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ABSTRACT

Piston sediment cores from Lakes Hundvatn (eastern Finnmark, Norway) and Shuonijirvi
(northwestern Russia) in March 1993 were dated with *'°Pb. Sedimentation rates at Hundvatn are
1.940.3 mg cm™ y! (0.028 cm y) below a sediment depth of 4.0 cm and 4.0 mg cm? y'! above;
in Shuonijérvi the rate is 2.4 mg cm™?y" (0.032 cm y™') over the last 170 years. Cs isotopes from
thermonuclear bomb fallout have been redistributed through the core, rendering them useless for
dating using “’Cs. '*Cs (from Chernobyl) was detected in Shuonijirvi sediment. **’Am
distribution in the sediment is consistent with the *'°Pb chronology. Concentrations and fluxes of
Cd, Co, Cu, Ni, Pb, and Zn increase within the last century. All the fluxes except that of Pb are
higher to the northeast of the Nikel and, in combination with data from Dauvalter (1994),
indicate that smelters of the Pechenga-Nikel Company have been a major source of metal
pollution since their start-up and the effects are at a maximum in the youngest sediment,
representing approximately the last ten years of sedimentation (up to 1993). No regional
pollution of the metals (except Pb) is evident in sediment prior to the 20th century. However, the
histories of Pb fluxes and concentrations indicate a pollution history probably in excess of 2000
years.

INTRODUCTION

Surveys of lake and stream water chemistry (Traaen et al.,, 1993), stream sediment chemistry
(Rognerud, 1990), lake sediment chemistry (both surface samples; Dauvalter, 1992: and undated
cores; Rognerud et al., 1993; Dauvalter 1994), and undated ombrogenic peat cores (Traaen et al.,
1994) in eastern-most Norway (County Finnmark) and northwestern-most Russia (the Kola
Peninsula) clearly indicate regional pollution as a consequence of atmospheric emissions from
the Pechenga Ni-smelter at Nikel, Russia. This facility began operation in 1932 and was joined
by several other smelting facilities eastnortheast from Nikel. The annual regional emissions are
about 250,000 tons of SO, and up to about 500 tons of Ni (Sivertsen et al., 1991; Kryuchkov and
Makarova, 1989). In 1990, short sediment cores were obtained from Dalvatn and Durvatnet, 40
km north and 35 km northeast, respectively, of Nikel (Norton et al., 1992a), (Figurel). These
studies provided the first temporal dated record of air pollution in the area. The current studies
reported herein were a cooperative effort between the Norwegian and Russian governments
through the Norwegian Institute for Water Research (Oslo) and the Institute of the North
Industrial Ecology Problems (Apatity), respectively. The goal of this research was to gather



additional evidence for the chronology of air pollution in the vicinity of Nikel by sampling a lake
upwind and downwind of this major source of atmospheric pollution.

METHODS

Lake Selection, Coring, and Sediment Processing: The lakes selected represent an upwind
(Shuonijirvi, southwest from Nikel) and downwind (Hundvatn, north of Nikel) from the major

atmospheric point source (Figure 1). Lake Shuonijdrvi (30° E. Long.; 69°15° N. Lat.) is located
approximately 23 km southsouthwest from Nikel, Russia. The lake is about 8 km long (northeast-
southwest) and has a maximum width of 2 km. It was reached by gravel road to the outlet at the
north end. Drainage is northerly, ultimately into Passvikelva west of Nikel, and then northerly to
Kirkenes, Norway. Hundvatn (30°32’ E. Long.; 69°30°30”), wholly within Norway, is located
about 24 km northnortheast of Nikel adjacent to the Norwegian-Russian border but receives
drainage from about 1 km within Russia. The outlet of Hundvatn is the Karpelva, draining
northerly into Jarfjorden. The lake is approximately 2.5 km long (notheast-southwest) and 0.5 km
wide at the widest point. Access is limited to foot paths in the summer and snowscooter in the
winter.

We cored through the ice (ca. 0.8m) using a Davis-Doyle piston corer (Davis and Doyle, 1969)
with a diameter of 6 cm. Water depth was obtained with a plumb sounding and then the coring
apparatus (tripod plus corer) was relocated approximately 3 m away to avoid disturbed sediment.
The sediment core (56 cm long) from Shuonijidrvi was taken at a depth of 14 m in a region of
relatively low topography on 3/24/93. The Hundvatn core (37 cm long) was retrieved on 3/26/93
from a water depth of 11.5 m in mid-lake near the point of maximum curvature. Both cores had
undisturbed sediment-water interfaces. Air temperature during coring and sectioning ranged from
0°C to -9°C. Sediment was kept from freezing prior to extrusion by wrapping the core tube in
foam insulation. The cores were sectioned at the lake by upward extrusion as follows: 0 to 20 cm
in 1 cm intervals; 20 to 40 cm in 2 cm intervals; 45-46 cm and 50-51 cm. Sediments were stored
in Whirl Pak™ bags and shipped to Orono, Maine, USA by express mail from Norway.

In the laboratory, sediment was homogenized in the Whirl Pak™ bags, transferred to porcelain
crucibles, and air dried at 95°C. Weight loss was calculated as water content. Selected intervals
(see Table 1) were sent to P. G. Appleby at Liverpool for gamma analysis for dating (see below).

The dated samples were returned from Liverpool to Orono, Maine and recombined with the
remaining sequence of intervals for a complete stratigraphy. Air dried samples were
homogenized with an acid-cleaned mortar and pestle (agate) and aliquots placed in porcelain
crucibles at 550°C (“ignited”) for three hours. Weight loss was calculated as oxidizable
hydrocarbons, or concentration of organic matter. A laboratory accident caused the complete loss
of the ignited material for a number of intervals in both cores. Sufficient archived unashed
material was available for a second aliquot of ashed material for most of the lost intervals.
However, for 0 to 1 cm in Shuonijarvi and 0 to 2 cm in Hundvatn, we substituted sediment
intervals dated by Appleby.

Radiometric dating:

Sediment samples from cores C-1 (Shuonijdrvi, in Russia) and C-2 (Hundvatn, Norway) were
analyzed for *'°Pb, **Ra, *'Cs, **Cs, “K, ?*U, and **' Am by gamma spectrometry using a well-
type coaxial low background intrinsic germanium detector fitted with a Nal(Tl) escape



suppression shield (Appleby et al., 1986). The results for B34Cs were corrected for decay since
May 5, 1986. *°Pb chronologies were calculated using both the CRS and CIC %1%} dating
models (Appleby and Oldfield, 1978)

Chemical analyses:

Approximately 0.1000 g of “ignited” sediment was placed in solution using the methods of
Buckley and Cranston (1971). This process places the entire sample (except graphite) into
solution. Thus “bulk” chemistry is determined. Standards were made up in the same matrix from
reagent grade oxides, metals, and carbonates in concentrations similar to the bulk chemistry of
the sediment. Chemical analyses were performed by Atomic Absorption Spectrophotometry
(Perkin-Elmer) with a graphite furnace or flame, whichever was appropriate for the element and
concentration range. Silica, the most abundant metal in the sediment was not determined directly
but may be calculated by difference, in as much as all the major elements are measured except
for S and O. Detection limits for the trace elements were, on an ignited weight basis: Cd, 0.06
parts per million (ppm); Co, 1.0 ppm; Ni, 0.7 ppm; Pb, 1 ppm; and Zn, 11 ppm. For the three
sediment intervals that had been lost in the laboratory accident, we leached dried sediment (not
ashed) with 10% HNO; for 3 hours at 50°C. Samples were then filtered and analyzed as for the
other sediment intervals. We also processed and reanalyzed several intervals previously digested
by the Buckly and Cranston (1971) method and got comparable results for concentrations of
trace elements. Tables 3 and 4 use the combined data. Because of the accident, we also had to
estimate, by extrapolation, the concentration of organic matter in the same three intervals..

RESULTS

Radiometric dating:

For the Shuonijérvi core (Tables 1 and 2), there is little difference between the chronology based
on the CRS and CIC models (Figure 1; Table 4). Both models indicate a more or less constant
sedimentation rate of 2.4+0.3 mg cm™y” (or 0.03240.004 cm y™).

In the Hundvatn core (Tables 1 and.2) the two dating models agree and indicate a fairly constant
sedimentation rate up to a depth of about 4 cm, with a mean value of 1.940.3 mg cm™ y’
(0.028+0.004 cm y™). Above 4 cm, sedimentation rates appear to have been significantly higher,
the onset of the change being marked by a significant reduction in unsupported *'°Pb activity in
the 3 to 4 cm section (Figure 3; Table 1b). The CRS model calculations suggest that this feature
represents an episode of rapid sedimentation some time in the period 1922-1944. Following this
event, sedimentation rates appear to have remained at a slightly higher value than before, with a
mean post-1950 value of 4.0+0.2 mg cm™ y™'. The CIC model sugests more recent and dramatic
changes, the event at 3 to 4 cm being dated at ca. 1960 and a mean sedimentation rate since then
of 7.440.7 mg cm™ y'. We chose the CRS dating model for calculation of absolute ages and
fluxes of metals. Extrapolation of the sediment accumulation rate downward from the 6 cm
interval, where 1 cm equals 35 years results in an estimated age of 300 years A.D. at the base of
the core.

The "’Cs results are of little chronological value. In both cores the maximum '¥'Cs activity
occurs in the topmost sample (Table 2). In Shuonijirvi, the ?'°Pb dates put 1963 (the time of
maximum worldwide deposition of *’Cs) at a depth of 1.5 to 2.0 cm. In the Hundvatn core, 1963
is between 2 (CRS model) and 3 cm (CIC model). Neither core has any "*’Cs peak at these levels.



Traces of '*Cs in the surficial sediments of Shuonijirvi suggest that the high surficial '*'Cs
activities in that core may be due partly to fallout from the Chernobyl incident, although when
this is taken into account it still appears that '*’Cs mobility in the porewaters has been sufficient
to destroy any record of the 1963 weapons '’Cs fallout maximum. Direct evidence for this
mobility is seen in the fact that 25% of the '*’Cs inventory in the Shuoijarvi cores lies below 3.5
cm (dated 1932), and 10% lies below 5.5 cm (dated 1874). In Hundvatn, 25% of the *’Cs lies
below 4.5 cm (dated 1911-1936) and 10% is below 7.5 ¢m (dated 1805-1830). Further evidence
of the "*'Cs mobility is indicated by the reduced '*’Cs activity in the anomalous 3.5 cm layer in
the Hundvatn core. Such variations may be expected where there is reduced cation adsorption
capacity due to a different lithologic or organic character of the sediment.

In both cores, traces of **’ Am were detected in the top 3 cm. In the Shuonijirvi core, **'Am
activity had a peak value in the 1.5 cm sample, in reasonable support of the *'°Pb dates which put
1963 at a depth of ca. 1.75 cm. No such peak was observed in the Hundvatn core, although
detection would be difficult in view of the large standard errors in the **'Am determinations.
Detection of the **’ Am peak, using the 59.5 keV gamma peak, was more difficult in Hundvatn
because of the relatively large **Th peak at 63.5 keV arising from the higher 2*U activity (Table
3) in this core.

The Shuonijirvi core has a significantly lower mean **Ra (supported '°Pb) and ***U activity
than does Hundvatn (Table 3), a much lower unsupported *'°Pb flux, but a significantly higher
¥ICs inventory. The Shuonijirvi core has an anomalous **Ra-rich layer at 4.5 cm (dated ca.
1870). The absence of any disturbance in the unsupported 2'°Pb profile suggests that the events
giving rise to this anomaly do not appear to have influenced the rate of sedimentation.

Chemistry:

Shuonijérvi -
The most obvious feature of the major element concentration distribution in this core is the
dramatic variation in Fe, as shown by four Fe-rich bands centered at 6 to 7, 17 to 18, 20 to 22,
and 28 to 30 cm. The most Fe-rich interval (6 to 7 cm) reaches 35% Fe (45% as FeQ). That
interval was distinctly brown and black flecked with orange mottling, indicative of iron
enrichment. These chemical variations cause reciprocal variations in other elements (Ca, Mg, K,
Na, Si, and Al). Manganese covaries with Fe. The variation in Fe in the core may be associated
with changes in hydrology of the watershed, vegetation, or even water chemistry. The changes
are clearly pre-industrial (pre-18th century) in age.

Trace metal concentration trends for Shuonijérvi parallel those of Dalvatn and Durvatn, to the
north in Norway (Norton et al., 1992a). Pb increases from a background value of about 5 ppm to
10 ppm from 28 to 18 cm, returns to background for a short period and then climbs steadily to the
surface with surface values exceeding background by a factor of about 25. Nickel remains
relatively constant from the base of the core up to 5 cm and then increases dramatically from that
time (ca. 1850) to the top (1993). The most dramatic increase occurs early in the 20th century.
Cd varies unsystematically throughout the core. Zinc undergoes a long term decrease in
concentration in the upper half of the core, clearly unrelated to industrialization in the region.
Cobalt concentrations are relatively variable but with low values and no trend throughout the
core.



Hundvatn -

Hundvatn sediment was also Fe-rich with notable enrichment in the 2 to 7 cm intervals. The wet
sediment was conspicuously orange/brown flecked in the 2 to 5 cm interval. Manganese covaries
with Fe. Apart from the dilution of other elements by the Fe, there are few indications of long
term trends for Al, Mg, Ca, or K. Sodium varies very erratically throughout the core.

From a background of 3 or 4 ppm, Pb increases in concentration from about 28 c¢m to the 2 to 3
cm interval (1944 to 1966) and then declines to the surface. Maximum enrichment is about 30
times. The small peak between 32 and 38 cm may corrrespond to a similar peak in Shuonijérvi.
Cadmium is clearly enriched in the 2 to 3 cm interval but data are not available for 0 to 2 cm.
Nickel ranges from 37 to 142 ppm (an isolated sample) up to 6 cm and then increases
dramatically to a surface maximum of 2363 ppm. Zinc varies randomly over a 100 ppm range up
to the 0 to 1 cm interval where it doubles to 375 ppm. Copper is enriched in only the upper 3 cm
of the core, reaching 1,020 ppm - a seven-fold enrichment over background. Cobalt is
approximately double the background values in the upper two intervals.

Fluxes of trace metals:

In Shuonijérvi, fluxes of Cd and Co vary erratically with no apparent tendency to increase above
background. The flux of Zn decreases in the sediment younger than 1957. Copper and Ni fluxes
increase in post-World War II sediment with Zn following shortly thereafter. The flux of Pb -
increases by a factor of 5, peaking between 1966 and 1982. The earliest *'’Pb age for the
sediment (1783) is in sediment with a Pb concentration 10 times that of background (base of the
core). Thus it appears that the flux of Pb has increased by approximately a factor of 50 over the
last two millenia.

For Hundvatn, the five trace metals all have increased fluxes within the range of the *'°Pb dating.
The timing of the initial increase are as follows: Cd, in sediment dated younger than 1944; Co,
1966; Cu, 1922; Ni, 1922; Pb, 1922 (although it was by that time already elevated); and Zn,
1966. The detection of the increase in each case is a function of the natural variation and
absolute concentration of the metal, relative to the anthropogenic contribution.

DISCUSSION

It is uncertain whether the anomalous 4 to 5 cm layer in Hundvatn consists of redistributed older
sediment arising from, e.g., a slump event, a resuspension and deposition of older sediment (from
shallow water), or an inwash of freshly eroded allochthonous material. The relative radioactive
equilibrium between *°Ra and **U in the sediments of this section (compared with other
sediment intervals) suggests that the sediment may be relatively unweathered, perhaps supporting
the latter view. However, the only other unusual aspect of this interval is the elevated
concentration of Na.

Care must be taken in strict comparisons of accumulation rates between the two lakes because
the cores from both lakes were not taken at the deepest area and thus probably underrepresent the
maximum accumulation rates. The accumulation rates of mass for both cores are low but typical
of lakes in the region (Norton et al., 1992a) and of alpine lakes in Norway (Norton and Davis,
unpublished). The accumulation rate in Hundvatn is about twice that of Shuonijirvi. Thus one
might expect that the inventory of atmospherically derived substances might follow this
relationship. The unsupported 2'°Pb inventory of Hundvatn is twice that of Shuonijirvi as
expected (Norton et al, 1992a) but the inventory of '’Cs in Shuonijirvi is twice that of



Hundvatn. Similarly, excess Pb (the concentration of Pb present in the sediment in excess of
background concentrations (Norton et al., 1992b) derived from the atmosphere is twice as high in
Hundvatn. However, when focusing is factored out , the fluxes of unsupported 2%} and
anthropogenic Pb are comparable at the two lakes, suggesting that the fluxes may be attributed to
long distance transport of Pb, rather than a local point source. The distribution of Pb in surface
sediments from mostly shallow lakes (Dauvalter, 1994) suggests that much of the Pb may
originate from the northwest and west (Finland and Norway). The initial increase of
anthropogenic Pb in both cores occurs in sediments that almost certainly are older than 1,000
years and possibly as much as 2,000 years. Norton et al. (1992a) found Pb concentrations
declining in Dalvatn and Durvatn, further to the north and northeast from Nikel but the cores
were not sufficiently long to reach background values. Comparison with the very long Pb
pollution scenario developed by Renberg et al. (1994) is not possible because of the lack of
absolute dating below the applicable range of *'°Pb. The modest peak in Pb concentration at 32 to
38 and 17 to 28 cm in Hundvatn and Shuonijirvi, respectively, are at approximately the correct
proportional depth, considering the accumulation rates, to suggest that they are related. If so they
probably indicate a period of slightly elevated atmospheric flux of Pb related to remote
emissions. The major increase in Pb can not be precisely dated because of the low resolution of
the sampling. However, it occurs sometime after 1926 (Shuonijérvi) and 1944 (Hundvatn). Most
likely it represents long range transport of Pb from post World War I1 use of leaded gasoline. The
decline of Pb seen in Hundvatn in the post-1966 intervals, probably starting in the 1980s, is also
consistent with ongoing reductions in Pb emissions (particularly from gasoline use) from Europe
and North America. A very small increase in the Ni flux occurs at Hundvatn in sediment younger
than 1890 but older than about 1924. The smelter in Nikel, midway between Hundvatn and
Shuonijarvi commenced operation in 1932 (Dauvalter, 1994). The appearance of Ni enrichment
in sediment older than the age of the Ni smelter activity may result from downward migration of
Ni in the sediment, slight errors in dating (no more than a few year error), or Ni emission sources
existing before the Nikel smelter. A dramatic increase in Ni has occurred since 1944, consistent
with the history of smelting at Nikel. The two cores, obtained approximately upwind
(Shuonijérvi) and downwind (Hundvatn) indicate a skewed deposition of emissions related to the
Ni smelter, as seen by Dauvalter (1994) in surface sediments and short undated cores. The
modest enrichment in Co (the last 20 to 30 years), Cu (the last 50 years), Zn (only in Hundvatn,
the last 10+ years), and Cd (only in Hundvatn, since World War II) all suggest preferential
deposition of pollutants to the northeast, relative to the southwest, consistent with the findings of
Dauvalter (1994).

Analysis of flux data leads to several important conclusions. Based on the spatial distribution of
the higher fluxes for the same element, it is clear that the Nikel, Russia smelter is a major source
of metals (Cd, Co, Cu, Ni, and Zn) to lake environments, particularly to the north and east, the
direction of prevailing winds. Consistent with the chemistry of the ores that are smelted there
and consistent with the findings of Dauvalter (1994), the increased flux of Pb appears to be
regional and if anything is attributable to dispersed sources to the west. The degree to which the
measured sediment flux values mimic the atmospheric deposition is not well established because
of the difficulty of measuring atmospheric deposition (wet and dry), the extent to which metals
are delivered to lakes (and ultimately the sediment) from watersheds or bypass the lake
sediments because of flow-through of particulates, mechanisms of incorporation of metals into
the sediment column, and mobilization of metals because of changing water chemistry.
Nonetheless, the chronology of major changes in sediment chemistry and the direction of change
probably are correct within the resolution of the sediment sampling.



Steinnes (in Traaen et al., 1994) has analyzed undated peat cores from four ombrotrophic bogs in
the Nikel region and finds much greater relative enrichment of Cu and Ni (more than two orders
of magnitude). This greater enrichment is attributable to a much lower background value for both
elements. With the existing data it is not possible to compare fluxes nor the timing of the
increases in concentrations for Ni and Cu at the bog in close proximity to Shuonijirvi. However,
the proportional increase in Ni and Cu is comparable to that found in Shuonijérvi and Hundvatn.
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5. Sediment chemistry for Hundvatn, Norway. Concentrations based on ashed weight.

6. Sediment chemistry for Shuonijérvi, Russia. Concentrations based on ashed weight.
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Table 1. *°Pb data for (a) Shuonijirvi and (b) Hundvatn.

(a) Shuoni jarvi (Core C-1)

Depth Dry Mass 21%y Concentration 225pa Concentration
Total Unsupp
cm gem? Bq kg~! ¢ Bq kg~! ¢ Bq kg~ '
0.50 . 0.011 2242. 4 55.0 2229.9 55.4 12.5 6.3
1.50 0.052 1321.8 33.9 1309.1 34.1 12.7 4.2
2.50 0.119 S42.3 26.6 523.7 26.9 i8.6 4.1
3.50 0.201 119.6 8.5 90.3 8.7 29.3 1.9
4.50 0. 300 112.3 7.2 45.0 7.4 67.3 1.8
5.50 0.424 49.4 5.3 11.8 5.5 37.6 1.4
6.50 0. 588 26.0 3.8 1.0 4.0 25.0 1.2
7.50 0.752 24.5 4.1 2.1 4.2 22.4 1.2
8.50 0.949 30.7 5.5 8.5 5.7 22.2 1.4
10.50 1.264 24.6 6.3 0.2 6.4 24.4 1.4
12.50 1.519 18.7 4.0 -0.1 4.1 18.8 0.9
14.50 1.780 21.4 5.7 -4, 6 5.9 26.0 1.3
(b) Hundvatten (Core C-2)
Depth Dry Mass 21°Pb Concentration 226Ra Concentration
: Total Unsupp ’
cm gom® Bq kg™ = Bq kg~ # Bq kg~'
0.50 0.021 2109.8 55.3 1942.6 54.9 167.2 8.4
1.50 0.075 1670.8 39.9 1401.1 40.6 269.7 7.5
2.50 0.151 1217.7  23.7 1124.0 24.0 93.7 3.5
3.50 0. 246 353.7 13.7 234.3 14.0 119.4 3.0
4.50 0.336 408.0 16.5 318.4 16.8 89.6 3.5
5.50 0. 405 274.5 14.0 185.6 14.4 88.9 3.5
6.50 0.470 167.1 16.7 47.2 17.3 119.9 4.8
7.50 0.537 103.0 10.3 15.9 10.6 87.1 2.6
9.50 0.693 76.6 7.1 -9.3 7.4 85.9 2.1
11.50 0.859 100.2 9.5 15.6 9.8 84.6 2.4
13.50 1.018 79.9 7.4 ~1.0 7.7 80.9 2.0
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Table 2. ¥'Cs, 1**Cs, and **' Am data for (a) Shuonijéirvi and (b) Hundvatn.

(a) Shuoni jarvi (Core C-1)

Depth 13‘;'Cs Conc 13"Cs Conc 2“Am Conc

cm Bq kg~ ' ¢ Bqg kg~ ' = Bq kg~' *
0.50 963.0 18.4 115.5 36.2 3.5 1.4
1.50 658.6 11.4 94.8 42.3 6.1 1.4
2.50 365.0 10.4 0.0 0.0 2.1 0.9
3.50 159.0 3.6 0.0 0.0 0.0 0.0
4.50 100.3 2.4 0.0 0.0 0.0 0.0
5.50 49. 4 1.8 0.0 0.0 0.0 0.0
6.50 17.8 1.4 0.0 0.0 0.0 0.0
7.50 15.3 1.5 0.0 0.0 0.0 0.0
8.50 13.6 1.7 0.0 0.0 0.0 0.0
10. 50 5.4 1.2 0.0 0.0 0.0 0.0
12.50 1.3 0.7 0.0 0.0 0.0 0.0
14.50 0.0 0.0 0.0 0.0 0.0 0.0

{b) Hundvatten (Core C-2)
Depth 137¢cs Conc 134¢cs cone 241,m Conc

cm Bq kg~' % Bq kg~' Bq kg~' *
0.50 451.3 36.1 0.0 0.0 5.2 1.8
1.50 325.4 9.5 0.0 0.0 3.6 1.3
2.50 - 181.3 5.1 0.0 0.0 2.8 0.9
3.50 60.3 3.0 0.0 0.0 - 0.0 0.0
4.50 80.4 4.2 0.0 0.0 0.0 0.0
5.50 71.7 4.1 0.0 0.0 0.0 0.0
6.50 44.9 5.4 0.0 0.0 0.0 0.0
7.50 48.9 2.5 0.0 0.0 0.0 0.0
9.50 20.6 1.9 0.0 0.0 0.0 c.0
11.50 17.8 1.9 0.0 0.0 0.0 0.0
13 2 1.4 0.0 0.0 0.0 0.0

.50 9.
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Table 3. Radiometric parameters for Shuonijiirvi and Hundvatn.
(a) Sediment characteristics. (b) Fallout parameters.

(a) Sediment characteristics

Mean core values . Surficial
value
22 Py %k  prywe. %y
-1 -1 - - -
Bqkg' Bakg ' Bakg'  gem™> Bakg™"
Shuoni jarvi (C-1) 29 64 1258 0.12 2242
Hundvatten (C-2) 94 324 101 0.074 2110
(b) Fallout parameters
Unsupported 210py, 137cs
Max. Act. Invent. Flux Max. Act. Invent.
Bq k&' = Bgm>* BqmZy': Bqkg'l: Bqm? s
Shuoni jarvi 2230 55 1860 62 58 2 963 i8 1374 31
Hundvatten 1943 54 3348 92 104 3 451 14 916 21
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Table 4. *°Pb chronology and sedimentation rates for (a) Shuonijéirvi (CRS = CIC Mode])
and (b) Hundvatn (CRS and CIC Model).

(a) Shuoni jarvi (Core C-1)

Depth  Dry Mass Date Age Sedimentation Rate
cm gem® AD yr > gemlyr!  cmyr £ (%)
0.00 0. 000 1993 0
0.50 0.011 1988 5 1 T T T
1.00 0.032 1980 13 2
1.50 0.052 1971 22 3
2.00 0.0886 1957 36 5
2.50 0.119 1943 50 ) )
3.00 0. 160 1926 67 8 0.0024 0.032 12.5
3.50 0.201 1909 84 11
4.00 0.250 1889 104 13
4.50 0.300 1868 125 16
5.00 0.362 1842 151 19
5.50 0. 424 , 1816 177 22 - - <+

(b) Hundvatten (Core C-2)
(i) CRS Model

Depth  Dry Mass Date Age Sedimentation Rate
cm gem® AD yr + gemlyrt  cmyr! £ (%)
0.00 0. 000 1993 0
0.50 0.021 1988 ] 2 0. 0046 0.092 4.1
1.00 0.048 1982 11 2 0.0045 0.080 4.3
1.50 0.075 1976 17 2 0. 0044 0.068 4.5
2.00 0.113 1966 27 2 0. 0037 0.051 4.6
2.50 0.151 1986 . 37 2 0. 0029 0.034 4.8
3.00 0.198 1944 43 2 0.0048 0.054 6.4
3.50 0. 246 1932 61 2 0.0067 0.073 8.0
4.00 0.291 1922 71 3 0. 0047 0.053 8.7
4.50 0.336 1911 82 3 0.0026 0.032 9.4
S5.00 0. 370 1893 100 4 T T T
5.50 0. 405 1875 118 7
6.00 0. 438 1857 136 9 0.0019 0.028 15.8
6.50 0. 470 1840 153 11
7.00 0.504 1822 171 14 l l l
7.50 0.537 18058 188 17
(ii) CIC Mcdel
Depth Dry Mass Date Age Sedimentation Rate
cm gem® AD yT = gemlyr!  cmyr! £ (%)
0.00 0. 000 1993 0
0.50 0.021 1990 3 1 T T T
1.00 0.048 1986 7 2
1.50 0.075% 1983 10 2 0.0074 0.11 9.5
2.00 0.113 1978 15 2
2.50 0.151 1973 20 2 l l l
3.00 0.198 1966 27 3
3.50 0. 246 slump layer?
4.00 0.291 1960 33 3
4.50 0.336 1936 57 S I I T
5.00 0.370 1918 75 8
S5.50 0. 405 1900 a3 10 0.0019 0.028 15.8
6.00 0.438 1882 111 12 I
6.50 0. 470 1865 128 15
7.00 0.504 1847 146 18 J J i
7.50 0.537 1830 163 21
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