438 

simulation of the full model (full). The TMFs were determined for lipid normalized 439 

concentrations. The simple model is identical to the regression model presented in the 440 

empirical study22, adapted to a Bayesian framework. 441 

TMF Model 2.5% Median 97.5% 

PCB-153 Full 3.54 4.67 6.20 

 Simple 3.06 4.91 7.77 

     

PCB-180 Full 4.05 5.56 7.62 

 Simple 3.65 6.01 9.85 

     

P,P',DDE Full 2.99 3.8 4.87 

 Simple 2.55 3.89 5.92 

     

BDE-47 Full 4.11 5.58 7.68 

 Simple 3.48 5.83 9.93 

     

BDE-99 Full 1.82 2.32 3.04 

 Simple 1.09 2.44 5.4 

     

D5 Full 1.66 2.03 2.45 

 Simple 1.09 2.29 4.75 

 442 

  443 



21 
 

FIGURE LEGENDS 444 

 445 

Figure 1. Conceptual diagram of the Bayesian Food Web isotope Level Estimator. Boxes 446 

are estimated parameters; rounded corners imply calculated values and circle represent 447 

observations. The diets of all populations (except for mikrozooplankton) are estimated. These 448 

diets are used to calculate trophic levels for all compartments, using equation 4. Together with 449 

independently estimated µD and the isotope enrichment factor (ΔN) these values are used to 450 

calculate isotope population means for all compartments, using equation 5. With an estimated 451 

error variance these can be used to predict the observed δ15N values. For the estimation of 452 

these parameters the only information used are the observed δ15N values as well as the 453 

structure of the food web. 454 

 455 

Figure 2. Estimated parameters of the food web from the Bayesian analysis. All priors 456 

used were uninformative Dirichlet distributions (i.e. uniform in n-dimensional space), the 457 

only previous knowledge included in the estimation was which entries in the matrix that were 458 

non-zero. Note that the distributions are highly correlated, also across compartments. X-axes 459 

are from 0 to 1, and Y is scaled to highest probability for the 51 bins used to generate the 460 

histograms.  461 

 462 

Figure 3. Isotope enrichment factor (ΔN). Prior (line) and posterior (histogram) 463 

probability distribution of the ΔN . The posterior distribution has 2.5 50 and 97.5 percentiles 464 

of 2.77 ‰, 3.29 ‰ and 3.97 ‰. 465 

 466 

Figure 4. Posterior predictive simulation of trophic levels for the biological 467 

compartments. Lines span from 2.5 to 97.5 percentiles, bars at 25 and 75 % with diamond 468 
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indicating the median value. The trophic levels were simulated by selecting sets of parameters 469 

from the converged chains (i.e. diets, µD for daphnia, ΔN and variance estimate of δ15N 470 

estimates). The δ15N means were then calculated for all compartments and a deviation was 471 

added using the variance estimation. These ‘simulated’ δ15N values were then back calculated 472 

to trophic levels using eq 2. Note that these estimates will be correlated, i.e. a higher trophic 473 

level for trout is accompanied by higher trophic levels for the species in its diet. The 474 

independently estimated isotope level for Daphnia used to fix the relationship in eq 5 had a 475 

median value of 8.107 with a 95% confidence interval from 7.229 to 9.035. 476 

 477 

Figure 5. Distributions of trophic magnification factors (TMF; 2500 draws from each chain = 478 

25000 simulated TMFs) for simple Bayesian regression (grey lines) and posterior predictive 479 

simulation of the full model (black). See Table 1 for median and 95% confidence intervals. 480 
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