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 2 

Abstract 20 

Overall apparent reaction rates for the removal of monochloramine (MCA) in granular 21 

activated carbon (GAC) beds were determined using a fixed-bed reactor system and 22 

under conditions typical for swimming pool water treatment. Reaction rates dropped 23 

and quasi-stationary conditions were reached quickly. Diffusional mass transport in the 24 

pores was shown to be limiting the overall reaction rate. This was reflected consistently 25 

in the Thiele modulus, in the effect of temperature, pore size distribution and of grain 26 

size on the reaction rates. Pores <2.5 times the diameter of the monochloramine 27 

molecule were shown to be barely accessible for the monochloramine conversion 28 

reaction. GACs with a significant proportion of large mesopores were found to have 29 

the highest overall reactivity for monochloramine removal. 30 

  31 
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1 Introduction 32 

Hypochlorous acid (HOCl) is widely used as disinfectant in swimming pools due to its 33 

effectiveness in disinfection. A major drawback is its reactivity towards inorganic and 34 

organic matter present in pool water, which results in the formation of halogenated 35 

disinfection by-products (DBPs) (Zwiener et al., 2007; Deborde and von Gunten, 36 

2008). 37 

The dominating nitrogenous precursors for DBP formation that are introduced into the 38 

pool by bathers are urea and ammonia (Consolazio et al., 1963). Ammonia reacts with 39 

HOCl to progressively form inorganic chloramines (mono-, di- and trichloramine) 40 

(Blatchley and Cheng, 2010; Qiang and Adams, 2004). Urea, however, reacts in pool 41 

water through progressive chlorine addition forming chlorinated urea, which finally 42 

breaks down to form the very volatile trichloramine (Blatchley and Cheng, 2010). 43 

Chloramines are known to be irritating to skin and eyes, and are suspected to cause 44 

respiratory problems (Eichelsdörfer et al., 1975). This also includes an increased risk 45 

to children of asthma during adolescence (Bernard et al., 2003; Bernard et al., 2008). 46 

Consequently, the sum of all inorganic chloramines is strictly regulated to a 47 

concentration of <0.2 mg L-1 (as Cl2) in swimming pools in Germany (DIN 19643-2, 48 

2012) and the US (ANSI/APSP-1, 2009). Among the variety of inorganic chloramines, 49 

monochloramine (MCA) is the most dominant species in pool water. A study of 11 50 

swimming pools in the US found concentrations of monochloramine of up to 51 

1.88 mg L-1 (as Cl2) (Weaver et al., 2009). Moreover, MCA is particularly of interest 52 

because it has been found to be a precursor for the formation of carcinogenic 53 

N-nitrosodimethylamine (NDMA) (Schreiber and Mitch, 2006), which was also found in 54 

chlorinated pools (Walse and Mitch, 2008). 55 
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As bathers are introducing urea and ammonia into swimming pools, the removal of the 56 

chloramines formed by the reaction of ammonia can decrease the total concentration 57 

of chloramines in the pool. Activated carbons are widely known as effective adsorbents 58 

(Worch, 2012; Schreiber et al. 2005). However, previous studies have shown that they 59 

are reducing agents for MCA as well. In that, the reduction of MCA primarily proceeds 60 

via a surface chemical reaction, and the capacity of granular activated carbon (GAC) 61 

filters for MCA removal was found to be higher than expected when only adsorption 62 

was considered (Jaguaribe et al., 2005; Bauer and Snoeyink, 1973). Over the course 63 

of the reaction, the reactivity of GACs decreased before stationary conditions were 64 

reached (Scaramelli and Digiano, 1977). As a result, activated carbon filters operated 65 

under swimming pool water conditions have a finite life time and need to be 66 

regenerated or replaced after a certain time in operation. However, the exact 67 

mechanism of the initial decrease of reactivity has not been fully understood until now. 68 

Previous studies proposed a two-step process, where MCA is initially reduced at 69 

neutral pH to NH4
+ at free active carbon sites (C*) (Equation 1). As enough surface 70 

oxides were formed, the authors assume that MCA is oxidised to N2 in a second, slower 71 

reaction with surface oxides (Equation 2) (Bauer and Snoeyink, 1973). 72 

NH2Cl + H2O + C* → NH4
+ + Cl- + C*O

 
(1) 

2 NH2Cl + C*O + H2O → N2 + 2 H3O+ + 2 Cl- + C*

 
(2) 

However, a more recent study indicates that the ratio of transformation products (NH4
+ 73 

and N2) formed did not change over the course of the reaction (Fairey et al. 2007), 74 

which contradicts the hypothesis of (Bauer and Snoeyink, 1973). Furthermore, earlier 75 

studies reasoned that the overall reactivity is dominated by pore diffusion, rather than 76 

by the surface chemical reactions (Komorita and Snoeyink, 1985; Fairey and Speitel, 77 

2006). Mass transport in the pore system of GACs is known to be influenced by various 78 
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parameters such as the grain size, water temperature (Ertl et al., 1997), the presence 79 

of surface oxides (Mangun et al., 1999) and the pore size distribution of GACs (Maia 80 

et al., 2008). To describe theoretically the MCA removal process in GAC filters, the 81 

semi-empirical MCA catalysis model (MCAT model) was established by Kim (1977) to 82 

predict steady-state MCA removal in GAC filters (Kim, 1977). The MCAT model was 83 

complemented recently to take into account the effect of source water type and pH 84 

(Fairey and Speitel, 2006). However, the model estimates the GAC reactivity after 85 

stationary conditions are reached (Komorita and Snoeyink, 1985) using only basic 86 

GAC properties such as the porosity and tortuosity of the GACs. This makes the model 87 

inapplicable in elucidating mass transfer effects in detail, which is important when 88 

considering the potentials for optimisation of the process. 89 

Thus, considering the current state of knowledge, the process of decreasing reactivity 90 

of GACs with increasing reaction time, as well as the impact of pore diffusional 91 

limitations on the removal performance of a fixed GAC bed, is still not fully understood. 92 

Conclusively, the aim of this study was to determine the impact of diffusional mass 93 

transport on the overall MCA removal performance of GAC for a wide range of 94 

operation conditions, such as grain size, pore size distribution and water temperature.   95 
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2 Materials and Methods 96 

2.1 Fixed bed reactor system for determination of the reaction rate 97 

constants 98 

Reaction rate constants for monochloramine removal in GAC beds were determined 99 

using the fixed bed reactor (FBR) system shown in Figure 1. It included a glass column 100 

of 34 mm inner diameter and a total length of 200 mm, in which the GAC bed is placed 101 

on a glass frit. A glass frit close to the inlet ensures equal distribution of the flow to the 102 

GAC bed. The GAC bed was continuously fed with an MCA solution at a constant flow 103 

rate (Qbed) from a rapidly stirred (~250 rpm), double-walled glass tank of 10 L volume, 104 

equipped with a stainless steel lid and with feedback temperature control (B. Braun, 105 

Germany). The conductivity of the MCA solution was adjusted to ~400 µS cm-1 by 106 

dosing 1 mol L-1 NaCl solution before the experiment was started. The volumetric flow 107 

rate through the bed was maintained by a turbine pump (P1) (BG1-30, Gather 108 

Industries, Germany) and was measured using a magnetic inductive flow meter 109 

(Altoflux IFM 5080 K with IFC 080 transformer, Krohne, Germany).  110 

The GAC bed was prepared by initially filling the glass column, disconnected from the 111 

system, with deionised water. Subsequently, GAC that had been wetted and the pores 112 

filled with deionised water by applying a vacuum, was transferred to the column. The 113 

bed was then consolidated by carefully tamping the column to guarantee a 114 

reproducible packing. After connecting the column to the FBR system, the chloramine 115 

solution was circulated through all instruments and tubes while bypassing the column. 116 

The experiment was started then by changing the fluid flow from bypass to the GAC 117 

bed.  118 

The effluents from the GAC bed or the bypass were fed back to the tank. The MCA 119 

concentration in the tank was measured by an amperometric chlorine sensor 120 
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(Dulcotest CTE 1 DMT, Prominent, Germany), mounted in a closed loop and flowed 121 

through by a peristaltic pump (P2) (5004S, Watson Marlow, UK) at a flow rate of 25 L h-122 

1. The pH in the tank was measured continuously and maintained constant at pH 7, 123 

which was in the pH range for swimming pool water (DIN 19643-2, 2012), by dosage 124 

with 0.3 mol L-1 phosphoric acid or 0.1 mol L-1 NaOH using feedback-controlled 125 

peristaltic pumps (P4, P5). The level in the tank was kept constant by a peristaltic pump 126 

(P3) triggered by a level electrode. 127 

Since MCA was consumed in the GAC bed, the MCA concentration in the tank and 128 

thus the MCA inflow concentration to the GAC bed, cbed,in, were kept constant by 129 

feeding a cooled (4–6 °C) MCA stock solution to the tank using a feedback-controlled 130 

peristaltic micro pump (P6) (BVK, Ismatec, Germany). That stock solution was placed 131 

on a balance (CA 572, Kern, Germany) and the mass of the stock solution was 132 

recorded continuously. Thus, at any time t, the mass flow of stock solution to the tank 133 

was known. A SCADA system (TopMessage, Delphin Technologies, Germany) was 134 

used for data recording and feedback control of all relevant process parameters of the 135 

FBR system.  136 
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Figure 1: Scheme of the laboratory-scale FBR system. 137 

2.2 Preparation of the monochloramine stock solution 138 

Monochloramine stock solutions as used in the FBR experiments were prepared by 139 

drop-wise addition of 750 mL of a OCl- solution (pH 10, 0.032 mol L-1, prepared from a 140 

sodium hypochlorite solution (>12 % active chlorine)) to 250 mL of a rapidly stirred 141 

NH4Cl or (NH4)2SO4 solution (pH 10, 0.098 mol L-1 (NH4Cl) or 0.049 mol L-1 142 

((NH4)2SO4)) at a final molar chlorine-to-ammonia ratio of 1.00:1.03 (Aoki, 1989). All 143 

chemicals were p.a. reagent grade. 144 

2.3 Analytical quantification of monochloramine and HOCl 145 

The total chlorine sensor of the FBR system was calibrated daily using the 146 

spectrophotometric DPD method (DIN EN ISO 7393-2), using a Unicam 147 

UV2-200 UV/VIS spectrophotometer with a 5 cm quartz cuvette. 148 

The concentration of the OCl- solution used to prepare the MCA stock solution was 149 

determined spectrophotometrically using a molar absorption coefficient at 294 nm (εOCl-150 

, 294nm) of 348 mol-1 cm-1 (Hand and Magerum, 1983). 151 

The MCA stock solution was determined at least twice a day according to the 152 

spectrophotometric method of Schreiber and Mitch, accounting for the overlapping 153 

absorbance peaks of MCA and dichloramine (NHCl2) at 245 nm and 295 nm 154 

(εNH2Cl, 245 nm = 445 mol-1 cm-1, εNHCl2, 245 nm = 208 mol-1 cm-1, εNH2Cl, 295 nm = 14 mol-1 155 

cm-1, εNHCl2, 295 nm = 267 mol-1 cm-1) (Schreiber and Mitch, 2005). Measurements at 156 

360 nm confirmed the absence of trichloramine (NCl3) in the MCA stock solution 157 

(εNCl3, 360 nm = 126 mol-1 cm-1) (Schurter et al., 1995). The yield for transformation of 158 

NH4
+-N to MCA-N was found to be in a range from 95 to 100 %.  159 
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2.4 Granular activated carbons 160 

Four commercially available granular activated carbons (GACs) were used in this 161 

study, namely Hydraffin 30 N from Donau Carbon GmbH (30 N), Silcarbon K-835 from 162 

Silcarbon Aktivkohle GmbH (K835), Centaur from Chemviron Carbon GmbH (Centaur) 163 

and a spherically shaped activated carbon Type 100058 from Blücher GmbH (100058). 164 

The raw materials of the carbons were anthracite coal (30N), coconut shells (K835), 165 

bituminous coal (Centaur) and non-porous polymer-based spheres (100058). The 166 

GACs, as provided by the manufacturers, are denoted as unfractionated fresh GACs 167 

in the following. 168 

Grain size fractions of the 30N, K835 and Centaur with mean grain diameters of 169 

0.30 mm (0.25 - 0.355 mm), 0.57 mm (0.50 - 0.63 mm) and 1.90 mm (1.80 - 2.00 mm) 170 

were prepared by sieving the unfractionated fresh GACs using a sieve tower (AS 200, 171 

Retsch, Germany) and, if necessary, by grinding the unfractionated fresh GACs using 172 

a ball mill (PM100, Retsch, Germany) prior to sieving. The 100058 GAC was used 173 

solely at the original monomodal grain size (dp) provided by the manufacturer 174 

(0.55 mm). Before use, the fresh GACs were treated by: (i) soaking in ultrapure water 175 

for 24 h, (ii) evacuating the soaked GAC using a vacuum chamber until rising air 176 

bubbles could no longer be seen and (iii) washing and decantation of the GAC using 177 

ultrapure water until the supernatant was particle-free. 178 

2.5 Physical characterisation of the GAC 179 

Evaluation of the bed volume specific outer surface area ao and the representative 180 

hydraulic grain size dhy of the unfractionated GACs is described in Section A of the 181 

supplementary material (SM). 182 
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The internal surface area aBET, the pore volume of micropores (<2 nm) and mesopores 183 

(2–50 nm), the pore size distribution (PSD) and the tortuosity of the fresh 184 

unfractionated GACs were determined from nitrogen adsorption/desorption isotherms 185 

(BELSORP-max, MicrotracBEL). The pore volume of macropores (>50 nm) was 186 

determined by mercury intrusion porosimetry (Pascal 140/440, Thermo Fisher 187 

Scientific). To further elucidate the morphology of the 100058 GAC, images were taken 188 

from a cross-section of a single GAC grain with a High Resolution Scanning Electron 189 

Microscope (FEI Nova NanoSEM, 5 kV). Further details on the experimental 190 

procedures of physical GAC characterisation are given in Section B of the SM. 191 

2.6 Data analysis and calculation of bed-volume-based apparent first order 192 

rate constants 193 

MCA is consumed in the GAC bed. According to equations (1) and (2) above it is 194 

expected to follow first-order kinetics with respect to MCA if reaction (1) was slower 195 

than reaction (2) and thus rate limiting. If reaction (2) was rate limiting, then second-196 

order kinetics is expected. Finally, mass transport inside the pores may be rate-limiting 197 

(diffusion control). In that case a first-order reaction will remain first-order and a 198 

second-order reaction will turn into an apparent 1.5-order reaction. To take that into 199 

account, apparent rate constants for a pseudo first-order reaction were determined and 200 

the validity of that approach was verified in separate experiments (see Section 2.10). 201 

For a fixed-bed reaction at stationary conditions, the apparent bed-volume-based 202 

reaction rate constant kapp is obtained according to: 203 
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kapp=
1

EBCT
∙ln (

cbed,in

cbed,out

) (3) 

where cbed,in and cbed,out are the GAC bed’s MCA in- and outflow concentrations and 204 

EBCT is the empty bed contact time, given by Vbed/Qbed, where Vbed and Qbed are the 205 

bed volume and the volumetric flow rate, respectively.  206 

To ensure that all GAC in the filter bed was subjected to the almost same concentration 207 

of MCA, it was designed such that the change of the concentration from the inflow to 208 

the outflow of the bed was negligible. Generally, typical outflow concentrations of 209 

monochloramine over the course of an experiment were about 5% below the inflow 210 

concentration (see Figure 2). 211 

 Consequently, the measurement of the outflow concentration would have resulted in 212 

a lack of precision. To overcome that restriction, the outflow concentration was 213 

obtained from the decreasing mass of the MCA stock solution. The volumetric dosing 214 

rate (Qstock) for any time t during an experiment is given by Equation 4: 215 

Qstock(t)=
(
dmstock

dt
)

ρ
stock

(T)
 

(4) 

Here, ρstock(T) is the temperature-dependent density of the stock solution and mstock is 216 

the recorded mass of the stock solution on the balance. The time-dependent mass loss 217 

dmstock/dt was determined in time intervals of 0.5–1 h. 218 

A mass balance for MCA around the tank of the FBR system yields: 219 
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Qbed∙cbed,out(𝑡)-Qbed∙cbed,in+Qstock(t)∙cstock-

Qstock(t)∙cbed,in+Rsys(t) =Vsys∙ (
dcbed,in

dt
) 

(5

) 

Here Rsys accounts for a hypothetical loss of MCA in the system excluding the GAC 220 

bed (e.g. through reaction at the glass or tube walls) and cstock is the concentration of 221 

the MCA stock solution. Preliminary experiments without GAC showed that MCA 222 

removal in the FBR system without GAC was negligible, thus: 223 

Rsys=0 (6) 

Since cbed,in was kept constant, the capacity term in Equation 5 gives: 224 

Vsys (
dcbed,in

dt
) =0 (7) 

Introducing Equations 6 and 7 into Equation 5 and rearranging yields: 225 

cbed,out(t) = 
Qstock(𝑡)

Qbed

∙(cbed,in-cstock)+cbed,in (8) 

Introducing Equation 8 into Equation 3 gives the bed volume based rate constant kapp 226 

at any time t. 227 

2.7 Catalyst surface-area-based rate constants 228 

As the reduction of MCA by GAC is a solid surface reaction, catalyst surface-area-229 

based apparent rate constants kapp,a are calculated from the bed-volume-based rate 230 

constants according to: 231 

kapp,a=
kapp

a0

 (9) 

where a0 is the bed-volume-specific outer surface area of the GAC in the FBR. 232 
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2.8 Conversion dependence of the overall reaction rate 233 

Previous studies showed that the reactivity of GACs for MCA conversion decreased 234 

gradually over time (Scaramelli and Digiano, 1977). However, using the FBR system 235 

described above, the time needed to acquire the data for determination of the rate 236 

constant at a given time t was short compared to the time needed for a notable 237 

decrease of GAC reactivity. Thus, for each time t, the assumption of quasi-steady state 238 

was justified. 239 

To describe the process of decreasing reactivity of the heterogeneous MCA–GAC 240 

reaction, conversion–time curves were determined in FBR experiments for all GACs 241 

until the reactivity was constant over time. The general shape of the conversion–time 242 

curves can indicate which one of the two widely recognised reaction models, the 243 

Progressive-Conversion Model (PCM) or the Shrinking-Core Model (SCM) 244 

(Levenspiel, 1999) is appropriate. 245 

FBR experiments were conducted to determine kapp either at the beginning of the 246 

MCA–GAC reaction or after a certain time of operation, when stationary conditions 247 

were reached. The reactivity at the beginning of the reaction was determined after 248 

~0.1 mmol g-1 of MCA per mass of GAC had been converted in the GAC bed. For these 249 

experiments, the fresh GACs were used as provided by the manufacturer. 250 

To determine the reactivity under stationary conditions, the fixed-bed experiments 251 

were divided into two consecutive steps: (i) subjecting the GACs to monochloramine 252 

at cbed,in = 4.5 mg L-1 (as Cl2), T = 30 °C and Qbed = 40 L h-1 (equalling a superficial filter 253 

velocity of vbed = 44.1 m h-1) until no change in kapp was observed and stationary 254 

conditions were reached and, (ii) determination of kapp under various stationary 255 

operation conditions (e.g. different cbed,in, T or vbed). GACs operating under stationary 256 
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conditions were denoted as altered GACs. A detailed description of the 257 

FBR experiments is provided in the following sections. Table 1 summarises all 258 

experiments conducted. 259 

Table 1: Operation conditions of the FBR experiments.  260 

2.9 Temperature dependence of rate constants 261 

The temperature dependence of kapp is described using the Arrhenius Equation: 262 

kapp(T)=k0∙e
- 

EA
R0T (10) 

Here, k0 and EA are the frequency factor and the activation energy, respectively. R0 is 263 

the universal gas constant and T is the temperature. EA is derived from the slope of 264 

the linear least-squares best fit of the correlation between ln(kapp) and T-1 (Arrhenius 265 

plots) (Levenspiel, 1999). 266 

To describe the temperature dependence of MCA conversion in the GAC filter, the 267 

activation energies EA (see Equation 10) of the reaction for both the fresh and the 268 

altered unfractionated GACs: 30N, K835 and Centaur, were determined. In order to 269 

calculate EA, kapp was experimentally determined in FBR experiments in a range of 270 

temperatures of 12 to 45 °C. Other process parameters except the temperature were 271 

kept constant (see Table 1). 272 

2.10 Verification of first-order kinetics 273 

To experimentally verify the first-order kinetic approach used in this study, the reactivity 274 

of the altered unfractionated K835 GAC was determined for various MCA inflow 275 

concentrations. The reproducibility of the measurement of kapp was determined from a 276 

set of four repeated experiments. 277 
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2.11 Impact of external mass transport on the overall reactivity 278 

To assess the impact of pore diffusional mass transport on the overall reactivity of the 279 

GAC, the influence of extra-particle mass transport (film diffusion) on the overall 280 

reaction rate must be excluded (Ertl et al. 1997). To check for the absence of film 281 

diffusion resistance, kapp,a was determined for different superficial flows (vbed) for filter 282 

beds of the fresh and altered unfractionated K835 GAC. To guarantee comparable 283 

conditions in all experiments, the flow rate vbed was adjusted to the actual catalyst 284 

volume (Vbed) such that the EBCT in the filter column was 2.88 s. 285 

The mass transfer coefficient of MCA through the laminar film 286 

layer (kf) was calculated according to Equation 11 (Worch, 2012). 287 

kf=
Sh∙Dbulk,MCA

dhy

 (11) 

Here Sh is the Sherwood number, which was calculated according to the empirical 288 

approaches of Williamson et al. (1963) and  289 

Gnielinski (1978), and Dbulk,MCA is the bulk diffusion coefficient of MCA in water, which 290 

was calculated using the Wilke-Chang correlation with 2.03 × 10-5 cm2 s-1 (at 30°C) 291 

(Wilke and Chang, 1955). 292 

If the rate of mass transfer through the laminar film layer is much larger than the 293 

surface-based reaction rate constant, thus kf >> kapp,a, external mass transfer limitation 294 

can be excluded. 295 
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2.12 Impact of internal mass transport on the overall reactivity 296 

2.12.1 Impact of grain size 297 

To check for the importance of grain size on the overall reactivity, kapp was determined 298 

for different grain size fractions of the altered 30N GAC. To further elucidate the impact 299 

of grain size, the Thiele modulus Φ was calculated according to Equation 12 300 

(Levenspiel, 1999). The Thiele modulus is a dimensionless constant representing the 301 

ratio of the overall reaction rate to the diffusion rate of the reactant in the pore system. 302 

Φ=L∙√(
kapp

η∙DE,MCA

) (12) 

Here, L is the diffusion path length within the adsorbent, which is dp/6 assuming a 303 

spherical shape of the GAC grains (Levenspiel, 1999). DE,MCA is the effective diffusion 304 

coefficient of MCA in the pore system and η is the effectiveness factor. DE,MCA was 305 

determined based on the pore size distribution of the individual GACs using the random 306 

intersecting pore model (Harriott, 2003) and assuming surface diffusion of MCA in the 307 

pore system of the GACs to be negligible (Fairey and Speitel, 2007): 308 

DE,MCA=
1

τ
∙

∑ Dbulk, MCA∙ (1-
dMCA

dp,j
)

4

∙Vp,j
∞
j=dMCA

∑ Vp,j
∞
j=dMCA

 
(13) 

Here, τ is the tortuosity factor of the GACs, dp,j and Vp,j are the diameter and the 309 

incremental pore volume of a pore in the size fraction j as derived from the pore size 310 

distribution of the 30N GAC, and dMCA is the minimal pore diameter of the GAC that is 311 

still accessible for a MCA molecule.  312 
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The effectiveness factor η is defined as the ratio of the reaction rate to the theoretical 313 

reaction rate without diffusional limitations (Ertl et al., 1997). For a first-order reaction 314 

taking place at a spherical grain, η could be determined as follows (Levenspiel, 1999): 315 

η=
1

Φ
∙ (

1

tanh 3Φ
-

1

3Φ
) (14) 

Numerical solutions of Equations 12 and 14 give the corresponding values for Φ and 316 

η.  317 
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2.12.2 Impact of pore size distribution 318 

In this set of experiments, kapp was determined for the altered 30N, K835, Centaur and 319 

100058 GACs. To exclude the influence of GAC grain size on kapp and to allow 320 

comparison between the GACs, filter beds of equal grain size fractions were used 321 

(0.50 mm (100058) and 0.57 mm (30N, K835, Centaur)) to study the effect of the pore 322 

size distribution. It will be discussed and proven in detail in Sections 3.6 and 3.7 below 323 

that the prerequisites for the comparison between carbons of different surface 324 

chemical properties are fulfilled. 325 
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3 Results and Discussion 326 

3.1 Physical characterisation of the GACs 327 

The physical characteristics of the GACs tested in this study are summarised in Table 328 

2. More details and further discussion of the results are given in Section B of the SM. 329 

There, N2 adsorption-desorption isotherms of the fresh unfractionated GACs and the 330 

corresponding pore size distributions (PSD) are shown in Figure B.1 and the grain size 331 

distribution of the fresh unfractionated GACs are shown in Figure B.2. 332 

 333 

Table 2: Physical characterisation of the fresh unfractionated GACs 30N, K835, 334 
Centaur and 100058. 335 

3.2 Verification of the first-order reaction kinetics 336 

Figure 2 exemplarily shows time plots of cbed,in and cbed,out of one of the four repeated 337 

verification experiments, as well as kapp, as calculated according to Equation (3). 338 

Figure 2(A) shows the rapid decrease of the reaction rate constant until stationary 339 

conditions were reached after ~90 h. This is much shorter than the time reported in a 340 

previous study (1250–3000 h) (Fairey and Speitel, 2007), although comparable MCA 341 

inflow concentrations were used in both studies. This discrepancy can be attributed to 342 

the significant differences in EBCT of the respective GAC beds (30 s in Fairey and 343 

Speitel (2007) and 2.8 s in this work) and thus, the difference in the time needed to 344 

oxidise the GAC in the bed. 345 

Figure 2(B) shows the determination of kapp at three different inflow concentrations that 346 

were adjusted after stationary conditions had been reached. 347 
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Figure 2: Reaction rate constant kapp for MCA removal at the K835 GAC at 348 

cbed,in of 4.5 mg L-1 (as Cl2) until stationary conditions were reached 349 

(A) and at three additional inflow concentrations (9.0, 1.6 and 0.9 350 

mg L-1 (as Cl2)) (B). Error bars represent the standard deviation of 351 

kapp as determined by Gaussian error propagation (n = 50). 352 

Figure 3 shows the linear least-squares regression analysis between kapp and cbed,in. 353 

The slope of the linear regression was almost zero ([0.4 ± 0.21] × 10-3 L mg-1 s-1), which 354 

shows that the reaction rate constant was independent of the inflow concentration. This 355 

confirms the validity of the first-order approach used in Equation 3. This was also true 356 

for MCA concentrations that are as low as typically found in swimming pool water 357 

(e.g. 0–1.8 mg L-1 as Cl2, (Weaver et al., 2009)). The repeatability standard deviation 358 

of kapp for the altered GAC K835 determined by four identical repeated validation 359 

experiments was ±0.006 s-1 (~±4%), which indicates a high reproducibility of the 360 

experimental method used. 361 

Figure 3: Effect of MCA inflow concentration on the apparent reaction rate 362 

constant for MCA conversion at the altered unfractionated K835 363 

GAC. The solid line represents the linear least-squares best fit and 364 

dashed lines represent the 95% confidence band of the regression. 365 

Errors bars represent the repeatability standard deviation (n = 63). 366 

 367 

Additionally, to check for heterogeneity of the reaction, the Maitlis’ test was conducted 368 

(Crabtree, 2012). In that, the loss of MCA in the tank of the FBR system was measured 369 

once during the course of an experiment while bypassing the GAC filter column. 370 
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Results confirmed that no MCA was degraded and thus, no reactive agents leached 371 

from the GAC. 372 

3.3 Exclusion of extra-particle mass transfer limitations 373 

Figure 4 shows the dependence of the apparent surface-related reaction rate constant 374 

kapp,a (in m s-1), determined experimentally, and of the theoretical mass transfer 375 

coefficient of MCA in the laminar film layer kf (in m s-1), on the filter velocity vbed for the 376 

fresh and altered unfractionated GAC K835. It showed that kapp,a was independent of 377 

the superficial flow rate vbed for both, the fresh and altered GAC (p < 0.001). As 378 

mentioned above, two empirical approaches for the calculation of the Sherwood 379 

number were used. It appeared that kapp,a was ~4 times lower than kf when the 380 

Sherwood number was approximated according to Williamson et al. (1963) and 381 

~10 times lower when the approximation according to Gnielinski (1978) was used. 382 

Similar results were obtained for the fresh 30N GAC (results not shown). This proves 383 

that external mass transport is not limiting the overall reactivity (Worch, 2008) for MCA 384 

removal in GAC filters over a wide range of superficial filter velocities for both fresh 385 

and altered GACs. 386 

In previous work it was assumed that the negligible impact of film diffusion on the 387 

removal of dichloramine at GACs would also apply to the removal of MCA (Fairey and 388 

Speitel, 2007; Kim and Snoeyink, 1980). Our results prove that this assumption is 389 

justified. 390 
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Figure 4: Impact of filter velocity on the experimentally determined apparent 391 

surface-related reaction rate constant kapp,a for MCA conversion and 392 

the theoretical mass transfer coefficient kf of the unfractionated K835 393 

GAC. Error bars represent the 95% confidence interval. Mass 394 

transfer coefficients kf were calculated using a mean grain diameter 395 

dhy,K835 of 1.39 mm. The dashed vertical line represents the 396 

recommended filter velocity for GAC filters in swimming pool water 397 

treatment in Germany (≤ 30 m h-1) (DIN 19643-2, 2012). 398 

3.4 Progress of the reaction until stationary conditions were reached 399 

Figure 5(A) shows the conversion–time curves of MCA in the GAC filter for the 400 

0.57 mm grain size fractions of the 30N, K835, Centaur and 100058 GAC. The 401 

respective reaction rates are given in Figures 5(B) and 5(C). 402 

It is apparent that the conversion–time plot of MCA removal for the conventional GACs 403 

(30N, K835, Centaur), which comprise a homogeneously distributed and strongly 404 

microporous pore size distribution, is hyperbolic, while that of the 100058 GAC is 405 

sigmoid (S-shaped). The conversion–time behaviour is reflected in the behaviour of 406 

the reaction rate over time. kapp of the GACs 30N, K835 and Centaur drop continuously. 407 

Instead, kapp of the 100058 first shows an increase and then decreases continuously 408 

after a maximum has been reached after about 15 h. 409 

The sigmoid conversion–time behaviour is often associated with a shift in the reaction-410 

controlling mechanism from chemical reaction rate control to diffusional control and 411 

can be described by the Shrinking-Core Model (SCM) (Levenspiel, 1999). The SCM 412 

describes a reaction that starts first at the outer surface of the GAC grains, and the 413 

reaction front then moves towards the centre of the grains with ongoing reaction time 414 
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(Levenspiel, 1999). The difference in conversion–time behaviour between the 415 

microporous GACs and the 100058 GAC is explained in more detail in Section C of 416 

the SM. 417 

 418 

Figure 5: MCA removed (A) and bed volume-based reaction rate constant kapp 419 

for MCA removal (B, C) over the filter run time. All GACs had the 420 

same grain size of ~0.55 mm (0.57 mm for the 100058 GAC). 421 

Dashed horizontal lines in (B) represent the GAC reactivity when 422 

stationary conditions were reached. 423 

 424 

3.5 Impact of grain size 425 

Figure 6(A) presents the time course of the bed-volume based first-order reaction rate 426 

constant kapp for MCA removal by different grain size fractions of the 30N GAC until 427 

stationary conditions were reached. The bed-volume-based reaction rate constants at 428 

stationary conditions are displayed in 6(B). They decrease linearly with increasing 429 

grain diameter. These results are in agreement with previous studies which, however, 430 

were obtained before stationary conditions were reached (Komorita and Snoeyink, 431 

1985). 432 
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 433 

Figure 6: (A) Reaction rate constant kapp over the filter runtime for different 434 

grain size fractions of the 30N GAC. Dashed horizontal lines 435 

represent the level of GAC reactivity at stationary conditions. (B) kapp 436 

and (C) kapp,a at stationary conditions as function of the grain 437 

diameter. Open circle symbols in (B) and (C) represent kapp for the 438 

unfractionated 30N GAC using dhy,30N = 1.18 mm as representative 439 

grain size (data not shown in A). Error bars in (B) and (C) represent 440 

the 95% confidence intervals. 441 

 442 

Figure 6(C) shows the catalyst surface-area-related rate constants for different grain 443 

size fractions of the 30N carbon. If the reaction only took place at the outer surface of 444 

the GAC grains, then kapp,a would be independent of the grain diameter. The decrease 445 

indicates that diffusional resistances in the pore systems are limiting the overall 446 

reaction rate. 447 

To assess further the influence of pore diffusion on the overall reactivity, the Thiele 448 

modulus Φ and the effectiveness factor ƞ were calculated using the stationary effective 449 

bed-volume-based reaction rate constants. The minimal pore diameter of the GAC that 450 

is accessible for the MCA molecule, dMCA, was needed in equation (13). As will be 451 

discussed further in Section 3.6, dMCA was assumed to be approximately twice the 452 

molecular diameter of the MCA molecule. The individual tortuosity factors τ of the 453 

carbons needed to determine dMCA were calculated using the CSTM model and are 454 

given in Section B of the SM. 455 

 456 
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Figure 7 shows Φ as function of ƞ. The Thiele modulus of the grain size fractions 457 

1.9 mm, 1.18 mm (unfractionated GAC) and 0.57 mm were >4, which confirmed that 458 

pore diffusion strongly controls the overall reaction. The Thiele modulus of the smallest 459 

grain size fraction (0.30 mm) was 3, which is related to the transient region with 460 

moderate pore diffusional influence (Levenspiel, 1999). In a previous study (Scaramelli 461 

and Digiano, 1977) a Thiele modulus of 0.51 was found for a GAC with a grain size of 462 

~0.5 mm. The Thiele modulus of the 0.57 mm fraction of the 30N GAC observed in this 463 

study was higher by a factor of ~15. This indicates that the importance of pore diffusion 464 

on the overall reactivity found in this study was higher compared to the previous results. 465 

This discrepancy is due to the fact that DE,MCA of the 30N GAC (9.43 × 10-7 cm2 s-1) 466 

used to calculate Ф in the present study was lower by a factor of ~4 compared to that 467 

used previously, where an estimated DE,MCA of 5.484 × 10-6 cm² s-1 was used 468 

(Scaramelli and Digiano, 1977). However, they had no data available regarding the 469 

pore size distribution and based their estimation on the GACs porosity and roughly 470 

estimated tortuosity.  471 

 472 

Figure 7: Effectiveness factor ƞ of the MCA-GAC reaction at stationary 473 

conditions for different grain size fractions of the 30N GAC as 474 

function of the Thiele modulus Φ. Open triangle symbols represent 475 

kapp for the unfractionated 30N GAC using dhy,30N = 1.18 mm. Filled 476 

triangle symbols represent kapp for the fractionated 30N GAC. The 477 

dashed black line is for orientation only and represents the expected 478 

relationship between Ф and η as discussed elsewhere (Ertl et al., 479 

1997). Error bars represent the 95% confidence intervals 480 
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3.6 Impact of pore size distribution 481 

The magnitudes of Φ and η (Figure 7) demonstrate a very strong limitation of the 482 

overall reaction rate by diffusion. Consequently, it is concluded that kapp is not, or only 483 

to a minor extent, affected by the intrinsic chemical reaction, which most likely differs 484 

among the different types of carbons tested. 485 

Given the strong pore diffusional control of the overall reaction, conclusively, values of 486 

kapp for the given set of equally sized GACs (Figure 5) are primarily affected by the 487 

effective diffusion coefficient of MCA in the pore system (DE,MCA), which in turn is a 488 

function of the pore size distribution (Equation 13). Thus, the GAC that exhibits the 489 

highest DE,MCA should exhibit the highest kapp and vice versa. 490 

Using the effective molecular diameter of MCA of ~0.5 nm (calculated using the 491 

RasMol visualisation tool (Sayle and Milnerwhite, 1995)) as dMCA in Equation 13 to 492 

calculate DE,MCA for the different GACs) gives the following order of DE,MCA: 2.28 × 10-493 

6 cm² s-1 (30N) > 1.42 × 10-6 cm² s-1 (K835) > 1.26 × 10-6 cm²s-1 (Centaur). Obviously, 494 

this order does not comply with the order of kapp shown in Figure 8 495 

(0.036 s-1 (Centaur) > 0.025 s-1 (K835) > 0.017 s-1 (30N) > 0.016 s-1 (100058)). 496 

By calculating DE,MCA as a function of dMCA, it appeared that the orders of DE,MCA and 497 

kapp correspond when dMCA is equal or larger than ~1.3 nm. This leads to the conclusion 498 

that pores <1.3 nm in width, which is about 2.5 times the molecular diameter of a MCA 499 

molecule, might be barely accessible for MCA. This can be explained by constrictions 500 

at the pore mouth caused by water molecules that adsorb onto oxygen-containing 501 

functional groups present at the GAC surface by hydrogen bonding (McCallum et al., 502 

1999). These findings are in agreement with those found in previous studies, where it 503 
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was assumed that certain pores might be barely accessible for MCA molecules due to 504 

diffusional limitations (Fairey et al., 2006). 505 

The significantly higher DE,MCA found for the Centaur GAC for dMCA >1.3 nm compared 506 

to the 30N and K835 GAC results mainly from the large number of mesopores (>7 nm), 507 

which the other GACs did not contain. It must be noted here that calculation of DE,MCA 508 

for the 100058 GAC according to Equation 13 is not eligible due to the structured pore 509 

size distribution of the GAC grains (Harriott, 2003). 510 

3.7 Impact of water temperature 511 

Figure 8 presents Arrhenius plots for MCA removal in GAC beds of the 30N, K835 and 512 

Centaur GAC, determined at temperatures between 12 and 45 °C. The activation 513 

energies EA of the fresh and altered GACs derived from the Arrhenius plots ranged 514 

between 20.4 and 29.8 kJ mol-1. For typical swimming pool water temperatures (20 to 515 

35 °C ) an increase of activation energy from 20 to 30 kJ mol-1 results in an increase 516 

in the reaction rates of 40% (fresh GACs) and 80% (altered GACs). 517 

For the fresh unfractionated GACs investigated (30N and K835), activation energies 518 

were between 20.4 and 21.4 kJ mol-1. For the altered unfractionated GACs 519 

investigated (30N, K835 and Centaur) they were slightly higher, namely between 26.0 520 

and 29.3 kJ mol-1. However, the differences were not significant (p < 0.001). 521 

The activation energies determined are those for the combined pore diffusion – surface 522 

reaction process. It is interesting to note that temperature sensitivity was higher when 523 

the GACs had been altered, i.e. for lower overall reaction rates. For most chemical 524 

reactions, the activation energy is in the range of 50 to 250 kJ mol-1. For diffusional 525 

mass transport in water, the diffusion coefficient is approximately linearly proportional 526 
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to T. From that, an activation energy for diffusion in water of approximately 5 kJ mol-1 527 

can be calculated 528 

For the temperature dependence of the combined processes of diffusion and chemical 529 

surface reaction in pores, it will consequently be lower for diffusion-controlled 530 

processes, i.e. when the chemical surface reaction is faster, and will be higher for 531 

chemical surface reaction-controlled processes. Thus, as the alteration of the GACs 532 

brings about a decrease in a chemical reaction rate, the higher activation energies 533 

found for the altered GACs (although not significant due to the small number of data 534 

points available) support the conclusions on diffusion control drawn above, as diffusion 535 

limits less for slower chemical reactions. 536 

Additionally, the conclusions on diffusion control are supported by the fact that 537 

activation energies found for MCA removal in GAC filters in this study were significantly 538 

lower than those reported for the removal of dichloramine (35.6 kJ mol-1 at pH 10 (Kim 539 

and Snoeyink, 1978)) and free chlorine (43.9 kJ mol-1 at pH 7.6 (Suidan and Snoeyink, 540 

1977)). The lower activation energies are in agreement with the higher reactivity of 541 

GACs for the removal of dichloramine and free chlorine as compared with MCA.  542 

As shown previously in this study, the impact of pore diffusion increases with increasing 543 

grain size of the GACs used. Consequently, this increase in diffusional resistance 544 

should affect the temperature dependence of the overall reaction as well (Levenspiel, 545 

1999). However, the difference in the experimentally determined EA for the 546 

unfractionated 30 N carbon (1.18 mm grain diameter) and the 0.5 mm size fraction of 547 

the 30N GAC was not significant (p < 0.001). This discrepancy can be explained by the 548 

limited resolution of the method used to determine kapp, which in turn is used to 549 

calculate EA. 550 



 29 

 551 

Figure 8: Impact of water temperature on the apparent reaction rate constant 552 

for MCA conversion at the GACs 30N, K835 and Centaur. Solid lines 553 

represent linear least-squares best fit and dashed lines represent the 554 

95% confidence band of the fitted regression. Errors for EA represent 555 

the standard deviation of the slope of the linear regression (n = 2 – 6, 556 

depending on the carbon). (n.d. = not determined) 557 

 558 
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4 Summary and conclusions 559 

Using a fixed bed reactor system, the thorough investigation of apparent reaction rates 560 

of the removal of monochloramine at GAC surfaces showed a rapid decrease with 561 

ongoing exposure of the GAC to monochloramine. Quasi-stationary conditions were 562 

reached after less than 100 h, when the GAC had been exposed to MCA 563 

concentrations of 4.5 mg L-1. 564 

When quasi-stationary conditions had been reached, film diffusion definitely is not rate-565 

limiting. However, diffusion of monochloramine in the pores, for the GACs investigated, 566 

limits the overall reaction rate. It was shown that the overall apparent reaction including 567 

diffusion and chemical reaction is first-order. As diffusion limitation of a second-order 568 

chemical reaction will result in an apparent 1.5-order overall reaction, and diffusion 569 

limitation of a first-order reaction will result in an apparent first-order overall reaction 570 

rate, it is concluded that the reaction according to equation (2) is much faster than the 571 

reaction according to equation (1) or not taking place at all.  572 

The dependence of the apparent overall reaction rate on temperature yielded 573 

activation energies EA, according to the Arrhenius relation, in the range of 20 – 27 kJ 574 

mol-1. This additionally supports the conclusion that diffusion is ratee-limiting as 575 

chemical reactions usually show activation energies of 50 kJ mol-1 or higher, while 576 

temperature dependence of diffusion is equivalent to activation energies of about 577 

10 kJ mol-1.  578 

Also, the Thiele modulus (3.0 – 42.1), derived from experiments with different grain 579 

sizes, indicates that the overall reaction rate is strongly controlled by diffusional mass 580 

transport in the pore system of the GACs considered. Conclusively, the pore size 581 
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distribution of the GACs was found to have a significant impact on the overall reaction 582 

rate constant of MCA removal in GAC filters.  583 

Analysis of the impact of the pore size distribution indicates that pores <1.3 nm, which 584 

is about 2.5 times the molecular diameter of MCA, are not accessible for the MCA–585 

GAC reaction. Instead, the number of large mesopores is suggested to be of 586 

importance for a high overall reactivity of a GAC bed for MCA removal.  587 

The use of smaller grain size fractions resulted in an increase of the overall reactivity 588 

of the GAC bed, which is attributed to a lower diffusion path length in the single GAC 589 

grains. If for example swimming pool water with a MCA concentration of 0.2 mg L-1 is 590 

treated in a GAC bed of 1 m height of the 30N GAC and of the largest grain size 591 

investigated (1.9 mm), the effluent concentration will be 0.038 mg L-1. For the smallest 592 

grain size (0.3 mm) this effluent concentration can be achieved with a GAC bed of 0.56 593 

m. 594 

However, it must be considered that the use of smaller GAC grain sizes for enhanced 595 

MCA removal in full-scale applications would bring about a considerably high pressure 596 

loss in fixed-bed GAC filters. For the example described above, using the empirical 597 

relationship described by Ergun (Ergun, 1952) and 1 m bed of 1.9 mm grains, the 598 

pressure loss will be 1.6 mbar. However, for a 0.56 m bed of the 0.3 mm grains, the 599 

pressure loss will 24 mbar, i.e. higher by a factor of 15. 600 

 601 

From the shape of the conversion–time curves of the reaction it was concluded that 602 

the decrease of the reactivity of the GACs observed in the initial phase of the MCA–603 

GAC reaction is due to an increasing pore diffusional resistance that developed with 604 
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increasing reaction time. The increasing diffusional control is explained by the fact that 605 

the reaction front starts at the outer surface of the grains and then moves towards the 606 

centre of the GAC grains. 607 
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Abbreviations 618 

EBCT Empty bed contact time 619 

FBR Fixed-bed reactor 620 

GAC Granular activated carbon 621 

MCA Monochloramine 622 

NDMA N-Nitrosodimethylamine 623 

PCM Progressive Conversion Model 624 

PSD Pore size distribution 625 

QSDFT Quenched solid density functional theory 626 

SCM Shrinking-Core Model 627 

SEM Scanning Electron Microscopy 628 

 629 

Symbols 630 

ao bed volume specific outer surface area (m² m-³) 631 

cbed,in  MCA in-flow concentrations of a GAC filter (mg L-1 as Cl2) 632 

cbed,out MCA out-flow concentrations of a GAC filter (mg L-1 as Cl2) 633 

cstock Concentration of the MCA stock solution (mg L-1 as Cl2) 634 

Dbulk,MCA Bulk diffusion coefficient of MCA in water (m² s-1) 635 

DE,MCA Effective diffusion coefficient of MCA in the pore system of a GAC grain 636 

(m² s-1) 637 

dhy Hydraulic diameter (m) 638 
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dMCA Minimum pore diameter of a GAC that is still accessible for an MCA 639 

molecule (nm) 640 

dp,i Pore diameter of pore size i (nm) 641 

EA Activation energy (J mol-1) 642 

kapp Observable pseudo-first-order reaction rate constant (s-1) 643 

kapp,a Pseudo-first-order reaction rate constant normalised by the specific outer 644 

surface ao of the GAC in the filter bed (m s-1) 645 

k0 Frequency factor (s-1) 646 

kf  Mass transfer coefficient of MCA through the laminar film layer (m s-1) 647 

L Diffusion path length within the adsorbent (m) 648 

pH pH value 649 

Q Volumetric fluid flow rate (L s-1) 650 

Qbed Volumetric fluid flow through a GAC bed (L s-1) 651 

Qstock Volumetric dosing rate of an MCA stock solution 652 

 (L s-1) 653 

R0 Universal gas constant (R = 8.314 J K-1 mol-1) 654 

Rsys Time-dependent loss of MCA in the system without GAC filter 655 

 (mg s-1 as Cl2) 656 

Sh Sherwood number (dimensionless) 657 

T Temperature (K) 658 

tEBCT Empty bed contact time (EBCT) (s) 659 

Vbed Bed volume (L) 660 

vbed Superficial filter velocity (m s-1) 661 
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Vsys Water volume in the FBR system (L) 662 

zbed Bed depth (m) 663 

 664 

Greek symbols 665 

ε Molar absorption coefficient (mol-1 cm-1) 666 

η Effectiveness factor of a heterogeneous reaction (dimensionless) 667 

ρstock(T) Temperature-dependent density of an MCA stock solution  668 

 (g L-1) 669 

τ Tortuosity factor of a GAC (dimensionless) 670 

Φ Thiele modulus of a heterogeneous reaction (dimensionless) 671 

  672 
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Tables 811 

 812 

Table 1: Operation conditions of the FBR experiments. 813 

Type of study GACs Parameters varied Parameters kept 
constant 

Verification of 
the kinetic first-
order 
approach 

K835 
(unfractionated) 

cbed, in = 0.5 - 9 mg L-1  
(as Cl2) 

 

vbed = 44.1 m h-1 

T = 30 °C 

Vbed = 32 mL 

hbed = 3.5 cm 

tEBCT = 2.88 s 

Extra-particle 
mass transfer 

K835, 30N 
(unfractionated) 

vbed = 8.3 - 132.2 m h-1 

Vbed = 6 - 96 mL 

hbed = 0.6 - 94 cm 

 

T = 30 °C 

cbed, in = 4.5 mg L-1  
(as Cl2) 

tEBCT = 2.88 s 

Impact of grain 
size 

30N 
(size fractions 
and 
unfractionated) 

dgrain = 0.30 - 1.9 mm vbed = 44.1 m h-1 
T = 30 °C 

cbed, in = 4.5 mg L-1  
(as Cl2) 

Vbed = 32 mL 

hbed = 3.5 cm 

tEBCT = 2.88 s 

Temperature 
dependence 

30N, K835, 
Centaur 
(unfractionated) 

T = 12 - 45 °C 
 

vbed = 44.1 m h-1 

cbed, in = 4.5 mg L-1  
(as Cl2) 

Vbed = 32 mL  

hbed = 3.5 cm 

tEBCT = 2.88 s 

Conversion 
dependence 
and impact of 
pore size 
distribution 

30N, K835, 
Centaur and 
100058 
(0.57 mm size 
fraction) 

- vbed = 44.1 m h-1 

T = 30 °C 

cbed, in = 4.5 mg L-1  
(as Cl2) 

Vbed = 32 mL 

hbed = 3.5 cm 

tEBCT = 2.88 s 

 814 

 815 

 816 
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Table 2: Physical characterisation of the fresh unfractionated GACs 30N, K835, Centaur and 100058. 817 

GAC type Hydraulic 
diameter 
dhy, in mm 

Outer surface ao 
in m2 m-3 a 

Inner surface aBET 
in m² g-1 a,b 

 

Specific pore volume in cm3 g-1 (%) 

Total Micropores Mesopores 
(total) 

Mesopores 
>7 nm d 

Macro-
pores 

30N 1.18 5444 1105 (900 e) 0.522 0.411 (79) 0.092 (18) 0.003 (0.6) 0.019 (4) 

K835 1.39 4480 1073 (1170 f]) 0.446 0.419 (94) 0.020 (5) 0.001 (0.2) 0.007 (2) 

Centaur 1.00 5532 895 (815 g) 0.408 0.353 (87) 0.046 (11) 0.015 (3.7) 0.009 (2) 

100058 0.55 17418 1291 (1350 c) 0.605 0.496 (82) 0.102 (17) 0.013 (2.1) 0.007 (1) 

a…  All pores of the activated GACs were potentially accessible for the MCA conversion reaction (differences in BET surfaces between granular GACs and their powdered 818 
counterparts were <5%). 819 

b …  Values in brackets represent data as found in the literature. 820 
c …  As reported by the manufacturer. 821 
d …  As derived from the PSD. 822 
e …  Radian et al., 2011. 823 
f …  Aleghafouri et al., 2012. 824 
g …  Bashkova et al., 2007. 825 
 826 



 

  





 45 

 836 

Figure 3: Effect of MCA inflow concentration on the apparent reaction rate 837 

constant for MCA conversion at the altered unfractionated K835 838 

GAC. The solid line represents the linear least-squares best fit and 839 

dashed lines represent the 95% confidence band of the regression. 840 

Errors bars represent the repeatability standard deviation (n = 63). 841 

  842 



 46 

 843 

Figure 4: Impact of filter velocity on the experimentally determined apparent 844 

surface related reaction rate constant kapp,a for MCA conversion and 845 

the theoretical mass transfer coefficient kf of the unfractionated K835 846 

GAC. Error bars represent the 95% confidence interval. Mass 847 

transfer coefficients kf were calculated using a mean grain diameter 848 

dhy,K835 of 1.39 mm. The dashed vertical line represents the 849 

recommended filter velocity for GAC filters in swimming pool water 850 

treatment in Germany (≤30 m h-1) (DIN 19643-2, 2012). 851 









 50 

 876 

Figure 7: Effectiveness factor ƞ of the MCA-GAC reaction at stationary 877 

conditions for different grain size fractions of the 30N GAC as 878 

function of the Thiele modulus Φ. Open triangle symbols represent 879 

kapp for the unfractionated 30N GAC using dhy,30N = 1.18 mm. Filled 880 

triangle symbols represent kapp for the fractionated 30N GAC. The 881 

dashed black line is for orientation only and represents the expected 882 

relationship between Ф and η as discussed elsewhere (Ertl et al., 883 

1997). Error bars represent the 95% confidence intervals.  884 
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A Additional information on the methods used for physical 17 

 GAC characterisation 18 

A.1 Specific outer surface area 19 

The specific outer surface area ao of the GAC bed was calculated based on the grain 20 

size distribution of the unfractionated GACs as follows: 21 

a0=
Abed

Vbed

=6∙
ρ

bed

ρ
grain

∙∑
q

i

dgrain,i

∙
1

ψ
i

 (1) 

Here ρbed and ρgrain are the dry bed density and the dry density of the GAC grains, qi 22 

is the mass fraction of the corresponding mean grain size dgrain,i as derived from the 23 

grain size distribution, and ψ is the dimensionless non-sphericity correction factor, 24 

introduced in order to respect the deviation in shape of the GAC grains from a 25 

spherical form (ψ = 0,75 for GACs (Hawkslei, 1951). Grain size distributions of all 26 

GACs were analysed according to a German standard (DIN 66165-1, 1987) using a 27 

sieve tower (AS 200, Retsch, Germany). Results are given in section B.1 of the 28 

Supplementary information. 29 

A.2 Bed and grain densities 30 

ρbed and ρgrain of the four GACs investigated were determined as follows: A volume of 31 

25–35 mL of the respective GAC was soaked in a beaker with roughly 50 mL of 32 

deionised water. Vacuum was applied to remove air from the pores and to fill them 33 

with water. The grains were removed from the water and spread on a metal sieve 34 

gently shaken. Thus the GAC grain pores remained filled with water.  35 



3 

25 mL of deionised water (Vw) were placed in a 50 mL measuring cylinder and the 36 

mass noted. Then GAC grains with water-filled pores were slowly transferred from 37 

the metal sieve to the cylinder such that a bed of 15 mL (Vbed) was formed, after 38 

carefully consolidating the bed by manually tamping the measuring cylinder 15 times 39 

on a plate. The total volume of water with GAC grains in the measuring cylinder was 40 

denoted as Vw+GAC. The mass of the water and the grains was noted as mw+GAC. 41 

The volume of the wet GAC grains was: 42 

VGAC(wet)=Vw+GAC-Vw 
(2) 

Subsequently, the GAC suspension was taken from the cylinder and spread over a 43 

filter paper of mass mfil. The filter paper with GACs was dried at 110 °C for ~24 h until 44 

the weight of the filter paper reached constancy and no water remained in the pores 45 

of the GAC grains. The mass of the dry filter paper with GAC grains was denoted as 46 

mfil+GAC. The mass of the dry GAC grains mgrain was calculated as the difference 47 

between mfil+GAC and mfil. 48 

According to the procedure, then bed density (dry) ρbed of the GAC bed is given by 49 

ρ
bed=

mgrain

Vbed
(3) 

The density of the GAC grains (dry) ρgrain is given by 50 

ρ
grain

=
mgrain

VGAC(wet)
(4) 

ρbed and ρgrain are given as average obtained from three determinations. 51 

A.3 Hydraulic diameter 52 
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The representative hydraulic grain size dhy of the unfractionated GACs was 53 

calculated from the grain size distribution as follows (Kozeny, 1927): 54 

dhy=
1

∑(
q

i

dgrain,i
)
 

(5) 

 55 

A.4 Internal surface area and pore volumes 56 

The internal surface area, the pore volume of micropores and mesopores, the pore 57 

size distribution (PSD) and the tortuosity of the fresh unfractionated GACs were 58 

determined from nitrogen adsorption/desorption isotherms. Nitrogen 59 

adsorption/desorption isotherms were determined in a relative pressure range (p/p0) 60 

of 10-6 to 1 at 77 K using an automated gas-sorption apparatus (Autosorb-1C, 61 

Quantachrome, Germany). The internal surface area of the GACs was determined 62 

using the BET equations (Brunauer et al., 1938). The total pore volume was 63 

calculated from the nitrogen sorption data at p/p0 of ~0.98 while the micropore 64 

volume was determined using the Dubinin-Radushkevich equation at p/p0 of 65 

10-6 - 10-1. For calculations, ASiQWin Software (Version 3.0, Quantachrome 66 

Instruments) was used. The sum of mesopore (2 – 50 nm) and macropore (>50 nm) 67 

volume was calculated by subtracting the micropore (<2 nm) volume from the total 68 

pore volume. N2 adsorption-desorption isotherms were further used to estimate the 69 

tortuosity of the GACs using the CSTM-model as described previously (Salmas and 70 

Androutsopoulos, 2001) (see Table 2).  71 

The surface area and pore size distribution (PSD) of the GACs were determined 72 

using the quenched solid density functional theory (QSDFT) assuming graphite 73 
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material with pores of slit-like shape (Neimark et al., 2009). The validity of this 74 

assumption is discussed in Section 3.2. The proportion of macropores (>50 nm) was 75 

determined by mercury intrusion porosimetry using a Porosimeter 2000 apparatus 76 

(Carlo Erba Instruments, Milan, Italy). The intrusion experiments were performed in a 77 

pressure range of 0.4 to 200 MPa.  78 

Images of the 100058 GAC were made with a High Resolution Scanning Electron 79 

Microscope (HRSEM) (FEI Nova NanoSEM, 5 kV) and were taken at four different 80 

positions across the grain radius. In total, six close-up HRSEM images of each 81 

position across the diameter were taken. The pore size distribution of the 100058 82 

GAC across the grain diameter was analysed by image processing of the close-up 83 

HRSEM-images as described previously by the authors (Skibinski et al., 2016). Due 84 

to the limited resolution of the HRSEM-images, only pores >10 nm could be 85 

analysed. 86 

B Additional results of the physical GAC characterisation 87 

B.1 Grain Size Distributions 88 

The distributive grain size distribution is shown in Figure B.1 and cumulative grain 89 

size distribution of the GACs is shown in Figure B.2.  90 

The specific outer surface areas, densities and hydraulic diameters are summarised 91 

in Table 1. 92 
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 93 

Figure B.1: Distributive grain size distribution of the fresh unfractionated GACs 94 

30N, K835, Centaur and 100058. 95 

 96 

 97 

Figure B.2: Cumulative grain size distribution of the fresh unfractionated GACs 98 

30N, K835, Centaur and 100058. 99 
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Table B.1: Hydraulic diameter dhy, bulk density (dry) ρbed, density of the GAC 100 

grains ρgrain and specific outer surface area ao of the fresh 101 

unfractionated GACs 30N, K835, Centaur and 100058. 102 

GAC type dhy 
in mm 

ρbed 

in g mL-1 
ρgrain 

in g mL-1 
ao 
in m² m-³ 

 

30N 1.18 0.47 0.56 5444 

K835 1.39 0.59 0.76 4480 

Centaur 1.00 0.50 0.77 5532 

100058 0.55 0.72 0.60 17418 
 103 

B.2 Pore Size Distributions 104 

Figure B.3 shows the N2 adsorption-desorption isotherms of the fresh unfractionated 105 

GACs and the corresponding pore size distribution (PSD). The N2 adsorption-106 

desorption isotherms were type I according to the Brunauer-Deming-Deming-Teller 107 

(BDDT) classification for all GACs considered. The total internal surface area (BET 108 

surface) for all GACs ranged between 895 and 1291 m² gGAC
-1 (see Table 2) and was 109 

in accordance with data found in the literature. The sharp increase of N2 adsorption in 110 

the low pressure region indicates the presence of plentiful micropores (Brunauer et 111 

al., 1940). The percentage of micropores with regard to the total pore volume is 112 

shown in Table 2. The relative proportion of mesopores was the highest for 100058 113 

(18 %) and Centaur (17 %) GACs. The hysteresis of nitrogen physisorption (the 114 

difference between adsorption and desorption isotherms) for the 30N and K835 115 

GACs was almost zero. The fact that adsorption and desorption isotherms branch in 116 

parallel to each other and almost horizontally is associated with the presence of 117 

narrow pores of slit-like shape, which are commonly found for activated GACs (Hu et 118 

al., 2001). 119 
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In the micropore region (<2 nm), the Centaur, K835 and 100058 GAC showed PSD 120 

peaks at the smallest detectable pore size of 0.6 nm and at ~1.1 nm. Both Centaur 121 

and K835 GACs showed a PSD peak at 1.1 nm, while the 30N GAC showed peaks 122 

at 0.72 and 1.5 nm. The characteristic pore size distribution of the Centaur GAC is in 123 

agreement with data reported previously (Bashkova et al., 2007). Both the Centaur 124 

and the 100058 GACs contained a significant proportion of large mesopores of 125 

>7 nm (0.015 cm³ g-1 (Centaur) and 0.013 cm³ g-1 (100058)). 126 

Mercury intrusion porosimetry measurements showed that the proportion of 127 

macropores (macropore volume related to the total pore volume) was very low and 128 

ranged between 1.6 and 3.6 %. 129 
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 130 

Figure B.3: N2 adsorption and desorption isotherms at 77 K (A) and pore size 131 

distribution of the unfractionated fresh GACs (B) (inset represents the 132 

distribution of large mesopores of >7 nm). 133 

B.3 Characterisation of the ordered pore size distribution of the 100058 GAC 134 

Examples of close-up HRSEM images of the 100058 GAC taken at different positions 135 

across the radius of a cross-section are presented in Figure B.4. It revealed that the 136 

obvious textural change across the diameter of the grain (Figure B.4(A)) is 137 

accompanied by a change in the pore size distribution (Figure B.4(B-D)). From the 138 

relative pore size distribution it becomes obvious that plenty of mesopores are 139 

present at the outer region of the grain, while their relative proportion decreases 140 
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towards the centre of the grain. Near of the centre of a grain (position D), no 141 

macropores were present and mesopores revealed a mean diameter of ~25 nm. 142 

No structural changes were revealed from the HRSEM images of the K835 (D1), 30N 143 

(D2) and Centaur (D3) carbon, supporting the assumption of an equal pore size 144 

distribution proposed for the three GACs by earlier studies (Radian et al., 2011; 145 

Aleghafouri et al., 2012; Bashkova et al., 2007). 146 
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 147 

 148 

Figure B.4: HRSEM image of a cross-section of the 100058 GAC at a zoom of 149 

150 (top right) and at different positions across the diameter with the 150 

corresponding relative cross-sectional pore area distribution at a 151 

zoom of 200,000 (A-C). Further, HRSEM images of the K835 (D1), 152 

30N (D2) and Centaur (D3) GACs are shown at a zoom of 50 (D1, 153 

D2) and 21 (D3). Solid lines in (A-C) represent the log-normal 154 

distribution. 155 

 156 
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C Additional information on the GAC’s conversion–time 157 

behaviour 158 

The difference in conversion–time behaviour between the microporous GACs (K835, 159 

30N and Centaur) and the 100058 GAC can be explained by the unusual pore size 160 

distribution of the latter, as follows: 161 

(i) Due to the high proportion of mesopores near to the external surface of the 162 

grains of the 100058 GAC (Figure 3(B)), the effective diffusion coefficient 163 

of monochloramine (DE,MCA) in this area is high and the overall reaction is 164 

controlled by the intrinsic chemical reaction at the beginning. 165 

(ii) The observed decrease in mean pore size towards the centre of the grains 166 

of the GAC 100058 will lead to an increase of the accessible pore area 167 

reached by the reaction front when moving towards the centre. As a result, 168 

the reactivity of the 100058 GAC increases during the first ~20 min of the 169 

reaction. 170 

(iii) With on-going reaction time, the reaction front moves further towards the 171 

grain’s centre and diffusion paths of monochloramine molecules increase 172 

until a shift in the reaction controlling mechanism from chemical control to 173 

diffusional control occurs. This shift results in a decrease in reactivity, 174 

which in turn leads to a sigmoid conversion time curve (Levenspiel, 1999), 175 

as was found for the 100058 GAC. 176 

In contrast to the 100058 GAC, the pore structure of the conventional GACs (30N, 177 

K835, Centaur) is assumed to be microporous throughout the entire particle. Thus, 178 



 13 

for those GACs the overall process is controlled by diffusion right from the start of the 179 

reaction, leading to hyperbolic conversion–time curves (Levenspiel, 1999). 180 

 181 
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