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Preface 

 
In conjunction with the ongoing review of the Gothenburg protocol to 
the UNECE Convention on Long-range Transboundary Air Pollution 
(LRTAP), the Working Group on Effects (WGE) requested each of the 
International Cooperative Programmes (ICPs) to provide short 
statements on three topics: (1) recent information on effects-based 
approaches for the protocol reviews, (2) dose-response functions and 
stock at risk, and (3) links between observations and critical 
thresholds. ICP Waters and ICP Integrated Monitoring (IM) prepared 
these statements jointly. This report is an expansion of these inputs to 
the WGE. This report has also been prepared jointly by ICP Waters 
and ICP IM.  
 
Richard Wright (NIVA) was responsible for preparing the report, with 
inputs from the other authors. The work was financed in part by the 
WGE, ICP IM and ICP Waters (through funding provided by the 
Norwegian Pollution Control Authority SFT).  
 

 
 

 
 

Brit Lisa Skjelkvåle 
ICP Waters Programme Centre 

Oslo, August 2007 
 
 

Martin Forsius 
ICP Integrated Monitoring Programme Centre  

Helsinki, August 2007 
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Summary 

 
Monitoring data from Cooperative Programme for Monitoring and Evaluation of the Long-
range Transmission of Air Pollutants in Europe (EMEP) and national sources show clear 
reductions (60-80%) in sulphur (S) deposition in Europe since the peak years in the early 
1980s. Nitrogen (N) deposition has also declined, but to a much lesser extent. Monitoring data 
from ICP Waters (W) and ICP Integrated Monitoring (IM) as well as other sources show clear 
and large regional trends in surface water chemistry in response to the large decreases in 
deposition of S and N. At many sites sulphate concentrations now approach new levels 
expected following full implementation of the Gothenburg protocol. Nitrate, on the other 
hand, does not show consistent trends, and most sites are far from steady-state conditions. 
Waters have become less acidic and less toxic to biota. Acid neutralising capacity (ANC) has 
increased. Biological recovery of fish and invertebrates provide new support for empirical 
relationships between dose (ANC) and biological response in surface waters.  
 
In forests, gradient analysis suggests that the combined action of O3, acidifying S and N 
explains 18% of conifer defoliation, 42% of discolouration, and 55% of lifespan for needles. 
Deposition of nitrogen is important in determining the occurrence of acidophilic lichen 
species. 
 
There is generally good agreement between exceedence of critical load for acidity and ANC 
in surface waters. Time delays are well explained by known processes acting in catchments 
and waters, and can be modelled by dynamic models. A critical deposition threshold of about 
8-10 kg N ha-1 yr-1, indicated by several previous assessments, was confirmed by the N input-
output calculations with the ICP IM data.  
 
Dynamic models indicate that a significant number of sites in several regions of Europe will 
continue to be acidified after 2010. Biological recovery has begun in many regions, but lags 
behind chemical recovery. Future climate change will affect acidification and recovery. 
Uncertainties remain as to how N dynamics should be treated by dynamic models and as to 
the role of changing climate. 



ICP Waters report 87/2007 
 

7 

1. Introduction 

The 1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone (the 
Gothenburg protocol) to the United Nations Economic Commission for Europe’s (UNECE) 
Convention on Long-range Transboundary Air Pollution (LTRAP) (UNECE 1999) entered 
into force in May 2005 and is currently under review. As part of the review process the 
Working Group on Effects (WGE) though the various International Cooperative Programmes 
(ICPs) provide scientific assessments of the current status of effects of long-range 
transboundary air pollutants in Europe and North America. As part of this effort ICP 
Integrated Monitoring (IM) and ICP Waters (W) have joined forces to assess the current state 
of recovery of ecosystems from damage caused by deposition of acidifying pollutants and to 
evaluate the efficacy of the critical loads and target loads methods used as a basis for the 
Gothenburg protocol.  

 
2. Trends in deposition of S and N in Europe 

 
Deposition of sulphur and to a lesser extent nitrogen compounds has decreased substantially 
in Europe during the past 20 years, in part due to implementation of protocols of the LRTAP  
Convention. Results from the Cooperative Programme for Monitoring and Evaluation of the 
Long-range Transmission of Air Pollutants in Europe (EMEP) clearly show that sulphur 
deposition has decreased by nearly 80% from peak levels in the early 1980s (Figure 1). 
 
Deposition of inorganic nitrogen compounds has also decreased, but to a much lesser extent 
than sulphur (Figure 2). While long-term measurements of S deposition show strong 
decreasing trends at most sites in Europe, N deposition at some sites has decreased, while at 
others no long-term trend is apparent (Figure 3).  The sites shown here were chosen for the 
length of the data series to illustrate trends and year-to-year variability and are not necessarily 
representative of a specific country or area. 
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Figure 1. Modelled sulphur deposition in Europe in 1980 and 2005 as reported by EMEP. 
 
 
 

      

 

 
 
Figure 2. Modelled nitrogen deposition (sum of oxidised and reduced compounds) in Europe 
in 1980 and 2005 as reported by EMEP. 
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Figure 3. Measured wet deposition of sulphur (left-hand panels) and nitrogen (sum of NH4+NO3) 
(right-hand panels) at several EMEP sites in northern, central, western and southern Europe (data from 
www.emep.int).  
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3. Response (recovery); dose-response relationships 

3.1 Surface waters (acidification S and N) 
For waters there are 2 steps in the dose-response chain: (1) deposition of acidifying S and N 
compounds leads to changes in water chemistry (acidification status, e.g. pH and ANC), and 
then (2) chemical changes lead to biological response (e.g. damage to fish populations). 
 
3.1.1 Water chemistry 
A major goal of ICP Waters is to evaluate the changes in surface water chemistry in relation 
to emission reductions. The strongest evidence that emissions control programs are having 
their intended effect comes from a consistent pattern of recovery (decreasing sulphate and 
increasing pH and alkalinity) across a large number of sites (Figure 4). ICP Waters has 
conducted statistical analyses of trends in surface water chemistry covering several time 
periods, including the period 1980-1995 (Stoddard et al. 1999), 1989-1998 (Skjelkvåle et al. 
2000), and 1990-2001 (Skjelkvåle 2003). The most recent evaluation of trends in ICP Waters 
data consists of chemical records from the period 1994 to 2004 for 179 sites (73 from Europe, 
106 from North America) grouped in twelve fairly homogeneous regions with regard to 
deposition level and acid-sensitivity (de Wit et al. 2007). The Mann-Kendall method was used 
for trend detection. 
 
The most important finding in all these trend analyses is the widespread chemical recovery 
(increase in pH, alkalinity and/or acid neutralising capacity ANC) in streams and in lakes in 
most regions in Europe and North America (Table 1). ANC is defined as the equivalent sum 
of concentrations of base cations (Ca, Mg, Na, K) minus the equivalent sum of the strong acid 
anions (SO4, Cl, NO3). The recovery began in the 1980s, continued through the 1990s and has 
flattened out somewhat since 2000. The recovery is largely due to the decline in sulphate. In 
the most recent period (1994-2004) most sites (65%) showed a significant decreasing trend in 
non-marine sulphate, whereas there were no sites where non-marine sulphate had increased. 
All regions except two showed a significant increase in pH and/or alkalinity, and/or acid 
neutralizing capacity. The regions without signs of chemical recovery were Ontario and the 
Virginia Blue Ridge mountains in North America. Soil characteristics in the Blue Ridge 
Mountains make a sulphate decrease unlikely in the short term. The lack of coherent trends in 
Ontario is probably due to the large variability in the trends in individual sites in the region 
(de Wit et al. 2007). The ICP IM results are largely consistent with the ICP Waters data 
(Table 2).  
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Figure 4. Map showing location of ICP Waters sites used for analysis of trends 1994-2004. 
Red dots are sites included in the trend analysis, while the blue dots are sites with trend 
analysis only for sulphate (de Wit et al. 2007). 
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Table 1. Results of trend analysis for 179 ICP Waters sites for the period 1994-2004. Number 
of sites with significantly increasing or decreasing trends for given variables. No trend at 
significance level p>0.05  (de Wit et al. 2007). 
 
   SO4 NO3 Ca+Mg Alkalinity ANC H+ DOC/TOC 

Europe        
Increasing 0 10 7 18 25 5 14 
No trend 21 48 40 43 40 42 38 
Decreasing 52 15 26 2 0 26 0 

North America        
Increasing 0 3 1 32 31 3 14 
No trend 41 72 59 71 44 86 92 
Decreasing 61 29 19 1 1 17 0 

         
Total no of sites 175 177 152 167 141 179 158 

Total increasing 0 13 8 50 56 8 28 
Total no trend 62 120 99 114 84 128 130 
Total decreasing 113 44 45 3 1 43 0 

% increasing trends 0 7 5 30 40 4 18 
% no trends 35 68 65 68 59 72 82 

% decreasing trends 65 25 30 2 1 24 0 

 
 
Table 2. Number of sites showing significant (p<0.05) trends for the period 1990-99 detected 
by the seasonal Mann-Kendall tau (SKT) in runoff water chemistry at 23 European (mostly 
Nordic) ICP IM sites. Asterisks denote the non-marine fraction. From Bull (2004). 
 

 Trend SO4* Ca*+Mg* H+ NO3 ANC 
Increasing 2 2 2 3 4 
No trend 10 10 11 9 6 
Decreasing 11 11 9 11 2 

Europe 

Insufficient data 0 0 1 0 10 
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Sulphate concentrations in 
surface waters respond 
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interest in analysis of surface water recovery, because it is an indicator of organic (natural) 
acidity which may counteract the positive effect of declining sulphate. For the period 1990-
2004, an increase in DOC was found at some sites in formerly glaciated parts of North 
America and Europe (de Wit et al. 2007).  
 
Nitrogen concentrations in surface waters are generally much lower than expected if all N 
deposition left the soil in runoff water. Typically 90% of incoming N deposition is retained by 
the soil. Nevertheless, moderate to high level of N deposition is a necessary factor for 
elevated NO3 concentration in runoff (Figure 5). 
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Figure 5. Nitrogen (NO3

- + NH4
+) concentration in runoff and total N deposition fluxes (wet 

+ dry) for 99 European ICP Waters sites in 1999. Open circles: sites with possible inputs of N 
from agriculture. From Skjelkvåle et al. (2001)  
 
 
The most recent data (1994-2004) show that the majority of the ICP Waters sites (68%) had 
no trend in nitrate concentrations while about (25%) showed a decreasing trend (Table 1). A 
few sites (7%) showed an increasing trend. The trends in nitrate have thus levelled off 
compared with the 1990s, when about ½ of the sites showed negative trends in both N 
deposition and NO3 concentration in surface waters (Figure 6). The mixed tendencies in 
nitrate trends have been shown previously in reports of ICP Waters. The lack of a uniform 
trend in nitrate concentrations illustrates that nitrate leakage from catchment is affected by a 
variety of processes, in contrast to sulphate leakage from catchment which is largely 
controlled by sulphate deposition (de Wit et al. 2007). More research is needed on the 
processes affecting nitrogen retention and loss in catchments, especially in the light of 
potential future climate change. 
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A) 1990-2001 (N=54) 

 
  Trend in N deposition 
  + 0 - 
     
 + 0 7 2 
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B) 1994-2004 (N=55) 
 
  Trend in N deposition 
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 - 1 10 2 
      

 
 
Figure 6. Trends in NO3- runoff vs. trends in N deposition (concentration of total inorganic 
N in precipitation) at 54 ICP Waters sites in Europe during two different time periods 
analysed by the Mann-Kendall test. Notation: + significant increase (p<0.05); 0 No 
significant trend; - significant decrease (p<0.05) (de Wit et al. 2007).  
 
 
Data from ICP IM sites have also been used in trend assessments (Kleemola and Forsius 
2006), and the ICP IM results are largely consistent with the ICP Waters data (Table 2). The 
most recent analysis uses the non-parametric Seasonal Kendall test for the period 1993- 2003. 
The trends confirm the previously observed regional-scale decreasing trends of S in 
deposition and runoff/soil water. Acid-sensitive ICP IM sites in northern Europe show 
recovery from acidification. The situation regarding N was quite different with few 
statistically significant decreasing trends of N in deposition and both decreasing and 
increasing trends of nitrate in runoff/soil water. Site-specific characteristics are important in 
determining the response to N (and S) emission reductions (Gundersen et al. 2006). It was 
concluded that the N issue thus clearly requires continued attention as a European air 
pollution problem. 
 
 
3.1.2 Aquatic biota 
There are good empirical relationships between water ANC and biological response. The 
widest used of these is the  observed population status for brown trout and ANC in Norwegian 
lakes  (Lien et al. 1996) (Figure 7). Similar relationships exist for other biological groups, 
such as invertebrates in running waters (Lien et al. 1996, Raddum 1999) and diatoms in lakes 
(Battarbee et al. 1996). 
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Figure 7. The observed relationship between brown trout status and surface water ANC at 
827 sites in Norway (from (Lien et al. 1996). 
 
 
In recent years there have been an increasing number of reports of biological recovery in 
acidified surface waters in response to decreasing acidity. Fish populations have begun to 
recover in lakes and rivers in southern Norway, for example (Figure 8) (see also Text box 2). 
Recovery of invertebrate fauna has also been documented (for example, at Farsund, 
southernmost Norway, Figure 8) (SFT 2006, Raddum et al. 2007). Recovery has also been 
reported from ICP Waters sites in Canada, Czech Republic, Sweden and the UK (Montieth et 
al. 2005, Skjelkvåle et al. 2003, deWit et al. 2007). 
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Figure 8. Recovery of pH, fish, benthic invertebrates and zooplankton fauna in the acidified 
lake Saudlandsvatn, southernmost Norway. Shown are data for one acid-sensitive species 
each of fish, benthic invertebrates and zooplankton. Data from NIVA, NINA and University of 
Bergen reported in SFT (2006).  

 
 
Several other examples of biological recovery are found in the recent 2006 AMAP report 
(Skjelkvåle et al. 2006). Here a sensitive species of zooplankton has returned in an acidified 
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lake in northern Norway (Figure 9) (SFT 2006), and fish populations in several lakes in 
northern Finland also show signs of recovery.  
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Figure 9. pH in lakewater and catch of the acid-sensitive cladoceran Daphnia longiremis in 
Lake Dalvatn (northern Norway). (SFT 2006).   
 
 
3.2 Soils and vegetation (acidification S and N) 
 
For forest soils the common chain of dose-response is (1) S+N deposition causes changes in 
soil acid base status (e.g. BC/Al ratio, %base saturation, pH), and then (2) these chemical 
changes cause biological response (e.g. crown condition, diversity of ground vegetation).  
 
A report summarising available information from the ICP Forests and ICP IM programmes 
on cause-effect relationships of forest ecosystems has been prepared (de Vries et al. 2002). 
The results were also officially reported to the Working Group on Effects in 2002 
(EB.AIR/WG.1/2002/15). 
 
Ion mass and proton budgets have proved to be useful for evaluating the importance of 
various biogeochemical processes that regulate the buffering properties in ecosystems. Long-
term monitoring of mass balances and ion ratios in catchments/plots can also serve as an early 
warning system to identify the ecological effects of different anthropogenic pollutants, and to 
verify the effects of emission reductions. 
 
Proton budget calculations showed that there was a large difference between the ICP IM sites 
regarding the relative importance of the various processes involved in the transfer of acidity 
(Forsius et al. 2005). These differences reflected both the gradients in deposition inputs and 
the differences in site characteristics. The proton budget calculations indicated a clear 
relationship between the net acidifying effect of nitrogen processes and the amount of N 
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deposition. When the deposition increased also N processes became increasingly important as 
net sources of acidity. Sulphur budgets calculations indicated a net release of S from many 
ICP IM sites, indicating that the soils are releasing previously accumulated S. Similar results 
have been obtained in other recent European plot and catchment studies.  
 
de Zwart (1998) carried out an exploratory multivariate statistical gradient analysis of 
possible causes underlying the aspect of forest damage at ICP IM sites. These results 
suggested that coniferous defoliation, discolouration and lifespan of needles in the diverse 
phenomena of forest damage are for respectively 18%, 42% and 55% explained by the 
combined action of ozone and acidifying sulphur and nitrogen compounds in air. 
 
The epiphytic lichen flora of 25 European ICP IM monitoring sites, all situated in areas 
remote from local air pollution sources, was statistically related to measured levels of SO2 in 
air, NH4, NO3 and SO4 in precipitation, annual bulk precipitation, and annual average 
temperature (de Zwart et al. 2003, van Herk et al. 2003). It was concluded that long distance 
transport of nitrogen air pollution is important in determining the occurrence of acidophilic 
lichen species, and constitutes a threat to natural populations that has been underestimated so 
far. 
 
Dynamic modelling of the response of S+N deposition impacts on soil (and surface water) 
chemistry has been carried out at ICP IM and ICP Waters sites. These results allow the 
assessment of past and future trends of soil chemical conditions (see section 4).  
 
3.3 Soils and vegetation (eutrophication N) 
The negative effect of N deposition for terrestrial biodiversity has received increasing 
attention during the last years (see review by Bobbink et al. 2003). This topic has been 
studied at the national level at several ICP IM sites (Ferretti et al. 2006, Dirnböck et al. 2007).  
Dirnböck et al. (2007) concluded that continuous eutrophication takes place in large parts of 
the Northern Limestone Alps in Austria where airborne pollution levels are elevated. If N 
emission is not abated efficiently, there is a risk of biodiversity loss and effects on ecosystem 
function in the future in this region. 
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4. Critical loads and exceedences 
 
The critical load is the maximum amount of a pollutant that can be deposited on an ecosystem 
without adverse effects. The concept thus relates a chemical pollutant to a biological impact. 
In the case of acid deposition the critical load is the maximum deposition of acidity that can 
be deposited without adverse effect on the ecosystem. Application of critical loads involves 
identification of key organism (or organisms) to be protected, a “critical limit” for the 
concentration of, for example, ANC (termed ANClimit), and a model to relate deposition rate 
to the concentration of ANC. 
 
4.1 Waters  
There is generally good agreement between exceedence of critical load for acidity and ANC 
in surface waters (Figure 10). Exceptions are those sites at which there are significant time 
delays between changes in S+N deposition and response in water chemistry. These time 
delays are well explained by known processes acting in catchments and waters, and can be 
modelled by dynamic models. 
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Figure 10. Exceedence (S deposition) of critical load of acidity and ANC in 1990 at ICP 
Waters sites in Europe. Sites in the lower right quadrant are exceeded and have ANC below 
ANClimit. Sites in the upper left quadrant are not exceeded and ANC is above ANClimit. Sites in 
both these quadrants are positioned as expected with respect to critical load, exceedence and 
response of water chemistry. Sites in the upper right quadrant are exceeded but have ANC 
above ANClimit. These sites may show delayed response to S deposition. Data from Henriksen 
and Posch (1998).  
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 Text box 2:  
Critical limit: links between S deposition, surface water chemistry, and fish in Lake 
Saudlandsvatn, southernmost Norway. 
 
Saudlandsvatn, southernmost Norway, is an example of a lake that was acidified and had 
damage to the fish population in the 1980’s, but then has shown significant chemical and 
biological recovery in response to decreased S deposition since 1990. Since about 2000 S 
deposition has fallen below the critical limit of acidity (CLA) (upper panel), water chemistry 
has improved with ANC above ANClimit (middle panel), and fish population (Cpue = catch 
per unit effort) has begun to show improved recruitment (lower panel).  
Data from T. Hesthagen, NINA (fish), NIVA (water chemistry), NILU (deposition) 
 

-40
-30
-20
-10

0
10
20
30
40

µe
q/

l ANClimi t

ANC

water chemistry

0

10

20

30

40

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

Cp
ue

fish

Saudlandsvatn

0

50

100

150

200

250

m
eq

/m
2/

yr

CLA

SO4* 

deposition

 
 



ICP Waters report 87/2007 
 

21 

 
4.2 Soils/catchments 
A critical deposition threshold of about 8-10 kg N ha-1 a-1, indicated by several previous 
assessments, was confirmed by the N input-output calculations with the ICP IM data (Forsius 
et al. 2005), as well as using a larger European database including these sites (MacDonald et 
al. 2002) (see above). The important parameters that determine N leaching (and thus N 
retention) are: N deposition, the organic layer carbon to nitrogen ratio (C/N ratio) and annual 
temperature. At low C/N ratios (below 23) N input determines N leaching. At higher C/N 
ratios both N input and temperature are important. Adding more sites did not change these 
relationships and they were robust in validation tests (Gundersen et al. 2006). 
 
Model testing/development work indicated good consistency between calculations of critical 
loads of incoming acidity as estimated by dynamic modelling (MAGIC) and the FAB model 
(used for reporting surface water critical loads by some countries). Uncertainties over how N 
dynamics should be treated by dynamic models and uncertainties due to changing climate 
were also assessed (Hutchins and Jenkins 2006). 
 
The critical load for acidity will still be exceeded in many areas and in many types of 
ecosystems after full implementation of the Gothenburg protocol (Figure 11) (Hettelingh et al. 
2007). The European map for surface waters shows information for only the four countries 
that report data to the Coordination Centre for Effects (CCE). Several ICP Waters and 
Integrated Monitoring sites in other areas of Europe (and North America) will also continue to 
be acidified and critical loads for acidity exceeded in the future. 
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Figure 11. European maps of exceedence of critical loads in the year 2010 for several 
ecosystem types given full implementation of the Gothenburg protocol and other legislation 
(CLE scenario). The maps show that for all ecosystem types critical loads will still be 
exceeded in areas in several countries. White areas indicate ‘no data’ for the respective 
ecosystem class (courtesy of Coordinating Centre for Effects; see also Hettelingh et al. 2007). 
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5. Time lags – dynamic models 
 
Dynamic modelling 
In a policy-oriented framework, dynamic models are needed to explore the temporal aspect of 
ecosystem protection and recovery. The critical load concept, used for defining the 
environmental protection levels, does not reveal the time scales of impacts/recovery. 
Dynamic models have been developed and used for the emission/deposition scenario 
assessment at selected ICP IM sites (e.g. (Forsius et al. 1998, Jenkins et al. 2003, Jenkins et 
al. 2003), and applied on large surface water databases compiled by ICP W and national 
programmes (Wright et al. 2005). These models are flexible and can be adjusted for the 
assessment of alternative scenarios of policy importance. These modelling studies have 
shown that the recovery of soil and water quality of the ecosystems is determined by both the 
amount and the time of implementation of emission reductions. According to the models, the 
timing of emission reductions determines the state of recovery over a short time scale (up to 
30 years). The quicker the target level of reductions is achieved, the more rapidly the surface 
water and soil status recover. The model simulations also indicate that N emission controls 
are very important to enable the maximum recovery in response to S emission reductions. 
Increased nitrogen leaching has the potential to not only offset the recovery predicted in 
response to S emission reductions but further to promote substantial deterioration in pH status 
of freshwaters and other N pollution problems in some areas of Europe (Wright et al. 2005). 
 
For surface waters MAGIC (Cosby et al. 1985, Cosby et al. 1985, Cosby et al. 2001) is the 
most widely-used dynamic model. MAGIC has been applied and tested at in a large number 
of site-specific and regional applications in Europe, North America and other acid sensitive 
regions throughout the world. MAGIC has been shown to well simulate response of water 
chemistry to experimentally-manipulated changes in acid deposition (removal by roof and 
additions) such as those of the RAIN project in Norway, the roofed catchment experiment at 
Gårdsjön in Sweden, and the roof experiment at Klosterhede in Denmark (Wright and Cosby 
1987, Beier et al. 2003). MAGIC well accounts for the observed recovery during the past 20-
30 years (see Text box 3).  
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Text box 3.  
Dynamic modelling of acidification and recovery. Example from Birkenes, a small acid-
sensitive stream in southernmost Norway. The MAGIC model (solid line) was used to 
reconstruct the acidification history and to predict the future recovery given implementation 
of the Gothenburg protocol. Measurements (points) carried out since 1972 show significant 
recovery since the mid-1980s in sulphate deposition, streamwater sulphate and streamwater 
ANC. Modified from Larssen (2005). 
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Wright et al. (2005) applied the MAGIC and SMART models to 12 acid sensitive surface 
water regions in Europe (as part of the EU-project RECOVER: 2010), (Figure 12 and Figure 
13). The model results indicated that even after complete implementation of the Gothenburg 
Protocol and other current legislation, acidification with commensurate adverse biological 
effects will continue to be a significant problem in southern Norway, southern Sweden, the 
Tatras, the Italian Alps, and the Southern Pennines in the United Kingdom. More than 5% of 
the ecosystems in each of the regions evaluated would not meet the ANC criterion to protect 
sensitive aquatic organisms (Figure 12). Additional mitigation measures would be required in 
these regions to meet long-term European policy objectives. The model simulations also 
indicated that, as expected, the percent base saturation (%BS) of soils decreased during the 
long period of acidification of 1860–1980. Between 1980 and 2000, the large reductions in 
sulphur deposition appeared in most cases to be sufficient to stop the decrease in %BS but 
still insufficient to allow %BS to recover. The prognosis for the future indicated little or no 
recovery of base saturation in the soil, and in one of the modelled regions (the Tatra 
Mountains in Slovakia) the soil would continue to acidify (Figure 13). 
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Figure 12. Simulated ANC concentrations in acid-sensitive surface waters in 12 regions of   
Europe. The three ANC classes correspond to the probability of viable populations of brown 
trout and other key indicator organisms. Red: ANC< 0 µeq/l and barren of fish; yellow: ANC 
0-20 µeq/l and sparse population of fish; blue: ANC > 20 µeq/l and good population of fish. 
Simulations made using the acidification model MAGIC (SMART in Finland). Four key years 
are shown: 1860 pre-acidification; 1980 maximum acidification; 2000 present; 2016 
complete implementation of emission reduction protocols (Gothenburg and other current 
legislation). Results from the EU project RECOVER:2010 (Wright et al. 2005). 
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Figure 13. Simulated incremental changes [(yearn+1 – yearn)/yearn] in base cation pools in   
catchment soils of acid-sensitive lakes in 12 regions of Europe. Red: depletion by > 0.1%/yr; 
yellow: negligible change; green: replenishment by > 0.1%/yr. Simulations made using the 
acidification model MAGIC (SMART in Finland). Three key years are shown: 1980 maximum 
acidification; 2000 present; 2016 complete implementation of emission reduction protocols 
(Gothenburg and other current legislation). Results from the EU project RECOVER:2010 
(Wright et al. 2005). 
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Reducing depositions to (or below) critical loads ensures that an ecosystem recovers, but 
critical loads do not give any information on when a recovery will occur. If the goal is to 
ensure recovery by a given year (and the time thereafter) one has to determine a so-called 
target load (for a specified target year). Target loads can only be determined by dynamic 
models, and meaningful target loads are always smaller than the critical load for the same 
ecosystem. In fact, a critical load can be viewed as the target load for target year ‘infinity’. 
 
For more information on the concept of target loads and their calculation see (Jenkins et al. 
2003, Posch et al. 2003, UBA 2004, UNECE 2005, Hettelingh et al. 2007). 
 
Within the LRTAP Convention, target loads have been calculated by a number of countries, 
and the results are collated by the Coordination Centre for Effects (CCE) under the ICP on 
Modelling & Mapping and reported to the Working Group on Effects for use in integrated 
assessment (Posch et al. 2005, UNECE 2005, Hettelingh et al. 2007). European maps of target 
loads have been presented, but since only a selected percentile can be shown for every EMEP 
grid cell, comparisons between target loads for different target years and with the 
corresponding critical load are difficult. Alternatively, Figure 14 shows examples of 
comparing these quantities for a selected region (here: Czech Republic and France) by 
multiple correlations (‘wind mill’ plots). These plots show in a quantitative way the 
differences between target loads for different target years as well as between critical loads and 
target loads. The larger these differences (i.e. the further from the 1:1 line) the more stringent 
are the target loads compared to critical loads. Here the plots for the Czech Republic and 
France are similar in that both indicate that the target loads are lower than the critical loads (as 
expected) and that the target load increases with time (i.e. if the system is given longer time to 
respond to a reduction in acid deposition). Thus such a windmill plot allows a quick semi-
quantitative assessment of the additional emission reductions needed to guarantee ecosystem 
recovery at an early date. A more comprehensive discussion can be found in Posch et al. 
(2005). 
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Figure 14. Quadruple correlations (‘windmill plots’) between acidity target loads for the 
target years   (Tyr) 2030, 2050, 2100 and the corresponding critical load, CLmaxS, modelled 
for 1667 sites in the Czech Republic (left) and 386 sites in France (right) (brown: forest; 
green: semi-natural vegetation; from Posch et al. (2005). 
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6. Climate change as confounding factor 

Environmental factors other than acid deposition – so-called ‘confounding factors’ – are 
expected to affect chemical and biological recovery of freshwaters in response to reduced acid 
deposition. Predictions made with dynamic models make several assumptions with respect to 
environmental conditions in the future. Predictions are usually based on assumed scenarios 
for future emissions of S and N and the resulting acid deposition, and also often on scenarios 
of future land-use practices, such as forest cutting and replanting. There are, however, other 
environmental factors that may change in the future and that may affect recovery of 
ecosystems. These “confounding factors” add to the uncertainty in predictions. Climate 
change is one of these confounding factors. Others may include land-use change, changes due 
to other pollutants such as heavy metals and toxic organic pollutants, as well as shifts in the 
biological components of the ecosystems caused by, for example, invasion of exotic species. 
 
Climate contributes considerably to variability in surface water chemistry. Climate change 
may both enhance and delay recovery depending on region and variable considered. Future 
global change introduces another uncertainty to the predictions of acidification recovery. In a 
joint study modelling study of ICP IM and ICP W (conducted under the framework of the EU 
project EUROLIMPACS) the relative sensitivity of different climate change related processes 
affecting acidification recovery was investigated (Figure 15) (Wright et al. 2006). The results 
showed that several of the factors are of only minor importance (increase in partial pressure of 
CO2 in soil air and runoff, for example), several are important at only a few sites or specific to 
particular regions (e.g. seasalts at near-coastal sites),  and several are important at nearly all 
sites (increased concentrations of organic acids in soil solution and runoff, for example). In 
addition changes in forest growth and decomposition of soil organic matter are important at 
forested sites and sites at risk of nitrogen saturation. The trials suggested that in future 
modelling of recovery from acidification should take into account possible concurrent climate 
changes and focus specially on the climate-induced changes in organic acids and nitrogen 
retention. 
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Figure 15. Top panel:  ANC (volume-weighted annual mean) concentrations in runoff at 9 
sites (8 in Europe, 1 in Canada) for the calibration year (2000) and predicted (using the 
dynamic model MAGIC) for the year 2030 assuming no climate change (base scenario).  
Bottom panel:  Change in ANC predicted for the year 2030 relative to the base scenario 
(Wright et al. 2006). 
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7. Conclusions and recommendations 
 
 
• Monitoring data from EMEP, ICP Forests, ICP IM and national sources show clear 

reductions (60-80%) in sulphur deposition in Europe since the peak years in the early 
1980s. Nitrogen deposition has also declined, but to a much lesser extent 

• Monitoring data from ICP W and ICP IM as well as other sources show clear and large 
regional trends in surface water chemistry in response to the large decreases in deposition 
of sulphur since the mid-1980s.  

• Waters have become less acidic and less toxic to biota. At many sites sulphate 
concentrations now approach new levels expected following full implementation of the 
Gothenburg protocol.  

• Nitrate does not show consistent trends, and most sites are far from steady-state 
conditions. The nitrogen issue clearly remains as a key air pollution issue. 

• In 2000 critical loads of acidity were exceeded in freshwater ecosystems in many parts of 
Europe 

• Dynamic models indicate that a significant number of sites in several regions of Europe 
will continue to be acidified after 2010.  

• Biological recovery has begun in many regions, but lags behind chemical recovery.  
• Further improvement is predicted with full implementation of the Gothenburg protocol, 

but verification requires continued chemical and biological monitoring. 
• Future climate change will affect acidification and recovery. 
• The long-term comprehensive data sets from background sites collected by ICP W and 

ICP IM are very valuable also for detecting impacts of climate and global change. The use 
of the data in this context is likely to increase in the future. They also provide the basis 
more model development and applications. 
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