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We consider the distribution and level of local vertical mixing inside of the Drebak Sill in the Oslofjord, Nor-
way. The work is motivated by observations of long periods (~years) of hypoxic or even anoxic conditions
in the innermost basin, episodes attributed to weak vertical mixing. In line with earlier work on the subject
we assume that the local vertical mixing level inside of the sill is predominantly determined by the loss of
energy of propagating, tidally-induced internal waves whose source is the sill region. To investigate possible
differences in vertical mixing we estimate the eddy diffusivity in the various basins based on model simula-
tions and observations using three methods whereby the eddy diffusion coefficient is estimated. The model
we use is an ultra high-resolution version of the three-dimensional, hydrostatic ocean model ROMS forced
solely by barotropic tide well outside of the sill. To evaluate the sensitivity of the model results we perform
sensitivity experiments in which the mesh size and various parameters and parameterizations are varied.
We find indeed that the internal waves lose most of their energy before they reach the innermost basin, and
hence set the scene for long periods of no deep water renewal. The sensitivity experiments reveal that it is
important that the model’s mesh size is small enough to resolve the dominant wavelengths of the topog-
raphy. Moreover, we find that the strength of the turbulence production and hence the mixing depends on

the initially chosen stratification. The method we use is generic and may be applied to any sill fjord.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

We consider spatial variations of vertical mixing in a sill fjord
in general and the Oslofjord, Norway (Fig. 1) in particular. Our
motivation is the impact vertical mixing that has on the ecological
environment, specifically observations of frequent anoxic events in
the innermost Bunnefjord basin (Figs. 2 and 3). The first to report
such events was Beyer and Foyn (1951). Later Gade (1967, 1970)
(Fig. 2) found that anoxic events prevailed for long periods (years).
As shown by Fig. 3 periods of hypoxic and near anoxic events are still
frequent, and underscore, as noted by Gade (1967, 1970), the differ-
ence in length of these events in the two basins. As revealed by Figs. 3
and 2 an anoxic and/or hypoxic event ends abruptly and is quickly
restored to oxic conditions. The break down is due to deep water
renewals occurring when dense and oxygen rich water overflows
the shallow sill at Drgbak (Baalsrud et al., 2002; Berge et al.,2010;
Dolven et al.,2013). To set the scene for another deep water
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renewal vertical mixing has to reduce the density of the deep
water. Thus a low vertical mixing tend to admit hypoxic or even
anoxic events to develop for extended periods. The more modern
and recent observations depicted in Fig. 3 therefore supports the
suggestion made by Gade (1967, 1970) that the difference in
vertical mixing level in the Bunnefjord basin and the Vestfjord basin
explains the difference in the lengths of the hypoxic and/or anoxic
events.

The question arising is why there is a difference in the vertical
mixing level. From the literature it is well known that when tides
are forced across sills or across submarine ridges internal waves are
generated and propagate for long distances before they eventually
break and causes mixing (Alford, 2003; Baines, 1982; Egbert and Ray,
2000; Inall, 2009; Ledwell et al., 2000; Sjoberg and Stigebrandt, 1992;
St. Laurent and Garrett, 2002; Staalstrem et al., 2012; Stigebrandt,
1976,1979; Wunsch and Ferrari, 2004; Xing and Davies, 2011). Our
hypothesis is therefore that the level of vertical mixing at any loca-
tion in the Oslofjord inside of the Drgbak Sill critically depends on
how much energy is made available via breaking of propagating,
tidally-induced internal waves whose source region is the sill. This
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Fig. 1. Map of the Inner Oslofjord. Depth contours are drawn for every 50 m. The green horizontal line at the bottom of the graph marks the southern open boundary of the
model. Moorings were deployed at Stations S2 and S5 in 2009 (marked with green circles). Stations H1, H2, H3, H4 and H5 marked with red circles are standard hydrographic
stations from the monitoring program. Four different basins are separated by the 90 m depth contour (red line). The maximum depth in the model area is 258 m (in the Drgbak

Strait south of the Dregbak Sill) and the shallowest depth is 20 m which is the Drgbak Sill.

hypothesis is not new, but was suggested already by Stigebrandt
(1976, 1979). We emphasize though that we do not assume a priori
that all the energy is lost before the internal waves reach the inner-
most Bunnefjord Basin. Rather, by combining results from numerical
model experiments and observations, we investigate the geograph-
ical distribution of where energy is lost inside of the Drgbak Sill.
Thus we are able to possibly answer the question posed at the begin-
ning of the paragraph. We focus on the part of the energy budget
in the fjord concerning deep water mixing and energy fluxes due to
internal waves. The conversion from barotropic to baroclinic energy,
and the relation between energy in internal waves and local dis-
sipation have been studied in the Oslofjord by Staalstrem et al.
(2012,2015).

Specifically we analyze results from a series of tidally forced
only simulations of the Oslofjord using the Regional Ocean
Modeling System — ROMS (Haidvogel et al.,2008; Shchepetkin and
McWilliams, 2005) without actually resolving the processes respon-
sible for the transfer of energy from the mean to the turbulent
motion in detail. We emphasize that all the details of the vertical
mixing processes are not yet fully understood, and hence they are in
general difficult to parameterize correctly (e.g., Berntsen et al., 2009).
Finally we note that the model we use features terrain-following ver-
tical coordinates. Hence it is exposed to the well known pressure
gradient error (PGE) (Haney, 1991). The PGE is minimized by con-
structing a special vertical transform that differs from those available
in the canonical ROMS. Details on the latter is given in the Appendix.
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Fig. 2. Salinity at different depths in the Vestfjord (upper panel) and in the Bunnefjord (lower panel). Figure is taken from Gade (1967).

Figure is taken from Gade (1967). (Courtesy of NIVA.)

The paper is organized as follows. In Section 2 we give some
insight into the characteristics of the inner Oslofjord, while the three
methods we use to estimate the spatially varying vertical mixing
or eddy diffusion coefficient are outlined in Section 3. In Section 4
we describe the configuration of the MAIN experiment and evalu-
ate the model’s performance against observations. Next (Section 5)
we examine the results in terms of the internal wave energy flux,
turbulence production and the eddy diffusion coefficient. This is fol-
lowed by Section 6 in which we discuss the sensitivity of the results
in terms of the eddy diffusion coefficient by varying some of the
key parameters such as the irregular coastal geometry and topogra-
phy, resolution, stratification and turbulence closure scheme. Finally
Section 7 offers a summary and some concluding remarks.

2. The Oslofjord

We focus on the part of the Oslofjord, inside of the Drebak Sill
(Fig. 1). The maximum depth in the model area is 258 m (in the
Drgbak Strait south of the Drgbak Sill) and the shallowest depth is
20 m which is the Drebak Sill. The sill is partly man made and partly
natural. The man made part is an underwater barrier called the
Drgbak Jetty (Fig. 4). The depth of the jetty is only 1-2 m. There
are two narrow openings in the Jetty with a maximum depth of
about 6 m. One is located close to the mainland on the western
side, while the second runs east-west and is located midway just
south of Kaholmen. The remaining eastern part of the sill is natural
with a maximum sill depth of slightly less than 20 m. Furthermore,
the Hdgya divides the entrance to the inner Oslofjord proper into a

western and eastern channel (Fig. 4). The man made jetty effectively
hinders the exchange of water via the western channel. Hence most
of the exchange of water is via the eastern channel.

In the eastern channel there are two major secondary sills (Fig. 5).
They are located 1.5 (47 m deep) and 3.3 km (62 m deep) inside
of the main sill. In addition there are several secondary sills north
of them. Further into the fjord there are four deeper basins and
several shallower ones. The deeper ones all have depths well beyond
90 m. The Vestfjord basin and the Bunnefjord basin both feature
maximum depths of about 150 m and are separated by a major
sill (Fig. 5) where the fjord makes an almost 180° bend into the
Bunnefjord basin.

Several measurement campaigns have been undertaken in the
Oslofjord. In 1973 a monitoring program with regular measure-
ments of hydrography and oxygen was undertaken (Baalsrud
et al.,, 2002; Berge et al., 2010). The program features the five sta-
tions H1 through H5 in addition to S2 and S5 (Figs. 1 and 4). Special
measurements of temperature, conductivity and currents at several
depths were recently conducted (2009) in the area in addition to
moorings deployed for a month at Stations S2 and S5 as reported by
Staalstrgm et al. (2012).

These special measurements are used here to estimate internal
wave energy fluxes for comparison with the model results, while the
earlier data, e.g., from the monitoring program is used to estimate
the turbulent diffusivity using the budget method (cf. Section 3.3).
Based on measurements at these sites Staalstrem et al. (2012) esti-
mated that the vertical mixing below 90 m is at least five times
higher at Station H2 compared to the other stations further away
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Fig. 3. Time series of oxygen content in ml/l in the Bunnefjord (red curve) and the Vestfjord (blue curve) for the period January 1990 through December 2014. Note the long
periods of anoxic (zero or negative oxygen values) and hypoxic (values lower than 2ml/l oxygen content) events in the Bunnefjord compared to the short period of hypoxic events

in the Vestfjord.
(Courtesy of Jan Magnusson and Anna Birgitta Ledang, NIVA.)

from the sill. If, as we propose, the energy for the vertical mixing
is through breaking, propagating tidally-induced, internal waves, we
should experience a marked decrease in the internal wave energy
flux as the wave proceed into the fjord.

3. Analyses methods
In the Oslofjord, as in most sill fjords, propagating, tidally-

induced internal waves, whose source region is the sill, dominates
the dynamics inside of the sill (Gade, 1970; Stigebrandt, 1976, 1979).

10

We may therefore safely assume that internal wave breaking is the
most likely source for local interior vertical mixing. Let w” and p”
be the turbulent components of the vertical velocity and density
generated by the breaking internal waves. We may then link these
turbulent components to the local vertical eddy diffusion coefficient
K by using the common down-the-gradient parameterization of the
eddy diffusive flux. Hence

w'p” = —Ko,p, (1)
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Fig. 4. Comparison of observed and model bathymetry in the sill area. a) Observed bathymetry with 5 m grid resolution (Lepland et al., 2009) . b) Model bathymetry with 75
m grid resolution, and c) model bathymetry with 150 m grid resolution. The positions of Stations S2, R1 and R2 are marked with green circles and Stations H2 and H3 with red
circles. All depth maps have the same depth scale in metres as given by the color bar to the right.
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Fig. 5. Depth profile along the fjord following the deepest parts from the Drgbak Sound, on the east side of the Hagya to the inner parts of the Bunnefjord. Vertical dashed lines
indicate the positions of the stations along this line. The most important sills—the Drgbak Sill (20 m), the Godthol Sill (47 m), the Tronstad Sill (62 m) and the two sills between
the Vestfjord and the Bunnefjord (55 m)—are marked with numbers (Staalstrem et al., 2012) . The gray shaded areas indicate the depth range 90 to 125 m.

where p is the mean density and the overline notation denotes the
Reynolds average. Our focus is on estimating K. To this end we
use three methods, namely, the indirect, the direct and the budget
methods.

3.1. The indirect method

This method is based on the turbulent kinetic energy equation
(TKE). Following Osborn (1980) and others (e.g., Gregg, 1987; Nash
et al., 2005; Peters and Bokhorst, 2001) we get

_Tr—c_ KTy

K N2 N

(2)

Here ¢ is the dissipation of TKE, N> = —gd,p/p is the
Brunt-Vdisdld frequency, g being the gravitational acceleration, Ry is
the so called mixing efficiency! and Tp is the turbulence production
defined by

1
T, = ——V-ep 3
P o) e 3)

where er is the internal, or baroclinic, wave energy density flux and
po is areference density. As revealed by the second equality in Eq. (2)
there is a linear relationship between the turbulence production and
the eddy diffusion coefficient. Hence a high turbulence production
leads to high mixing and vice versa provided Rfand N? are fairly con-
stants. Rather than estimating these variables at a single point we opt
to estimate them as basin averages. Let the coordinate directed into
the fjord be denoted by y (Fig. 6), then a basin volume V is bounded
by the fjord walls and two open cross section located say at y; and

! Ry = Bf/T, where By = N?K is the buoyancy flux. Thus R; € [0,1]. If R = 0 all the
turbulence production is dissipated. If Ry = 1 all the turbulence production is used for
mixing.

¥y, respectively. The turbulence production per unit volume within
Vis then

TY = %/Tpdv -1 er-ndo, (4)
v

poV /o

where n is the outward normal vector to the surface () encompassing
the volume V. Assuming that there is no flux through the walls the
net turbulence production due to breaking of internal waves in the
basin is
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Fig. 6. Sketch showing a cross section of the fjord. Note that the width B is a function
of of the along fjord coordinate y as well as the depth z.
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where

0 By(y, 2)
Fly)= / (/ ep-jdx) dz (6)
—H\/By(y, 2)

is the internal wave energy flux through a cross-section located at y.
Here B; and B, denote the cross-sectional position of the two fjord
walls so that B = B, —Bj is the width of the cross section at any depth
z atlocation y. If Eq. (5) is positive then energy is lost and turbulence
is produced in the basin.

To estimate the flux F(y) we closely follow the method outlined
by Nash et al. (2005). Accordingly we estimate the tidally-induced,
internal wave energy flux by the pressure work only, that is, e =
p'w, where p’ and u’ are respectively the pressure and velocity
perturbations due by the internal wave motions and the wide-hat
notation denotes an average over at least two dominant tidal periods.
Possible contributions from advection, diffusion and non-hydrostatic
effects are therefore neglected (Kang and Fringer, 2012). This is
justified since we perform a basin volume average and consider
basins bounded by cross-sections sufficiently far away from where
the major diffusion and dissipation takes place. With our choice of
coordinate system we therefore get

0/ 1By __
Fly) = /_ H( [ p’v’dx)dz, 7)

where p’ and v’ are computed from

-0 0
P =Ds —/ gp'(z)dz and VvV =v-— l/ vdz, (8)
z H —H

where in turn P = p — p(z) and p, is the (time dependent)
surface pressure computed requiring that the depth integrated
pressure perturbation is zero, that is, ff,_, p'dz = 0. We assume that
the hydrostatic approximation is valid® and note that inherent in
Eq. (8) is the assumption that f?H vidz = 0.

As is evident from Eq. (2) estimating TX alone does not provide
direct information on the vertical mixing. To this end we also need
information on the mixing efficiency. Nevertheless if Tl‘,/ is small we
may safely assume that very little energy is available for mixing
regardless of the mixing efficiency. A differences in Tg from one basin
to the next is nevertheless a strong indication of a similar difference
in the vertical eddy diffusivity and hence vertical mixing.

3.2. The direct method

In line with most ocean models, and in particular those study-
ing energetics of tidal motions (e.g., Carter et al., 2008; Kang and
Fringer, 2012), ROMS utilizes a turbulent closure in the form of
a down-the-gradient parameterization mostly to keep the model
from becoming non-linearly unstable (Haidvogel et al., 2008; Warner
et al.,, 2005). It therefore includes its own rendition of the eddy
diffusion coefficient, hereafter referred to as Kp to distinguish it
from K. The latter is, however, a parameterization of all unresolved
scales and includes contributions from so called sub-grid scale (SGS)
processes in addition to turbulence. Since ROMS is hydrostatic the
most prominent SGS processes are probably non-hydrostatic pro-
cesses. Hence K, cannot be used as a direct measure of K. It is
nevertheless of interest to compare the two and possibly establish a

2 Note that our version of ROMS is hydrostatic.

relationship between them. If successful we may infer K directly from
K. In ROMS there are various choices whereby K, is parameterized.
We have opted for the Generic Length Scale (GLS) parameterizations
as detailed by Umlauf and Burchard (2003).

3.3. The budget method

This is the traditional method whereby the interior vertical eddy
diffusion coefficient K is estimated. It is based on a simplified version
of the mass conservation equation. Hence

‘l Z a g Z 8
K:—A/ Odz = —— / odz. 9
0P tP N2 | tP 9)

This expression assumes that a time averaged advection in the
fjord is negligible. In closed basins during stagnant periods this is
regarded as a safe assumption.

As mentioned in Section 2 there exist long term measurements
of density profiles in the different basins in the Oslofjord (e.g., Berge
et al., 2010). Utilizing these measurements and Eq. (9) we may there-
fore estimate K below sill depth in the various basins in the inner
Oslofjord. An example is provided in Fig. 7 where we display a K
profile at Station H3 in the Vestfjord basin. The profile is based
on the time series of density profiles observed between May and
August 2009.

3.4. Final remarks

The indirect and the budget methods allow us to estimate K
using either model results or observed measurements as sources.
Consequently we use these independent estimates to validate the
model, and to study the model sensitivity to parameter choices.
To this end we find that averaging independent estimates of K
from several stations gives a more robust estimate for comparison.
Finally we emphasize that care has to be exercised when using the
direct method since the model’s K, includes parameterizations of
unresolved sub-grid scale motion as well as turbulent motion.

We emphasize that the estimates based on the budget method
rely on the assumption that the time rate of change of the potential
density is decreasing at a steady rate at all depths. This assumption
appears to be valid in the inner Oslofjord between periods of deep-
water renewals (Figs. 2 and 3), and was also found to be true for
recent measurements of potential density reported by Staalstrem
et al. (2012). These many independent measurements indicate that
the vertical mixing in the inner Oslofjord is generated by processes
that does not vary much from year to year. Breaking propagating,
tidally-induced, internal waves is indeed such a process. Hence all
the above measurements strongly supports the hypothesis made
in the introductory section (Section 1), namely, that the energy
available for mixing inside of the Drgbak Sill is dominantly due to
breaking, tidally-induced internal waves.

Finally, we underscore that the ROMS version we use is hydro-
static. In view of the complicated topography, in particular in the
vicinity of the main sill at Drgbak (cf. Fig. 5), a non-hydrostatic model
is most likely required to properly simulate the processes respon-
sible for transferring energy from the mean flow to the turbulent
flow in particular in the vicinity of the sill region (e.g., Berntsen
et al., 2008; Xing and Davies, 2007). Our focus is not on the processes
in the vicinity of the sill, but rather on the energy flux radiated away
from the Drgbak Sill by means of propagating, tidally-induced, inter-
nal waves. What is important to us is therefore the model’s ability
to approximate, to a sufficient degree, these propagating, internal
waves radiating from the sill.
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Fig. 7. Vertical eddy diffusivity in the Vestfjord (Station H3). The solid black line is estimated using the budget method (Section 3.3) based on the observed potential density

between May and August 2009.

4. The MAIN experiments

The model we use is a slightly modified version of the canonical,
hydrostatic ocean model ROMS (Haidvogel et al., 2008; Shchepetkin
and McWilliams, 2005, 2009). It is a public domain model featuring
a generalized terrain-following vertical coordinate (Shchepetkin and
McWilliams, 2003, 2005; Song and Haidvogel, 1994).

To establish a trustworthy version of the model we have per-
formed one control run called MAIN, eight sensitivity experiments
and two special experiments as listed in Table 1. The two latter
are performed to show that a new vertical transform that we have
developed (cf. Appendix), minimizes the infamous pressure gradi-
ent error inherent in all terrain-following models (Haney, 1991). The
remaining eight investigates the impact of making changes to the
parameterizations, parameters, mesh size, etc. used in MAIN.

4.1. Configuration of MAIN

The configuration of MAIN features a realistic, yet approximate,
replicate of the inner Oslofjord topography and irregular coastline

Table 1

geometry (cf. Section 6.1 for further details). The horizontal grid
mesh size is 75 m, and the number of vertical levels employed are 32.
Furthermore we employ the new vertical transform and stretching
function, as outlined in the Appendix, to distribute the terrain-
following coordinate in the vertical. In essence the new transform
is constructed so that the coordinate levels become almost aligned
with the geopotential levels in the pycnocline. The sub-grid scale
closure scheme is the k — kI option in the GLS scheme (Umlauf and
Burchard, 2003).

Initially we start from a state of rest (no motion) with a hor-
izontally uniform specified stratification (no initial lateral density
gradients). The density profile is extracted from the observations
shown (Fig. 8) corresponding to the stratification denoted “medium”.
We note that the pycnocline is located approximately at sill depth
(here 20 m), and that the stratification below 40 m depth is very
weak inside of the sill. Above sill depth there are considerable
variations.

The only forcing applied is a specified barotropic tide at the south-
ern boundary of the model domain (Fig. 1). The specified tidal forcing
is based on M, sea level with an amplitude of 20 cm, from which

List of numerical experiments performed. The abbreviations used are Obs: Observed, Chan: Channel, Can: Canonical, that is, the default vertical transform and stretching functions
(Shchepetkin and McWilliams, 2005).

Exp. Stratification Transform Mesh size Tidal forcing Turb. closure Coastline Topography
MAIN Medium New 75m M, k—kl Real Real
PGE1 Strong Can 75m None k— ki Real Real
PGE2 Strong New 75 m None k—kl Real Real
VAL1 Obs New 150 m Obs k — ki Real Real
VAL2 Obs Can 75 m Obs k— ki Real Real
VAL3 Obs New 75 m Obs k—e€ Real Real
REA1 Obs New 75 m Obs k—kl Real Real
REA2 Weak New 75m M, k—kl Real Real
IDE1 Obs New 75m M, k—kl Chan Idealized
IDE2 Obs New 75m M, k—kl Chan Idealized
IDE3 Obs New 75m M, k —kl Chan Real
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is calculated the barotropic tidal velocity component into the fjord
(vgr) using the continuity equation. Specifically

0 Y
VBT :/ vdz = *afg (10)
_H A

where Y is the horizontal area of the fjord inside of the open
boundary, A is the cross section area of the open boundary and ¢ is
the sea level averaged over the horizontal area inside this boundary.
The tides are spun up over a period of 12 h during which the forcing
is ramped up using a hyperbolic tangent function which returns zero
for the first 6 h.

Regarding the barotropic tide the distance between the two
stations is too small to be of any significance.

4.2. Evaluation of results from the MAIN experiment

The model experiment REA1 are similar to MAIN, except REA1 use
the observed stratification and sea level. The stratification termed
"medium” is a smoothed version of the observed, and the observed
sea level is close to a sine curve with amplitude 20 cm. We start
by comparing the observed tides at Oslo Harbor to those generated
by the model by using observations at Kaholmen (REA1), which is
located well inside of the southern boundary (Fig. 9). Regarding the
barotropic tide the distance between the station Kaholmen and the
open boundary is too small to be of any significance. As revealed the
differences in sea levels in REA1 and observations are small, indi-
cating that the model is doing satisfactory well regarding the tidal
signal.

To assess how well the model results reproduce observed cur-
rents we compare them with observed time series of baroclinic
currents at Stations S2 and S5 (Fig. 1). We choose these stations since
they are located, respectively, 1 km and 10 km inside of the sill,

and are sufficiently separated to ensure a fair estimate of the inter-
nal wave energy flux. The observations are extracted from the 2009
measurements reported by Staalstrem et al. (2012) and covers the
24 hour period (two tidal cycles) starting August 18, 2009 at 08UTC.
The 24 hour period model results are extracted from a 2.5 day
simulation to cover two maxima in the tidal currents well after the
12 hour spin up period. As revealed by Fig. 10 the strength of the
inflow and outflow speeds of the currents extracted from REA1 at
Station S2 is almost the same as the observed ones, but the REA1
simulated inflows are located somewhat deeper than the observed
ones. At Station S5 the REA1 simulated inflowing speeds are con-
siderably weaker and deeper, while the outflow speeds are both
stronger and deeper than those observed. Possibly this difference
is caused by a barotropic inflowing component in the observations
caused by processes not present in the pure tidally forced simula-
tions, e.g., wind forcing. This conjecture is supported by the fact that
Station S2 is closer to the sill where the tidal signal dominates the
motion.

Also shown by Fig. 10 are estimations of the total internal wave
energy fluxes through these sections both from the model and the
observations using the indirect method (cf. Section 3.1, Eq. (7)). The
resulting REA1 energy flux is estimated to 245 kW at Station S2 and
43 kW at Station S5 corresponding to a loss of 202 kW between
the two stations. The similar numbers for the observed energy flux
are 277 kW and 73 kW, representing a loss of 204 kW. The latter
is remarkably close to the modeled one. Percentagewise the losses
differ somewhat though with a simulated loss of 82% compared
to an observed loss of 74%. The simulated loss is nevertheless not
significantly higher than the observed one.

Included in Fig. 10 are also time series of the depth of selected
isopycnals. Inspection of these indicates a difference in the ver-
tical displacement of the observed and modeled isopycnals, e.g.,
the 1022 kg m~3 isopycnal, the observed ones being higher at both
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stations. Despite this difference the difference between the two
stations is striking and similar in observations and the REA1 simu-
lation. This is in line with the remarkable similarity in the losses in
energy fluxes.

In summary we conclude that the model reproduces the response
due to the tidal forcing satisfactorily. Instead of using observed sea
level at the open boundary, MAIN uses a sine curve with equal
amplitude and return very similar results. Hence we may use the
results from the latter experiment to investigate variabilities in the
turbulence production inside of the sill, and thereby get insight into
possible differences in the eddy diffusion coefficient or local vertical
mixing in the various fjord basins. To further corroborate this conclu-
sion we have performed the eight sensitivity experiments listed in
Table 1. We comment on the results of the latter when appropriate.

5. Results
5.1. Turbulence production and eddy diffusivity

We split the inner Oslofjord into four basins referred to as Basins
H2-H5 where H4 correspond to the Vestfjord basin and H5 corre-
spond to the innermost Bunnefjord basin(Fig. 11). These basins and
their cross-sections are carefully chosen to ensure that they have
comparable depths and a sufficient lateral separation (cf. Section 6.3).
To estimate the turbulence production, Tz‘»/ , in each basin by the indi-
rect method, that is, by Eq. (5), we first need to compute the wave
energy flux through the various sections bounding the each basin.
To this end we use Eq. (7). The results for the MAIN and the REA2
experiments are given Table 2.

As revealed by Table 2 the turbulence production decreases as
we proceed into the fjord. Moreover, the lowest production is in the
innermost basin (H5) indicating that very little wave energy is avail-
able for vertical mixing in the innermost basin. Hence we expect the
eddy diffusivity to be small there as well. Furthermore, the turbu-
lence production is about six times higher in the Vestfjord basin (H4)
than in the Bunnefjord basin (H5) supporting the notion that the
Bunnefjord basin is far more vulnerable regarding the possibility of
developing hypoxic events.

Table 2 also disclose results from experiment REA2, which differ
from MAIN in that its initial stratification is the one denoted “weak”,
that is, a stratification with a much less pronounced pycnocline
(cf. Table 1 and Fig. 8). As exhibited applying a weaker pycnocline
results in lower turbulence productions. The pattern is maintained
though, which suggests that the decrease in production as we pro-
ceed into the fjord is a robust signal and independent of the initial
stratification.

What about the eddy diffusion coefficient K? To calculate it we
use the budget method, that is, Eq. (9) and observations from the four
stations H2-H5 located in the center of each of the respective basins.
Furthermore we take the mean of K in the depth range 90 m to
125 m. The rationale is that below this depth each basin forms a
closed basin allowing us to separate them. Furthermore, K is fairly
constant throughout this layer (Fig. 7) and is probably the layer
where most of the vertical mixing takes place. The results are listed
in Table 3, and clearly reflect the conclusion that very little mixing
takes place in the innermost basin compared to the basins closer to
the Drgbak Sill, that is, Basins H4 and H2.

We recall from Eq. (2) that the turbulence production does not
give the whole story regarding vertical mixing. How much of the
production left for mixing depends on the the mixing efficiency in
each basin. Recall that the mixing efficiency is Ry = N2K/TY or
K = TYRy/N?. Hence we may use the results given in Tables 2 and 3
to study whether there is a possible linear relationship between the
turbulence production and the eddy diffusivity. To this end we have
plotted, as depicted in Fig. 12, the estimated values of K against the

estimated turbulence productions for each basin. As revealed they do
not fall on a straight line, suggesting that the mixing efficiency differs
from basin to basin. Nevertheless Fig. 12 leaves the impression that
an increase in turbulence production gives rise to a similar increase
in the eddy diffusivity. However, to infer the eddy diffusion coeffi-
cients directly by use of the indirect method, that is, from Eq. (2),
assuming that Ry is invariant from basin to basin is dubious. Finally,
it is interesting that the mixing efficiency in the Vestfjord basin (H4)
appears to be higher (compared with a linear relationship) than in
the other basins. The result is that more of the turbulence produc-
tion is used to enhance the mixing in this basin. This may be related
to the contribution by the reflected waves as discussed further in
Section 5.2.

5.2. Wave reflection

Based on observations Staalstrem et al. (2012) found that the
ratio between the potential and kinetic energy density in a two-layer
progressive interface wave was higher than unity at Station S2 and
less than unity at Station S5. They interpreted this to imply that
the dominant internal wave is not purely progressive and that some
reflection of energy takes place. It is therefore of interest to inves-
tigate whether this is reflected in the model results. To this end
we use the results emanating from MAIN. Recall that in MAIN the
stratification used is the medium one displayed in Fig. 8, and that the
M, forcing is 20 cm.

As a measure we use the vertical displacement of individual
isopycnals away from their initial depth z and investigate how it
changes in time and space. The displacement 1)(x,y, z, t) is (Gill, 1982,
page 140, Eq. 6.7.4)

n=—(p-p) (30" (1

The wave propagation is perhaps best viewed in a Hovmaéller dia-
gram (Fig. 13) in which the horizontal axis is along a path that starts
south of the Drgbak Sill and ends in the northern part of the Vestfjord
basin (Fig. 14). Shown is the displacement at 25 m. The wave clearly
propagates as a first baroclinic mode, internal wave with a phase
speed of about 0.8 m s—!. Moreover, a reflected wave at the northern
end is disclosed which may well lead to the enhanced mixing in the
Vestfjord basin alluded to in the previous section.

Also apparent in Fig. 13 is a marked decrease in the wave ampli-
tude as it propagates into the fjord, and is an alternative way to
display that wave energy is lost as we proceed into the fjord. This is
perhaps even better illustrated by Fig. 14 depicting the spatial dis-
tribution of where turbulence is produced by displaying the spatial
variation in amplitude of the displacement 1) at 25 m depth. As dis-
closed the amplitude is more than 7 m just inside of the Drgbak
Sill and exhibits a decrease to just below 1 m in most of the Vest-
fjord basin (H4). In the Bunnefjord basin (H5) it is less than 0.5 m.
The higher amplitudes are found in the shallower areas between
the Vestfjord and Bunnefjord basins indicating reflection and/or
enhanced wave breaking. A similar effect appears at the southern end
of the Bunnefjord basin.

Stigebrandt (1976) estimated the energy flux away from the
Drebak Sill to be 600 kW forced with a M, sine wave with an ampli-
tude of 15 cm, by assuming a progressive wave with no reflections.
The presence of wave reflection explains why the present estimated
energy flux is lower by a factor of at least 2 (Table 2).

6. Discussion

The above results clearly shows that the vertical mixing due to
breaking of propagating, tidally-induced internal waves decreases as
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(solid thick line). Atmospheric forcing is removed by performing a running mean value over two tidal cycles and then subtract the result from the observations. The same procedure
is applied to the forcing at the open boundary of the model. Lower panel (b) displays time series of the volume averaged kinetic energy extracted from REA1 (solid thick line),
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from the numerical experiments.

we proceed into the fjord. It also shows that very little energy is change the resolution, make changes to the topography, the irregular
available for mixing in the innermost Bunnefjord basin. The question coastline geometry, the turbulence closure scheme, strenght of the
arising is how robust the results are? What happens if we for instance tidal input and the initial stratification?
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Fig. 10. Displayed is the 24 hour time evolution starting August 19, 2009 at 08UTC of currents and selected isopycnals at Station S2 (left column) and S5 (right column). Panels
a) and b) are based on observations and panels c) and d) on results from REA1. At Station S2 isopycnals 1018, 1020, 1022, 1024, 1025 and 1025.25 psu are drawn and at Station
S5 the 1019.1, 1022, 1023.6 and 1024.8 psu isopycnals are drawn. Baroclinic current speed estimated using Eq. (8) is indicated by the color bar (m s=!). Positive values (red) are
currents directed into the fjord, and negative values (blue) are currents directed out of the fjord.
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Fig. 11. The internal wave energy flux in seven selected cross sections of the fjord is
calculated from Eq. (7) for a medium (MAIN) and weak (REA2) stratification (Table 2),
separating four different basins in the Oslofjord labeled H2, H3, H4 and H5.

6.1. Resolution and topography

The large variations in the topography, including the underwa-
ter barrier and the Drgbak Sill itself with its minor sills, present a
challenge. In fact we have manually edited the Drgbak Sill to main-
tain a sill depth of 20 m, and to conserve the cross section area over
the sill in the eastern part. Moreover, because of the shallowness
of the underwater barrier we have chosen to replace it by land-
cells, except for the two narrow openings. This effectively hinders
the east-west exchange south of the Hagya. Further north at Sta-
tions R1 and R2 (Fig. 4) the sounds between the islands are narrow
and V-shaped in depth. To ensure that the smoothing process does
not produce spurious sills the depths are deepened manually in
these particular grid-cells. Note that all grid configurations, includ-
ing MAIN, are smoothed to get a maximum roughness factor of 0.2
satisfying the hydrostatic inconsistency criterium associated with
terrain-following coordinate models (Haidvogel et al., 2008; Haney,
1991; Shchepetkin and McWilliams, 2003).

A first impression of the importance of resolving the topography
is displayed by Fig. 4. It reveals that the 75 m model version more
or less mimics the observed topography (25 m mesh size) while the
150 m set-up does not. This is further quantified and corroborated
by the spectra shown in Fig. 15 in which the power spectrum of
the topography using a 25 m mesh is compared to the topography
spectra of the 75 m and the 150 m meshes. As depicted the wave-
lengths longer than 700 m are all well captured by the 75 m set-up,

Table 2

Table 3
The eddy diffusivity coefficient in the Basins H2, H3, H4 and H5 calculated using the
three different methods of Section 3. All numbers are in cm? s~1.

Basin

Method H2 H3 H4 H5
Budget ~20 ~3 ~5 ~1
Indirect 19.8 £6.0 5.4+0.1 2.4+6.0 1.7+0.1
Direct 22.7 15.2 11.2 109

while the 150 m grid resolution model only captures wave-lengths
longer than 2 km. Apparently the 75 m version resolves fairly well
the dominant topographic features in the vicinity of the sill, while the
150 m version does not. Hence we suspect that the 75 m grid reso-
lution version will fair better compared to observations, in particular
with regard to the internal wave energy fluxes.

When we increase the mesh size to 150 m, as is done in the
VAL1 experiment (Table 1), the estimated internal wave energy flux
at Station S2 is reduced to 153 kW, while the estimate at Station
S5 is only reduced to 39 kW (Fig. 16) corresponding to a reduced
energy loss of 114 kW (75%). As revealed by Fig. 16 these numbers
are reflected in the baroclinic speeds at Stations S2 and S5. Whereas
those at Station S2 are substantially reduced those at Station S5
are more similar to those of the MAIN experiment. We attribute
the reduction in current speeds and energy flux to the fact that the
topography close to the sill (Station S2) is not well represented in the
VAL1 experiment.

6.2. Strength of the tidal input

Fig. 17 shows how the vertical displacements vary as a function
of the strength of the elevation of the tidal input, here varying in
the range 5 to 25 cm, using results from the MAIN and the REA2
experiments. Recall that REA2 differs from MAIN in that it employs a
weaker stratification (less steep pycnocline).

As displayed both MAIN and REA2 underestimate the amplitudes,
but MAIN more so than REA2. The latter is expected since a weaker
stratification enhances the vertical displacements of an isopycnal for
the same energy input. We also note that the amplitudes increase as
the tidal input gets stronger in line with the observed amplitudes. We
also note that the amplitudes at Station S2 are much higher than at
Station S5, an independent indication that the tidally-induced prop-
agating, internal waves indeed loose much of their energy between
the two stations. Thus another measure of how well the model repro-
duces the turbulence production is to calculate the decrease in the
amplitude of the 1022 kg m~3 isopycnal between Stations S2 and S5.
In fact the modeled and observed ratio between the amplitudes at
Stations S5 and S2 is very similar being 0.22+0.03 using results from
the MAIN experiment and 0.25 + 0.04 using observations.

6.3. The effect of employing an irregular coastal geometry
When we use the indirect method to estimate the eddy diffu-

sion coefficient by means of Eq. (4) through Eq. (7), we rely on a
trustworthy estimation of the average turbulence production in an

The net internal, wave energy fluxes through the cross-sections bounding the four Basins H2-H5 displayed in Fig. 11. All energy fluxes are in kW, and TI‘,’ isin 1072 W kg'1 . They
are calculated by use of Eq. (5). MAIN and REA2 refer to two of the experiments listed in Table 1 and differ only in the initial stratification applied.

Basin
H2 H3 H4 H5
Exp. MAIN REA2 MAIN REA2 MAIN REA2 MAIN REA2
F 297 130 78 26 123 28 15 3
F 96 26 53 2 26 5 0
T,‘,’ 633 328 106 102 31 7 8 2
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Fig. 12. The eddy diffusion coefficient (diffusivity) as a function of turbulence production in the four different Basins H2-H5 in Fig. 11. The diffusivity is calculated from Eq. (9)
based on observations of density, and is an average over the depth range 90 to 125 m. The turbulence production is calculated from Eq. (5) based on the modeled energy fluxes
shown in Fig. 11. In Eq. (7) the volume below 20 m in each basin is chosen. The size of the black points indicates the volume of each basin, and the black line is a least square fit to

the four data points.

enclosed volume V. In particular the result depend on how well the
boundary Q encompassing the volume V is represented in the model.
It is therefore of interest to investigate the effect of employing a fjord
featuring an idealized regular coastline geometry in the form of being
a straight channel with parallel walls.

Consequently, in the three experiments IDE1, IDE2 and IDE3
(cf. Table 1), we replace the irregular coastline geometry by straight
channel walls. Furthermore, we let the topography varies singu-
larly in the direction into the fjord. All three experiments employ a
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horizontal mesh size of 75 m. Finally, we let the topography varia-
tion into the fjord in IDE3 mimic the topography of MAIN inside of
the Drgbak Sill, while IDE1 and IDE2 use either a single sill configura-
tion (IDE1) or a two sill configuration (IDE2) as depicted in the upper
right-hand panel of Fig. 18. For comparison Fig. 18 also shows the
depth profile along the the transect shown in Fig. 14 used in MAIN
(upper left-hand panel of Fig. 18). With this configuration the area
inside of the southern boundary is drastically reduced leading to a
drastically reduced barotropic tidal current input as given by Eq. (10)

Distance from sill [km]

Fig. 13. The vertical displacement at 25 m as a function of time and space along a south-north transect of the Oslofjord. The distance indicated along the horizontal axis is the
distance from the Dregbak Sill, while time in hours is indicated along the vertical axis. The hours correspond to the hours displayed in Fig. 9. The path of the south-north transect

is shown in Fig. 14. The black line indicates a phase speed of 0.8 ms~1.
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Fig. 14. The amplitude of the vertical displacement at 25 m depth as calculated from
Eq. (11). The color scale enhances gradients at relatively small ranges. The black lines
indicate the transect along the fjord used in Fig. 13.

which explains the substantial reduction in the energy levels in the
three IDE experiments compared to MAIN as disclosed by two lower
panels in Fig. 18.

A comparison of the wave energy fluxes estimated using Eq. (7)
reveals that the most striking difference between those fluxes gen-
erated by MAIN and those generated by IDE1-IDE3 are the expected
reduction in the maximum to about on tenth (Fig. 18) as explained
in the previous paragraph. Comparing MAIN and IDE3, that both fea-
tures a replica of the real topography, both show a similar pattern.
Within the first 6.5 km there is considerable variability, and the
local maxima and minima in the flux correlate well with local min-
ima and maxima in the depth profile. Further away from the sill the
energy flux in both experiments levels out and become nearly con-
stant. Furthermore, within the first 6.5 km the flux decreases overall
corresponding to a major loss of energy. This is different from the
pattern associated with two other IDE experiments in which a more
idealized topography is used. In IDE1 (one sill only) the energy level
first increases downstream of the sill before it slowly declines. When
the second sill is introduced (IDE2) the energy flux increases down-
stream of the first sill, declines just upstream of the second sill before
increasing again further downstream. We suspect that the nega-
tive correlation between the energy flux profile and the bathymetry
could be caused by the method in which the energy flux is calcu-
lated. In Eq. (8) it is assumed that the barotropic mode is equal to
the depth-averaged mode, and this is maybe not a valid assumption,
leading to a depth dependence in the calculated energy fluxes.

We conclude that the depth profile and the inclusion of a real-
istic, irregular coastal geometry is important for the estimation of
the internal wave energy flux loss and hence for the estimation of
the turbulent production. The results however show that care must
be exercised when choosing the volume over which we estimate
and compare modeled and observed energy fluxes when evaluating
the model results. To avoid the problem we have therefore limited
our comparisons to cross sections where the maximum depths are
comparable in the results shown in Section 5.

6.4. Turbulence closure scheme

As alluded to in Section 3.2 it is tempting to use the model’s
rendition of the vertical eddy diffusion coefficient, K,, as a measure
of the actual eddy diffusivity, K. This is however not straightforward
in that K;; includes contributions from the sub-grid scale motion,
here mostly non-hydrostatic effects, as well the turbulent motion.
Thus we expect Ky, to be larger than K.

Since the model is equipped with more than one closure model,
we have performed experiments with two of them, namely the k — ki
closure as used in the MAIN and the VAL2 experiments and the k — €
closure as used in the VAL3 experiment, to study their effect on the
eddy diffusivity. Based on the density difference measured at Station
H4 in the southern end of the Vestfjord basin (Basin H4) between
May and August 2009, the estimated value of K is 5-1076 m2 s—1
(Fig. 7) at 25 m depth. The modeled diffusivity Ky averaged over
the Basin H4 volume gives 6-10-% m2 s—! when we use the k — ki
closure model (MAIN) and 8-10-% m2 s~ when we use the k — ¢
closure model (VAL3). These values appear to fit well with the
independent estimates made by Bjerkeng et al. (1978).

Furthermore we have, by the use of the budget method, calcu-
lated the depth profile of K based on the observations at Station H4
and compared it with the similar depth profile of K, based on the
model results from MAIN, VAL2 and VAL3 (Fig. 7). Recall that VAL2
differs from MAIN in that it uses the canonical vertical transform
that leads to unacceptable current levels due to the pressure gradient
error, while VAL3 differs from MAIN in that it uses the k— e instead of
the k — kl closure scheme. We observe that the shape of the observed
and modeled profiles between 20 and 50 m depth is quite similar.
Furthermore we notice that the profiles based on MAIN and VAL3,
although being on average two times larger than the observed one
below 70 m, much better represent the observed diffusivity profile
than the profile based on VAL2 results. This emphasizes the impor-
tance of minimizing the pressure gradient error as done in MAIN and
VAL2. Finally we emphasize that the diffusivity cannot be calculated
from the budget method above 20 m which is why Fig. 7 stops at
20 m depth.

To conclude it appears that vertical diffusivity gets large in areas
where there are large artificial currents due to the pressure gradi-
ent error. Hence the vertical diffusivity appears to be sensitive to
the choice of the vertical transform and stretching functions. In con-
trast the modeled vertical diffusivity is less sensitive to the choice
of turbulence closure model. It also appears that there is a relation-
ship between Ky, and K, particularly in the depth range 90 to 125 m,
except that K, as expected is biased toward higher values. Neverthe-
less we do not recommend to use the model’s rendition of the eddy
diffusivity as a measure of the real one.

6.5. The effect of weak and strong stratification

In MAIN we initialized the model with the smoothed observed
density profile referred to as “medium” stratification (Fig. 8) with a
maximum Brunt-V &isili-frequency of N> ~ 0.07 s~!. In the same
graph a density profile with a maximum N?> ~ 0.03 s~! referred to
as “weak” stratification is also plotted. As is well known (e.g, Bell,
1975; Jayne and Laurent, 2001) a reduced pycnocline slope, or rather
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Fig. 15. Comparison of observed and model bathymetry spectra. The black line is the spectrum of the observed bathymetry (5m grid resolution), while the red and blue lines
show the spectra of the 75m and 150m model topography, respectively. Note that the spectrum of the 75m grid resolution model pretty much follows the observed topography
spectrum, while the 150m grid resolution model falls below the observed one already at wave lengths above 1745m.

a reduced density difference between the upper and lower layers,
the amplitude of the internal waves increases, but not necessarily
the energy flux. Reducing the stratification is therefore expected to
give less energy available for turbulence production further into the
fjord.

As an example we compare two model runs MAIN (medium strat-
ification) and REA2 (weak stratification) both forced with a M, tide
of amplitude 20 cm. At Station S2 the amplitude of the vertical dis-
placement at 20 m depth is about 5.6 m and an the energy flux is
about 130 kW for the REA2 experiment. In the MAIN experiment the
amplitude is reduced to 4.3 m whereas the energy flux is increased
to 297 kW. A similar difference is found also for other forcing ampli-
tudes of the surface elevation at the southern boundary as displayed
in Fig. 17.

7. Summary and final remarks

It has long been known that the innermost basin of the inner
Oslofjord, known as the Bunnefjord basin, experiences long peri-
ods of hypoxic to anoxic events that have a dramatic effect on the
ecological environment (Beyer and Feyn, 1951). This is commonly
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attributed to a weak vertical mixing, a mixing that is much weaker
than in the basins closer to the sill (Baalsrud et al., 2002; Berge
etal,, 2010; Dolven et al., 2013; Gade, 1970). In fact the weak mixing
obstructs any frequent deep water renewal to take place, and hence
the water becomes stagnant. The question that immediately arises is
why the local vertical mixing in the innermost basin is weaker than
in the other basins closer to the sill. Our hypothesis, which was first
formulated by Stigebrandt (1976) based on the results reported by
Gade (1970), is twofold:

1. Mixing in the inner Oslofjord is predominantly due to turbu-
lence production caused by breaking of tidally-induced, propa-
gating internal waves whose source region is the sill at Drgbak

2. The internal wave energy left for mixing in the innermost basin
is small.

To confirm the hypothesis we combine modeling and analyses of
observations. The model we employ is a hydrostatic version of the
ocean model ROMS implemented for the inner Oslofjord. To properly
resolve the complex topography and irregular coastline geometry of
the fjord we find that a mesh size of 75 m is necessary. To generate
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Fig. 16. Same as Fig. 10, but for the VAL1 experiment.
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tidally-induced, propagating internal waves we force the model by with a laterally, uniform stratification smoothed version of obser-
specifying the barotropic tides at the model’s southern boundary vations made by Staalstrem et al. (2012). A number of sensitivity
located well south of the major sill at Drgbak. The model is initialized experiments are performed to get insight into the model’s sensitivity
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Fig. 18. Depth profiles (upper two panels) and associated estimates of the internal wave energy fluxes (lower two panels) into the fjord as estimated from Eq. (7). The left-hand
column shows results from the MAIN experiment, while the right-hand column depicts results from the idealized experiments IDE1, IDE2 and IDE3. Solid thick line is associated
with the IDE1 experiment, solid thin line with the IDE2 experiment and dotted line with IDE3 experiment. The different bathymetry configurations in IDE1, 2 and 3 are drawn on
top of each other.
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to various parameters, parameterizations, and mesh size. We note
that the method we use is generic, and may be applied to any sill
fjord to study spatial variations in the vertical mixing and turbulence
production due to breaking of propagating internal waves.

We use the local vertical eddy diffusivity or vertical eddy diffu-
sion coefficient K as a measure of the vertical mixing. To estimate K
we employ three methods. The first is the indirect method in which
the net turbulence production within four basins in the Oslofjord
is estimated using a version of the method outlined by Nash et al.
(2005). The turbulence production is related to the vertical diffusivity
as outlined in Section 3.1, but requires knowledge of the so called
mixing efficiency. The second method is the direct method in which
we explore using the model’s rendition of the diffusivity as a measure
for K (Section 3.2). The third and final method is the classical budget
method (Section 3.3).

We find that the propagating, tidally-induced internal waves may
indeed explain differences in mixing between the Vestfjord basin
(Basin H4) and the innermost Bunnefjord basin (Basin H5). In fact
the indirect method reveals that the turbulence production in the
basin closest to the sill (Basin H2) is as large as 63310~ W l<g’1.
Proceeding into the fjord it decreases to 31- 10~9 Wkg_1 for the
Vestfjord basin (Basin H4). In contrast only 8-10~° W kg ™! is avail-
able for mixing in the innermost Bunnefjord basin. This is compared
to estimated eddy diffusivities based on the budget method and
observations. The method returns ~20 cm?2/s in Basin H2, ~5 cm?/s
in Basin H4 and ~1 cm?/s in the innermost basin (Basin H5).

By comparing eddy diffusivities and turbulence production
(Fig. 12) it is evident that the mixing efficiency of the basins is
different. Thus there is no direct universal relationship between
turbulence production and eddy diffusivity. Furthermore we find
that the model’s rendition of the eddy diffusivity averaged over
the basins is of the same order of magnitude as the observed ones.

Finally we remark that the only forcing applied is sea level
variations at the southern boundary of model domain, where the
barotropic flow is calculated from Eq. (10). The result is a baro-
clinic signal in the form of propagating internal waves inside of the
Drebak Sill. When observed sea level is used as forcing, the model is
able to reproduce the observed sea level at the fjord head remark-
ably well (cf. Fig. 9). When the model is forced with a sinusoidal
sea level with varying amplitude, we find that there is a linear rela-
tionship between the amplitude of the sea surface elevation and the
vertical displacement of density surfaces around sill depth (Fig. 17).
This is in line with findings of Staalstrem et al. (2012) based on
observations.

There are also many other sources than tides that may create
baroclinic signals. This could be fresh water inflow, wind stress at the
surface and barotropic signals of meteorological origin (e.g., storm
surges). The wind is clearly important for the surface current during
strong winds, and can cause even greater modifications in the flow
due to mixing of the upper layer. In our experiments the wind stress
is set to zero. Hence when comparing model results and observations
we carefully choose a period with relatively weak winds. The effect
of episodes of strong winds and fresh water inflow is only included
indirectly in experiments deviating from the MAIN by using strat-
ifications similar to measured stratification after such episodes as
initial conditions in the model run.
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Appendix A. A new vertical transform and stretching

Like all models featuring a terrain-following vertical coordinate
our Oslofjord version of ROMS is prone to the infamous pressure
gradient error (PGE) (e.g., Berntsen and Thiem, 2007; Shchepetkin
and McWilliams, 2003). Our Oslofjord version of ROMS is espe-
cially exposed due to the complicated and highly varying topography
combined with strong stratification.

The PGE is generated when transforming the lateral pressure
forcing in the momentum equation, that is,

0
pl: = —g / (0upls — Oxzlsdeplz) dz, (A1)
z

where the vertical bars indicate whether the derivative is taken along
an s- or a z-surface. Both terms on the right-hand side of Eq. (A.1)
may have numerical values that are larger than the pressure gradient
itself, therefore a small relative error in the terms on the right-
hand side may lead to a large relative error on the left-hand side of
Eq. (A.1). For instance in the case of no horizontal density gradients,
the difference on the right-hand side of Eq. (A.1) is generally non-
zero in a terrain following model. It is thus challenging to calculate
the horizontal pressure gradient accurately when a terrain following
vertical coordinate is used. The slope of the s-surface and the verti-
cal density gradient must be taken into account. In a sill fjord the sill
itself might create a pycnocline. This makes it especially challeng-
ing to calculate the horizontal pressure gradient since high vertical
density gradients are present over the sill where the slope of the
s-surface is typically large.

To minimize the PGE we compare two experiments PGE1 and
PGE2 (cf. Table 1), one using the canonical transform that comes with
ROMS (Shchepetkin and McWilliams, 2005) (PGE1) and the second,
like MAIN, using a new transform and stretching (PGE2) as explained
in the next paragraph. In contrast to MAIN we apply absolutely no
forcing at the southern open boundary by setting the tidal ampli-
tude to zero there. Moreover we replace the observed stratification
with the “strong” stratification displayed in Fig. 8 to enhance the PGE

0

h=h_/2
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%

Z=
1
N
=
7
&

Fig. Al. The depth (in the case when ¢ = 0) as a function of s for four different
water depths. The stretching function is calculated using Eq. (A.6) with 6; = 6 = 4.
Note that d,s for all curves has its lowest value at z = —h;, indicating high vertical
resolution, except when the water depth is shallower than h;.
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error. We note that since the fluid is initially at rest, and no forcing is
applied, any motion that develops is an artifact and due to the PGE.

To construct the new transform and stretching we basically make
changes to two functions in the canonical version of ROMS. The first
is a stretching function C = f; used to enhance the vertical resolution
in certain parts of the water column. Several stretching functions are
available (Mason et al., 2010; Shchepetkin and McWilliams, 2005;
Song and Haidvogel, 1994). The second operation is to define the
transformation function between the geopotential depth z and the
s-surface. It takes the form

z=fr(H, ¢ C he) (A2)

where H is the total water depth, ¢ is the sea level elevation, Cis the
stretching function and h. is a parameter called the critical depth.
The transformation Eq. (A.2) then determines where in the vertical
space the s-surface is located.

The parameter h is used to modify the coordinate above a certain
critical depth. Two different transformations are available in ROMS.
They differ in how h. is incorporated in Eq. (A.2). If the critical depth
is set to zero both transforms reduce to

z=C)H+{)+¢. (A3)

As is obvious the choice made for the transform and stretching
function has an impact on the PGE. Consequently, by carefully
choosing the transform and stretching functions, it is possible to
minimize the strength of the PGE. By constructing a stretching
function f; that enhances the vertical resolution in the pycnocline,
the relative error in the calculation of the vertical density gradient
will be reduced. It is not possible to enhance the resolution in a

Shchepetkin (2005)

GB=QS=5 hc=30

31

fixed depth (at the expense of the resolution above and below this
depth) without also reducing the slope of the s-surface in this depth.
Since the vertical gradient of the density generally is larger than
the horizontal gradient, both terms on the RHS of Eq. (A.1) will be
reduced.

To achieve this we introduce a dependence of the water depth in
the stretching function C. In fact the weighted sum of two stretching
functions is used, one that enhance the resolution near the bottom
Cp and another that enhance the resolution near the surface C;.

C(s, H) = (1 — p)Cp(s) + uCs(s) (A4)
The bottom stretching function is written

__ sinh6g(s+)
Cp(s) = “sinhf; 1 (A5)

where 65 is the bottom stretching parameter. The surface stretching
function is written

1 —coshbgs
G8) = osh 6 — 1 (A6)
where 6 is the surface stretching parameter. The weight 1 is
p= H;hs if H> h, (A7)

where h; is the depth of enhanced resolution. If H < hs, thenpu = 0
and the stretching function is set to C = Cg. Fig. Al illustrates how
the resolution is enhanced in the depth near hs for different water
depths.

b)

c)

Equation (A5)

GB=QS=4 hs=20

0 0.01
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Fig. A2. The maximum currents caused by the pressure gradient error in the PGE1 (panels a and b) and PGE2 (panels c and d) experiments after after 3 days of simulation. The
left-hand panels show the distribution of the maximum PGE currents along the section outlined by the black line in the right-hand panels, while the right-hand panels show their
horizontal distributions regardless of depth. Current speed is indicated by color bar in m s~1. Note the substantial reduction in PGE achieved in PGE2 compared to PGE1 almost

everywhere except in a few hot spots.
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Fig. A2 shows the results of the PGE1 and PGE2 experiments after
3 days (72 h). As is evident that the PGEs of PGE1 are substantial,
in particular in the upper water masses including the pycnocline
layer, and generate artificial currents as high as 0.1 m s—'. Moreover
most of the maximum currents are located at the levels where the
propagating tidally induced, internal waves are present. Applying the
new transform (PGE2) dramatically reduces the PGEs at or above sill
level where it is needed most. We emphasize though that it does
not reduce the PGEs to acceptable levels everywhere. In relatively
deep waters outside of the Drgbak Sill (Station H1), the PGEs are still
significant. Also in the inner Oslo Harbor there are significant PGEs.
However, since the first one is located in the deep water outside of
the sill and the second area is limited to the Oslo Harbor, we do not
expect the artificial currents due to PGE to have any serious impact
on our results. Consequently we have used the new transform in all
the remaining experiments except VAL2.

We emphasize that although the new transform reduces the PGEs
it may potentially give problems in deep waters where the vertical
resolution becomes coarser when employing the new transform. As
an example the bottom layers are as thick as 29 m if the water depth
is 258 m when using the new transform. Nevertheless, at the levels
where it matters the PGEs are reduced to acceptable levels.
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