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Abstract 22 

Despite global efforts to reduce anthropogenic mercury (Hg) emissions, the timescale and degree 23 

to which Hg concentrations in the environment and biota respond to decreased emissions remains 24 
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challenging to assess or predict. Here we characterize long-term trends, life-history patterns in Hg 25 

accumulation and toxicological implications of Hg contamination for a freshwater seal from one 26 

of the world’s largest lakes (Lake Baikal, Siberia) using contemporary tissues and archival teeth. 27 

Stable isotope analysis and Hg analyses of soft tissues (muscle, liver, kidney, blood, brain, heart) 28 

and teeth from 22 contemporary seals revealed rapid changes in diet and Hg accumulation in the 29 

first year of life with a stable diet and increase in tissue Hg throughout the rest of life. Although 30 

maternal transfer of Hg was an important source of Hg to seal pups, reproduction and lactation by 31 

female seals did not appear to result in sex-related differences in Hg concentrations or age-related 32 

accumulation in adult seals. Based on Hg analysis of archival teeth (n=114), and reconstructed 33 

values for soft tissues, we also assessed temporal trends in seal Hg between the years 1960 and 34 

2013. Seal Hg concentrations in hard (teeth) and soft tissues (e.g., muscle, liver), were highest in 35 

the 1960s and 1970s, followed by a decrease. The decline in seal Hg concentrations in recent 36 

decades was most likely driven by a reduction in Hg inputs to the lake, suggesting that global and 37 

regional efforts to reduce Hg emissions have been successful at reducing ecosystem and human 38 

health risks posed by Hg in Lake Baikal. 39 
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INTRODUCTION 45 

Human activities have led to the increased release of Hg to the environment, resulting in 46 

widespread contamination of ecosystems both near local and regional sources of Hg emissions, as 47 

well as in remote regions (Jackson 1997). In the environment, Hg is subject to complex 48 

biogeochemical cycling, including transformation to methyl mercury (MeHg), which is a highly 49 

bioaccumulative and potent neurotoxin (Bloom 1992). In the aquatic environment, Hg poses 50 

health risks to wildlife as well as humans who rely on aquatic resources, with consumption of fish 51 

and other aquatic organisms representing the dominant source of human exposure to MeHg 52 

(Harris et al. 2003; Li et al. 2014). For mammals, MeHg exposure can lead to adverse health 53 

effects, including neurological, reproductive, endocrine and immune effects (Wolfe et al. 1998; 54 

Mergler et al. 2007; Dietz et al. 2013). Global efforts in recent decades to reduce anthropogenic 55 

Hg emissions and associated risks to ecosystems and human health have led to reductions in the 56 

release of Hg to the environment, particularly in Europe and North America (Zhang et al. 2016). 57 

Meanwhile, the Minamata Convention, a multilateral legally-binding treaty formally adopted in 58 

2013 and signed by 128 countries, takes a comprehensive approach to controlling and reducing 59 

global anthropogenic Hg releases (Kessler et al. 2013; Gustin et al. 2016). However, there is still 60 

a great deal of uncertainty regarding the degree to which (and the speed at which) environmental 61 

Hg concentrations and associated ecosystem risk respond to emissions reductions (Mason et al. 62 

2005; Gustin et al. 2016). 63 

Lake Baikal, one of the world’s largest lakes, is home to a large number of endemic 64 

species, including the Baikal seal (Pusa sibirica). These are the world’s only true freshwater 65 

seals, and in recent decades they have faced an increasing number of threats, including climate 66 

change (Moore et al. 2009), a virus-related mass mortality event (in 1987/88; Mamaev et al. 67 
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1996), and contamination with persistent organic pollutants (POPs) and heavy metals. In fact, one 68 

of the key hypotheses regarding the significant mortality (~8000 seals) in 1987/88 was that the 69 

seals may have been immuno-compromised due to exposure to environmental contaminants 70 

(Tsydenova et al. 2004; Ishibashi et al. 2008). The Baikal seal is particularly vulnerable to inputs 71 

of bioaccumulative contaminants, including Hg, due to its long life-span (> 50 years) and 72 

position at the top of the food web. The seals are also an important traditional food source for 73 

indigenous communities in the Lake Baikal region (Nomokonova et al. 2013; 2015), and as such, 74 

elevated contaminant concentrations in these seals may pose a human health risk. 75 

Major sources of contaminants to Lake Baikal include regional anthropogenic activity, 76 

and long-range atmospheric transport (Mamontov et al. 2000; Ok et al. 2013; Ozersky et al. 77 

2017). POPs have been of particular concern in Lake Baikal, where several studies have revealed 78 

elevated concentrations of organochlorine contaminants in seal tissues, including PCBs and 79 

DDTs (Kucklick et al. 1994; Kucklick et al. 1996; Tsydenova et al. 2004) as well as dioxins and 80 

furans (Tarasova et al. 1997). Hg concentrations in seal tissue from Lake Baikal were also 81 

reported for seals collected in 1992 and 2001 (Watanabe et al. 1996; Ciesielski et al. 2010; Perrot 82 

et al. 2012), revealing concentrations that are typically lower than those observed in other more 83 

contaminated areas and in Arctic coastal populations (Ciesielski et al. 2010), but that still often 84 

exceeded the WHO guideline level for safe consumption (0.5 µg/g wet weight; FAO/WHO 85 

2011).   86 

Although temporal trends of POP concentrations in the Baikal seals have been reported 87 

(Tsydenova et al. 2004; Ishibashi et al. 2008; Isobe et al. 2009), there is insufficient temporal 88 

resolution in the available Hg data for such a temporal analysis.  Also, Hg emissions in Asia are 89 

rising while point-source releases of Hg in North America and Europe have decreased due to 90 
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emission regulations (Sundseth et al. 2017). Furthermore, climate change has the potential to 91 

increase mobilization and release of previously deposited contaminants to aquatic ecosystems. In 92 

particular, thawing of permafrost in the Lake Baikal catchment may represent an important future 93 

source of remobilized Hg (Leitch et al. 2007; Moore et al. 2009). To assess current drivers and 94 

the potential for future Hg contamination of Lake Baikal, as well as future risks to ecosystem and 95 

human health, there is a need for information on the historical temporal trends of Hg 96 

concentrations in the lake and its biota. 97 

Previous studies have used mammalian teeth as a bioindicator of metal (including Hg) 98 

exposure and to assess temporal trends in Hg in several mammalian species (e.g. polar bears, 99 

humans, belugas, ringed seals; Dietz et al. 2009; Aubail et al. 2012). Metals are incorporated 100 

during mineralization of tooth tissues, primarily reflecting metal concentrations in blood at the 101 

time of incorporation, and with limited remobilization once deposited (Dietz et al. 2009). These 102 

properties, together with the long-term stability of stored archival hard tissues, make teeth a good 103 

matrix for reconstruction of past Hg exposure and contamination of mammals such as seals. This 104 

study builds on our previous work, where laser ablation-ICP-MS (LA-ICP-MS) was used to 105 

determine levels of several metals (V, Cu, Zn, Cd, Hg, Tl, Pb, U) in Lake Baikal seal tooth 106 

tissues representing the first years of life (Ozersky et al. 2017).  107 

Here, we carry out a detailed analysis of temporal trends, life-history effects and 108 

toxicological implications of past and present Hg accumulation in the Lake Baikal seal. We used 109 

seal teeth (n=114) collected over more than 50 years (1960–2013) to reconstruct long-term trends 110 

in Hg exposure and accumulation in the Baikal seal, and have paired these data with analyses of 111 

contemporary tissue samples to gain insight into life-history related patterns in Hg accumulation, 112 

and the relationship between tooth and soft tissue Hg concentrations. 113 
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The main objectives of this study were to: 1) describe age and sex-specific patterns in diet 114 

and Hg contamination of Baikal seals; 2) characterize past Hg accumulation in Baikal seals using 115 

archival teeth; and 3) reconstruct past Hg concentrations in soft tissues, and 4) evaluate current 116 

and historical toxicological risks for seals, and their human consumers.  117 

 118 

MATERIALS AND METHODS 119 

Contemporary and historical samples 120 

In spring, 2013, 22 seals were collected from southern and central Lake Baikal by M. Pastukhov 121 

(scientific-collection permit issued by the Russian Federal Fisheries Agency; permit number: 122 

032013031058). Subsamples of soft tissues (muscle, liver, kidney, heart, brain, blood) were 123 

collected from each seal in the field and frozen (-20ºC) for stable isotope and Hg analysis. Upper 124 

canine teeth were also collected from all seals. For reconstruction of historical Hg concentrations, 125 

we used a collection of seal skulls collected between 1960 and 1989 (histogram showing 126 

distribution of seal collection years in Figure S1). These skulls were predominantly collected in 127 

central Lake Baikal by Russian researchers working in cooperation with commercial seal hunters. 128 

We removed upper canine teeth from 114 skulls of seals ranging in age from juvenile (<1 year 129 

old) to 33 years, including both males (n=44) and females (n=70). Two teeth were collected for 130 

each seal, one for whole tooth Hg analysis (this study), and one for laser ablation ICP-MS 131 

analysis and carbon (d13C) and nitrogen (d15N) stable isotope analysis of individual dentine layers 132 

(for a companion study: Ozersky et al.  2017). For details on cleaning of seal teeth and 133 

determination of seal age, see Ozersky at al. (2017). Although specific locations for seal 134 

collection are not available, there is evidence that Lake Baikal seals tend to move extensively 135 
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throughout the lake (Stewart et al. 1996), supporting the use of seal Hg concentrations as an 136 

indicator for lake-wide Hg contamination.   137 

 138 

Stable isotope and Hg analysis of soft tissues  139 

Soft tissue samples from contemporary seals were lyophilized and homogenized prior to stable 140 

isotope and Hg analysis. Moisture content was determined by weighing tissue samples before and 141 

after lyophilisation. Stable carbon and nitrogen isotope analysis was performed at the University 142 

of California Davis Stable Isotope Facility using an EA-IRMS. Batch-specific standard 143 

deviations for standard reference materials (SRMs) were 0.03 ‰ for d13C and 0.1 ‰ for d15N of 144 

bovine liver, and 0.08 ‰ for d13C and 0.07 ‰ for d15N of USGS-41 glutamic acid.  145 

Determination of total Hg (TotHg) in soft tissues was conducted at the Norwegian Institute 146 

for Water Research (NIVA) by thermal decomposition and direct cold-vapour atomic absorption 147 

spectrometry (CV-AAS) using a Lumex Hg analyser (RA915+) with a PYRO-915 attachment 148 

(Lumex Ltd., St. Petersburg, Russia; Braaten et al. 2014a). Soft tissue MeHg analysis was also 149 

conducted at NIVA, using GC-CVAFS (Braaten et al. 2014b). SRMs were included in all sample 150 

runs (DORM-3 and DORM-4 for TotHg; and TORT-2 for MeHg), and at least one in every 10 151 

samples was run in duplicate. SRM recoveries for TotHg (89–103 % for DORM-3 (n=13) and 152 

96–101 % for DORM-4 (n=3)) and MeHg (93–113 % for TORT-2 (n=6) and MeHg sample 153 

matrix spikes (89–102 %; n=7) were within expected ranges, and the relative percent difference 154 

between duplicate samples ranged from 0–13 % for TotHg (n=17) and 0.6–7.7 % for MeHg 155 

(n=9). Batch-specific quality assurance/quality control information for sample runs (n=2 runs for 156 

TotHg and n=3 runs for MeHg) are included in the supporting information. 157 

Hg analysis of seal teeth  158 
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TotHg concentrations in contemporary and archival tooth samples were determined 159 

through HNO3 digestion (65% HNO3 at 90 ºC for 1.5 hours), followed by oxidation, purge and 160 

trap and CVAFS (based on USEPA Method 1631). Tooth samples were fully dissolved after acid 161 

digestion. SRMs used included bone ash (NIST-1400), TORT-2, and a custom SRM prepared (as 162 

in Aubail et al. 2010) to mimic the sample matrix. The custom SRM was needed because there 163 

were no appropriate SRMs available, with both certified values for TotHg and a matrix that was 164 

similar to our tooth samples. Our custom SRM was a mix of NIST-1400 (which is prepared at 165 

high temperatures and therefore contains very little mercury) and TORT-2 with a TotHg 166 

concentration of approximately 10 ng/g dry weight. TotHg recovery for SRMs ranged from 94–167 

103 % for TORT-2 (n=6) and 91–100 % (n=6) for the custom SRM. TotHg concentrations in 168 

bone ash (NIST-1400) ranged from 0.66–0.82 ng/g (n=6). 169 

 170 

Calculations and statistical analyses 171 

We used analysis of variance to test for significant differences in d13C, d15N, TotHg, MeHg and % 172 

MeHg across tissue types, and linear regression to assess relationships between seal age-at-173 

collection and Hg concentrations in teeth and soft tissues. We also carried out analysis of 174 

covariance to test for effects of seal sex on the age-Hg, and soft tissue-tooth Hg relationships for 175 

the various seal tissues analyzed. Shapiro-Wilk’s test were used to test for normality prior to 176 

analysis of variance, linear regression and analysis of covariance, and data were log-transformed 177 

where not normal (this was the case for the Hg concentration data). Statistical analyses were 178 

carried out using the stats package in R (R Core Team 2015).  179 

We used generalized additive modelling (GAM; Zuur et al. 2009) to identify temporal 180 

trends in seal teeth (including both archival and contemporary teeth). Two GAMs were 181 
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constructed using the mgcv package (Wood 2011) in R; one with tooth Hg concentrations as the 182 

response variable, and one with tooth Hg content (i.e. pg Hg in whole teeth) as the response 183 

variable. For both models, collection year, seal age and sex were tested as potential covariates.  184 

 185 

RESULTS AND DISCUSSION 186 

Rapid dietary shifts in early life revealed by stable isotope analysis 187 

Lake Baikal seals can grow up to 1.8 m, weighing up to 130 kg (Nomokonova et al. 2015). The 188 

seals are born in early spring in ice dens, wean at approximately 2.5 months, become sexually 189 

mature at 2–5 years (females) or 5–8 years (males), and are long-lived (> 50 years) 190 

(Nomokonova et al. 2013, 2015). The primary food source for the seals is pelagic sculpins, with 191 

seal diet dominated by two species of the endemic golomyanka (Comephorus dybowskii and 192 

Comephorus baicalensis), and some evidence of feeding on pelagic amphipods (Macrohectopus 193 

branickii; Pastukhov 1993; Yoshii et al. 1999). 194 

Stable carbon (d13C) and nitrogen (d15N) isotopic values are widely used as indicators of 195 

diet, with d13C values used as an indicator of dietary carbon source, and d15N values acting as an 196 

indicator of trophic level. d13C and d15N values can also be influenced by a wide range of other 197 

biological factors including: lipid content (lipids tend to be depleted in 13C; Tieszen et al. 1983), 198 

starvation (leading to increased 𝛿15N values as 14N is preferentially metabolized), and dietary 199 

nitrogen content (lower trophic enrichment of 15N observed with higher nitrogen food sources; 200 

Adams et al. 2000). 201 

d13C values (Table S1) were significantly lower in brain than in any other tissue, and 202 

significantly higher (ANOVA; F-value=27.98, df=6, P<0.0001) in blood than for all tissues 203 

except for muscle. These differences between tissues were likely attributable to differences in 204 



  10 

lipid content (since lipids are typically depleted in 13C; Post et al. 2007), with the lipid-rich brain 205 

tissue having the lowest d13C values and low-lipid blood tissue having the highest values. These 206 

differences in lipid content are also demonstrated by the C:N ratios for these tissues (higher C:N 207 

ratios typically indicate higher lipid content (Post et al. 2007)), with the highest C:N ratios 208 

observed for brain tissue, and the lowest for blood tissue (Figure S2). For all soft tissues, d13C 209 

values tended to increase with age and stabilize in adulthood (Figure 1), likely due to higher lipid 210 

content (and therefore lower d13C) in the lipid-rich milk diet of seal pups relative to juveniles and 211 

adults. 212 

d15N values (Table S1) were significantly lower (ANOVA; F-value=6.47, df=6, 213 

P<0.0001) in blood than for any of the other tissues sampled. These data are consistent with 214 

previous results for tissue-specific isotopic fractionation in seals, where captive seals (including 215 

ringed seals) fed a constant diet of herring (Clupea harengus) over a two year period experienced 216 

lower mean 15N enrichment for blood tissue (1.7‰) than for muscle, liver, heart or kidney 217 

(between 2.4 and 3.1‰; Hobson et al. 1996).  d15N values exhibited a strong decline in the first 218 

year, followed by relatively stable values in adult seals (Figure 1). The strong decrease in d15N in 219 

the seals’ first year of life is likely due to a decrease in the effective trophic level of the juvenile 220 

seals as they wean and begin feeding independently (after approximately 2-3 months), as 221 

mammalian fetuses and breastfeeding juveniles are typically enriched in 15N relative to their 222 

mothers (Habran et al. 2010; Borrell et al. 2016). These results are remarkably consistent with 223 

observations for seal muscle tissue collected from Lake Baikal between 1992-1994, where seals 224 

>1 year had d15N values of ~14‰ that stayed relatively constant with age, and those under 1 year 225 

of age had d15N values 1–2‰ higher than for older seals (Yoshii et al. 1999). The stability of d15N 226 
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values after age 1 is consistent with previous studies that have documented the reliance of Baikal 227 

seals on endemic pelagic sculpins as a primary food source throughout adulthood.  228 

The similarity in d15N values between the current study and samples collected 20 years 229 

earlier (Yoshii et al. 1999), and the lack of long-term directional changes observed for stable 230 

carbon and nitrogen isotope values for Baikal seal tooth dentine in a companion study to the 231 

current work (Ozersky et al. 2017)) highlight the temporal stability of the Lake Baikal food web. 232 

This implies that long-term changes in seal diet and food web structure are unlikely to be 233 

underlying drivers of temporal changes in seal Hg accumulation, suggesting that changes in seal 234 

tooth Hg concentrations may reflect long-term trends in contamination of the Lake Baikal food 235 

web. 236 

 237 

Importance of maternal transfer and age for Hg accumulation and tissue distribution 238 

For TotHg and MeHg, concentrations in the liver and kidney were highest, while concentrations 239 

in the blood and brain were lowest (juvenile and adult seals pooled; TotHg ANOVA: F-240 

value=3.47, df=6, P<0.01; MeHg ANOVA: F-value=7.57, df=5, P<0.0001; Figure 2, Table S2). 241 

The kidneys had the lowest proportion of Hg present as MeHg (% MeHg; 11 ± 5%), followed by 242 

the liver (30 ± 16%), while for the remaining tissues, mean % MeHg ranged from 77–88 %. 243 

These results are consistent with what has been reported for seals and other mammals, where Hg 244 

is known to selectively accumulate in liver, kidney and muscle, with higher proportions of 245 

inorganic Hg present in the kidney and liver than in other tissues, including muscle (Wagemann 246 

et al. 1998; Dietz et al. 2013). 247 

For all tissues with the exception of blood and heart tissue, there were significant positive 248 

relationships (P<0.05) between seal age and both MeHg and TotHg (Figure 1, Table S3). This 249 
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reflects age-related accumulation of Hg in seals (Dietz et al. 1996; Wagemann et al. 1998), 250 

particularly for tissues that have slower turnover times (e.g. muscle) and that are known to 251 

preferentially accumulate Hg (e.g. muscle and liver). The lack of a relationship between TotHg 252 

and MeHg concentrations and age for blood is likely due to blood Hg concentrations reflecting 253 

Hg content in the seal’s recent diet, which would be expected to be relatively constant and 254 

independent of age, given that seals do not appear to undergo substantial dietary shifts during 255 

their adult lives (as observed in this study, by Ozersky et al. 2017, and by Yoshii et al. 1999). 256 

Furthermore, the prey that dominates the seals’ diet (two species of Comephorus (pelagic 257 

sculpins), and, to a lesser degree, pelagic amphipods) have Hg concentrations that do not differ 258 

substantially (Ciesielski et al. 2016). Given the potential for remobilization and loss of Hg during 259 

reproduction and lactation, we expected that adult female seals may have reduced Hg compared 260 

to male seals who lack these Hg excretion pathways, however, based on analysis of covariance, 261 

we did not find a significant effect of seal sex on the Hg~Age relationship for any of the tissues 262 

sampled. 263 

Although Hg concentrations tended to increase with age, our results also highlight the 264 

importance of maternal transfer of Hg for Lake Baikal seals. The importance of maternal transfer 265 

is particularly apparent when comparing Hg concentrations in seals that have not yet weaned (<3 266 

months) with those of adult seals (Table S2). Mean MeHg concentrations in juveniles were 267 

between 33–43 % of adult concentrations for all tissues sampled, suggesting that Hg 268 

accumulation in utero and during milk-feeding accounts for substantial Hg accumulation. Similar 269 

proportions were observed for TotHg in blood, brain, heart and muscle (juvenile concentrations 270 

ranging from 29–36% of adult concentrations), with very high proportions for kidney (80%), but 271 

only 8%for liver. These results demonstrate that for most tissues, maternal transfer represents an 272 



  13 

important source of Hg, even when compared to long-term accumulation, and also highlight 273 

important tissue-specific differences in maternal transfer and long-term accumulation of Hg for 274 

kidney and liver tissue. Previous work on grey seals (Halichoerus grypus) has shown particularly 275 

high levels of Hg in fetal liver and kidney tissues, indicating significant in utero maternal transfer 276 

to these tissues (Teigen et al. 1999). This is consistent with elevated TotHg concentrations 277 

observed in kidney and liver tissues from Lake Baikal juveniles, and in particular, the very high 278 

ratio of TotHg concentrations in juvenile vs. adult kidney tissues. For liver, the tendency of Hg to 279 

accumulate preferentially in liver tissue leads to substantial long-term Hg accumulation as seals 280 

age, likely “overpowering” the maternal transfer signal. 281 

 282 

Seal teeth as indicators of life-history and Hg exposure  283 

Tooth formation in the Lake Baikal seal begins in utero and, as the seals age, dentine is laid down 284 

until the root cavity is completely occluded (typically when seals reach 20–25 years of age). Hg 285 

concentrations in dentine have been shown to reflect blood Hg concentrations at the time of 286 

formation (Goodman et al. 2011), which are not expected to change substantially throughout 287 

adulthood, since blood Hg concentrations typically reflect recent dietary Hg exposure. 288 

Hg concentrations in contemporary seal teeth ranged from 0.69–4.24 ng/g dw, and were 289 

lower than in the soft tissues sampled (Table S2), likely due to the tendency for Hg to selectively 290 

accumulate in sulphur rich tissues through binding to thiol groups (Leaner and Mason 2004). 291 

Tooth Hg concentrations were highest in juvenile seals (2.28 ± 0.88 ng/g; Table S2, Figure S3), 292 

once again highlighting the importance of maternal Hg transfer for seals. After a decline in tooth 293 

Hg concentrations between birth and age 1, concentrations were relatively stable throughout 294 

adulthood (1.12 ± 0.25 ng/g).  295 
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Our observed Hg concentrations in contemporary teeth from Lake Baikal seals were lower 296 

than those previously reported for ringed seals collected between 1982 and 2006 from Greenland 297 

(2.95 ± 1.99 ng/g dw for Central Western Greenland, and 5.75 ± 6.2 ng/g dw for Central Eastern 298 

Greenland; Aubail et al. 2010) as well as seals collected in 2001–2003 from Amundsen Gulf in 299 

the Canadian Arctic (with concentrations rising from 4.4 ± 1.6 ng/g dw for 5 year old seals to 8.6 300 

± 3.7 ng/g dw for 25 year old seals; Outridge et al. 2009). These results are consistent with the 301 

fact that Hg concentrations in Lake Baikal seal tissues are typically lower than those observed in 302 

other more contaminated areas and in Arctic coastal populations (Ciesielski et al. 2010, this 303 

study). As in the current study, and in contrast to the results from Amundsen Gulf (Outridge et al. 304 

2009), Aubail et al. (2010) observed higher Hg concentrations in juvenile seal teeth than in adult 305 

teeth. This likely reflects the fact that differences in exposure histories are likely to lead to 306 

regional or site-specific differences in tooth Hg-age relationships. 307 

Whole tooth Hg content (i.e. pg Hg present in the tooth as a whole) was highly variable in 308 

juveniles (potentially reflecting variability in maternal Hg burdens, and therefore maternal 309 

transfer) and tended to increase with age (Figure S3), with a significant positive relationship 310 

observed between whole tooth Hg content and seal age (r2=0.56; P<0.0001). The high variability 311 

in Hg concentrations and content for juvenile seals could also in part reflect individual-level 312 

variability in growth-related factors and tooth formation.  313 

Although other studies have made use of seal teeth to reconstruct past Hg exposure (e.g. 314 

Outridge et al. 2009, Aubail et al. 2010), previous studies have not included any direct 315 

comparison of Hg in teeth and soft tissues. However, Hg concentrations in beluga tooth 316 

cementum have been found to be highly correlated (r2 values from 0.46–0.61) with Hg 317 

concentrations in liver, muscle, kidney and blubber (Outridge et al. 2000). Several other studies 318 
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have also found positive correlations between Hg in teeth and soft tissues as well as Hg in teeth 319 

and dietary Hg exposure in other mammals such as rats (e.g. Eide and Wesenberg 1993; Eide et 320 

al. 1995). For the contemporary seals in the current study, we found significant positive 321 

relationships between whole tooth Hg content (pg Hg in the whole tooth) and both MeHg and 322 

TotHg in all soft tissues except for heart, suggesting that Hg analysis of archival teeth can be 323 

used to make estimates of past Hg concentrations for soft tissues in the Baikal seal (Table 1, 324 

Table S4). For all tissues, when only adults were considered, relationships between tooth Hg 325 

content and soft tissue TotHg concentrations became stronger (Figure 3). To explore whether we 326 

could develop stronger predictive relationships between tooth Hg content and soft tissue Hg 327 

content, we also attempted to incorporate effects of seal age through multiple linear regression; 328 

however, the significant correlation between age and tooth Hg content (r = 0.76, P=0.00004) 329 

violated the assumption of independence, indicating that age should not be included in such a 330 

predictive model.  331 

We also tested for potential sex-related effects on the relationships between tooth and 332 

tissue Hg through analysis of covariance and found no significant effects. This differs from our 333 

expectations, where we anticipated a divergence between soft tissue and tooth Hg for female 334 

seals (with lower soft tissue concentrations than males with similar tooth Hg content), since they 335 

may mobilize and release contaminants during parturition and lactation, potentially leading to 336 

lower contaminant concentrations in tissues that are more metabolically active (unlike teeth). 337 

However, it should be noted that Watanabe et al. (1996) and Ciesielski et al. (2006) both found 338 

higher Hg concentrations in muscle, liver and kidney tissues in adult female seals from Lake 339 

Baikal compared to adult male seals, suggesting that Hg losses through reproduction and 340 

lactation do not result in lower soft tissue concentrations in female than in males. 341 
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 342 

Long-term trends in Hg exposure and accumulation in Lake Baikal seals 343 

TotHg concentrations and whole tooth Hg content for archival teeth were typically higher than 344 

those observed for the teeth collected in 2013 (Figure 4, Figure S4). As observed for 345 

contemporary seals, the results from the archival teeth indicated a tendency for TotHg 346 

concentrations to be highest in juvenile seals, without strong age-related differences in seals over 347 

1 year of age (Figure S3), and for whole tooth Hg content to increase with age (Figure 4). There 348 

were substantial differences in the age distribution of seals across collection years, with more 349 

juveniles collected in some years (e.g. 1964, 1989 and 2013) and a larger number of much older 350 

seals (>10 years of age) collected in other years (e.g. 1966 and 1975) (Figure 4), highlighting the 351 

importance of considering age-effects when assessing temporal trends in tooth Hg. When specific 352 

age-ranges of seals are considered, a clearer temporal pattern emerges, with a peak in Hg 353 

concentrations and whole tooth Hg content in the late 1960s until approximately 1980, with 354 

somewhat lower concentrations in the years prior to and after this period, and even lower 355 

concentrations in 2013 (Figure 4, Figure S4). This is particularly apparent for the 5–10 year old 356 

age class of seals, for which the most detailed data were available. The juvenile seals show a 357 

more variable pattern (Figure 4), with lower concentrations in 2013, and higher concentrations 358 

from the 1960s until 1980, but with elevated concentrations observed in the seals collected in 359 

1989, potentially reflecting maternal transfer of Hg from adult females with high levels of Hg 360 

contamination due to exposure in the years and potentially decades prior to reproduction. 361 

Using a GAM approach (including both archival and contemporary teeth), we were able 362 

to disentangle the temporal trends in tooth Hg concentrations and whole tooth Hg content from 363 

the effects of age on Hg accumulation. GAMs differ from linear models in that they link the 364 
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predictor variables (covariates) to the response variable using non-parametric smooth functions, 365 

which allows for non-linear influence of covariates on response parameters. This approach is 366 

particularly useful for this dataset, given that the relationship between tooth Hg concentration and 367 

age is non-linear, due to elevated Hg in juvenile teeth related to maternal transfer, and since 368 

temporal trends in Hg exposure and accumulation also may not be linear. Using collection year 369 

and age as predictor variables, we explained 52.6 % of the variation in TotHg concentrations in 370 

teeth (Figure S5) and 68.8 % of the variation in whole tooth Hg content (Figure S6). Including 371 

seal sex as a covariate did not improve model fit for either model, suggesting that sex does not 372 

have a significant effect on tooth Hg concentrations or content, consistent with our expectations 373 

and results based on contemporary soft tissues and teeth. More detailed information for GAM 374 

models can be found in Table S5. 375 

The GAM for whole tooth Hg content (pg Hg in whole tooth) revealed an increase with 376 

age of whole tooth Hg content, as observed for the contemporary seals (Figure S6). The smooth 377 

function linking seal collection year with TotHg content in teeth reveals a distinct peak in 378 

approximately 1970, as well as a recent decline (Figure S6). A secondary peak appeared to be 379 

present in the 1990s, but the lack of data between the 1989 and 2014 makes it impossible for us 380 

to assess whether this peak is a real feature of the temporal trend in Hg contamination of Baikal 381 

seals, or a spurious pattern driven by values before and after this data gap (especially a juvenile 382 

with extremely high Hg concentrations from 1989 (Figure 4)). The GAM for TotHg 383 

concentrations in seal teeth revealed a very similar relationship between year of collection and 384 

Hg concentrations, and the relationship between age and TotHg concentrations in teeth was very 385 

similar to the patterns observed for the contemporary seal teeth, with higher concentrations in 386 

early life, followed by a decline and then relatively stable concentrations throughout adulthood 387 
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(Figure S5). The consistency in the age-tooth Hg concentration and age-whole tooth Hg content 388 

relationships between the GAM results and our observations from the contemporary seal samples 389 

suggests that this modelling approach accurately captured the influence of age on Hg 390 

concentrations and content in seal teeth, lending strength to the temporal trends revealed by the 391 

GAM models. 392 

These results are also consistent with the results of LA-ICP-MS analysis, where a distinct 393 

peak in Hg concentrations in the dentine of pre-natal and independently feeding seals is observed 394 

between the 1950s and 1970s, followed by a decrease in concentrations to the present (see 395 

Ozersky et al. 2017). This further supports our observation that teeth from Lake Baikal seals, and 396 

by extension seal soft tissues, and the Lake Baikal food web as a whole, had particularly high 397 

levels of Hg contamination in the second half of the 1900s followed by a decrease to present. 398 

However, it should be noted that the timing of this peak based on whole teeth is approximately 10 399 

years later than the peak observed based on LA-ICP-MS analysis, likely reflecting the fact that 400 

the reconstructed Hg concentrations based on LA-ICP-MS focus on Hg concentrations in the first 401 

layers of tooth deposited (i.e. Hg concentrations representing year-specific exposure), while the 402 

reconstruction based on whole teeth reflects an integration of long-term Hg accumulation, and for 403 

older seals elevated exposure to Hg in previous years of life would be reflected in whole tooth Hg 404 

despite potentially reduced exposure in recent years related to Hg emissions reductions. 405 

There are three main potential drivers for the observed changes in Hg in teeth from Lake 406 

Baikal seals: 1) changes in Hg inputs to Lake Baikal, 2) changes in Hg cycling in Lake Baikal, 407 

and 3) shifts in seal ecology (including diet). Of these three potential factors, the significant long-408 

term changes in Hg in teeth from Lake Baikal are most likely driven by changes in deposition. 409 

Globally, a wide range of studies have shown that increases and decreases in Hg inputs can be 410 
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reflected in Hg contamination of aquatic biota, both at sites impacted by point source Hg 411 

pollution, as well as at sites where Hg inputs are dominated by long-range transport, although 412 

responses to changing inputs can occur at widely varying time-scales (Munthe et al. 2007). 413 

Ozersky et al. (2017) offer a detailed analysis of local, regional and global trends of Hg emissions 414 

affecting Lake Baikal, and suggest that both local emissions and long-range emissions from 415 

Europe may be particularly important sources of Hg to the lake. 416 

Shifts in within-lake Hg cycling, including changes in sedimentation, transformation 417 

(methylation, demethylation) and uptake at the base of the food web could also play a role in 418 

mediating Hg concentrations in Lake Baikal’s food web; however, this is beyond the scope of the 419 

current study. Also, although long-term shifts in seal trophic level and/or diet could be expected 420 

to drive changes in Hg exposure and accumulation, there is no strong evidence for such changes 421 

in the Baikal seal, based on long-term stability in soft tissue stable isotope values (current study 422 

vs. Yoshii et al. 1999) as well as the lack of directional change in dentine stable isotope values 423 

over the archival seal time series (as reported by Ozersky et al. 2017). Furthermore, the pelagic 424 

food web of Lake Baikal is relatively simple, with few overlaps in the isotopic niches of the taxa 425 

present (Yoshii et al. 1999), reducing the risk for shifts in diet that are not detected through stable 426 

isotope analysis. 427 

Taken together, these results suggest that despite being a large lake with a long water residence 428 

time, Lake Baikal appears to respond rapidly to changing atmospheric inputs of Hg, with these 429 

changes reflected even in a long-lived top predator. This may in part reflect the importance of 430 

direct atmospheric deposition of Hg to Lake Baikal (Leermakers et al. 1996), in contrast to 431 

smaller catchment-dominated lakes, where responses to decreased Hg emissions are expected to 432 

be moderated by inputs from catchments which still have considerable pools of anthropogenic Hg 433 
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that have accumulated over the past centuries (Munthe et al. 2007). This highlights the 434 

importance of past emission control measures in reducing Hg contamination of Lake Baikal and 435 

its food web, and also suggests that future changes in inputs will likely be reflected in this large 436 

lake. 437 

 438 

Current and reconstructed soft tissue concentrations and toxicological implications 439 

In the current study, our detailed analysis of Hg concentrations and speciation in a wide range of 440 

contemporary tissues provides an opportunity to assess current toxicological risks posed by Hg to 441 

the seals themselves as well as to human consumers. Meanwhile, the relationship between Hg in 442 

seal teeth and their soft tissues allows us to explore potential toxicological risks to seals and 443 

human consumers over the past 50 years using Hg data from archival teeth. Based on the 444 

relationships presented in Table 1, we generated estimates of past Hg concentrations in seal 445 

muscle, liver, and brain (Figure 5). These tissues were selected for more detailed analysis because 446 

of their importance as potential food sources (muscle and liver; Nomokonova et al. 2013), and/or 447 

because Hg is known to have toxic effects on them (liver and brain; Dietz et al. 2013, Krey et al. 448 

2015). 449 

Reconstructed Hg concentrations in soft tissues were highest between the mid-1960s and 450 

the late 1970s (Figure 5). However, because these reconstructed concentrations are based on the 451 

relationship between tooth Hg content and soft tissue Hg concentration (Table 1), they do not 452 

account for the age of the seals, meaning that the uneven age distribution of sampled seals across 453 

years is likely to lead to skewed results, with higher values observed for years where more older 454 

seals were sampled.  455 
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We also compared tissue concentrations of Hg, both contemporary and reconstructed 456 

values, with previously published concentrations (Figure 5) for seals collected in 1992 (Watanabe 457 

et al. 1996; Watanabe et al. 1998) and 2001 (Cielsielski et al. 2006; Perrot et al. 2012). Measured 458 

muscle concentrations in 2013 were approximately two-fold lower than in 1992 for both juvenile 459 

and adult seals. In 2001, adult seals had muscle Hg concentrations comparable to those observed 460 

in 1992, while juveniles had similar concentrations to those observed in 2013. For liver tissue, the 461 

highest concentrations were observed for seals from 1992, the lowest concentrations in seals from 462 

2001 and then intermediate concentrations in 2013 (approximately 50% higher than those 463 

observed in 2001). Brain tissue was only analyzed from two relatively old seals from 1992 (age 464 

18 and 19 years), and as such, it is not possible to assess whether there was a decline in brain 465 

TotHg from 1992 to present. For all three tissues, concentrations in 1992 are comparable or lower 466 

than the reconstructed concentrations from the late 1980’s. 467 

To assess potential current and historical risk of human exposure to Hg through seal 468 

consumption, we compared muscle and liver TotHg concentrations with the WHO guideline level 469 

for Hg in fish (500 ng/g wet weight (FAO/WHO 2011); ~1600 ng/g dry weight), as there are no 470 

such guidelines available for seals. To allow for direct comparison between guideline values and 471 

measured values (Figure 5), we converted guideline values to a dry weight basis, using the 472 

measured tissue-specific wet/dry conversion ratios for the contemporary seals. Current TotHg 473 

(and MeHg) concentrations in muscle tissue are well below WHO guideline values, while liver 474 

concentrations were above the guideline values only for adult seals (Table S2, Figure 5). 475 

Predicted historic muscle Hg concentrations were often higher than the guideline level 476 

(particularly in the late 1960s and the 1970s), but, as for 2013, the measured concentrations in 477 

tissues collected in 1992 and 2001 were well below this level. For liver, predicted and measured 478 
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TotHg concentrations were consistently and substantially above the guideline level throughout 479 

the duration of the time series, with the exception of juvenile seals from 2001 and 2013. 480 

Indigenous peoples in the Baikal region consume both seal muscle and liver tissue, but primarily 481 

from young seals (age < 2 years; Nomokonova et al. 2013). Our data suggest that there is not 482 

currently a significant risk of Hg exposure from consumption of juvenile seal muscle or liver 483 

tissue, however, there is evidence that both muscle and especially liver consumption may have 484 

led to considerable Hg exposure in the past (particularly between 1950–1980). 485 

With respect to potential toxicity to the seals themselves, we identified threshold values 486 

for toxic effects based on recent reviews of Hg toxicity to marine mammals. For liver, lesions 487 

have been observed at TotHg concentrations greater than 60 000 ng/g dw (Dietz et al. 2013), 488 

which is much higher than current liver tissue concentrations, but is below the reconstructed 489 

concentrations for many seals collected in the 1960s and 1970s, as well as in 1989 (these high 490 

concentrations are likely due to the large number of older seals (>10 years of age) collected in 491 

1989, as discussed previously) (Figure 5). For the brain, we tested our data against two threshold 492 

values: 400 ng/g MeHg ww (~1700 ng/g dw), above which neurochemical disruptions have been 493 

observed, and 100 ng/g MeHg ww (~425 ng/g dw), above which changes including shifts in 494 

behaviour and immune response have been observed (Krey et al. 2015). Although these 495 

thresholds are for MeHg, we observed that for seals collected in 2013, the majority of TotHg in 496 

brain tissue was present as MeHg (Table S2). We found that contemporary and historical seals 497 

almost never exceeded the higher threshold, while seals commonly exceeded the lower threshold 498 

throughout the 1960’s–1980’s (Figure 5). These data suggest that although Hg likely does not 499 

pose a substantial toxicological risk to the seals at present, concentrations in the second half of 500 

the 20th century may have been high enough to pose risks to seal health. Also, given the high 501 
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concentrations of POPs documented in Baikal seals, there is a potential for additive and 502 

synergistic effects of a broad mixture of contaminants (including Hg), making it difficult to 503 

assess the current (or future) toxicological risk posed to the seals (or their human consumers) by 504 

Hg alone. 505 

When considering potential toxicological risks posed by Hg to seals and their human consumers, 506 

it is also important to consider the potential role of selenium (Se) in mitigating Hg toxicity 507 

(Ralston et al. 2007). It has been suggested that at tissue Se:Hg molar ratios exceeding 1, Se 508 

provides protection against Hg toxicity, with higher risk of Hg toxicity when Hg exceeds Se 509 

(Ralston et al. 2007). Despite low Se concentrations in Lake Baikal’s waters (Leeves 2011), 510 

Se:Hg ratios have been shown to consistently exceed 1 in Lake Baikal fish and seal tissues 511 

(Leeves 2011; Li 2013), suggesting that Se may moderate the toxic risk posed by Hg to seals (and 512 

human consumers). 513 

 514 

Conclusions 515 

Although Hg concentrations in Lake Baikal seals are relatively low, and pose apparently low 516 

toxicological risk to the seals themselves and their human consumers, our reconstruction of past 517 

Hg concentrations in Lake Baikal seals based on historical tooth samples suggests that Hg 518 

concentrations were significantly higher three to four decades ago (Figure 5). The strong changes 519 

over time in seal Hg concentrations suggests that changes in Hg inputs can have dramatic effects 520 

on contamination of the lake and its food web, and associated ecosystem and human health risk 521 

despite the lake’s great size, immense depth, and long turnover time. This highlights the 522 

importance of local, regional and global efforts to reduce Hg emissions, and indicates that Lake 523 

Baikal may be vulnerable to future increases in Hg inputs due to changes in regional human 524 
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activity, and climate change, including the potential for permafrost in Lake Baikal’s catchment to 525 

release Hg as it thaws. However, the lake may also benefit from emission reductions resulting 526 

from regional and global efforts, including the Minamata Convention. 527 
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 737 

TABLES 738 

Table 1. Summary of results of linear regression between soft tissue TotHg concentrations and 739 

tooth Hg content for adult seals collected in 2013. 740 

Regression equation n seals r2
adj p 

log10(Muscle TotHg) = 0.57±0.61 + 
0.76±0.22*log(tooth Hg content) 

12 0.481 0.005 

log10(Liver TotHg) = -1.68±1.38 + 
1.86±0.49*log(tooth Hg content) 

12 0.528 0.003 

log10(Brain TotHg) = 0.46±0.60 + 
0.67±0.22*log(tooth Hg content) 

11 0.441 0.011 

log10(Blood TotHg)= -0.52±0.61 + 
0.95±0.21*log(tooth Hg content) 

9 0.676 0.002 
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log10(Kidney TotHg)= 0.73±0.64 + 
0.99±0.23*log(tooth Hg content) 

11 0.618 0.001 

 741 

FIGURE CAPTIONS 742 

Figure 1 Stable carbon (a) and nitrogen (b) isotope values and TotHg concentrations (c) for 743 

select soft tissues (blue: blood, red: muscle, orange: liver) for seals collected in 2013. Dashed 744 

vertical lines indicate age 3 months (approximate time of weaning: 2–3 months) and 6 years 745 

(approximate age where seals reach sexual maturity). Lines and shading represent LOESS 746 

smoothers intended to make the data easier to visualize. 747 

Figure 2 TotHg and MeHg concentrations and proportion of TotHg present as MeHg (% MeHg) 748 

for soft tissues from contemporary seals (n=22). 749 

Figure 3 Linear regressions between TotHg concentrations in select soft tissues and tooth Hg 750 

content (pg Hg in whole tooth) for adult seals collected in 2013 (age 1 and up; n=13); circles: 751 

females, triangles: males. 752 

Figure 4 Hg content (pg of TotHg in whole tooth) vs. collection year for contemporary and 753 

historical seal teeth. The colour of data points indicates age-at-death of seals, with categories for 754 

juveniles (<1 year), 1–2 year old seals, 2–5 year old seals, 5–10 year old seals and seals over 10 755 

years of age. 756 

Figure 5 Temporal trends in reconstructed and measured soft tissue Hg concentrations in Baikal 757 

seals. Boxplots show soft tissue Hg concentrations for historical seals as predicted from tooth Hg 758 

content (outliers shown as black points). Measured tissue Hg concentrations from 1992,21,45 759 

2001,20,43 and 2013 (current study) are shown using red and blue points (for juvenile and adult 760 

seals respectively). The WHO guideline level for Hg in fish for safe consumption (500 ng/g wet 761 

weight (~1700 ng/g dry weight)) is shown as a dashed blue line for both muscle and liver, and 762 
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thresholds for potential toxic effects on seals are shown as red dotted lines. All literature tissue 763 

data, consumption and toxicity thresholds were converted to a dry weight basis. Toxicity 764 

thresholds shown are based on recent reviews of effects of Hg on marine mammals and are 765 

described in the manuscript text. 766 

 767 

SUPPORTING INFORMATION 768 

Table S1 d15N, d13C and C:N ratios for seals collected in 2013. Values are shown as mean ± 769 

standard deviation. 770 

Table S2 TotHg and MeHg concentrations, and proportion of TotHg present as MeHg for seals 771 

collected in 2013. Values are shown as mean ± standard deviation. 772 

Table S3 Results of linear regressions of tissue-specific TotHg and MeHg concentrations vs. seal 773 

age for all seals collected in 2013. 774 

Table S4 Summary of results of linear regression between soft tissue TotHg concentrations and 775 

tooth Hg content for all seals collected in 2013 (results for adult seals only are shown in Table 1 776 

in the main manuscript). 777 

Table S5 Summary of generalized additive models including collection year and age-at-death as 778 

covariate. We also tested sex as a potential covariate, but it was omitted in the final models as it 779 

did not significantly improve model performance and did not have a statistically significant 780 

smooth term. For all smooth terms, the number of knots (k) was set to k=5. 781 

Figure S1 Histogram showing collection years for the seals included in the current study. 782 

Historical seal samples (prior to 1990) include canine teeth, while contemporary seal samples 783 

(2013) include teeth and several soft tissues. 784 

Figure S2 Carbon to nitrogen ratios (C:N) for soft tissues from contemporary seals. 785 
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Figure S3 Whole tooth Hg content (pg Hg) and tooth Hg concentrations (ng/g) for seals collected 786 

in 2013. Dashed vertical lines indicate age 3 months (approximate time of weaning: 2–3 months) 787 

and 6 years (approximate age where seals reach sexual maturity). Lines and shading represent 788 

LOESS smoothers intended to make the data easier to visualize. 789 

Figure S4 Total Hg concentrations (ng/g) in teeth vs. collection year for contemporary and 790 

historical seal teeth. The colour of data points indicates age-at-death of seals, with categories for 791 

juveniles (<1 year), 1–2 year old seals, 2–5 year old seals, 5–10 year old seals and seals over 10 792 

years of age. 793 

Figure S5 Results from GAM model of log10(TotHg in teeth (ng/g))~s(Year Collected) + s(Age), 794 

with the number of knots (k) set to 5 for each covariate. Model includes data for both archival 795 

and contemporary seals. 796 

Figure S6 Results from GAM model of log10(TotHg content in teeth (pg))~s(Year Collected) + 797 

s(Age), with the number of knots (k) set to 5 for each covariate. Model includes data for both 798 

archival and contemporary seals. 799 
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