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FOREWORD

In April 1991, the United Nations, Economic Commision for Europe, UN-ECE, sent a
request to the Norwegian Institute for Water Research, NIVA, to prepare a technical
paper on the effects of acidification on the terrestrial and aquatic environment. In a letter
of May 2nd 1991, NIVA proposed to prepare a two-stage technical paper concentrating
on the effects of aluminium in the aquatic environment; first step by reviewing the
litterature up to the Glasgow 1990 Conference, and second step by integrating the
papers from the Glasgow Conference Proceedings and the articles from the conference
to be published in a special issue of Environmental Pollution, both being published in
Autumn 1991.

On May 29th, 1991, NIVA received a contract from the UN-ECE, for the preparation of
the first-step article:

"Preparation of a draft technical report on effects of acidification (approximately 25
to 30 pages) on aquatic ecosystems and biota, analysing inter alia long-term trends
on:

- aluminium effects in fish
- invertebrates
- aquatic vegetation"

The draft technical paper, "Effects of aluminium in acidified aquatic ecosystems", was
finished on June 23th 1991.

Due to extremely long publication period, the last issue of the journal "Environmental
Pollution" containing articles from the Glasgow Conference, was received at NIVA in
August 1992. This final report then include all relevant papers from the proceedings, as
well as new litterature from the period between these two reports.

Oslo, November 12, 1992

Bjgrn Olav Rosseland
Professor, dr. philos
Head of Research Department for Environment Technology.
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ABSTRACT

Aluminium (Al) when present in high concentrations, has for long been recognized as a toxic
agent to aquatic freshwater organisms, i.e. downstream from industrial point sources of
Al-rich process water. Today the environmental effects of aluminium are mainly a result of
acidic precipitation; acidification of catchments leads to increased Al concentrations in soil
solution and freshwaters. Large parts of both the aquatic and terrestrial ecosystems are
affected.

In the acidic aquatic environment, pH, aluminium and calcium are still the three most
important factors to explain the losses of biota. Since aluminium concentrations always
increases in waters being acidified, the ecological role og H* and Al alone is difficult to
separate. Laboratory studies were the effects of each factor can be separated, have, however,
. made comparison possible.

Aluminium acts as a toxic agent on gill-breathing animals such as fish and invertebrates, by
causing loss of plasma and haemolymph ions leading to osmoregulatory failure. In fish, the
inorganic (labile) monomeric species of aluminium reduce the activities of gill enzymes
important in the active uptake of ions. Where waters of different qualities (especially acid and
neutral) are mixed to form a new chemical composition, aluminium transformation processes
in these mixing zones might create an increased toxicity of the water to fish. These
phenomena do explain the extreme toxicity often seen in connection to episodes in nature,
thus having serious implications on the ecological structure in the affected areas.

In contrast to the situation for invertebrates and fish, the aquatic macrophytes seems to
tolerate high concentrations of aluminium. The macrophytes appear thus to be much more
sensitive for other chemical factors which changes during acidification, especially the shift
from bicarbonate- towards direct CO,-uptake as primary source for carbon.

In addition to the great changes occurring on biotic species and population levels in acidified
areas, aluminium seems also to accumulate in freshwater invertebrates as well as in
plants. Dietary organically complexed aluminium, may easily be absorbed and interfere with
important metabolic processes in mammals and birds. Aluminium contaminated invertebrates
and plants might thus be a link for aluminium to enter into terrestrial food chains.
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INTRODUCTION

It has been known for many years that high aluminium concentrations in waters polluted by
industrial sources are toxic to invertebrates and fish (Penny and Adams 1863, Weigelt et al.
1885, Thomas 1915, Ebeling 1928, Oshima 1931, Ellis 1937, Sanborn 1945, Pulley 1950,
Murdock 1953, Wallen et al. 1957, Jones 1964, Dickinson Burrows 1977, Hunter et al.
1980, Lamb and Bailey 1981). It is the acidification caused by acid rain, however, that has
caused the ecological significance of aluminium toxicity.

Acidic waters have been recognized as a problem for freshwater fisheries in certain
regions of Norway since the 1920's (Dahl 1927). Forty years later a linkage between
acidic waters and pH of precipitation was hypothesized (Dannevig 1959). Aluminium (Al)
as a main toxic element in acidic waters was recognized nearly twenty years later
(Schofield 1977, Dickson 1978, 1979). Today the three elements, H* (pH), Al and Ca, are
still considered to be most important for the toxicity of acid water to freshwater biota (Wood
and McDonald 1987, Exley and Phillips 1988, Henriksen et al. 1989, Howells et al. 1990,
Rosseland and Henriksen 1990, Rosseland et al. 1990, Spry and Wiener 1991, Rosseland
and Staurnes 1993, Bulger et al. 1993).

Acidification has caused a wide range of changes in the aquatic vegetation, but none of these
changes have so far been attributed to aluminium (Farmer 1990, Maessen et al. 1992). Both
pH and aluminium, however, have been documented to have a variety of effects on
invertebrates and fish. Freshwater invertebrates disappear in acidic waters as a response to
low pH and aluminium (Herrmann 1987a). In addition, bioaccumulation of aluminium in
invertebrate prey organisms has been suggested as a possible explanation for the impaired
hatching success observed among birds (Nyholm 1981, Hussein et al. 1988, Rosseland et
al. 1990). Recent experiments have demonstrated that dietary fed aluminium citrate at
concentrations lower than found in invertebrates in acidified areas, can reduce eggshell
thickness and cause reproduction failure in birds (Wolff and Phillips 1990). However, a
recent review by Tyler and Ormerod (1992) points to the documented low serum calcium in
dippers from acidified areas, caused by a low calcium diet, being the most probable
explanation to reduced eggshell thickness.

The biological significance of Al-speciation and the toxicity of the monomeric labile Al-
species on fish was demonstrated by Driscoll et al. (1982). Henriksen et al (1984)
demonstrated their relevance during episodic changes in water quality occuring in streams
and rivers, and Rosseland et al. (1992) have demonstrated the increased Al-toxicity that
occurs in mixing zones between acid and neutralized streamwaters.

These effects of aluminium depend not only on animal species, but also on the life history
stage of the animals. In nature, the effects of aluminium alone are difficult to isolate from
a variety of potentially interrelated adverse factors. Large variations in pH, Al-species
distribution, calcium and other metals and ions relevant for biological response do occur
especially during episodes of high waterflow, and in lakes and streams where different
water qualities mixes, (Henriksen et al. 1984, Skogheim et al. 1984, Gagen and Sharpe 1987,
Lacroix and Townsend 1987, Rosseland et al. 1992, Rosseland and Hindar 1991). The
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situation is made even more complex by the fact that the organisms themselves strongly
influence their chemical microenvironment near their body surface (i.e. along the gills (see
Playle and Wood 1989, 1990, Exley et al. 1991). The basic chemistry of the external water
will therefore not necessarily represent the true toxic components relevant to the fish. Our
knowledge today about an exact chemical treshold level for a certain physiological response,
might therefore be based on wrong assumptions.

Calsium has a fundamental biological importance for water breathing animals. The Ca?*-ion is
a key factor in the permeability of all membranes, including gill epithelium. In many acidified
areas, the calcium concentration is so low that it is close to the concentration limit for soft
water tolerant salmonid species. In such areas, one must be aware of any substance having an
adverse effect on the Ca metabolism.

In the laboratory, the effects of aluminium per se can be studied at given levels of pH, Ca
and other variables. The results from such studies will also be used below, focusing on
specific responses to Al.

In many cases, a specific response is related to certain species of aluminium, i.e. the
monomeric inorganic species also termed "labile Al" (LAl). In such cases, the separation
technique of Driscoll (1984) with or without minor modifications (Schecher and Driscoll
1987, 1988), and the hollow fiber technique separating the inorganic monomeric Al species of
different molecular size (Lydersen et al. 1987), has been used.

EFFECTS OF ALUMINIUM AND ACIDIFICATION ON AQUATIC
MACROPHYTES

Acidification has been reported to cause a wide range of changes in the aquatic vegetation,
none of which is believed to be due to toxic levels of aluminium per se (Farmer 1990,
Maessen et al. 1992). However, very little is known about the critical loads of aluminium for
aquatic macrophytes.

Many aquatic plants, especially the bryophytes, are able to accumulate very high levels of
aluminium (and other metal ions) without showing signs of injuries (Farmer 1990, Sprenger
& MclIntosh 1989). Some acidophilic species such as Sphagnum subsecundum and the
liverworth Jungermannia vulcanicola have been found to contain aluminium concentrations
of 5-9 % of tissue dry weight (Farmer 1988, Satake et al. 1984). Both submerged Sphagnum
spp- and Jungermannia vulcanicola show increased aluminium accumulation with increased
acidification/Al-levels in the water (Denton and Oughton 1992, Satake et al. 1984). It is well
known that the leaf surfaces of Sphagnum mosses have a very efficient ion exchange capacity
(Clymo 1973), taking up cations such as A3+ in exchange with H*. The submerged
Sphagnum species may thus actively contribute to the acidification of lakes (Hendrey 1982),
at the same time as some portion of the aluminium in the lake probably becomes immobilized
in the slowly decomposing Sphagnum -rich sediment.

In ecosystems with naturally high aluminium concentrations such as the tropical rainforest,
the plants cope with the potentially toxic aluminium levels in two diametrically opposite
ways. Some species manage actively to prevent the aluminium to enter the plant tissue, while
others accumulate the metal in a non-toxic form (Andersson 1988). The latter seems to be a
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common and successful strategy also among the acid-tolerant aquatic macrophytes.

Due to the very limited knowledge of the possible effects of (very) high aluminium levels on
aquatic macrophytes, it seems natural to extend the present review to also consider some
general effects of acidification: What are the impacts on aquatic vegetation, and how can they
be explained?

The major effects of acidification on aquatic macrophytes seem to be at the ecosystem level.
Although a shift in community structure and species composition is fairly often reported, the
prosesses involved are not well understood. The following more or less documented general
effects on the vegetation may be distinguished:

Vegetation of soft water lakes and slow flowing rivers.

The species diversity decreases with increasing acidity (Rerslett 1991, Brandrud & Mjelde
1992). Elodeid (long shoot) vegetation disappears in moderately acidified lakes already at a
pH < 5.5 (-5.0) (Arts 1990a, Brandrud & Mjelde 1992), while isoetid (short shoot/rosette)
vegetation has been reported to disappear from acidified, shallow lakes of pH < 5.0 in certain
parts of Europe, especially in the Netherlands (Farmer 1990, Arts e al. 1989, Roelofs 1983).
However, in other acidified parts of Europe, especially southernmost Norway and North
America, this latter character element of soft water lakes is intact and thriving at pH 4.4 -
4.5 (Brandrud & Mjelde 1992, Rerslett and Brettum 1990, Heitto 1990, Hunter et al. 1986,
Catling et al. 1986, Roberts et al. 1985).

The graminid species Juncus bulbosus and the submerged Sphagnum moss species S.
auriculatum ( = S. denticulatum) and S. cuspidatum are reported to form extensive mats
covering the soft bottoms of a number of acidified lakes in Northern and Western Europe
(Grahn 1977, 1986, Roelofs 1983, Arts 1990b). In acidified areas of Noth America, however,
such vegetation changes have been observed only to a very small degree (Schindler 1993).
Development of dense algal mats have been reported from both continents (Grahn 1986,
Schindler 1993).

Vegetation of rapid flowing rivers and streams.

According to observations from the British Isles and Norway, the majority of stone-
inhabiting mosses such as the Fontinalis species becomes rare or disappears in moderate
acidified rivers of pH < 5.5 (-5.0) (Ormerod et al. 1987a, Brandrud & Mjelde 1992) . The
aquatic mosses are replaced by the acidophilic liverworts Nardia compressa, Scapania
undulata and Marsupella emarginata in acidified rivers and streams (Ormerod et al. 1987a,
cf. also Satake et al. 1989).

Possible explanations for the vegetation changes.

The observed vegetation effects and changes seems largely to be explained by the use of
different sources of inorganic carbon by the different species groups. The elodeids are all
more or less dependent on HCO3" for their inorganic carbon uptake (Maberly and Spence
1983 ), and therefore dominate in alkaline and neutral waters with high carbonate content.
They disappear when the pH is lowered to ca. 5.5, where the CO2/HCO3" equilibrium is
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shifted completely in the direction of CO5. The lack of the "bicarbonate species" may to a
large degree explain the low species diversity in acid waters, although such an explanation
must be combined with others, for instance the dominance of unfavourable soft, organic,
anaerobic bottoms in acidic lakes.

The acidophilic species such as Juncus bulbosus and submersed Sphagnum spp. are all
characterized by a CO» uptake directly from the water column. These plants seems to be
strongly favoured by the elevated CO7 levels in waters undergoing acidification, especially
above organic bottoms where amply CO» is produced by the decomposers (Roelofs et al.
1984, Paffen & Roelofs 1991, Grahn 1988). However, during a long term acidification
process, the sediment also become acidified, which reduces the decomposition rates and the
CO3 production. The CO2 concentration in the water column may thus be depleted to pre-
acidification levels. This may explain why a marked short-term increase in abundance later
can be followed by a reduction to more normal levels of these acidophilic/acid-tolerant
species (Brandrud & Mjelde 1992, Roelofs pers. comm.). The often rather conflicting results
and theories on macrophyte development in acidified lakes (cf. Schindler 1993) may also
probably be explained by such differences/fluctuations in the inorganic carbon supply of the
lakes.

The observed decrease in the isoetid vegetation in acidified lakes can hardly be explained
directly by changes in carbon supply. These species are based mainly on CO7 uptake from the
sediments (Farmer 1990), and with their slow growth rate, they seem to be able to persist
even at low CO> levels. In situ observations and laboratory experiments indicate that these
species may sustain their normal growth rates at pH > 4.0 (Johansen & Brandrud 1992,
Laake 1976). However, reduced vitality and finally disappearance has been observed when
the isoetids have become overgrown by epiphytic algae, Juncus or Sphagnum, all of which
are species able to take advantage of the high CO5 levels in acidified waters .

EFFECTS OF ALUMINIUM ON INVERTEBRATES

Acidification has generally been accompanied by declining numbers and biomass of both
planktonic and benthic invertebrates (Leivestad et al. 1976, Haines 1981, Homstrom et al.
1984, Pkland and @kland 1986, Merildinen and Hynynen 1990, Sarvala and Halsinaho 1990).
However, the mechanisms by which aluminium per se can act as a harmful agent on these
organisms are largely unknown (Herrmann 1987a).

Homstrom et al. (1984) and Sarvala and Halsinaho (1990), indicated that aluminium
could affect the zooplankton community in acidified surface waters. On adding aluminium to
an acid stream, Hall efal (1985, 1987), Raddum and Fjellheim (1987) and Ormerod et al.
(1987b) and Merrett et al. 1991) observed an increased drift of mayfly nymphs, chironomids
and dixid midges. Many animals related to the surface film were found dead in drift samples,
presumably caused by reduction of surface tension; this was indicated by a pronounced
foam production connected with elevated aluminium concentrations (Hall et al. 1985,
Ormerod et al. 1987b). Al-induced mortality of stoneflies, the isopoed Asellus and
caddis larvae was reported by Burton and Allan (1986), who also demonstrated a reduced
mortality whenever the organic content of the water was high. The counteracting effect of
humic acids relative to Al-toxicity was also demonstrated by Petersen et al. (1986) on
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blackfly larvae, by Sarvala and Halsinaho (1990) on crustacean zooplankton, and by
Kullberg (1992) on benthic stream communities.

Raddum et al. (1984) noted low abundance of benthic invertebrates in the deeper part of a
lake after liming. It was suggested that possible precipitation of Al-complexes in the
sediments (Dickson 1983, Wright and Skogheim 1983) could be responsible for the negative
development of chironomids in the profundal compared with the littoral and sublittoral zone.
Effects of such AL-complexes were also thought to affect the ephemerid fauna in running
water during episodes with increasing pH (Engblom and Lingdell 1983). Recent
investigations of mixing zones of acid and non acid water have shown that these zones are
very toxic to fish (Rosseland ez al. 1992). Lime on sediments can create mixing zones in the
microhabitat and put the suggestions mentioned above in a new perspective.

Meriliinen (1988) investigated an estuary receiving river water which in periods had elevated
concentrations of monomeric inorganic aluminium. He concluded that the periods with acidic
and aluminjum-rich water were the main reason for the low benthic biomass and the reduced
diversity in the acidic freshwater area of the estuary.

Not all invertebrate species tested have shown high sensitivity to aluminium. No additional
mortality of aluminium was observed on bivalves and gastropods (Mackie 1986) or crayfish
(Berrill et al. 1985) in acidic waters. Appelberg (1985), however, demonstrated reduced
haemolymph Nat content in crayfish exposed to acidic aluminium-rich waters. At very low
pH, high concentrations of aluminium can have an ameliorating effect, on for example
mayfly nymphs  (Heptogenia sulphurea) (Herrmann 1987a) and small planktonic
crustacean (Daphnia magna) (Havas 1985, Havas and Likens 1985). The mechanisms
involved might be the same as found for fish (see below), but in both cases the actual
concentrations of aluminium are much higher than normally found in acidic waters containing
these organisms.

Raddum and Steigen (1981) found that the caloric content of stoneflies and caddisflies from
acidic rivers was lower than from more neutral rivers; this implies an increased energy
consumption (metabolism) in acidic waters. Increased respiration was later demonstrated to
be a response to aluminium, highly pronounced for the most sensitive mayfly species
(Herrmann and Andersson 1986). As is the case with fish (Rosseland 1980, Leivestad et
al. 1987)), pH alone seemed less important for the respiratory response.

Aluminium can also impair reproduction , shown on Daphnia magna (Beisinger and
Christensen 1972).

Otto and Svensson (1983) suggested that, as in fish, aluminium affects invertebrates by
disturbing osmoregulation. Malley and Chang (1985) showed a reduced Ca2t uptake
when exposed to aluminium-rich water. In Daphnia magna, aluminium reduced the Na*
influx and to a lesser extent increased the outflux, thus impairing osmoregulation (Havas
and Likens 1985). The temporal reduced outflux at low pH might explain the reported
beneficial effects of aluminium at low pH. Witters er al. (1984) demonstrated a reduced
haemolymph Nat content in Corixa exposed to high Al-concentrations, and Herrmann
(1987b) found that aluminium caused a reduced Nat content of mayfly nymphs at low pH.
Sutcliffe and Hildrew (1989) says that in mountain areas where concentrations of sodium can
be well below 100 uequiv I-1, hydrogen and aluminium will be completely dominant. Due to
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their relatively small size and high mobility, they may be transported inwards across the gills
instead of sodium, potassium or calcium in invertebrates. This will disturb the normal internal
equilibrium with fatal loss of vital ions from blood and tissue.

As with fish, aluminium acts on the respiratory and osmoregulatory organs of
invertebrates, for example the anal papillae of the phantom midge (Havas 1986). This
might explain why air-breathing invertebrates like the waterboatmen (Corixa) are very
tolerant to acidic waters (Vangenechten et al. 1979, Witters et al. 1984).

Aluminium can accumulate in the bodies of invertebrates living in acidic waters (Hall and
Likens 1981, Nyholm 1982, Herrmann 1987a). Many insects with aquatic larvae and
nymph stages can leave their previous body metal pool in their excuviae on emerging (Young
and Harvey 1988). The aquatic stage in their life history may therefore be the most
metal-contaminated stage. The amount of contaminated aluminium and heavy metals in insect
larvae as well as adults, however, is dependent on acidity and oxygen concentration of the
sediments (Young and Harvey 1988).

" On the other hand, examples of decreased concentration of aluminium have been observed in
the food web, starting with periphyton through zooplankton to fish (King et al. 1992). This
decrease in metal content in tissue of organisms is called biopurification and is the opposite of
the more common biomagnification. In a review paper of Wren and Stephenson (1991), the
conclusion is that aluminium does not biomagnify in aquatic environment and that aluminium
in natural good water quality generally afford little risk of toxicity to invertebrates. However,
in water with decreased pH, aluminium concentrations usually increase and coupled with
reduced pH at certain levels the water will be toxic to sensitive invertebrates.

Birds such as the pied flycatcher (Ficedula hypoleuca), which lives on insects in or close
to acidic lakes, have been reported to have high Al-concentrations in bone marrow and
eggs indicating a food-chain transport (Nyholm and Myhrberg 1977, Nyholm 1981, 1982).
The impairment of egg hatching of these birds have therefore been hypothesized to be caused
by this bioaccumulation. Whether the impairment of egg hatching caused by reduced eggshell
thicknes is related to Al-accumulation or other changes in the environment, is still under
debate. A recent review by Tyler and Ormerod (1992) points to that the documented low
serum calcium found in dippers (Cinclus cinclus) from acidified upland streams in Wales, was
most probably caused by a low calcium diet. This low serum calcium in female dippers then
resulted in a reduced eggshell thickness and hatching success. Aluminium was not mentioned
as a possible link to these disturbances.

However, in spite of some discrepancies in results, several feeding experiments have pointed
to a possible role of aluminium for these environmental changes. Feeding experiments, using
aluminium sulphate enriched food at Al-concentrations similar to the one found in insects
from acidified areas, did not affect growth or reproduction of Ring doves Streptopelia
risoria (Carriere et al. 1986). In similar dietary experiments with Japanese quail (Coturnix
coturnix japonica), however, the eggshell thickness have been reduced (Hussein et al. 1988).
Experiments using dietary fed aluminium citrate at concentrations lower than found in
invertebrates in acidified areas, have also shown reduced eggshell thickness and caused
reproduction failure in Japanese quail (Wolff and Phillips 1990). We know from experiments
with mammals that aluminium interfere with the Ca regulatory system and can disturb
calcium homeostasis. Al also binds to calmodulin, which is a multifunctional, Ca-dependent
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protein regulating a variety of cellular reactions, including regulation of many enzymes
(Ganrot 1986).

Based on the results from Sweden (Nyholm and Myhrberg 1977, Nyholm 1981, 1982), and
some of the feeding experiments, the impairment of egg hatching of these birds might
therefore to some extent link the environmental problems of aluminium appearing in the
acidic aquatic ecosystem to the terrestrial ecosystem.

EFFECTS OF ALUMINIUM ON FISH

For a long period of time, pH (H*) alone was considered to be toxic at the egg stage (Day
and Garside 1977, 1979, 1980, Leivestad et al. 1976, Peterson et al. 1980, Shepard 1987),
with an increasing influence of aluminium with age after hatch (Baker and Schofield 1980,
1982, Wood and McDonald 1982). More recently, however, it has been demonstrated that
aluminium reduces both ion uptake at the eyed-egg stage and the activity of Na-K-ATPase
in the embryo (Leivestad et al. 1987, McWilliams 1990, McWilliams and Shepard 1989,
1991, Shepard 1988, Shepard and McWilliams 1989).

Al and pH are known to interfere with whole body mineral content and skeletal calcification
at the embryo and fry stage (Sayer et al. 1991). Recent studies on strain of brown trout
having different sensitivity to acid waters ( Sadler and Lynam 1989a, 1989b, Dalziel and
Lynam 1991, Kroglund and Rosseland 1992, Kroglund et al. 1992) seem to indicate
differences in calcification rate at the alevin stage (Sadler et al. 1990) as a possible key to
understand these strain differences. In spite of a comparable total body Ca, the most resistant
strains had the lowest calcification rate of finrays and skeletal. This phenomenon might thus
indicate an important resistant mechanism for embryo survival before swimup, giving priority
to a high plasma/serum Ca to ensure Ca homeostasis.

After hatch, the main target organ for the Al-effects is the gill where the ion and gas
exchange takes place. In addition to the effects of H*, aluminium causes loss of plasma ions
(Na*, CI), reduced osmolarity, increased hematocrit, reduced oxygen tension and increased
CO, pressure (hypercapnia) in the blood (Muniz and Leivestad 1980, Rosseland 1980,
Rosseland and Skogheim 1982, 1984, 1987a, 1987b, Rosseland et al. 1986a,b, 1991,
Fivelstad and Leivestad 1984, Neville 1985, Neville and Campell 1988, Witters 1986, Jensen
and Weber 1987, Ormerod et al. 1987c, Vangenechten et al. 1987, Witters et al. 1987, 1990,
1991, Leivestad et al. 1987, Wood and McDonald 1987, Booth et al. 1988, Vuorinen et al.
1992).

In acidic waters (pH 4.6 - 5.3) with low levels of calcium (0.5 - 1.5 mg Ca/l), inorganic
monomeric aluminium between 25 - 75 ug/l is toxic (Henriksen ef al. 1984, Rosseland
1989, Rosseland et al. 1986a, Rosseland and Skogheim 1987, Skogheim and Rosseland
1986). The Al-induced ion loss reflects both an increased outflux and a decreased influx
of ions (Dalziel et al. 1986, 1987, Wood and McDonald 1987, Wood et al. 1988,
McWilliams 1990, McWilliams and Shephard 1991). The effect on influx is probably caused
by a reduced activity of enzymes such as Na-K-ATPase, Mg-ATPase and carbonic
anhydrase (Staurnes et al. 1984, Kjartansson 1984, Leivestad et al 1987, Reite and
Staurnes 1987, Rosseland et al. 1992). Aluminium acts specifically on the enzymes of the
gill, as neither the ATPase systems in the pseudobranch or the kidney was affected
(Kjartansson 1984). The Al-induced efflux is considered to reflect modifications on opening
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of the tight junctions of the paracellular channels (Wood and McDonald 1987, Exley et al.
1991). The ameliorating effect of Ca on Al- and pH response (Leivestad ez al. 1980, Brown
1982, 1983, McDonald et al. 1983, Shephard 1988, McWilliams 1990, McWilliams and
Shephard 1991, Rosseland 1989) is probably by tightening of the junctions, thereby
preventing the passive loss of ions (Wood and McDonald 1987).

Populations of perch (Perca fluviatilis) shows a higher tolerance to pH and aluminium in
lakes with high organic content (TOC) ( Henriksen et al. 1989, Hesthagen et al. 1992). The
amelioraiting effect on aluminium toxicity of organic substances like humic acids and citrate
(Baker and Schofield 1982, Driscoll et al. 1980, Hulsman et al. 1983, Rosseland and
Skogheim 1987b, Leivestad et al. 1987, Witters et al. 1990) , as well as silicon (Birchall &
Chappel 1989, Birchall et al. 1989, Exley 1989), is due to these substances ability to chelate
the inorganic monomeric aluminium, thus reducing the concentration of the toxic aluminium
fraction.

The explanation of how Al affects the gill, have to take into account basic chemical properties
of Al, basic properties of the gill epithelium and its surface microenvironment, as well as what
is known about how Al interfere with basic biochemical and physiological functions. Fish
exposed to acidic Al-rich waters will accumulate aluminium on the gill surface (Schofield
1977, Schofield and Trojnar 1980, Muramoto 1981, Buergel and Soltero 1983, Pagenkoff
1983, Skogheim ef al. 1984, Neville 1985, Karlsson-Norrgren et al. 1986a,b, Harvey and
McArdle 1986, Witters et al. 1987, Wood and McDonald 1987, Jagoe et al. 1987, McCahon
et al. 1987, Youson and Neville 1987, Playle and Wood 1989, 1990, Rosseland et al. 1992,
Vuorinen et al. 1992). Important biochemical properties of the gill epithelium for the
explanation of Al precipitation and binding, are its net negative charge, the glycoproteins and
sialic acid in mucous, the phosphate groups on membrane phospholipids, carboxylate groups
on the membrane proteins, and the binding structure of membrane transport proteins
(McDonald 1983, Exley and Phillips 1988, Exley et al. 1991). Of crucial importance is also
the fact that the gill boundary layer closest to the epithelium , is both chemically and
physically dissimilar to water outside this layer. The chemistry of boundary layer is very much
influenced by the organism itself.

The precipitation and accumulation of aluminium onto the gill is due to the negative charge
of the mucus caused by sialic acid residues (McDonald 1983), and the chemical changes
occurring in the gill micro habitat during respiration (Wright et al. 1986 Playle and Wood
1989, 1990, Exley et al. 1991, Rosseland and Staurnes 1993). The gill also serves as an
excretion organ for ammonia (NH,*) (Masoni and Payan 1974). At low pH and high
aluminium, the reduced blood pH (acidosis) and increased CO, (hypercapnia) will interfere
with the formation from ammonium (NH,) to ammonia, thus more is excreted as NH;. At
the interface between mucus and water, the ammonium will be transformed to ammonia,
changing the pH and thus enhancing precipitation of aluminium at the gill surface (Wood and
McDonald 1987). In low pH waters, inorganic monomeric aluminium will occurre mainly on
low molecular weight forms (Lydersen 1992, Lydersen et al. 1990a, 1990b, 1992, Oughton et
al. 1992, Rosseland et al. 1992). When pH raises, f. eks. when acid Al-rich water mixes with
limed or neutral waters, low molecular inorganic forms of aluminium will be transformed to
high molecular weight forms and hence precipitate (Lydersen et al. 1992, Oughton et al.
1992). In such mixing zones, rapid Al-precipitation onto fish gills, osmoregulation failure, and
gill lesions have been observed, the water in the mixing zone being more toxic than the
original acid water (Rosseland et al. 1992, Poleo et al. 1993). The process wich occur in the
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gill micro environment, enforcing the precipitation of aluminium onto the gill (Playle and
Wood 1989, 1990, Exley et al. 1991), is probably the same process (changes in molecular
size of the inorganic monomeric Al) which occur in mixing zones (Rosseland e al. 1992).
Since Al-polymerization kinetics is temperature dependent (Lydersen ez al. 1990b, 1992), it is
not surprising that Al-toxicity is reduced at low temperatures (Poleo et al. 1991, Poleo 1992).

In nature, the increased aluminium toxicity occurring in mixing zones is a problem connected
to areas where acid groundwater enters neutral or limed lakes or rivers (Norton and
Henriksen 1983), acid tributaries enters a neutral or limed river (Skogheim et al. 1984,
Rosseland et al. 1992), and in hatcheries with unappropriate neutralized water with short
retention time post treatment (Rosseland and Hindar 1991).

There are species and strain differences in sensitivity to low pH (Grande et al. 1978,
Gjedrem 1980, Robinson et al. 1976, Swarts et al. 1978) and aluminium (Dalziel and Lynam
1991, Kroglund and Rosseland 1992, Kroglund et al. 1992, Rosseland and Skogheim 1984,
1987a, 1987b, Rosseland and Staurnes 1993, Rosseland er al. 1986b, 1990, 1992, Sadler
and Lynam 1989a, 1989b, Sadler et al. 1990, Wood and McDonald 1987). These species
differences are also reflected in the accumulation rate of aluminium onto the gills, as well as
the whole body (wb) ion concentration, i.e. fish with the lowest wb Na (greatest loss) have
the highest Al-concentration on the gill surface (Wood and McDonald 1987). Although strain
differences in sensitivity have been documented for many fish species, such differences have
not been observed in experiments with Atlantic salmon (Kroglund et al. 1990) and American
bullhead (Ictalurus nebulosus (Le Sueur)) (Bogaerts et al. 1991).

Precipitated Al-complexes can irritate the gill and cause inflammation, oedema, swelling
and sometimes irradation of the secondary lamella (Schofield 1977, Schofield and Trojnar
1980, Karlsson-Norrgren et al. 1986a,b, Jagoe et al. 1987, Playle and Wood 1989, 1990,
Rosseland et al. 1992). Also an increased number of mucus cells (Linnenbach et al. 1987)
and chloride cells (Jagoe et al. 1987, Jagoe and Haines 1990) have been observed relative
to Al-accumulation onto the gills. In spite of high Al-concentration on the gill these
histopathological changes are not observed when the humus content in the water is high,
indicating a labile Al-dependent irritation (Karlsson-Norrgren et al. 1986b).

What actually is the dominating or most important of these processes outside the cells;
hydroxide precipitation in mucous or the binding to epithelium, could be hypothesized to be
primarily a matter of reaction rates and concentrations, probably being affected by
temperature, and situations such as the unstable Al chemistry of mixing zones characterized by
an already ongoing Al polymerization (Rosseland et al. 1992).

Although increased levels of aluminium in blood plasma not have been found (Neville 1985,
Wood and McDonald 1987), Al-accumulation in body tissue does occur (Hunter et al.
1980, Muramoto 1981, Buergel and Soltero 1983, Haines ef al. 1987). In the field, such
accumulation might reflect both a direct gill-dependent uptake and a food chain dependent
uptake (Haines et al. 1987). It was suggested by Muramoto (1981) that aluminium could
pass through the gill as metal-complexes in the presence of complexing ligands. How Al
actually comes into the cells is unknown, but Excley et al. (1991) suggested from findings
from in vitro experiments with phospholipid vesicles that apical bound Al alters membrane
permeability to allow the intracellular accumulation of Al Inside the cell, citrate might be an
excelent ligand to Al and act as an intermediate chelator, passsing Al to groups with higher
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affinity. The gill activities of the enzymes carbonic acid anhydrase and Na-K-ATPase are
inhibited in acid/Al-exposed salmonids (Staurnes et al. 1984, Rosseland et al. 1992). The
interaction between Al and ATP (mainly the tendency for ATP to form stronger complexes
with Al than with Mg) may imply that Al can affect many enzymes reactions where ATP is a
substrate, and possibly causing servere disturbances of the energy metabolism of the cells
(Ganrot 1986). Al also binds to calmodulin, which is a multifunctional, Ca-dependent protein
that regulates a variety of cellular reactions, including regulation of many enzymes (Ganrot
1986). In mammals, Al has been shown to interfere with the Ca regulatory system and Ca
homeostasis, and similar interference might be suspected in the gill epithelium cells (discussed
by Excely et al. 1991). Al has recently been shown to inhibit the Ca?* uptake over the gills of
freshwater carp, Cyprinus carpio, Verbost et al. 1992. The cytosolic plasma Ca?*
concentration is very well regulated, and in eukariotic cell a higher concentration than 107 -
108 cause breakdown of the cellular functions (Wiercinski 1989). Myocardial cell necrosis
during heart muscle arrest seems to be caused by Ca "overload" in the cell (Wiercinski 1989),
and similar cell necrosis could also be suggested to take place in gill epithelia. The overall
effects of the possible interference of Al with basic processes in the gill epithelial cells may
thus be severe effects on the epithelial barrier properties (trans- and paracellular transport) and
accelarated cell death (Excely et al. 1991).

Sometimes extensive mucus-clogging of the secondary lamella has been observed (Muniz
and Leivestad 1980, Rosseland 1980, Rosseland and Skogheim 1984). This response is
not universal, as fish dying in field in natural acidic waters at labile Al-concentrations of 59 -
110 ug/l have not shown excess mucus despite an Al-accumulation on the gills (Skogheim
et al. 1984, Rosseland et al. 1986a, Rosseland et al. 1992). Adding excess aluminium as
Al,(SO,); to such waters (LAl > 130 ug/l) rapidly induced mucus clogging (Muniz and
Leivestad 1980, Rosseland 1980, Rosseland and Skogheim 1984). The relevance of the
mucus clogging might therefore be questioned with respect to natural conditions, although
increased number of mucus cells on gills of Atlantic salmon in an acid river has been
observed (Jagoe and Haines 1990).

Both histopathological changes and an increased mucus layer will serve to increase the
diffusion distance for O, and CO, between the water and blood. This can lead to a
decreased oxygen tension in the arterial blood, reduced hemoglobin oxygenation and pH, and
increased blood CO, and blood lactate (Neville 1985, Malte 1986, Wood and McDonald
1987). At low pH, the increased mucus layer will reduce the rate of ion loss, thereby
temporarily increasing the resistance, as observed by Baker and Schofield (1982),
Hutchinson et al. (1987) and Wood and McDonald (1987). At such high concentrations of
H+ and aluminium, the primary cause of mortality might thus be respiratory rather
than osmoregulatory failure (Rosseland 1980, Muniz and Leivestad 1980, Neville 1985,
Wood and McDonald 1987). '

In general, there is an increase in metabolic cost when an organism is exposed to stressful
conditions (Calow 1991). In acid waters, metabolic activity, measured as oxygen uptake, is
not affected by H* alone, but increases as a response to aluminium in the water
(Rosseland 1980, Neville 1985, Malte 1986, Wood and McDonald 1987). The increased
respiratory and heart rate observed in acidic waters (Rosseland 1980, Muniz and
Leivestad 1980, Ogilvie and Stechey 1983, Giles et al. 1984, Fivelstad and Leivestad 1984,
Neville 1985, Malte 1986, Leivestad et al. 1987, Wood and McDonald 1987) are not
believed to cause the increased energy expenditure per se, as the increased metabolism
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rather reflects the increased activity of the intrinsic compensatory mechanism trying to
restore homeostasis (Rosseland 1980). In long-term experiments, both low (Sadler and
Tumnpenny 1986) and high concentrations of Al (Muniz and Leivestad 1979, Siddens e al.
1986) have reduced growth. A reduction in growth has also been observed in a population of
brown trout from a lake undergoing reacidification after a previous liming (Barlaup et al.
1992) Hyperventilation in acidic waters is a specific response to the labile Al-concentration,
as the addition of chelator such as citrate depresses hyperventilation (Leivestad et al. 1987).

Prolactin and cortisol are important hormones related to osmoregulation (Potts and
Flemming 1970, Johnson 1973); prolactin reduces ionpermeability and increases mucus
production, while cortisol stimulates the onset of cellular proliferation and differentiation in
the primary gill epithelium, and increases the specific activity of Na-K-ATPase. Both
hormones are affected by acidic waters (Wendelaar Bonga and Balm 1989, Witters e al.
1991). Plasma cortisol increases in fish exposed to low pH and high aluminium
concentration, presumably as a response to compensate the H*/Al-response (Kjartansson
1984, Witters et al. 1991), as well as in fish exposed to low external NaCl-concentration
(Perry and Laurent 1989) and chronic stress in general (Pottinger and Pickering 1992).
Prolactin production increases in acidic waters mainly as a response to a drop in plasma
electrolytes (Wendelaar Bonga et al. 1987). As this is a time dependent increase, an increased
prolactin production is clearly a mechanism of resistance.

Although hormones plays an important role in various resistance mechanism towards acid
waters (Exley and Phillips 1988, Rosseland and Staurnes 1993), an important and yet
undiscussed aspect, is the potential negative effects of an increased level of cortisol as a
response to prolonged (chronic) exposure to acid aluminium-rich waters. As a permanent
increased level of cortisol has a negative effect on the immune system (Mazeaud and
Mazeaud 1981, Pickering and Pottinger 1985) , such a response might thus have a negative
effect on the health status of fish populations in acid lakes in general. Another important
aspect is a possible post-episodic effect. A combination of a primary sublethal physiological
stress (a.0. osmoregulatory and circulatory problems) and a secondary reduced immunity
caused by a cortisol respons, might lead to an increased mortality over a long periode. The
overall effect might thus be substantially greater than the direct observed mortality during and
shortly after an episode or an exposure to a "mixing zone chemistry" ( Rosseland and
Staurnes 1993).

Avoidance reactions to low pH waters have been observed when plasma cation
concentrations have been reduced by acidic waters (Pedder and Maly 1987). Olfaction is an
important part of behavioural response and can lead to both positive and negative chemotaxes
including avoidance. Low pH alone reduces the olfactory response to aminoacids and
increases the mucus layer in the olfactory organ (Thommesen 1975, Klaprat et al
1988). Adding aluminium to the water depresses olfactory response even more and
causes histopathological changes such as irradation of the microvilli swelling and
disformation of the olfactory epithelium (Klaprat et al. 1988). During episodic changes in
water quality related to snowmelt or heavy rain, fish are often observed gathered at the
outlet of, or having migrated into, a less acid brook or stream (Muniz ef al. 1978,
Rosseland 1986). Also during more chronic acidic conditions, preferences towards better
water quality has been observed. In the limed Lake Hovvatn, brown trout during
reacidification migrated into an adjacent pond with better water quality in spite of higher fish
density and higher competion for food (Barlaup et al. 1989). Also in relation to acid episodes
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with elevated Al-concentrations, brook trout have been observed drifting downstream or
actively seeking chemical refugia (Carline et al. 1992). Downstream drift has also been
observed by Atlantic salmon during a naturally occurring and highly toxic episode of low pH
and high Al-concentration (Skogheim et al. 1984). These studies indicate that the
avoidance/escape reactions are important resistance mechanisms under acid conditions, and
therefore important for survival and selection of more tolerant fish.

Chronic exposure to sublethal acidic conditions causing disturbances of the olfactory sense
prior to a toxic episode, might reduce the chance for a fish population to find refuges and
survive in their environment. A sensitive olfactory organ, but still insensitive to the
negative effects of pH and aluminium, might thus be one of the most important factors for
natural selection and resistance in nature (Rosseland and Staurnes 1993).
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