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ABSTRACT 

Emamectin benzoate (EMB) is an anti-sea lice chemical widely used in the aquaculture that may also 

unintentionally affect non-target crustaceans in the environment. Although the adverse effects of this 

compound are well documented in various species, the full modes of action (MoAs) are still not well 

characterized. The current study was therefore conducted to characterize the MoAs of EMB and link 

perturbations of key toxicological pathways to adverse effects in the model freshwater crustacean Daphnia 

magna. Effects on molting and survival were determined after 48h exposure to EMB, whereas global 

transcriptional changes and the ecdysone receptor (EcR) binding potency was determined to characterize the 

MoA. The results showed that the molting frequency and survival of D. magna decreased in a 

concentration-dependent manner, and the observed changes could not be attributed to direct interactions with 

the EcR. Major MoAs such as activation of glutamate-gated chloride channels and gamma-aminobutyric acid 

signaling, disruption of neuroendocrine regulation of molting, perturbation of energy homeostasis, 

suppression of DNA repair and induction of programmed cell death were observed by transcriptional analysis 

and successfully linked to the adverse effects. This study has demonstrated that acute exposure to intermediate 

and high pM levels of EMB may pose hazards to non-target crustaceans in the aquatic environment. 
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 INTRODUCTION 

Sea lice are a family of copepods (Crustacea, Arthropoda) living as parasites in the mucus, epidermal tissues 

and blood of the host fish and severely affecting the fitness of farmed fish, thus causing great economic loss.1 

These external parasites may cause skin ulcerations in the neck regions and lead to dysfunction of 



osmoregulation and secondary bacterial infections in fish.2 Anti-sea lice treatments such as using 

avermetin-derived medicines have proven to be highly efficient for controlling the life cycles of both juvenile 

and adult sea lice with minimal hazards to fish and human,3, 4 albeit these treatments are costly (over €300 

million/year).5 Emamectin benzoate (EMB) is the main ingredient of the anti-sea lice treatment SLICE® 

(Merck Animal Health) and heavily used in major regions of salmonid aquaculture worldwide, including 

Norway, Canada, Scotland, Ireland and Chile.2 Treatment with EMB is dependent on the type of sea louse and 

the infected host fish. For example, An oral dosage of 50 μg/kg EMB daily for seven consecutive days has 

been commonly used to treat infected Atlantic salmon (Salmo salar) against the salmon louse Lepeophtheirus 

salmonis.2 The use of EMB tends to increase in most of these countries,6-8 due to elevated resistance in sea lice 

to EMB or reversion to EMB from alternative treatments such as hydrogen peroxide, azamethiphos and 

pyrethroids, upon development of resistance also to these compounds.9 Although EMB is mainly used against 

copepods, it may affect other aquatic crustaceans such as the American lobsters (Homarus americanus) and 

the spot prawn (Pandalus platyceros) living in the vicinity of salmon farms as these animals also ingest 

EMB-medicated salmon feed.10-16 This raises the concern that non-target aquatic organisms, especially 

invertebrates, may potentially be impacted by use of anti-sea lice treatments in areas with intense fish 

aquaculture activities. 

Avermectins (AMs) such as EMB are a class of endectocides (antiparasitic drugs) and generally identified 

as positive allosteric modulators of ligand-gated chloride channels.17 Some researchers propose that the main 

mode of action (MoA) of AMs in invertebrates is to activate glutamate-gated chloride channels (GluCls), 

while others suggest that AMs may bind to and activate the ionotropic gamma-aminobutyric acid receptors 

(GABAR).18, 19 Both MoAs may increase the membrane permeability of the chloride ions and inhibit the 

somatic neurotransmission, thus causing paralysis and associated mortality.19 Other effects of EMB in 

crustaceans such as interference with molting11 and induction of apoptosis16 have also been reported. However, 

the toxic mechanisms leading to these effects have not been well characterized. 

The water flea Daphnia magna has become a model crustacean species in ecotoxicological studies. Being 

used as a standard OECD (http://www.oecd.org/) toxicity test species, D. magna possesses a number of 

advantages, such as short asexual reproduction cycle, transparent body, well-studied genome, easy to maintain 

under laboratory conditions and sensitive to environmental contamination. The benefits of using 

whole-organism D. magna for studying the GABAergic effects and neuro-endocrine disruption have been 

widely recognized.20 To understand the toxic effects and mechanisms of EMB on non-target crustaceans, the 

current study used D. magna as the test model, with the main objectives to: 1) identify short-term (48h) effects 

of EMB on survival and molting; 2) confirm the known MoAs and characterize potential novel MoAs of EMB 

based on transcriptional analyses and an in vitro assay for interaction with the EcR; and 3) link toxic 

mechanisms and adverse effects of EMB for future hazard assessment. 

 

 MATERIALS AND METHODS 

Daphnia culture and exposure. Daphnia magna (DHI strain) was cultured in M7 medium (pH 7.8±0.2, 

20±1°C) under a photoperiod of 16h:8h (Supporting Information, SI). Juvenile D. magna (<24h old) were 

used in all tests. Culture and exposure conditions were according to the OECD test guideline 202 

(http://www.oecd-ilibrary.org/). The exposure concentrations were chosen based on a range-finding toxicity 

test (48h). A time-course exposure was performed first to determine the optimal sampling time point for 

transcriptional analysis. The optimal sampling time was chosen based on the responses of genes involved in a 
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few known MoAs of EMB, such as glutamate and GABA receptor signaling pathways. In the temporal study, 

neonatal D. magna were exposed to 2000 pM EMB for 48h. Twenty individuals were sampled at 0, 12, 24, 

and 48h post exposure, pooled for each time point (N=1) in RNALater (Qiagen, Hilden, Germany) and stored 

in -80°C until later use. The global gene expression of exposed group was compared to the corresponding 

control (DMSO) at each time point. In the second study, 5 nominal exposure concentrations of EMB, 7.8, 31.2, 

125, 500 and 2000 pM were tested. Neonatal D. magna in each independent exposure unit (N=9) containing 

50 mL of exposure medium were exposed to EMB or the solvent control. After 12h exposure (as determined 

to be optimal by the time-course study), 5 biological replicates (each contained 8 pooled individuals) were 

sampled in RNALater for transcriptional analysis (microarray and qPCR) and stored in -80°C until use. The 4 

remaining replicates (each contained 5 individuals) continued exposure until 48 h. Molting frequency and 

immobilization were recorded after 12, 24, and 48h exposure. Exposure variables such as pH, dissolved 

oxygen and temperature were recorded throughout the experiment. The exposure medium in the lowest and 

highest EMB exposure groups were sampled at 0, 12 and 48h post exposure for chemical analysis of EMB 

using HPLC/HRMS (SI). 

 

Microarray design and transcriptional analysis. The high density custom D. magna oligonucleotide 

microarrays were designed based on de novo assembly of D. magna sequences from RNA sequencing and 

manufactured by Agilent Technologies (Santa Clara, CA, USA). The microarray platform can be accessed at 

Gene Expression Omnibus (GEO, accession No.: GPL22095). Total RNA was isolated using ZR Tissue & 

Insect RNA MicroPrep™ kit (Zymo Research Corp., Irvine, CA, USA) according to the manufacturer’s 

protocol (SI). The RNA purity (260/280>1.8, yield>50 ng/μL) and integrity (clear peaks of RNA and flat 

baseline) were checked using Nanodrop® ND-1000 (Nanodrop Technologies, Wilminton, Delaware, USA) 

and Bioanalyzer (Agilent), respectively. The one-color microarray analysis (N=4 biological replicates out of 

five sampled) with 50 ng of input RNA was performed according to Agilent’s standard protocol with 

modifications.21 Raw microarray data was quality assessed and normalized (quantile method) using Gene 

Spring v10.7 (Agilent), and deposited in GEO (accession No.: GSE83859). Differentially expressed genes 

(DEGs) were determined using one-way ANOVA followed by Benjamini and Hochberg false discovery rate 

correction (corrected p<0.05) and enriched for Gene Ontology (GO) functions as previously described.21 

Pathway analysis was performed using mapped homolog DEGs of D. magna towards curated D. melanogaster 

pathways in Reactome (http://www.reactome.org/). Quantitative real-time RT-PCR analysis (N=5 biological 

replicates) was performed on the same RNA sample to verify the microarray analysis for a selection of DEGs 

(14 target and 2 reference genes) and to characterize the transcriptional responses of relevant biomarker genes 

for a selection of potential MoAs (SI). 

 

Two-hybrid EcR reporter assay. An in vitro screening assay for EcR binding and reporter gene activation 

was performed as described previously by Kato and colleagues,22 with modifications (SI). 

 

 RESULTS AND DISCUSSION 

Exposure Verification. The measured pH before and after 48h exposure to EMB was in the optimal range 

(7.8±0.2) for D. magna. Slight increase of pH (e.g. from 7.70±0.02 to 7.78±0.02) was observed in all groups 

after 48h exposure to EMB, but considered to be within normal variance in such tests. The exposure 

concentrations of EMB in the test media decreased in a time-dependent manner, with the lowest (7.8 pM) 

http://www.reactome.org/


exposure group decreased to approx. 41% and 22% of the nominal concentrations after 12 h and 48 h, 

respectively, and the highest (2000 pM) exposure group decreased to approx. 31% and 20% of the nominal 

concentrations after 12 h and 48 h, respectively (SI, Figure S1). Reduction of EMB concentrations was also 

observed in another D. magna study in which the measured EMB concentrations were 70% lower than 

nominal after 48h exposure.23 The instability of EMB in the exposure system has been proposed to be due to 

its rapid photodegradation in aqueous solution.24  

 

Adverse Effects and Ecdysone Receptor Activity. After 48 h exposure, increase in mortality of D. magna 

were observed at concentrations as low as 31.2 pM and with 100% mortality occurring at 2000 pM EMB 

(Figure 1). No-observed-effect-concentration (NOEC) and half maximal effective concentration (EC50) were 

determined to be 7.8 pM and 143.3 pM, respectively, and were several orders of magnitude lower than 

previously reported values for EMB in other crustaceans.19 The fairly large differences in effect 

concentrations may partly be due differences in exposure conditions and susceptibility of D. magna strains to 

the toxicant.25, 26 but mortality observed herein seems to correspond well to that of sea lice and several other 

non-target marine crustaceans, such as Acartia clausi, Pseudocalanus elongatus, Temora longicornis, Oithona 

similis and the spot prawn.16, 19, 27 

  The molting frequency of D. magna was slightly increased after exposure to 7.8 and 31.2 pM EMB, and 

decreased after 24h exposure to 500 and 2000 pM of EMB (Figure 1). Clear concentration-dependent decrease 

of molting frequency was observed after 48h exposure (EC50=165.1 pM). The highest concentration of EMB 

did not inhibit molting completely after 48h, however. High correlation (R2=0.98, p=0.0001) between lethal 

effects and molting inhibition was found, indicating a connection between increased lethality and molting 

(Figure 1). However, it is interesting to note that after 24h, exposure to 500 pM EMB did not result in any 

mortality but still caused substantial reduction of molting frequency, indicating that at lower concentration(s), 

inhibition of molting may occur independent of lethal effects or even contribute to lethality. The molting 

inhibition effect of EMB has been recently reported for D. magna with a 24h 

lowest-observed-effect-concentration (LOEC) of 600 pM,23 compared to the 48h LOEC of 125 pM found in 

this study. The effects of EMB on molting were slightly different in other crustacean species, where premature 

molting and associated mortality were repeatedly documented in the American lobsters after long-term (>14d) 

oral exposure to 0.05-1 μg/g body weight–1 of EMB.10-14 No effect on molting, but significant mortality was 

reported for the spot prawn after 8d sediment exposure to 0.1-0.8 mg/kg sediment of EMB.16 

  The EcR in vitro reporter assay did not identify EMB to be a ligand for the D. magna EcR (one-way 

ANOVA, p=0.94). In contrast, the potent EcR agonist ponansterone A led to concentration-dependent 

induction of the EcR reporter gene with an EC50 of 6294 pM (Figure 1). 

 

Global Transcriptional Responses and Functional Analysis. The preliminary time-course gene expression 

study showed that dramatic transcriptional responses occurred in D. magna after 12h exposure to 2000 pM 

EMB, including several highly up-regulated genes associated with the primary MoA of EMB, such as 

sodium-chloride GABA transporter, cuticle protein 3A and EcR A2 (SI, Figure S2), while less than 10% 

mortality was observed. Therefore, 12h was considered as an optimal time point studying the effects of EMB 

on gene expression. In the second (concentration-response) study, massive transcriptional changes were also 

identified in D. magna after 12h exposure to 31.2 (2880 DEGs), 500 (4541 DEGs) and 2000 pM EMB (5759 

DEGs), whereas relatively marginal responses were found in animals exposed to the lowest (7.8 pM, 210 

DEGs) and intermediate (125 pM, 119 DEGs) concentrations of EMB (SI, Figure S3). The 



no-observed-transcriptional-effect-level (NOTEL) was likely below 7.8 pM. Interestingly, exposure to 125 

pM EMB resulted in more than 50% mortality of D. magna after 48h, but only caused marginal transcriptional 

responses after 12h. This was likely due to a transition from sublethal to lethal toxic mechanisms at this 

intermediate exposure concentration of EMB. It has been currently recognized that environmental stressors 

such as toxins and ionizing radiation may produce hormetic responses (i.e. stimulation at low dose, inhibition 

at high dose), especially when the research focus is on the early stress responses at the molecular levels (e.g. 

gene expression, protein synthesis etc.).28 This may also be the case for EMB, which likely activated massive 

transcriptional responses in D. magna at low concentrations to maintain homeostasis. When the accumulated 

damage exceeded the capacity of the defense mechanisms, other mechanisms may be activated. Nevertheless, 

the hermetic responses are rather complicated and further investigations are needed. Based on k-means 

clustering analysis, 4 major patterns of global transcriptional responses were identified, with two of them 

displaying concentration-dependent up-regulation and down-regulation of DEGs (SI, Figure S4). 

Functional analysis of DEGs showed that a total of 276 (31.2 pM), 113 (500 pM) and 98 (2000 pM) GO 

functions were overrepresented, with the majority of GOs being concentration-specific (SI, Figure S5). Briefly, 

exposure to 31.2 pM EMB specifically regulated DEGs involved in the immune responses, calcium 

homeostasis, neurogenesis and DNA repair. Exposure to 500 pM EMB uniquely affected DEGs associated 

with neural tube formation and protein ubiquitination, whereas 2000 pM EMB resulted in differential 

regulation of genes related to cell cycle regulation and DNA repair, redox reactions, respiratory system 

development and neurotransmitter transportation. Functions such as ion transport, neuron development, 

oxidoreductase activities were also found to be commonly regulated by exposure to 31.2 and 500 pM EMB. 

Ortholog mapping of DEGs showed that approximately 92% (7.8 pM), 84% (31.2 pM), 89% (125 pM), 85% 

(500 pM) and 89% (2000 pm) of the D. magna DEGs were identified to be potential Drosophila melanogaster 

orthologs. The pathway enrichment analysis showed that a total of 12 (7.8 pM), 107 (31.2 pM), 1 (125 pM), 

109 (500 pM) and 65 (2000 pM) D. melanogaster Reactome pathways were affected by EMB (SI, Figure S6). 

Pathways into gene expression (7.8 and 2000 pM), signal transduction (31.2 and 500 pM) and transmembrane 

transport of small molecules (125 pM) were identified by functional grouping to be the top categories with the 

most supporting pathways (SI, Figure S7). Cell-cell communication (31.2 pM), programmed cell death (500 

pM), DNA repair (2000 pM) and organelle biogenesis and maintenance (2000 pM) were found to be only 

affected by specific concentrations of EMB. A Venn diagram analysis further identified common and unique 

pathways that were affected by exposure to EMB (Figure 2). Based on the results of transcriptional analysis, 

toxicologically relevant pathways and supporting DEGs representative of potential MoAs of EMB were 

summarized (SI, Table S2). 

 

Toxic Mechanisms. Activation of ligand-gated chloride channels. In line with the previously proposed 

MoA of EMB in invertebrates, the present study identified DEGs related to both GluCl and GABAR signaling. 

The ionotropic glutamate receptor (iGluR/CG3822) was significantly up-regulated in D. magna after exposure 

to 2000 pM EMB, while the ligand-gated chloride channel homolog 3 (Lcch3), an ortholog of the arthropod 

ionotropic GABAA receptor,29 was significantly up-regulated after exposure to 500 pM (microarray) and 2000 

pM (qPCR) EMB (Figure 3). The GABA type b receptor subunit 2 (GABA-B-R2) was also found to be 



significantly up-regulated (2000 pM EMB) by qPCR, albeit the microarray analysis suggested that EMB 

suppressed the expression of this gene. The discrepancies of results generated might be due to probe design 

for the microarray is more susceptible to errors than the primer design for qPCR due to the larger sequence 

used for microarray probes. Overall, the results obtained from microarray were in agreement with the qPCR, 

as the patterns of transcriptional changes were similar for most of the genes tested using the two techniques. 

The GABAB receptors are metabotropic transmembrane receptors operating the potassium channels and often 

targeted by therapeutic drugs such as baclofen.30 These results suggested that besides activation of the 

ionotropic receptors, EMB may also interfere with the metabotropic receptors, thus modulating the 

transmembrane conductance and neurotransmission. Recent studies on the sea lice (Lpeophtheirus salmonis) 

and the silkworm (Bombyx mori) both showed that exposure to AMs activated both the GABA and iGluR, and 

thus verify that the MoA of EMB is similar to that seen in other arthropods.31, 32 

Results from the current study also suggested that exposure to EMB may affect the GABA metabolic 

processes in D. magna. The pathway of GABA synthesis, release, reuptake and degradation was significantly 

enriched by DEGs. The up-regulation of glutamic acid decarboxylase 1 (gad1, 31.2 and 500 pM EMB), which 

regulates the decarboxylation of glutamate to synthesize GABA,33 indicating potential activation of GABA 

synthesis. Mitochondrial GABA transaminase (Abat), which regulates the degradation of GABA into 

succinate semialdehyde,34 was marginally induced by 31.2 and 500 pM EMB. Succinic semialdehyde 

dehydrogenase (Ssadh), which is responsible for the downstream metabolism of GABA transaminase,34 

however, was down-regulated by exposure to 31.2 and 500 pM EMB. These results suggested that the 

homeostasis of GABA was likely affected by exposure to EMB. Additional evidences on increased GABA 

actions were supported by the repression of DEGs related to GABA transport, such as vesicular GABA 

transporter (VGAT) and sodium-chloride-dependent GABA transporter (Gat), which all were down-regulated 

by exposure to 500 and 2000 pM EMB, respectively. Both transporters are involved in the GABA re-uptake 

processes in the synaptic cleft responsible for eliminating the GABA actions and identified as targets of 

various drugs and toxicants.33 

 

Disruption of molting signaling. The ecdysone signaling, which regulates molting, developmental and 

reproductive processes in D. magna through the EcR signaling pathway,35 was potentially disrupted by 

exposure to EMB. Although not being identified as DEGs by the microarray, the EcR A1-beta (EcR-a1b) and 

EcR-b were both significantly up-regulated by exposure to 31.2, 500 and 2000 pM EMB by qPCR. A few 

EcR-responsive transcription factors, such as broad (br)36 and Fushi tarazu factor-1 (ftz-f1)37 were 

up-regulated in a concentration-dependent manner, with significant up-regulation after exposure to 2000 pM 

EMB (Figure 3). Genes involved in the new cuticle formation, such as the chitin synthase (kkv), and old 

cuticle degradation, such as chitinases (cht4, cht7 and cht8) were also highly induced (microarray), confirming 

that EMB perturbed EcR-mediated physiological preparations of molting in a similar way as reported for L. 

salmonis.31 

Although the EcR genes were induced, results from the EcR reporter assay did not show significant 

activation of EcR by EMB, thus suggesting that the activation of EcR signaling may be a downstream 

response to EMB exposure. It is likely that exposure to EMB affected the ecdysteroid synthesis, as ecdysone 

20-monooxygenase/shade (shd), which converts ecdysone to the EcR ligand 20-hydroxyecdysone (20E),38 

was up-regulated at 31.2 pM (qPCR) and 2000 pM (microarray and qPCR) EMB. The synthetic pathway of 



ecdysteroids in crustaceans is mainly regulated by the neuropeptide molt inhibiting hormone (MIH), which 

suppresses ecdysteroidogenesis.39 The hormonal action of MIH is exerted through binding to its G-protein 

coupled receptor (MIH-R), induction of adenylyl cyclase (Ac) and activation a cascade of cyclic adenosine 

monophosphate/cyclic guanosine monophosphate (cAMP/cGMP) signaling pathways.40 A previous study with 

the American lobster hypothesized that exposure to EMB may inhibit the activity of MIH, thus promoting 20E 

synthesis and EcR signaling, which lead to premature molting,11 as activation of GABA signaling was shown 

to inhibit the release of several other neuropeptides in crustaceans.41 This hypothetical mechanism was 

supported by the current study, as genes involved in the upstream signaling of the MIH pathway, such as 

adenylyl cyclase 76E (Ac76E) and protein kinase cAMP-dependent regulatory subunit type 1 (Pka-R1), and 

downstream signaling, such as guanylyl cyclase beta-subunit at 100B (Gycβ100B) and cGMP-dependent 

protein kinase isozyme 2 (Pkg2) were suppressed by exposure to EMB. 

  Exposure to low concentrations of EMB (7.8 and 31.2 pM) slightly increased the molting frequency of D. 

magna after 24 and 48h, whereas exposure to higher concentrations (500 and 2000 pM) consistently inhibited 

molting in a concentration-dependent manner. The molting inhibition was likely caused by high level of 20E 

resulting from elevated ecdysteroidogenesis, as a pulse (rise and decline) of the 20E level is required for 

successful molting in D. magna.35 Studies on arthropod molting suggested that a decline of 20E titer is 

necessary for triggering the execution of the cuticle shedding (ecdysis) through appropriate body 

contractions.42, 43 Interestingly, cytochrome P450 18A1 (cyp18a1), which regulates the degradation of 20E, 

was up-regulated in a similar manner as the EcRs, possibly in response to increased 20E in the hemolymph.44 

It was also likely that GABA-induced paralysis may affect the muscle contractions thus hampering the ecdysis 

behavior. 

 

Perturbation of energy homeostasis. Short-term exposure to EMB potentially affected the energy 

homeostasis in D. magna. This MoA was initially supported by the concentration-dependent induction of the 

5' adenosine monophosphate-activated protein kinase α subunit (AMPKα) gene (Figure 3), which serves a 

sensor of cellular ATP expenditure.45 Further evidences for perturbed energy homeostasis was shown by 

DEGs involved in the mechanistic target of rapamycin (mTOR) signaling, which is another indicator of 

energy imbalance downstream of the AMPK signaling.45 Down-regulation of DEGs in the mTOR signaling, 

such as target of rapamycin (Tor), mTOR complex subunit lst8 (Lst8/GβL), ribosomal protein S6 kinase II 

(Sk6 II) and eukaryotic initiation factor 4B (eIF-4b), and up-regulation of genes which are normally 

suppressed by mTOR, such as autophagy-related 8a (Atg8a), eukaryotic translation initiation factor 4E 

binding (Thor/4ebp1) and programmed cell death 4 (Pdcd4)45 supported the potential inhibition of mTOR 

signaling and energy deficiency in D. magna after exposure to EMB. 

   The potential perturbation of energy homeostasis by EMB may also be reflected by the induction of genes 

involved in the mitochondrial electron transport chain (ETC), such as NADH dehydrogenase 20 subunit-like 

(ND-20L) in Complex I, succinate dehydrogenase subunit A (Sdha) in Complex II, cytochrome c oxidase 

subunit 6A (Cox6al) in Complex IV and ATP synthase ε subunit-like (ATPsynεL) in Complex V. The 

mitochondrial ETC is a key component in the production of ATP by oxidative phosphorylation (OXPHOS) 

and has been identified as a major target of environmental toxicants.46 The elevated ETC activity in response 

to higher demand for ATP may be a compensatory mechanism for potential energy crisis caused by EMB. 

Previous studies also suggested that abnormal calcium influx may affect the mitochondrial respiration, thus 



causing loss of ATP production.47 Interestingly, activation of the GABAB receptor signaling was shown to 

cause opening of the voltage-dependent calcium channels and increased calcium influx to the cells,48 thus 

providing support for potential linkages between the primary MoA involving activation of GABA signaling 

and perturbation of energy homeostasis by EMB. 

   Lack of sufficient supply of energy may result in increased metabolism of lipids. There is growing 

evidence that inhibition of mTOR signaling facilitates the stimulation of lipolysis.45 Interestingly, the current 

Reactome analysis showed that 500 pM EMB led to enrichment of DEGs related to membrane-based cellular 

metabolic and signaling processes of digestion of dietary lipids, mobilization and transport (e.g. lipolysis and 

sphingolipid metabolism).49 Exposure to 2000 oM EMB affected the digestion of dietary lipid and synthesis of 

ketone bodies, which are involved in the routine lipolysis for energy, and peroxisomal lipid metabolism, 

which regulates the fatty acids oxidation,50 Reduction of lipid storage representative of increased lipid 

metabolism has recently been documented for D. magna after 24 h exposure to 30-300 pM EMB,23 indicating 

potential demand for energy supply. 

 

Inhibition of DNA repair. DNA damage has been previously documented in arthropods such as the silkworm 

Bombyx mori and higher organisms such as rat after exposure to avermectins.51, 52 A study on the fall 

armyworm Spodoptera frugiperda Sf-9 cell line has also shown that exposure to EMB induced both 

single-strand and double-strand DNA breaks in vitro.53 In the present study, a number of DEGs and pathways 

related to cell cycle regulation and DNA repair were found to be affected by exposure to EMB. The pathway 

of cell cycle checkpoints was found to be highly enriched, suggesting that responses to potential DNA damage 

were already stimulated after exposure to as low as 31.2 pM EMB. Higher enrichment of the cell cycle 

checkpoints pathway with more supporting DEGs was identified in D. magna after exposure to 500 pM EMB. 

Exposure to 2000 pM of EMB affected both cell cycle regulation and DNA repair pathways. Interestingly, 

most of the supporting DEGs in these pathways were found to be repressed, such as DNA excision repair 

protein ERCC-1 (Ercc1), double-strand break repair protein MRE11 (Mre11) and 8-oxoguanine DNA 

glycosylase (Ogg1), albeit these genes were normally up-regulated in arthropods after exposure to genotoxic 

agents. 54-58 Suppression of DNA repair may be caused by different mechanisms. One possible explanation 

may be the unbalanced expression between the proliferating cell nuclear antigen (PCNA) and 

cyclin-dependent kinase inhibitor 1 (P21) genes which are upstream regulators of DNA repair signaling.59, 60 

Interestingly, the PCNA gene was down-regulated in a concentration-dependent manner, whereas the 

double-strand-break repair protein rad21 homolog (Vtd) gene were slightly up-regulated after exposure to 500 

pM EMB and marginally down-regulated by exposure to 2000 pM EMB in this study, suggesting that 

suppression of DNA repair signaling may likely be a consequence of abnormal expression of these genes in D. 

magna after exposure to EMB. 

 

Induction of programmed cell death. Programmed cell death (PCD) such as apoptosis and autophagy was 

likely induced in D. magna by exposure to EMB. The up-regulation of death related ICE-like caspase 

(Ice/Drice), an effector caspase well-known in D. malanogaster and homolog of mammalian caspase 3,61, 62 

and several other DEGs involved in the apoptotic signaling such as BCL2/adenovirus E1B 19 kDa 



protein-interacting protein 3 (Bnip3),63 programmed cell death 4 ortholog (Pdcd4)64 and death related 

ced-3/Nedd2-like caspase (Dredd)65 were indicative of potential activation of apoptosis in D. magna after 

exposure to as low as 125 pM EMB. Exposure to EMB has recently been reported to induce apoptosis in the 

fall armyworm sf-9 cells 53. Induction of apoptosis by exposure to avermectins has also been documented in 

higher organisms, such as the king pigeon Columba livia 66-68 and Wistar rats Rattus norvegicus 69. Apoptosis 

is usually a consequence of oxidative stress, DNA damage and mitochondrial dysfunction 70. In this study, one 

of the antioxidant genes, catalase (Cat), was found to be up-regulated after exposure to 31.2 and 500 pM EMB 

by microarray analysis. This result, however, was not confirmed by qPCR, in which the Cat gene was 

marginally up-regulated, but the change was not significant. Since no clear evidences were found to support 

the induction of oxidative stressor based on DEGs. The induction of apoptotic signaling may possibly be a 

downstream effect of mitochondrial ETC disturbance or suppression of DNA repair. Autophagy as another 

type of PCD might also be induced, as the autophagy-related 1 (Atg1), 2 (Atg2), 8a (Atg8a) and 17 (Atg17) 

genes were found to be up-regulated by EMB in a concentration-dependent manner. The autophagy-related 7 

(Atg7) gene was also up-regulated by exposure to 500 pM EMB. Autophagy is usually activated in response 

to lack of nutrients and hormonal actions to eliminate unnecessary or dysfunctional cellular components 71, 

and suppressed by activation of mTOR signaling 45. Autophagy has not been well documented in arthropods 

after exposure to avermetins, however, avermectin-induced autophagy has been observed in higher organisms 

such as pigeons 72, 73. 

 

Model Construction and Adverse Outcome Pathway Development. On basis of the current findings, a 

putative network of toxicity pathways causing molting inhibition and mortality is proposed for D. magna and 

closely related species (Figure 4). Briefly, exposure to EMB may activate the GluCl and GABA signaling, 

thus increasing the chloride channel conductance and inhibiting the neurotransmission (paralysis). Severe 

paralysis at high concentrations (e.g. 500-2000 pM) of EMB may directly lead to lethality. Although the 

molting inhibition may likely be associated with mortality at lethal concentrations of EMB, 12h gene 

expression analysis and 24h toxicity data in the current study showed that molting suppression may also be 

caused by endocrine-related mechanisms, suggesting multiple mechanisms may exist and contribute to 

molting failure in D. magna. As discussed earlier, activation of GABA signaling may suppress the molting 

inhibiting neuropeptide MIH expression through the cGMP signaling pathway and stimulate the synthesis of 

ecdysteroids, leading to increased ecdysteroid titer. Although increased ecdysteroid titer positively regulates 

the physiological preparations of molting (e.g. new cuticle generation, old cuticle degradation), it blocks the 

ecdysis behavior (i.e. shedding the old cuticle through somatic muscle contraction), as decline of ecdysone 

titer in the end of a molt cycle is necessary for successful molting in arthropods. Lack of molting behavior 

may also be due to GABA activation-associated paralysis. It is currently not clear which mechanism is the 

predominant one causing molting inhibition in D. magna at low exposure concentrations of EMB. Incomplete 

molting may cause mortality. In addition, activation of GABA signaling may increase the calcium influx, thus 

causing mitochondrial dysfunction and reduced ATP supply. Reduction of energy can be rapid sensed by the 

AMPK signaling, which then inhibits the mTOR signaling pathway to reduce the use of energy for protein and 

lipid synthesis and elevates the activity of mitochondrial ETC to produce more ATP. Influx of calcium into 



the cytosol may also activate the mitochondrial OXPHOS. Increased activity of ETC may result in excessive 

ROS formation and potentially cause oxidative stress. Suppressed mTOR signaling may activate autophagy 

and lipid metabolism. Exposure to EMB may potentially suppress DNA repair, leading to accumulation of 

damaged or incorrectly repaired DNA. This together with mitochondrial dysfunction may induce apoptosis, 

which in combination with autophagy abandon the damaged cells, lead to potential loss of tissue functions and 

ultimately contribute to death. 

As part of this mechanistic model, several conceptual Adverse Outcome Pathways (AOPs) were developed. 

Assembling and portraying potential causal relationships between molecular initiating event, key events at the 

molecular, cellular and organ level and adverse outcomes at the individual or population level as AOPs is 

becoming increasingly important in predictive ecotoxicology and future regulatory toxicology.74 One of the 

putative AOPs, entitled “Ionotropic GABAR activation mediated neurotransmission inhibition leading to 

mortality” has been submitted to the AOP repository database AOP-Wiki (https://aopwiki.org/aops/Aop:160). 

 

Environmental Relevance. The current study used the freshwater crustacean D. magna as a model to 

understand the potential hazard of EMB to non-target species. The major MoAs of EMB characterized herein 

may potentially be extrapolated to other crustaceans such as lobsters, crabs and shrimps, as a number of genes 

and proteins in Daphnia are phylogenetically conserved across the phylum of Arthropoda or even in 

mammalian species.75 Attempts were made to link 12h transcriptional responses to 48h adverse effects of 

EMB, as molecular alterations usually occur ahead of measurable phenotypic changes and adaptation,76 and 

which require sufficient time for accumulation of damage at higher organismal levels.77 Moreover, short-term 

exposure may reflect the real exposure scenarios of planktonic crustaceans to anti-sea lice chemicals, as 

residue EMB from salmon food can be rapidly adsorbed by the sediments (half-life: 164-175 d) and mainly 

affect the benthic species in a long term after treatment.2, 78 In Norway, for example, the water concentration 

of EMB was estimated to be less than 1.0 ng/L (approx. 1.1 pM) after 2 months of anti-sea lice treatment, 

which was close to the UK environmental quality standard (EQS) of 0.22 ng/L (approx. 0.2 pM), whereas the 

sediment concentrations of EMB exceeded the UK EQS of 0.763 ng/g (dw) in 5 occasions.79, 80 The measured 

concentrations of EMB near the salmon aquaculture sites in Canada exceeded the UK EQSs, with up to 209 

pg/L (approx. 0.2 pM) and 35 ng/g detected in the seawater and sediment, respectively.81 In the freshwater 

system, <0.01–2.5 mg/kg EMB was detected in the sediment close to the effluent outfall from four 

aquaculture areas in Atlantic Canada.82 Although not directly comparable with the current experimental 

studies, these monitoring results together with the current study suggested that pM level of EMB may be 

present in the aquatic environment and potentially pose hazards to both planktonic and benthic crustaceans. 
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Figures 

 

Fig.1. Concentration-response relationships of emamectin benzoate (EMB) on different toxicological endpoints. a): Survival (determined as % survived 

animals of the total animals) of Daphnia magna (N=4) after 24 and 48h exposure to EMB; b): Molting frequency (determined as % molted animals of 

the total animals) of D. magna (N=4) after 24 and 48 h exposure to EMB. c): Expression of the ecdysone receptor (EcR) reporter gene in Chinese 

hamster ovary cells (N=3) after 40h exposure to EMB and ponansterone A. 

 

 

Fig.2. Venn diagram analysis of Reactome pathways that were enriched by differentially expressed genes in Daphnia magna (N=4) after 12h exposure 

to 31.2-2000 pM emamectin benzoate. Examples of toxicologically relevant pathways were presented as insertions.  

 



 

Fig.3. Biomarker gene responses in Daphnia magna after 12h exposure to 7.8-2000 pM nominal concentrations of emamectin benzoate determined by 

quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results were compared between qPCR (white box, N=5) and 

microarray (black box, N=4). * denotes significant difference (p<0.05) from the corresponding control (DMSO). 

 



 

Fig.4. A putative model illustrating potential toxicity pathways leading to molting inhibition and lethality in Daphnia magna after short-term exposure 

to emamectin benzoate (EMB). GluCl: glutamate-gated chloride channels; GABAR: gamma-aminobutyric acid receptors; 20E: 20-hydroxyecdysone; 

EcR: ecdysone receptor; mTOR: mechanistic target of rapamycin. ↑: Activation; ↓: Inhibition. 
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