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Abstract 26 

Among aquatic organisms, invertebrate species such as the freshwater crustacean Daphnia 27 

magna are believed to be sensitive to gamma radiation, although information on responses at 28 

the individual, biochemical and molecular level is scarce. Following gamma radiation exposure, 29 

biological effects are attributed to the formation of free radicals, formation of reactive oxygen 30 

species (ROS) and subsequently oxidative damage to lipids, proteins and DNA in exposed 31 

organisms. Thus, in the present study, effects and modes of action (MoA) have been 32 

investigated in D. magna exposed to gamma radiation (dose rates: 0.41, 1.1, 4.3, 10.7, 42.9 and 33 

106 mGy/h) after short-term exposure (24 and 48 hrs). Several individual, cellular and 34 

molecular endpoints were addressed, such as ROS formation, lipid peroxidation, DNA damage 35 

and global transcriptional changes. The results showed that oxidative stress is one of the main 36 

toxic effects in gamma radiation exposed D. magna, mediated by the dose-dependent increase 37 

in ROS formation and consequently oxidative damage to lipids and DNA over time. Global 38 

transcriptional analysis verified oxidative stress as one of the main MoA of gamma radiation at 39 

high dose rates, and identified a number of additional MoAs that may be of toxicological 40 

relevance. The present study confirmed that acute exposure to gamma radiation caused a range 41 

of cellular and molecular effects in D. magna exposed to intermediate dose rates, and highlights 42 

the need for assessing effects at longer and more environmentally relevant exposure durations 43 

in future studies.  44 
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1. Introduction 51 

The increased use of nuclear technologies in the past decades has increased the concern on the 52 

impacts of man-made radionuclides in the environment, especially after the nuclear accident in 53 

Chernobyl in 1986 and more recently at Fukushima. In addition, other anthropogenic activities 54 

as routine discharges from nuclear power plants, nuclear weapons testing, mining, and nuclear 55 

waste from research facilities enhance the discharge of radionuclides into the aquatic 56 

environment thereby causing significant exposure of aquatic organisms (Unscear 2008).  57 

Most radionuclides are gamma emitting, and gamma radiation can result in direct damage to 58 

biomolecules, such as double-strand breaks in genomic DNA (Ward, 1995), genotoxic DNA 59 

alterations (Parisot et al., 2015), chromosomal aberrations and mutations (Dallas et al., 2012), 60 

or indirectly damage macromolecules through the production of free radicals and reactive 61 

oxygen species (ROS) (Reisz et al., 2014). As a consequence, effects on a genetic and cellular 62 

level can result in significant impacts at the individual and population level, such as increased 63 

mortality and morbidity, reproduction impairment, shortening of life span and growth inhibition 64 

(Dallas et al., 2012; Fuller et al., 2015; Won et al., 2014). Although gamma radiation is known 65 

to induce toxicity in several aquatic invertebrates, knowledge of low dose effects on this diverse 66 

group of organisms is still limited compared to more extensively studied organisms such as fish 67 

and mammals. An overview of the effects of ionising radiation on aquatic invertebrates has 68 

already been carried out (Dallas et al., 2012; Fuller et al., 2015), highlighting the need for 69 

information regarding mechanisms of toxicity, early and sub-lethal effects in several groups of 70 

invertebrates, in for example the subphylum Crustacea. Crustaceans, such as the water flea 71 

Daphnia magna, have been identified as key models for the development of environmental 72 

radiation protection frameworks (ICRP, 2008).  73 

Daphnia magna are small freshwater filter-feeding crustaceans that occupy a key position in 74 

the aquatic food web, not only as important phytoplankton grazers, but also as major food 75 



sources for fish and invertebrate predators (Shaw et al., 2008). Daphnids are one of the most 76 

used invertebrate species in freshwater ecotoxicology and ecology mainly due to their 77 

comparatively short generation time, ease of culturing under laboratory conditions, capacity to 78 

reproduce through parthenogenesis and sensitivity to various environmental stressors 79 

(Watanabe et al., 2008). Accordingly, daphnids have been routinely used as standard model 80 

organisms in regulatory toxicity testing and detailed test guidelines have been developed 81 

(OECD, 2004, 2008; US EPA, 1996). Knowledge of the ecology, phylogeny, toxicology, and 82 

physiology of daphnia species in combination with a fully sequenced genome (wfleabase.org) 83 

has enabled a high number of exposure studies with different stressors in this species. Recent 84 

development of genomic tools, such as genetic linkage maps, cDNA libraries, expressed 85 

sequence tags databases and microarrays, have further enhanced the understanding of 86 

environmental-induced modulation of gene functions that may give rise to effects of ecological 87 

relevance (Kim et al., 2015; Shaw et al., 2008; Watanabe et al., 2008).  88 

Previous studies have shown that exposure to acute doses of gamma radiation can cause 89 

significant mortality (Fuma et al., 2003), cause reduction in mobility and growth in daphnids, 90 

as well as a decrease in carbon incorporation in connection to reduced activity, filtering and 91 

ingestion rates (Nascimento et al., 2015, 2016; Nascimento and Bradshaw, 2016). Chronic 92 

exposure to gamma radiation can negatively impact survival, growth (decrease in body mass 93 

and length), metabolic dynamics (reduced resistance to starvation, decrease in mean-life span, 94 

alterations in respiration rate and mitochondrial activity) and reproduction (reduction in 95 

fecundity, delay in brood release and reduction in brood size) in daphnids, effects that were 96 

aggravated in subsequent generations (Gilbin, 2008; Marshall, 1962, 1966; Parisot et al., 2015; 97 

Sarapultseva and Gorski, 2013; Sarapultseva et al., 2017). Radiation-induced genotoxicity after 98 

chronic exposure was also reported in D. magna in the form of significant DNA alterations and 99 

transmission to progeny across generations (Parisot et al., 2015).  100 



One of the most well-known toxic mechanisms of gamma radiation is the generation of ROS 101 

(e.g. superoxide radicals, hydroxyl radicals and hydrogen peroxide), either through direct 102 

interaction with the water in cells (formation of free radicals, recombination of radicals) or 103 

indirectly by the generation of secondary ROS by subsequent chemical cascades. The 104 

production of these radicals in excess can overwhelm the antioxidant capacity of cells and lead 105 

to oxidative stress due to oxidization of cellular components, instigating cell damage and other 106 

deleterious effects (Reisz et al., 2014). Some of the most common examples of biochemical and 107 

physiological damages associated with oxidative stress are lipid peroxidation (LPO) (formation 108 

of malonaldehyde-like species and 4-hydroxyalkenals), protein oxidation (e.g. carbonylation 109 

and cysteine oxidation) and DNA damage (e.g. single and double-strand breaks, 8-110 

hydroxydeoxyguanosine and other oxidized bases), that have been described as some of the 111 

mechanisms involved in the damage caused by gamma radiation (Dallas et al., 2012; Fuller et 112 

al., 2015; Reisz et al., 2014). Even though it is well documented that gamma radiation can cause 113 

oxidative stress responses in several aquatic organisms (Dallas et al., 2012; Fuller et al., 2015; 114 

Won et al., 2014), detailed knowledge about the mode of action (MoA) of gamma radiation and 115 

linkage to phenotypical effects in crustaceans are still limited. Thus, acute toxicity of gamma 116 

radiation-induced oxidative stress was examined in D. magna by focusing on ROS formation, 117 

lipid peroxidation and DNA damage. In addition, alterations in the global gene expression were 118 

investigated to identify potential MoAs of gamma radiation in D. magna. 119 

 120 

2. Material and Methods 121 

2.1. Test Organism 122 

Daphnia magna used in this study have been maintained in the NIVA laboratory for more than 123 

20 years (DHI strain NIVA, Oslo, Norway). Daphnia magna was cultured in EPA moderately 124 

hard media (MHRW, 96.0 mg/L NaHCO3, 60.0 mg/L CaSO4.2H2O, 60.0 mg/L MgSO4, 4.0 125 



mg/L KCl, pH 7.2), which was renewed twice a week. Daphnids were fed daily with a 126 

suspension of the unicellular algae Pseudokirchneriella subcapitata and supplemented by an 127 

amount of dried baker’s yeast (20 mg/mL). Cultures were kept in a climate room with light 128 

conditions set to 16:8 hr light: dark photoperiod and temperature 20 ± 1ºC, according to the 129 

OECD 202 guidelines (OECD, 2004). Under these conditions, female daphnids reproduce by 130 

parthenogenesis every three days. All cultures and exposures were initiated using third to fifth 131 

brood neonates aged <24 h old. 132 

 133 

2.2. Gamma radiation exposure 134 

Gamma radiation exposures were conducted at the FIGARO 60Co facility at the Norwegian 135 

University of Life Sciences (NMBU, Ås, Norway). D. magna neonates (<24h old) were 136 

exposed for 24 and 48 hrs to external gamma radiation under controlled climate conditions in 137 

accordance with the OECD 202 guidelines (OECD, 2004), with slight modifications to 138 

accommodate the experimental conditions used in this study. Neonates were exposed in 24-139 

well plates (FalconTM, Oslo, Norway) to 7 different gamma dose rates varying from 0.41 to 140 

106 mGy/h (see Supplementary Table A1 for more information on dose rates and total doses), 141 

along with a control placed behind lead shielding in the same room (background radiation). 142 

Experiments were conducted at the same temperature as that used for maintenance of D. magna 143 

cultures and in the dark, and exposure conditions as temperature, pH and dissolved oxygen were 144 

monitored for each dose rate throughout exposure. Immobilization and moulting frequency 145 

were recorded at 24 and 48 hrs. Due to relatively large sample size required for some of the 146 

parameters analysed, exposed daphnids were obtained across different experiments spaced in 147 

time, but subjected to the same experimental conditions. Three to six replicate plates were used 148 

for each endpoint, each plate with 10-12 daphnids depending on endpoint (see Supplementary 149 

Table A1 for more information on replication used). Field dosimetry (air kerma rates measured 150 



with an ionization chamber) was traceable to the Norwegian Secondary Standard Dosimetry 151 

Laboratory (Norwegian Radiation Protection Authority, NRPA, Oslo, Norway) (Bjerke and 152 

Hetland, 2014). Dose rates to water in the centre of microplate wells (front row) were estimated 153 

according to Bjerke and Hetland (2014) and used as a proxy for the dose rates to exposed D. 154 

magna. Actual air kerma rates were measured using an Optically Stimulated Luminescence 155 

(OSL) based nanoDots dosimetry (Landauer) by positioning the nanoDots at the front of the 156 

microplates without use of build-up caps.  Air kerma dose rates were calculated applying a 157 

conversion factor suggested by Hansen and Hetland (2015). Total doses were calculated from 158 

measured dose rates (mGy/h), multiplied by total exposure time (Supplementary Table A2). 159 

 160 

2.3. ROS formation 161 

Intracellular ROS production in D. magna exposed to gamma radiation was determined in vivo 162 

as described by Ma et al. (2012) and Xie et al. (2007) using the probes 2’,7’-163 

dichlorodihydrofluorescein diacetate (H2DCFDA, Invitrogen, Molecular Probes Inc., Eugene, 164 

OR, USA) and dihydrorhodamine 123 (DHR 123, Invitrogen, Molecular Probes Inc., Eugene, 165 

OR, USA), and adapted to the experimental conditions used in this study. Stock solutions of 20 166 

mM H2DCFDA and 5 mM DHR 123 were prepared in DMSO and kept at -20°C prior to use. 167 

On the day of the analysis, H2DCFDA and DHR123 stock solutions were diluted in MHRW to 168 

a final working solution of 2 mM. After 24h and 48 hrs exposure to gamma radiation, daphnids 169 

were collected and transferred in 200 µL MHRW to a 96-well black microplate (Corning 170 

Costar, Cambridge, MA, USA), with 10-12 replicates per dose rate. Only surviving daphnids 171 

were used for the determination of ROS. For each dose rate, 5 µL of either H2DCFDA or DHR 172 

123 working solutions were immediately added to each well (50 µM final concentration) and 173 

the microplate covered with aluminium foil and incubated for 6 hrs under laboratory conditions. 174 

Fluorescence was recorded hourly on a microplate fluorescent reader Fluoroskan Ascent 2.5, 175 



ThermoFisher Scientific, USA) with excitation/emission of 485/538 nm. Natural fluorescence 176 

of irradiated MHRW in combination with the probes (without presence of daphnids) for each 177 

dose rate was also analysed and the resulting fluorescence subtracted. The relative fluorescence 178 

obtained for both probes at each dose rate was expressed as fold induction comparative to the 179 

control. Two independent experiments were run to determine the formation of ROS in daphnia 180 

exposed to gamma radiation. Hydrogen peroxide (H2O2, CAS number: 7722-84-1, purity 181 

≥30%) was used as positive control for both probes following the same procedure, in 182 

concentrations ranging from 1–50 μM. 183 

 184 

2.4. Lipid peroxidation 185 

Lipid peroxidation (LPO) was assessed by determining malondialdehyde (MDA) and 4-186 

hydroxyalkenals (4-HNE) concentrations upon decomposition by polyunsaturated fatty acid 187 

peroxides, following the method described by Erdelmeier et al. (1998). Briefly, after 24 and 48 188 

hrs exposure to gamma radiation, 5 to 6 groups of 36 daphnids were pooled, frozen in liquid 189 

nitrogen and stored at -80ºC until further analysis. Pooled daphnids were homogenized using a 190 

Precellys tissue Homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France) in 0.02 191 

M Tris-HCl containing 0.5 M BHT (pH 7.4) at 4ºC. The resulting homogenate was centrifuged 192 

at 3000 g for 10 minutes at 4ºC and the supernatant used for protein determination and LPO 193 

analysis. LPO analysis was based on the reaction of two moles of N-methyl-2-phenylindole 194 

(3:1 mixture of acetonitrile/methanol), a chromogenic reagent, with one mole of either MDA 195 

or 4-HNE under acidic conditions (methanesulfonic acid) at 45°C for 60 min to yield a stable 196 

chromophore with maximum absorbance at 586 nm. Malondialdehyde bis-(1,1,3,3-197 

tetrametoxypropane) was used as a standard. Protein content was determined using the Bradford 198 

method (Bradford, 1976) with Immunoglobulin G (IgG) as a standard. Lipid peroxidation was 199 

expressed as fold induction comparative to the control. 200 



 201 

2.5. Comet Assay 202 

The alkaline Comet Assay was performed on haemolymph cells from exposed daphnids, 203 

according to the method by Pellegri et al. (2014) and adapted to the high throughput single cell 204 

gel electrophoresis described in Gutzkow et al. (2013). After 24 and 48 hrs exposure, pools of 205 

24 daphnids (3 biological replicates) were placed in PBS buffer without Ca2+/Mg2+ (pH 7.4) 206 

and haemolymph cells extracted by mechanical dissociation using a metal grinder. After 207 

haemolymph extraction, the buffer containing the cells was filtered using a 55 µM nylon mesh 208 

and the resulting cell suspension centrifuged at 300 g for 5 minutes (4ºC). The pellet was gently 209 

resuspended in PBS buffer without Ca2+/Mg2+ (pH 7.4) and the final cell suspension adjusted 210 

to 1x106 cells/mL. Cell viability was checked using the trypan blue exclusion assay. Cells were 211 

resuspended in 1:10 0.75 % low melting point agarose at 37 ºC and triplicates (3×4 µL) from 212 

each biological replicate were immediately applied on a cold GelBond®film. Lysis was 213 

performed overnight in lysis buffer (2.5 M NaCl, 0.1 M Na2EDTA, 0.01 M Tris, 0.2 M NaOH, 214 

0.034 M N-laurylsarcosine, 10 % DMSO, 1 % Triton X-100, pH 10) at 4ºC. For unwinding, 215 

films were immersed in cold electrophoresis solution (0.3 M NaOH, 0.001 M Na2EDTA, pH > 216 

13) for 40 min. Electrophoresis was carried out in cold, fresh electrophoresis solution for 20 217 

min at 8 ºC, 25 V giving 0.8 V/cm across the platform, with circulation of electrophoresis 218 

solution. After electrophoresis, films were neutralized with neutralisation buffer (0.4 M Tris–219 

HCl, pH 7.5) for 2×5 min, fixed in ethanol (>90 min in 96 % ethanol) and dried overnight. 220 

Films were stained with SYBR®Gold Nucleic Acid Gel Stain (Life Technologies, Paisley, UK) 221 

in TE-buffer (1 mM Na2EDTA, 10 mM Tris–HCl, pH 8) before examination at a 20× 222 

magnification under an Olympus BX51microscope (light source: Olympus BH2-RFL-T3, 223 

Olympus Optical Co., Ltd.; camera: A312f-VIS, BASLER, Ahrensburg, Germany). Fifty 224 

randomly chosen cells per replicate (150 cells per biological replicate, total 450 cells per dose 225 



rate) were scored using the Comet IV analysis software (Perceptive Instruments Ltd., Bury St. 226 

Edmunds, UK). Tail intensity (% Tail DNA), defined as the percentage of DNA migrated from 227 

the head of the comet into the tail, was used as a measure of DNA damage induced by gamma 228 

radiation because it has been shown to be the most meaningful endpoint to assess genotoxicity 229 

(Kumaravel and Jha, 2006). The mean percentage (%) of DNA in the tail per biological replicate 230 

was calculated using the median values of % tail DNA from the 50 comets from each technical 231 

replicate. Treatment with hydrogen peroxide (H2O2, CAS number: 7722-84-1) was used as the 232 

positive control following the same procedure, in concentrations ranging from 1 to 10 μM. 233 

 234 

2.6. Microarray gene expression analysis 235 

After 24 hrs exposure to gamma radiation, six daphnids were pooled for each replicate (n=5), 236 

sampled in RNALater (Sigma-Aldrich) and stored at -80°C until use. Total RNA was isolated 237 

using the ZR Tissue & Insect RNA MicroPrep kit in combination with on-column DNase I 238 

treatment (Zymo Research Corp., Irvine, CA) as previously described (Song et al., 2016). The 239 

purity (260/280>1.8, yield > 100 ng) and integrity (clear RNA peaks, flat baselines) of RNA 240 

were assessed using Nanodrop ND-1000 (Nanodrop Technologies, Wilminton, DE) and 241 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), respectively. 242 

Transcriptomic analysis was performed using Agilent custom 60,000-feature D. magna 243 

oligonucleotide microarrays and 50 ng input RNA according to Agilent’s standard protocol 244 

“One-Color Microarray-Based Gene Expression Analysis, version 6.5”, with modifications 245 

(Song et al., 2016). Raw microarray data (signal intensity) was extracted from scanned images 246 

using the Feature Extraction software v10.7 (Agilent), and data corrected for baseline variance 247 

(normexp method), inter-array variance (quantile method), filtered for low expression probes 248 

and technical replicate probes merged using the Bioconductor package LIMMA (Smyth, 2005) 249 

in the R statistical environment v3.1.2, as previously described (Jensen et al., 2016). 250 



Differentially expressed genes (DEGs) were determined using LIMMA by contrasting gamma-251 

exposed groups to the control (p<0.05). Gene ontology (GO) enrichment analysis was 252 

performed towards crustacean GO databases using a hypergeometric test (p<0.05) implemented 253 

in Cytoscape v3.1.1 (Smoot et al., 2011) via the Bingo plugin v2.4 (Maere et al., 2005). The D. 254 

magna DEGs were further mapped to Drosophila melanogaster orthologs in order to perform 255 

Reactome pathway enrichment analysis (p<0.05) using the Cytoscape plugin ClueGO v2.1.4 256 

(Bindea et al., 2009). Venn diagram analyses were performed using Venny 257 

(http://bioinfogp.cnb.csic.es/tools/venny/) and Sumo software package 258 

(http://angiogenesis.dkfz.de/oncoexpress/software/sumo/). No multiple testing corrections 259 

were performed to avoid loss of DEGs and GO/pathways that may potential have high relevance 260 

for gamma-induced stress response profiles (Song et al., 2014; 2016). 261 

 262 

2.7. Quantitative real-time PCR analysis 263 

A selection of 13 target genes considered relevant to potential MoAs of gamma radiation was 264 

further verified using quantitative real-time reverse transcription polymerase chain reaction 265 

(qRTPCR) essentially as described by Song et al. (2016). The qRTPCR analysis was conducted 266 

on a CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories, Oslo, 267 

Norway) using the same RNA as used in the microarray analysis (n=5). Primers used for cDNA 268 

amplification were designed using the online software Primer3 v4.0.0 (http://primer3.ut.ee/) 269 

and purchased from Invitrogen™ (Carlsbad, California, USA) (Supplementary Table A3). 270 

Briefly, cDNA was made from total RNA (82.5 ng) using qScript™ cDNA SuperMix (Quanta 271 

BioSciencesTM, Gaithersburg, MD, USA), and amplified in a 20 μl reaction (1 ng cDNA, 400 272 

nM forward/reverse primer and 15 μl PerfeCTa® SYBR® Green FastMix® (Quanta 273 

BioSciencesTM)) using the Bio-Rad CFX384 platform (Bio-Rad Laboratories, Hercules, CA). 274 

Four biological replicates (each containing two technical replicates), no-reverse-transcriptase 275 



(NRT) and no-template controls (NTC) were included in the amplification. Pooled cDNA 276 

(0.25–4 ng) was used to generate a standard curve for determination of amplification efficiency. 277 

The relative expression was calculated using the Pfaffl method (Pfaffl, 2001). Gene expression 278 

data for target genes was normalized to the geometric mean expression of three reference genes, 279 

beta actin (β-actin), cyclophilin (Cyp) and glyceraldehyde 3-phosphate dehydrogenase 280 

(Gadph), to compensate for any difference in initial RNA quantity and in reverse transcriptase 281 

efficiency. The normalized expression of each target gene was further normalized to the mean 282 

expression of the control. 283 

 284 

2.8. Statistical Analysis 285 

Statistical analyses were performed using XLStat2016® (Addinsoft, Paris, France) and 286 

GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA, USA). Data was tested for normality 287 

and homogeneity of variances using Shapiro-Wilk and Levene´s tests, respectively, to check if 288 

all parameters satisfied the assumptions associated with parametric tests. Differences between 289 

dose rates and time of exposure were compared for ROS production, LPO and DNA damage 290 

data using a 2-way ANOVA followed by the post-hoc Tukey test. Gene expression results were 291 

analysed for significant differences between dose rates either with one-way analysis of variance 292 

(ANOVA) or Kruskal–Wallis One Way Analysis of Variance on Ranks. If significant, pairwise 293 

multiple comparison procedures were conducted, using the Tukey test or the Dunn’s method. 294 

For qPCR data, outliers were removed using the ROUT test implemented in GraphPad. A 295 

Pearson correlation analysis was also performed between the mean relative gene expression 296 

values obtained by qPCR compared to mean relative gene expression values for the same genes 297 

from the microarray analysis for all exposure groups. Statistical significance was set at p<0.05 298 

for all statistical analyses.  299 

 300 



3. Results 301 

3.1. Effects on mortality and exposure parameters 302 

Following gamma radiation exposure (dose rates: 0.41, 1.1, 4.3, 10.7, 42.9 and 106 mGy/h), no 303 

significance difference in mortality, visual morphological or behavioural changes were 304 

observed between control and irradiated daphnia for all doses rates tested at 24 and 48 hrs. The 305 

temperature, pH and dissolved oxygen of the MHRW exposure media was 20.0 ± 0.05ºC, 8.1 306 

± 0.05 and 8.6 ± 0.02 mg/L during the exposure period, respectively. 307 

 308 

3.2. ROS formation  309 

The formation of ROS was analysed regarding differences between dose rate and time of 310 

exposure using a two-way ANOVA (Supplementary Table A4). Results show that for the 311 

H2DCFDA fluorescence probe only the effect of dose rate was significant for the results 312 

obtained (p<0.0001), while for the DHR 123 probe, both time and dose rate where significant 313 

for the differences seen in exposed daphnids (p=0.0384 and p<0.0001, respectively). Exposure 314 

to gamma radiation for 24 hrs caused a significant increase in ROS formation in D. magna at 315 

4.3 (1.4-fold), 10.7 (1.4-fold) and 42.9 mGy/h (1.5-fold), when measured by the H2DCFDA 316 

fluorescence probe (Figure 1A). Similar results were obtained with the DHR 123 probe (Figure 317 

1C), with significant ROS levels at dose rates higher than 1.1 mGy/h after 24 hrs exposure (up 318 

to a 1.7-fold increase at 42.9 mGy/h). The results obtained for both probes showed no 319 

significant ROS formation at the highest dose rate tested (106 mGy/h). After 48 hrs exposure, 320 

a significant increase in ROS formation was observed at 10.7 mGy/h and higher dose rates (up 321 

to 1.3-fold) in daphnids incubated with H2DCFDA (Figure 1B), even though no clear dose-322 

response relationship was observed. In daphnids incubated with the DHR 123 probe, a 323 

significant increase in ROS formation was only detected at 1.1, 10.7 and 106 mGy/h (p<0.05), 324 

with a maximum 1.6-fold induction at 1.1 mGy/h (Figure 1D). Temporally, a decrease in ROS 325 



formation from 24 to 48 hrs exposure was detected with DHR 124 only at 4.3 and 42.9 mGy/h 326 

(Figure 1C-D). 327 

 328 

Figure 1 – Intracellular reactive oxygen species (ROS) formation measured by A) 2’,7’-329 

dichlorodihydrofluorescein diacetate (H2DCFDA) and B) dihydrorhodamine 123 (DHR 123) 330 

in Daphnia magna after 24 hrs and 48 hrs exposure to gamma radiation (average  SEM). 331 

Letters represent statistical differences between dose rates for each exposure period (p<0.05). 332 

Asterisk represent statistical differences between exposure period for each dose rate (p<0.01). 333 

 334 



H2O2 was used as a positive control to evaluate the performance of the ROS formation bioassay 335 

in D. magna using two fluorescent probes H2DFFDA and DHR 123. The results obtained 336 

showed a significant concentration dependent increase in ROS formation after 24 hrs exposure 337 

to H2O2 (Supplementary Figure A1).  338 

 339 

3.3. Lipid peroxidation 340 

The two-way ANOVA showed that both time and dose rate had a significant effect on LPO 341 

data in exposed daphnids (Supplementary Table A4) and that their interaction was also 342 

significant (p<0.0001). Exposure to gamma radiation caused LPO in exposed daphnids after 24 343 

hrs exposure only at 10.7 and 42.9 mGy/h (1.2- and 1.3–fold, respectively, Figure 2A). After 344 

48 hrs exposure, a dose-dependent increase in LPO was detected (Figure 2B), reaching a 1.5–345 

fold increase at the highest dose rate (106 mGy/h, p<0.05). A significant temporal increase in 346 

LPO was only detected at 106 mGy/h, with a 1.4-fold increase from 24 hrs to 48 hrs exposure. 347 

  348 

Figure 2 – Lipid peroxidation in Daphnia magna (5 to 6 groups of 36 pooled daphnids) was 349 

measured as malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE) after exposure to 350 

gamma radiation for 24 hrs and 48 hrs (average  SEM). Letters represent statistical differences 351 



between dose rates for each exposure period (p<0.05). Asterisk represent statistical differences 352 

between exposure period for each dose rate (p<0.0001). 353 

 354 

3.4. Comet assay  355 

Similarly to LPO, time and dose rate also had a significant effect on DNA damage 356 

(Supplementary Table A4) and that their interaction was also significant (p<0.0001), as shown 357 

by the two-way ANOVA. Gamma radiation caused a small, but statistically significant increase 358 

in DNA-damage measured as single strand breaks (SSB) and alkali labile site formation in the 359 

haemolymph after 24 hrs of exposure at the highest doses (10.7, 42.9 and 106 mGy/h) compared 360 

to untreated controls. All dose rates except for 4.3 mGy/h caused DNA-damage after 48 hrs 361 

exposure. As for temporal variation, an increase in DNA-damage was observed at 0.41, 1.1 and 362 

10.7 mGy/h at 48 hrs exposure compared to 24 hrs. H2O2 was used as a positive control and the 363 

results obtained showed a significant concentration-dependent increase in DNA damage in 364 

haemolymph from daphnids after 24 hrs, thus assuring a good quality control of the assay 365 

(Supplementary Figure A2). Cell viability was assessed using the trypan blue staining with cell 366 

viability >90 % at all dose rates used. Images of comets from haemolymph cells isolated from 367 

control and gamma radiation exposed daphnids are shown in Supplementary Figure A3.  368 



  369 

Figure 3 – DNA damage in Daphnia magna after exposure to gamma radiation for 24 hrs and 370 

48 hrs (total 450 cells per dose rate, average  SEM). Letters represent statistical differences 371 

between dose rates for each exposure period (p<0.05). Asterisk represent statistical differences 372 

between exposure period for each dose rate (p<0.001). 373 

 374 

3.5. Global transcriptional alterations 375 

A massive number of transcriptional alterations were found in D. magna exposed 24 hrs to 42.9 376 

and 106 mGy/h (3308 and 3352 DEGs, respectively), the highest dose rates tested, compared 377 

to the intermediate dose rates of 1.1, 4.3 and 10.7 mGy/h (458, 534 and 1220 DEGs) 378 

(Supplementary Table A5). Interestingly, exposure to the lowest gamma radiation dose rate of 379 

0.41 mGy/h, resulted in a higher number of DEGs than the intermediate dose rates (2679 380 

DEGs), suggesting a transcriptional response of D. magna also at low-dose rates 381 

(Supplementary Table A5). The Venn diagram analysis (Supplementary Figure A4) revealed 382 

that only 35 DEGs were identified to be common between all dose rates, whereas the majority 383 

of transcriptional changes were due to up-regulation of the DEGs. The complete list of DEGs 384 



that were regulated in D. magna after exposure to gamma radiation can be found in the 385 

Supplementary Table A6. 386 

 387 

3.6. Functional enrichment analysis 388 

Functional enrichment analysis showed that a total of 128, 40, 88 and 123 GO functions were 389 

over-represented after exposure to 4.3, 10.7, 42.9 and 106 mGy/h, with the majority being dose 390 

rate specific (Figure 4). No significant GO enrichment was identified at the two lowest dose 391 

rates tested (i.e., 0.41 and 1.1 mGy/h). Briefly, exposure to 4.3 mGy/h seems to modulate DEGs 392 

involved in ATP binding, tissue homeostasis, and synapse growth and assembly.  Exposure to 393 

10.7 mGy/h resulted in the differential regulation of genes related to chitin catabolic process, 394 

endochitinase activity and polysaccharide and aminoglycan catabolic processes, while 42.9 395 

mGy/h regulated genes involved in oxidoreductase activity, synaptic target recognition and 396 

protein processing and maturing. The highest dose (106 mGy/h) regulated DEGs associated 397 

with GTP binding, cytoskeleton organization and carbohydrate metabolic process. Functions 398 

such as ATPase activity coupled to phosphorylative mechanism and metal ion transmembrane 399 

transporter activity were commonly regulated by all dose rates. The complete list of GO 400 

functions affected by the different dose rates used in this study can be found in the 401 

Supplementary Table A7. 402 

 403 

 404 



 405 

Figure 4 – Venn diagram analysis of overrepresented gene ontology (GO) functions that were 406 

regulated in Daphnia magna after 24 hrs exposure to gamma radiation (p<0.01). A selection of 407 

toxicologically relevant GO functions was identified and displayed. BP – Biological process, 408 

MF – Molecular function, CC – Cellular component. 409 

 410 

Pathway enrichment analysis further revealed a total of 73 (0.41 mGy/h), 6 (1.1 mGy/h), 11 411 

(4.3 mGy/h), 37 (10.7 mGy/h), 119 (42.9 mGy/h) and 132 (106 mGy/h) pathways affected by 412 

gamma radiation. Signal transduction, immune system and gene expression were identified as 413 

the top functional categories with the most supporting pathways, while categories such as 414 

transmembrane transport of small molecules (106 mGy/h) and DNA replication (42.9 mGy/h) 415 

were only affected at specific dose rates (Supplementary Figure A5). Venn diagram analysis 416 

allowed the identification of specific and common pathways affected by the different dose rates 417 

(Supplementary Figure A6). In general, the higher number of pathways identified was at 106 418 

mGy/h (e.g. G1/S DNA damage Checkpoints, p53-Independent DNA damage response, p53-419 

Independent G1/S DNA damage checkpoint, Ubiquitin mediated degradation of 420 

phosphorylated Cdc25). The two highest dose rates tested displayed a higher number of 421 



common pathways (total 58 pathways) than the remaining dose rates combined (e.g. calmodulin 422 

induced events, DNA damage/telomere stress induced senescence and GABA synthesis, 423 

release, reuptake and degradation). No pathway was commonly regulated across all dose rates. 424 

Pathways such as cell death signaling via NRAGE, NRIF and NADE, NRAGE signals death 425 

through JNK and P75 NTR receptor-mediated signaling were mainly affected by the lowest and 426 

highest dose rates used in this study (0.41 and 106 mGy/h), while pathways related to DNA 427 

double strand break response, recruitment and ATM-mediated phosphorylation of repair and 428 

signaling proteins at DNA double strand breaks were regulated by all dose rates except 1.1 429 

mGy/h. Several toxicologically relevant pathways and supporting DEGs representative of 430 

potential MoAs of gamma radiation were identified (Supplementary Table A8), such as DNA 431 

repair and cell cycle regulation, neurotransmitter signaling, mTOR signaling, oxidative stress 432 

and antioxidant defense, molting and developmental signaling, cell death, oxidative 433 

phosphorylation and calcium signaling. The complete list of pathways affected by the different 434 

dose rates used in this study can be found in the Supplementary Table A9. 435 

 436 

3.7. Quantitative real-time RT-PCR verification 437 

The expression of thirteen target genes involved in relevant toxicity pathways were verified by 438 

qPCR, namely glutathione s-transferase (GST), superoxide dismutase (SOD), DNA repair 439 

protein rad50 (Rad50), double-strand break repair protein mre11 (Mre11), Nadh dehydrogenase 440 

(Nd), SNF4/AMP-activated protein kinase gamma subunit (AMPK), gamma-aminobutyric acid 441 

type b receptor subunit 2 (GABA-B-R2), cuticle protein5a (Cut5a), ecdysone receptor a1-beta 442 

(EcRa1b), chitinase 3 (Cht3), calmodulin (Cam), TP53-regulated inhibitor of apoptosis 1 443 

(Triap) and apoptosis-inducing factor 3 (Aifm3). The transcriptional patterns obtained by qPCR 444 

for the 13 target genes were in close agreement with those of the microarray (Fig. 5), with a 445 

general tendency of increased expression with increasing dose rate. The only exceptions were 446 



the genes Mre11 and AMPK, in which the patters obtained by the microarray were the opposite 447 

of those reflected by the qPCR. The similarity of transcriptional patterns obtained for the 448 

microarray and qPCR analyses was also evidenced by the significant correlation obtained for 449 

all genes (r=0.446, p<0.0001). 450 



 451 



Figure 5 – Gene response in Daphnia magna after 24h exposure to gamma radiation determined 452 

by quantitative real-time reverse transcription polymerase chain reaction (qPCR, white box, 453 

N=4-5) in comparison with microarray (grey box, N= 4-5). *Represents significant statistical 454 

differences compared to the respective control (p<0.05). 455 

 456 

4. Discussion 457 

Even though aquatic ecosystems are continuously exposed to low levels of naturally occurring 458 

radionuclides, the anthropogenic inputs of man-made radionuclides in these ecosystems has 459 

increased the need to study their impact on aquatic organisms. These concerns have intensified 460 

especially after the Fukushima nuclear power plant accident in 2011, where large amounts of 461 

radioactive iodine and caesium were released into the surrounding aquatic environment, 462 

resulting in increasing concentrations in many aquatic species at dose rates above suggested 463 

benchmark levels (Buesseler et al., 2012; Johansen et al., 2015; Nair et al., 2014). Nonetheless, 464 

there is still a lack of information about the toxic effects of ionizing radiation on invertebrate 465 

species, despite their essential role in aquatic ecosystems. In this context, this study aimed to 466 

understand the mechanism of toxicity of gamma radiation in the freshwater crustacean D. 467 

magna by identifying alterations in oxidative stress markers and their relation to alterations 468 

seen at the transcriptional level.  469 

D. magna at the organismal level could tolerate gamma exposure up to 106 mGy/h for 48 hrs 470 

(total dose 5 Gy) without any sign of acute mortality, morbidity, or apparent developmental 471 

effects. No mortality, visual morphological or behavioural changes were detected in daphnids 472 

at any of the dose rates tested after the 48 hrs exposure to gamma radiation. This is in agreement 473 

with other studies, which have reported no effects in survival in D. magna as a result of acute 474 

exposure to gamma radiation generated by 137Cs, at doses higher than those used in this study 475 

(total doses from 2 to 28 Gy and 5 to 200 Gy) (Nascimento et al., 2015, 2016). In fact, the 476 



estimated 50 % effect dose for mortality reported for gamma radiation (60Co source) in D. 477 

magna after exposure is 1600 Gy and 1500 Gy for 24 and 48 hrs, respectively (Fuma et al., 478 

2003). On the other hand, Sarapultseva and Dubrova (2016) observed a significant shortening 479 

in the life span of D. magna after acute exposure to 60Co (total doses of 100, 1000 and 10000 480 

mGy), nonetheless, these effects were observed 4 to 7 days following radiation exposure. Even 481 

though there were no significant effects in mortality in irradiated daphnia, the gamma radiation 482 

dose rates used in this study can be considered high, especially when compared to the suggested 483 

ecosystem screening benchmark of 0.24 mGy/h for the protection of freshwater ecosystems 484 

from radioactive substances (Garnier-Laplace et al., 2010). The total doses used are, however, 485 

within the range of those found in highly contaminated sites, such as reservoir at Mayak PA in 486 

Russia, used as waste ponds for decades, where the absorbed dose rates for zooplankton and 487 

phytoplankton were estimated as 3.8 and 40 Gy/day, respectively (Triapitsyna et al., 2012). 488 

Another example is the Techa River also at Mayak, where doses to biota have been estimated 489 

as high as 200-800 Gy after the accident in 1957 (Kryshev et al., 1998). 490 

 491 

4.1. ROS formation 492 

Relative simple and rapid fluorescence assays for detecting ROS production have proven useful 493 

for the prediction of whole-organism toxicity, as previously seen in D. magna exposed to nano-494 

TiO2 under solar ultraviolet radiation (Ma et al., 2012). As anticipated, gamma radiation 495 

generated an apparent dose rate-dependent increase in ROS in daphnids after 24 h exposure (No 496 

Observed Effect Dose Rate, NOEDR of 1.1 mGy/h), particularly at dose rates higher than 1.1 497 

mGy/h. Interestingly, no significant ROS production was detected at the highest dose of 106 498 

mGy/h, as shown by both of the fluorescent probes. This lack of ROS formation can be 499 

potentially related to the combined protective action of radical scavenging antioxidants such as 500 

glutathione (GST), metallothionen and thioredoxin and/or induction of antioxidant enzymes 501 



such as catalase (CAT), superoxide dismutase (SOD and glutathione-S-transferase (GST), 502 

among others (Reisz et al., 2014). This hypothesis is supported by the results obtained by 503 

transcriptional analysis which showed up-regulation of several antioxidant genes after 24 hrs 504 

exposure to gamma radiation at the highest dose rate. In fact, the SOD gene was up-regulated 505 

at all dose rates (qPCR) and at 1.1 and 42.9 mGy/h (microarray), suggesting that antioxidant 506 

enzymes were induced both at low and high dose rates. GstS1 and GstD5 were both up-507 

regulated at the two highest dose rates (microarray), whereas no alterations were detected in 508 

Gst transcripts by qPCR. Thioredoxin peroxidase was also up-regulated at 0.41 mGy/h in 509 

addition to thioredoxin domain-containing protein at both 0.41 and 106 mGy/h. The induction 510 

of these antioxidant genes in D. magna after gamma radiation exposure confirms their central 511 

role in reducing oxidative stress caused by gamma radiation exposure at both low and high dose 512 

rates. Nonetheless, one cannot exclude the hypothesis that at intermediate dose rates, the 513 

antioxidant defence mechanisms triggered were insufficient to counterbalance the production 514 

of ROS, as seen at 42.9 mGy/h, or that other ROS-metabolizing molecules and detoxification 515 

enzymes not detected by the microarray analyses were affected. The induction of enzymatic 516 

and non-enzymatic antioxidants (SOD, CAT, GR (glutathione reductase), GPx (glutathione 517 

peroxidase), GST and GSH) has also been shown in other crustacean species (Paracyclopina 518 

nana, Tigriopus japonicas, Brachionus koreanus and Mesocyclops hyalinus) in response to 519 

increased ROS production by gamma (137Cs and 60Co) radiation (Han et al., 2014a, b; Won and 520 

Lee, 2014). After 48 hrs of exposure to gamma radiation, a dose-dependent ROS formation was 521 

observed in irradiated daphnids with a NOEDR of 1.1 mGy/h, similarly to what was seen at 24 522 

hrs. In contrast to the response at 24 hrs, a significant ROS production was detected at 106 523 

mGy/h after 48 hrs exposure, which may reflect temporal activation of direct ROS formation 524 

and activation of intracellular ROS-producing systems (e.g. mitochondria) at high doses (Reisz 525 

et al., 2014). Although the present study is the first to document gamma radiation-induced ROS 526 



in D. magna, it has been documented for other aquatic invertebrates elsewhere (see review by 527 

Won et al., 2014).  528 

 529 

4.2. Lipid peroxidation 530 

Excessive ROS formation can induce oxidative stress and cause damage to lipids, proteins and 531 

DNA thus disturbing normal cellular functions (Reisz et al., 2014). Lipid peroxidation in 532 

particular, is characterized by the oxidative deterioration of polyunsaturated fatty acids present 533 

in cellular membranes, which can result in membrane destabilization and further oxidative 534 

damage (Halliwell and Gutteridge, 2007). Results from the present study verify that exposure 535 

to gamma radiation increased LPO at 10.7 and 42.9 mGy/h (24 and 48 hrs) when measured as 536 

MDA and 4-HNE, which were consistent with the observations on ROS formation at the same 537 

dose rates and exposure period. At 106 mGy/h, an increase in LPO was only observed after 48 538 

hrs exposure, thus suggesting that the antioxidant protective system was capable of limiting 539 

oxidative damage only at lower dose rates and shorter exposure times. At the remaining dose 540 

rates, the production of ROS apparently exceeded the antioxidant capacity of cells. Nonetheless, 541 

the hypothesis that the rate of ROS produced at 10.7 and 42.9 mGy/h were not high enough to 542 

trigger the antioxidant defence mechanisms and counteract their oxidative damage cannot be 543 

excluded as a possible explanation for the LPO levels seen in irradiated daphnids. Although 544 

this is the first study to report gamma radiation-induced LPO formation in invertebrates, 545 

disruption of the integrity of membranous lipid bilayers in mammalian cells (Azzam et al., 546 

2012) and plants (Jan et al., 2012) suggest that LPO may be a conserved MoA of gamma 547 

radiation across species.   548 

 549 

4.3. DNA damage 550 



The genotoxicity measured as increase in DNA of haemocytes from D. magna by the Comet 551 

assay suggest that gamma radiation caused significant decrease in DNA integrity, especially at 552 

the highest dose rates. Although this increase was small and variable along the dose rates tested, 553 

an overall dose rate-response relationship resembling that of ROS and LPO was observed. It’s 554 

well established that radiation induced-ROS attack DNA, generating a variety of DNA lesions, 555 

such as oxidized bases and strand breaks (single and double DNA strand breaks). If not properly 556 

removed, DNA damage by direct interaction and enhanced ROS formation by radiation can 557 

accumulate to the point where it leads to mutagenesis (Maynard et al. 2009). Ionizing radiation 558 

can lead to a broad spectrum of DNA lesions (Goodhead, 1989), including increased incision 559 

in the backbone of DNA while repairing. Since the damage persisted in exposed daphnids for 560 

48 hrs, it may suggest that induction of DNA repair capacity was not sufficiently effective to 561 

counteract the damage caused by ionizing radiation in haemolymph cells. It has been suggested 562 

that low doses of radiation may not activate DNA repair, thus leading to recovery processes 563 

being triggered only above acritical level of damage. This may result in the elimination of the 564 

damaged cells by apoptosis or mitotic death (Hayes 2008; Zaichkina et al., 2004) and possibly 565 

a selection of less damaged cells is analysed at low dose rates. Radiation-induced DNA damage 566 

has been previously reported in D. magna exposed to 137Cs source (Parisot et al., 2015). In this 567 

case, an overall accumulation and transmission of DNA alterations was registered across three 568 

successive D. magna generations in a time and dose-dependent manner, at dose rates from 569 

0.0007 to 35.4 mGy/h. These authors hypothesized that DNA repair mechanisms become 570 

efficient only after organisms receive a sufficient cumulative dose of radiation, especially under 571 

chronic exposure (Parisot et al., 2015). Dose-dependent modulation of genes such as DNA-PK, 572 

PCNA, Ku70 and Ku80, involved in DNA repair in the rotifer B. koreanus and the copepods T. 573 

japonicus and P. nana, suggest that exposure to 137Cs (total doses from 10 to 200 Gy) also cause 574 

DNA damage in other invertebrates (Han et al., 2014a, b; Won and Lee, 2014). In the present 575 



study, several DEGs and pathways related to DNA repair and cell cycle regulation were affected 576 

by gamma radiation, probably as a consequence of handling destabilized and damaged DNA. 577 

From the several DEGs identified herein, the up-regulation of DNA repair proteins rad 50 578 

(Rad50) (42.9 and 106 mGy/h) and MRE11-like (mre11) (1.1, 4.3, 10.7 and 106 mGy/h), 579 

constituents of a repair complex implicated in multiple DNA repair mechanisms (Brodsky et 580 

al., 2004), confirm that daphnids repairing systems responded effectively to exposure to gamma 581 

radiation, initiating a recovery of cellular damages especially at higher dose rates. mre11 582 

seemed to be more responsive than Rad50 at low dose rates, albeit inconsistencies between he 583 

microarray and qPCR data for mre11 suggest that additional effort is required to characterize 584 

the transcription regulation of this gene in D. magna in response to gamma radiation.  585 

 586 

4.4. Energy production and homeostasis 587 

Another important cellular target of ionizing radiation and consequent ROS formation is the 588 

mitochondria. Gamma radiation has been associated with mitochondrial dysfunction in the form 589 

of mitochondria-dependent ROS formation, increased mitochondrial membrane potential and 590 

promoted respiration and ATP production (Kam and Banati, 2013; Reisz et al., 2014), processes 591 

that can lead to further propagation of ROS and oxidative stress. In the present study, several 592 

genes related to the mitochondria were differentially regulated in daphnids exposed to gamma 593 

radiation. Several DEGs involved in mitochondrial electron transport chain (ETC) were 594 

suppressed by gamma radiation, namely genes encoding NADH dehydrogenase (Nd) in 595 

complex I, succinate dehydrogenase subunit A (SdhA) in complex II, cytochrome c oxidase 596 

subunit 1 (COX1), cytochrome c oxidase subunit 2 (COX2), cytochrome c oxidase subunit 3 597 

(COX3) and cytochrome c oxidase copper chaperone (COX17) in complex IV, and ATP 598 

synthase subunit mitochondrial (sun) in complex V. Only the gene encoding succinate 599 

dehydrogenase B (SdhB) in complex II was induced by gamma radiation (0.41, 42.9 and 106 600 



mGy/h). No DEGs involved in ETC complex III were differentially regulated in the irradiated 601 

daphnia. The Nd gene was also found to be significantly down-regulated by qPCR at 4.1, 1.1, 602 

4.3 10.7 and 42.9 mGy/h, even though the microarray analysis only showed significant 603 

suppression at the two highest dose rates used. These results suggest that gamma radiation may 604 

interfere with mitochondrial membrane function in daphnids, modulate oxidative 605 

phosphorylation (OXPHOS) and ultimately cause loss of aerobic energy supply or even cell 606 

death (Joshi and Bakowska, 2011). The reduction of mitochondrial membrane potential and 607 

associated ATP synthesis in response to gamma radiation has been documented in several 608 

mammalian and fish species (Kam and Banati, 2013, O’Dowd et al., 2006, Song et al., 2014), 609 

although the knowledge of the MoA in crustaceans is still limited.  610 

A potential imbalance of energy homeostasis in daphnids exposed to gamma radiation was also 611 

evidenced by the enrichment of a pathway involved in the mechanistic target of rapamycin 612 

(mTOR) signaling. In vertebrate species, alterations in cellular energy balance impact mTOR 613 

signaling via AMPK, a Serine Threonine kinase consisting of a catalytic α-subunit and two 614 

regulatory subunits, β and γ (Huang and Fingar, 2014; Roux and Topisirovic, 2012). In the 615 

present study, the SNF4/AMP-activated protein kinase gamma subunit (SNF4Agamma) gene 616 

was induced (microarray analysis) in irradiated daphnia probably due to an alteration in the 617 

intracellular AMP/ATP ratio associated with mitochondrial dysfunction (Lippai et al., 2008). 618 

This result was the opposite of that found by qPCR, in which the SNF4Agamma gene was down-619 

regulated at 4.3 and 10.7 mGy/h. The inhibition of the mTOR signaling pathway can also 620 

stimulate autophagy due to a rise in free cytosolic calcium, as well as the stimulation of the 621 

lipid mechanism (Huang and Fingar, 2014). A dysregulation of mTOR as a possible mechanism 622 

of radiotoxicity has already been reported in zebrafish embryos exposed to the same gamma 623 

source as that used in this study (Hurem et al., 2017), however its function in irradiated D. 624 

magna needs to be further explored.  625 



 626 

4.5. Cell death 627 

Apoptosis has been extensively documented in cells upon exposure to gamma radiation, 628 

normally as a consequence of oxidative stress and associated cell cycle arrest, DNA damage, 629 

impairment of DNA repair and mitochondrial dysfunction (Reisz et al., 2014). Several genes 630 

involved in the modulation of several apoptotic pathways were significantly regulated by 631 

gamma radiation. For example, the down-regulation of apoptosis-inducing factor 3 (Aifm, 632 

microarray: 42.9 and 106 mGy/h) and p53-regulated inhibitor of apoptosis 1 (Triap, qPCR: 633 

10.7, 42.9 and 106 mGy/h), two genes involved in the modulation of the mitochondrial 634 

apoptotic pathway, is suggestive of a potential induction of apoptosis, however, not through 635 

major signaling pathways. In addition, the enrichment of pathways related to neuronal cell death 636 

was also identified in D. magna after exposure to 0.41 and 106 mGy/h, highlighting the onset 637 

of cognitive dysfunction in daphnids following radiation exposure. Taken together, results 638 

suggest that different apoptotic signaling pathways were regulated in daphnids in response to 639 

gamma radiation, which seems to be consistent with the identified DNA damage and repair, 640 

cell cycle disruption, mitochondrial dysfunction and neurotransmission impairment. The 641 

induction of apoptosis after exposure to the same gamma source as that used in this study has 642 

already been documented in fish, namely Atlantic salmon and zebrafish, in which the regulation 643 

of different apoptotic signaling was also highlighted in response to upstream mechanisms as for 644 

example oxidative stress and DNA damage and repair (Song et al., 2014, Hurem et al., 2017). 645 

 646 

4.6. Ca2+ homeostasis and other potential mechanisms 647 

The gene pathway analysis highlighted other potential MoA of gamma radiation in daphnids. 648 

A general activation of genes associated with Calcium signaling pathways such as Ca-649 

dependent events, Calmodulin induced events and CaM pathway were observed in daphnids 650 



exposed to 42.9 and 106 mGy/h. Calmodulin (CaM), the ubiquitously expressed and highly 651 

conserved protein that is essential for numerous cellular processes and is the key mediator of 652 

Ca2+ signals (Altshuler et al., 2015; Song et al., 2016), was significantly down-regulated by 653 

0.41, 1.1, 4.3 and 10.7 mGy/h and up-regulated at 106 mGy/h (qPCR). Cells tightly regulate 654 

their cytoplasmic calcium concentrations, as Ca2+ ions are used in a several concentration-655 

dependent processes, which in crustaceans can be directly related to molting, mTOR signaling 656 

and intracellular calcium influx (Altshuler et al., 2015). Accordingly, these results seem to point 657 

to a dose rate-dependent disruption in Ca2+ homeostasis by gamma radiation, which may play 658 

an important role in the activation/suppression of several processes in D. magna, as for example 659 

mitochondrial dysfunction, mTOR signaling, neurochemical signaling and endocrine 660 

regulation. 661 

Exposure to gamma radiation also affected the neurochemical signaling system in exposed 662 

daphnids, as neuronal system-related pathways were significantly enriched at the two highest 663 

dose rates used (42.9 and 106 mGy/h). Among these, pathways related to glutamate and GABA 664 

signaling were identified as the most significant, as highlighted by the up-regulation of the 665 

gamma-aminobutyric acid type b receptor subunit 2-like (GABA-B-R2) gene by both the 666 

microarray (106 mGy/h) and qPCR (10.7, 42.9 and 106 mGy/h) analysis at the highest dose 667 

rates used. GABA-mediated signaling has been extensively studied in crustacean species due 668 

to its role in synaptic transmission and neural inhibition (Northcutt et al., 2016), as well as its 669 

involvement in the regulation of cell development (Salat and Kulig, 2011). Even though no 670 

studies have focused on the neurotransmitter related-effects of gamma radiation in crustaceans, 671 

there is evidence that the modulation of these pathways is related to cognitive dysfunction 672 

following radiation exposure in mammals (see Wu et al., 2012 and references herein). 673 

Nonetheless, the molecular mechanisms underlying the up- and downstream signaling of these 674 

pathways in response to gamma radiation still remain to be elucidated in D. magna. 675 



Another novel finding in the present study was that multiple genes associated with the endocrine 676 

regulation of molting in D. magna were differentially expressed after exposure to gamma 677 

radiation. These transcriptional alterations suggest that as low as 0.41 mGy/h gamma may 678 

disrupt molting signaling by inhibiting the synthesis of ecdysteroids, thus potentially leading to 679 

suppressed transcriptional regulation of molting through the EcR. Inhibition of ecdysteroid 680 

synthesis may be attributed by increased intracellular calcium influx, which has been shown to 681 

suppress ecdysteroid synthesis in crustaceans (Chang and Mykles, 2011). On the contrary, high 682 

dose-rate of gamma potentially induced the expression of cuticle proteins, which are necessary 683 

for the generation of new exoskeletons in D. magna (Song et al., 2017). Two examples of the 684 

effects of gamma radiation in daphnids exoskeleton is the significant induction of genes 685 

encoding for the cuticle protein 5a (Cut5a) and chitinase 3 (Cht3) at both low and high dose 686 

rates, as shown by both the microarray and qPCR analysis. However, whether these molecular 687 

responses can lead to impaired molting at the organismal still needs to be verified.  688 

 689 

5. Conclusions 690 

The present study showed that acute exposure to gamma radiation resulted in significant 691 

alterations at the cellular and molecular level in the crustacean D. magna. Results showed a 692 

significant dose and time-dependent increase in ROS formation in daphnids, which is consistent 693 

with the MoA of gamma radiation in cells. Moreover, the LPO and DNA damage observed in 694 

gamma-irradiated daphnids showed dose rate and cumulative dose and time dependent effects, 695 

which seems to be connected not only to oxidative stress, but also to radiolysis mechanisms. 696 

Transcriptional analysis further highlighted oxidative stress as one of the main MoA of gamma 697 

radiation, especially at high dose rates, suggesting a strong causal relationship between cellular 698 

and molecular disturbances upon gamma radiation exposure. This include the induction of 699 

oxidative damages to DNA and lipids through excessive ROS formation, as well as causing 700 



mitochondrial ETC dysfunctions and cellular energy imbalance, possibly through direct 701 

damage to the mitochondrial membranes by ROS and/or as a result of potentially increased 702 

calcium influx to the mitochondria. Additional toxicological relevant MoAs were evidenced by 703 

microarray analysis, further suggesting that downstream responses such as antioxidant defense, 704 

cell cycle regulation and DNA repair, apoptotic cell death, abnormal neurotransmission and 705 

disruption of molting signaling may also be affected. However, since no adverse effects were 706 

observed due to the short exposure duration, whether these were adaptive (compensatory) 707 

responses or toxicity pathways leading to adversity still need to be investigated. Further 708 

assessment using relevant functional endpoints are also necessary to help understand the 709 

mechanistic link between these molecular alterations and organism level responses. In addition, 710 

it still remains to be verified if the alterations observed are also relevant at lower dose rates, 711 

including a purported low dose-rate effect at 0.41 mGy/h, and if the dose rates used in this study 712 

are sufficient to induce cumulative effects in daphnids at longer and more environmentally 713 

relevant exposure durations, as well as over a range of successive generations. Overall, the 714 

results obtained allowed the identification of a suite of biomarker genes associated with several 715 

biological mechanisms that could be used in future evaluation of toxicity and MoA of ionizing 716 

radiation in D. magna. Accordingly, based on both functional and transcriptional responses 717 

observed in irradiated D. magna, several putative MoAs for gamma radiation are thus proposed 718 

(Figure 6).  719 

 720 



 721 

Figure 6 – Putative toxicity mechanisms of gamma radiation in Daphnia magna. 722 
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