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Abstract 
 N2 production by denitrification can occur in anoxic water or potentially inside 

organic particles. Here we compare data from the Black Sea, a permanently anoxic basin, 

during two organic matter regimes: suspended particulate organic matter concentrations were 

high in the oxycline after the spring bloom in March 2005 compared to lower organic matter 

concentrations in June 2005, May and October 2007, July 2008 and May 2001. For all 

cruises, N2 gas had a maximum in the suboxic zone [O2 <10 mol L-1]. During the high 

organic matter event [March 2005], an additional shallower N2 gas and 15N-N2 maxima 

occurred above the suboxic zone in the oxycline where oxygen concentrations were 30-50 

mol L-1. Examination of 16S rRNA indicated that anammox bacteria were not present in the 

oxycline. The 15N of biologically produced N2 in the oxycline in March 2005 was 

significantly enriched (+7 to + ), not depleted, as would be expected from water column 

fractionation. A simple diffusion calculation indicated that ammonium produced from 

remineralization inside particles could be oxidized to nitrate and then completely consumed 

by denitrification inside the particle. In this calculation, half of denitrified N atoms originated 

from organic N [ 15N = 11 ] and half of N atoms originated from ambient nitrate [ 15N = 5-

7 ], producing enriched 15N-N2 values. We suggest that denitrifiers were active in 

microzones inside particulates in hypoxic waters above the suboxic zone of the Black Sea. 

Denitrification in particles may also explain previous data from the oxycline above ocean 

oxygen deficient zones.   



 

1. Introduction 

Nitrate, nitrite and ammonia are essential nutrients for microbial life, and limit growth 

in much of the surface ocean (Moore et al., 2013). This fixed nitrogen is converted to 

nitrogen gas in oxygen deficient water columns and sediments. Two known processes are 

involved in N2 production; denitrification and anammox. Heterotrophic denitrifying bacteria 

use organic matter to reduce two nitrates to form nitrogen gas, producing nitrite, and nitrous 

oxide as intermediates. Anammox bacteria reduce nitrite with ammonium to autotrophically 

produce N2 with hydrazine as an intermediate. Ammonium is produced from the organic 

matter remineralization during denitrification, and this ammonium can be used by anammox 

(Devol, 2003). Autotrophic denitrification can also occur with N2 production using reduced 

sulfur instead of organic matter (Batchelor & Lawrence, 1976). 

Several lines of evidence indicate that abundant organic matter stimulates N2 

production. Total N2 production was correlated with organic N concentrations and surface 

chlorophyll and productivity in the suboxic zone of the Black Sea (Fuchsman et al., 2008; 

Kirkpatrick et al., 2012; Nezlin, 2008) and with particulate organic matter flux in the Cariaco 

Basin (Montes et al., 2013). Anammox rates also correlated with particulate matter flux into 

the oxygen deficient zone of the Eastern Tropical South Pacific (Kalvelage et al., 2013). 

Addition of sterilized sediment trap material significantly increased denitrification rates in the 

three major marine oxygen deficient zones: the Arabian Sea, Eastern Tropical South Pacific 

(ETSP), and Eastern Tropical North Pacific (ETNP) (Babbin et al., 2014; Chang et al., 2014; 

Ward et al., 2008), and removal of all particles decreased rates of both anammox and 

denitrification (Ganesh et al., 2015). In the ETSP and ETNP oxygen deficient zones, 

denitrification genes were enriched in the particulate fraction compared to free-living fraction 

(Fuchsman et al., 2017; Ganesh et al., 2014, 2015). Thus, there appears to be a link between 

heterotrophic denitrification and organic matter and more specifically with organic particles.  



 

N2O production and reduction are 50% inhibited at 200 and 300 nM oxygen 

respectively (Dalsgaard et al., 2014). However, in the marine environment, there are oxygen 

gradients inside organic matter aggregates (Ploug, 2001; Ploug et al., 1997; Ploug & 

Bergkvist, 2015). Oxygen utilization in particles is reaction limited rather than transport 

limited in fully oxygenated seawater, which is why aggregates generally are not anoxic 

(Ploug, 2001). The potential for transport limitation of oxygen, and therefore anoxia, is 

greatly dependent on particle size, with aggregates >1 mm being much more susceptible to 

anoxia (Klawonn et al., 2015). In diatom aggregates, diffusion limitation of oxygen occurred 

below ambient O2 (Ploug & Bergkvist, 2015; Stief et al., 2016) and 

2 (Ploug & Bergkvist, 2015). In the 

lab, nitrite, ammonium, N2O and N2 were all produced inside diatom aggregates under 

ambient O2 , indicating nitrate reduction and denitrification (Stief et 

al., 2016). In addition, in similar experiments, nitrate from vacuoles inside diatoms was 

denitrified under anoxic conditions (Kamp et al., 2016). Experiments with >3 mm size 

particles of N2-fixing cyanobacteria found N2O production and denitrification under dark 

conditions in fully oxic waters though these rates were two orders of magnitude lower than 

rates of ammonification of nitrate (Klawonn et al., 2015). Nitrate reduction occurred in 

2 water near the sea floor (Wolgast et al., 1998). However the 

importance of N2 production in natural sinking particles is unknown.  

Denitrification in particles may be important in hypoxic waters above open ocean 

oxygen deficient zones. N2O production by partial denitrification has been detected in the 

oxycline above the ETSP oxygen deficient zone (Ji et al., 2015) and N2O reduction to N2 was 

detected in the oxycline above the ETNP oxygen deficient zone (Babbin et al., 2015). 

Additionally, a  maximum in N2
 in the oxycline above the oxygen deficient zone has 

also been reported in an eddy in the ETSP under highly productive conditions (Altabet et al., 



 

2012). The maximum in N2 above the oxygen deficient zone in this eddy was enriched in 

15N compared to equilibrium with air (Altabet et al., 2012), even though N2 inside oxygen 

deficient zones is generally depleted compared to equilibrium with air (Fuchsman et al., 

2018). Averaged over the ocean, denitrification in particles may be significant. Global 

modeling of aggregates in the ocean predicted that inclusion of denitrification inside particles 

in hypoxic waters should double the global water column denitrification rates (Bianchi et al., 

2018).  

N2 production processes have been studied in the Black Sea suboxic zone. N2 gas 

typically has a maximum in the lower suboxic zone, but concentrations vary between cruises 

(Fuchsman et al., 2008; Kirkpatrick et al., 2012). Rates for anammox but not dentirification 

have been detected in the suboxic zone using spiked 15N experiments (Jensen et al., 2008). 

However, mRNA for proteins involved in both anammox and denitrification have been 

detected, indicating activity of both processes (Kirkpatrick et al., 2012). Denitrification 

appears to be present during times of higher productivity of organic matter (Fuchsman et al., 

2008; Kirkpatrick et al., 2012). Anammox bacteria are present in the N2 gas maximum in the 

lower suboxic zone, where there is an upward flux of ammonium from the sulfide layer 

(Fuchsman et al., 2012a; Kirkpatrick et al., 2012). Similar to open ocean oxygen deficient 

zones, anammox bacteria appeared to be free-living in the Black Sea (Fuchsman et al., 

2012a). On the other hand, Sulfurimonas, a bacterium associated with autotrophic 

denitrification utilizing reduced sulfur was enriched in particles in the Black Sea suboxic 

zone (Fuchsman et al., 2012b). Compared to other cruises in the summer and fall, there were 

high particulate organic matter concentrations in the oxycline above the suboxic zone of the 

Black Sea after the spring bloom in March 2005. In this paper we use in situ tracers, such as 

15N and DNA, to examine N2 production in waters with 30-50 2, during this event.  

 



 

2. Study site 

The Black Sea is a semi-enclosed marginal sea with oxic, suboxic and sulfidic layers 

(Murray et al., 1995). The hydrological balance of the Black Sea is influenced by freshwater 

input from rivers such as the Danube, which mix into surface waters, while salty 

Mediterranean waters flow through the Bosporus and fill the deep basin (Murray et al., 1991).  

As a result the Black Sea is permanently stratified with respect to density. Due to its 

stratification, the Black Sea has a series of water layers well-defined by characteristic 

densities. Below the surface waters is the Cold Intermediate Layer (CIL) with a characteristic 

core density of  In most of the Black Sea, the CIL represents the lower boundary of 

direct communication with the atmosphere in winter, though the CIL is often not fully 

replenished at that time (Pakhomova et al., 2014b). Below the CIL is the oxycline, which 

leads to the suboxic zone (~50 m thick) where oxygen is <10 mol L-1 and hydrogen sulfide 

is < 10 nmol L-1 (Murray et al., 1995). Below the suboxic zone is the sulfidic layer that 

extends to the sediments at approximately 2100 m.  Water circulates around the perimeter of 

the Black Sea in the 20-80 km wide Rim Current (Korotaev et al., 2006). The cyclonic rim 

current separates the coastal regions from the western and eastern central gyres. An 

autonomous profiling float deployed in the Western Gyre at 200 m was found to take 6 

months in the Rim Current to travel to the northeast Black Sea (Korotaev et al., 2006).  

The Black Sea is known to have both a spring phytoplankton bloom in March and a 

fall phytoplankton bloom. The fall bloom, usually found in late October and November, 

occurs when strong winds cause mixing and entrainment of nutrients into euphotic waters 

(Mikaelyan et al., 2017). The spring bloom alternates between diatoms and coccolithophores 

(Mikaelyan et al., 2015), and the fall bloom is composed mostly of diatoms 

2009). 



 

In this paper we focus on a high organic matter event after the spring bloom in March 

2005 where there was N2 production in the oxycline above the suboxic zone in the Western 

Gyre, and we compare isotope and concentration data to profiles obtained in summer and fall 

at a repeat station in the northeast Black Sea (Yakushev et al., 2006) in 2005, 2007 and 2008 

(Fig. 1) and to previously published data from the Western Gyre in May 2001.  

 

3. Methods 

Due to the strong density stratification of the Black Sea, characteristic inflections in 

the water-column profiles (such as nitrate) vary with depth but are associated with specific 

density values (Murray et al., 1995). Therefore, results presented here are plotted against 

potential density ( ) rather than depth (m). A comparison of depth and density at our two 

study sites is seen in Figure S1.  

3.1 Sampling 

Samples for N2 gas, nutrients, suspended particulate organic matter, total organic 

nitrogen, and the 15N of these species were collected in the western central gyre of the Black 

Sea in late March 2005 on cruise 403 of the R/V Endeavor (42   ). Samples 

from the Endeavor cruise were obtained using a CTD-Rosette with Sea Bird sensors and 10 L 

Niskin bottles. On this cruise a Sea Tech Flash Lamp Fluorometer S/N 117S, with excitation 

at 425 nm and emission at 685 nm, and a C Star Single Channel Transmissometer CST-

480DR were attached to the CTD-Rosette and used to collect in situ fluorescence and beam 

attenuation, respectively. The fluorometer had been calibrated for chlorophyll a in November 

2004, so fluorescence units are reported as g L-1 chlorophyll a. Samples for microbial DNA 

were taken at the same station and are published (Fuchsman et al., 2011; Fuchsman et al., 

2012b; Fuchsman et al., 2012a).  



 

Samples for N2 gas, nutrients, suspended particulate organic matter, total organic 

nitrogen, and the 15N of these species were also collected at station 2200 (bottom depth 1300 

m) in the northeast Black Sea in late June 2005 (44.46  N, 37.95  E) on the R/V  

with a CTD rosette and seabird sensors and 5 L Niskin bottles. However, no DNA samples 

were obtained on the June 2005 cruise. Similar samples from May 19  21 and October 3  5, 

2007 were also obtained on the R/V , while samples from July 2008 were obtained 

on the RV Ashamba with a pump profiling system with an attached CTD probe (Pakhomova 

et al., 2014a). All samples in 2007 and 2008 were taken at 44.3   

(water depth >1 km) where the slope drops precipitously allowing easy access to deep water.  

Care was taken to cross the Rim Current, to minimize the influence of coastal waters. nirS 

mRNA sequences for anammox and denitrification and N2:Ar ratios for May and October 

2007 and July 2008 were published in Kirkpatrick et al. (2012). Data from the Western Gyre 

in May 2001 was published in Fuchsman et al. (2008), but is shown here in figures as a 

comparison.  

3.2 Nutrients 

Nitrate, nitrite and ammonium from the Western Gyre in March 2005 were measured 

shipboard. Nitrate concentrations for samples obtained in June 2005 in the northeast Black 

Sea were measured later at the University of Washington on unfiltered acidified samples. 

However, in June 2005 nitrite and ammonium concentrations were measured the same day as 

collected at the P.P. Shirshov Institute, Southern Branch, Russia as were all three nutrients in 

May and October 2007 and July 2008. In all cases nitrate was reduced to nitrite using a 

cadmium column, and nitrite was measured using sulphanilamide and N(1-naphthyl)-

ethylenediamine (Armstrong et al., 1967) using a two channel Technicon Autoanalyzer II 

system. Ammonia was analyzed using the indophenole blue procedure (Slawky & MacIsaac, 

1972).  



 

Oxygen and sulfide samples were measured using Winkler titrations for O2, and an 

iodometric method for sulfide (Cline, 1969). In both cases, dry flasks were filled with argon 

prior to sampling to avoid contamination by atmospheric oxygen and corrections for oxygen 

in reagents were made as in Yakushev et al (2012).  

3.3 Total organic nitrogen 

 Total organic nitrogen samples from the Western Gyre in March 2005 were frozen 

immediately. Samples from the northeast Black Sea from June 2005 were acidified to pH 2 

upon collection and were adjusted to pH 6-8 prior to analyses. In May 2007, October 2007, 

and July 2008 dissolved organic nitrogen water samples were prefiltered with a 0.7 m pore 

size GF/F and were acidified to pH 2. Both total organic nitrogen (TON) and dissolved 

organic nitrogen (DON) samples were measured by oxidation to nitrate with 

peroxodisulphate (Valderrama, 1981). The peroxodisulphate (Merck) was purified by 

recrystallization to lower the N blank to between 0 to 0.4 mol L-1. Samples were autoclaved 

in previously pre-combusted glass ampoules for 1 hour, then NO3
- was measured using the 

Technicon Autoanalyzer II system described above. The in situ concentrations of NO3
- were 

subtracted to calculate TON and DON. In deep samples ammonium concentrations were also 

subtracted. The efficiency of oxidation was tested using urea and EDTA, and the recoveries 

varied between 95% to 100%. One Black Sea sample was repeated in each run as an internal 

standard and was . Additionally, the repeat of the same 

sample 5x in one run   

3.4 15N-NO3- and 15N-TON 

Samples for 15N-NO3
- from the Western Gyre in March 2005 were frozen 

immediately. Samples from the oxic and suboxic water column in the northeast Black Sea 

from June 2005 were acidified to pH 2 upon collection and were adjusted to pH 6-8 prior to 



 

analyses. In May 2007, October 2007, and July 2008 prefiltered water samples (<0.7 m) 

were acidified to pH 2 and used for [DON], 15N-DON and 15N -NO3
- analyses. Frozen 

15N NO3
- samples from October 2007 and July 2008 were also analyzed. Frozen 15N-NO3

- 

samples from October 2007 are previously published (Kirkpatrick et al., 2018). 

In samples with >0.5 mol L-1 nitrate, nitrate was reduced to nitrous oxide by 

bacteria. For most samples Pseudomonas chlororaphis (Sigman et al., 2001) was used but 

frozen samples from October 2007 and July 2008 were analyzed for 15N-NO3
- using 

Pseudomonas aureofaciens (Casciotti et al., 2002). In all cases, nitrous oxide was extracted 

using a fully automated extraction system. The samples were analyzed in the lab of E. Steig 

(University of Washington, Quaternary Research Center) on a DeltaPlus mass spectrometer 

with a Finnegan Precon system and GasBench. For each run, International Atomic Energy 

Agency standard IAEA-N3 dissolved in Black Sea nitrate free surface water was measured in 

triplicate. These standards were adjusted to the established value of 

adjusted simultaneously (Sigman et al., 2001). For samples analyzed with Pseudomonas 

aureofaciens standards IAEA-N3, USGS 34 and USGS 35 were used. A blank, containing 

only bacteria and media, was analyzed for N2O with every run and found to be negative. All 

samples were analyzed in duplicate. Error propagation included the standard deviation of 

duplicates samples as well as of the triplicate IAEA-N3 standards. Nitrite was not removed 

from the samples, but was below 0.1 mol L-1 in all depths except for several depths in June 

2005 such as  = 15.95 and 15.98 where nitrite concentrations were 0.15 mol L-1, or 10% 

of the nitrate concentration, and an upper nitrite maximum of 0.19 mol L-1 was at =14.2 

Typically nitrite is only removed in samples with >0.2 mol L-1 nitrite (Buchwald et al., 2015; 

Fuchsman et al., 2018). Reduction of pH to pH 2 causes nitrite to become N2 gas, which 

would not be analyzed with these techniques (Granger & Sigman, 2009). Thus the agreement 



 

between frozen and acidified samples (Figure 2) supports that nitrite does not significantly 

affect our 15N-NO3
- data.  

Samples for 15N-TON were analyzed similarly after being oxidized to nitrate as 

described above except that values for 15N NO3
- were subtracted post analysis.  15N-TON 

is not reported for depths where significant amounts of ammonium were present (>  = 

15.95) because the 15N-NH4
+ was not determined for samples on these cruises.  

3.5 N2:Ar ratios, [Ar] and 15N-N2 

Gas samples used for N2:Ar ratios and 15N-N2 were collected in evacuated 185 mL 

glass flasks sealed with a Louwers-Hapert valve and containing dried mercuric chloride 

(Emerson et al., 1999). Water flowed through tubing directly from the Niskin bottle to the 

flask without contact with the air. Usually to prevent air contamination when taking dissolved 

gas samples, the neck of the closed evacuated glass flask is flushed with CO2 before being 

flushed with water from the Niskin and then opened. CO2 was used in gas sampling in March 

2005 and May 2001. However, in June 2005, May and Oct 2007 and July 2008 at the 

northeast Black Sea, no CO2 was available, so the neck of the closed flask was flushed with 

water from the Niskin for an extended period and all bubbles in the neck were removed 

before opening the flask. Duplicate samples were not obtained. After each cruises, flasks 

were weighed, and the water in the half full flasks was equilibrated with the headspace by 

rotating overnight in a water bath at a known (room) temperature. Water was removed from 

the flask immediately after removal from the water bath. Gas samples were cryogenically 

processed to completely remove CO2 and water vapor.  For samples from 2005 and after, a 

known concentration of 36Ar spike was added to each sample during cryogenic processesing. 

Measuring the 36Ar:40Ar ratios allowed concentrations of 40Ar to be measured rather than 

estimated. Gas samples were then measured at the Stable Isotope Lab, School of 



 

Oceanography, University of Washington on a Finnegan Delta XL isotope ratio mass 

spectrometer. A standard containing zero oxygen was used for samples from the suboxic and 

anoxic zones. In deep samples N2:Ar ratios, 36Ar:40Ar ratios and 15N-N2 were also corrected 

for methane as described in Fuchsman et al. (2008). Measured [Ar] allowed [N2] to be 

calculated from N2:Ar ratios. Argon and nitrogen saturation was calculated following Hamme 

and Emerson (Hamme & Emerson, 2004). Preci 15N-N2 

2:Ar Sample:Saturation values.  

The effect of oxygen on the measurement of 15N was determined using a series of 

five flasks that contain variable amounts of oxygen but the same N2:Ar ratio and 15N of 

nitrogen gas.  The correction for 15N-N2 increased as [O2] decreased.  In the Endeavor 2005 

15N data published in Fuchsman et al. (2008), several samples contained oxygen but less 

oxygen than found in the calibration standards. The calculated slope from the standards was 

originally extrapolated and used for these data.  However, upon further investigation, we 

established that the oxygen correction remained constant over a range of low oxygen values 

(the calibration standard containing the least oxygen was in this range). Though the filament 

in the mass spectrometer had been replaced between March 2005 samples and the more 

detailed test, we assume the shape of the curve was the same through time. The correction for 

the lowest oxygen standard obtained concurrent with the March 2005 data was applied to all 

relevant samples. In short, the original oxygen correction (Fuchsman et al., 2008) for samples 

with small amounts of oxygen for data from March 2005 was too large, and the 15N data 

presented here have been corrected accordingly

. The 15N value of the no oxygen standard used in March 2005 

was also determined using air containing oxygen and an oxygen correction. After examining 

all the oxygen deficient zone and Black Sea data from UW from 2005-2012 measured against 



 

the same standard and knowing the present value of the no oxygen standard determined with 

a copper furnace, the value of the no oxygen standard has been adjusted for this time period. 

Thus the 15N values for anoxic depths in March 2005 are shifted heavier from 

previously published values (Fuchsman et al., 2008). Other older data from Fuchsman et al. 

(2008) were measured with different standards and are assumed to be unaffected.  

It should be noted that carbon monoxide has the same mass as nitrogen gas. The use 

of liquid N2 to remove CO2 from the samples generally eliminates this problem by preventing 

CO generation in the source of the mass spectrometer (Manning et al., 2010). Natural 

occurring carbon monoxide is not removed cryogenically, but is usually 4-6 orders of 

magnitude lower than N2 concentrations (Manning et al., 2010). The exception being 

photochemically produced CO in surface waters (Manning et al., 2010). Samples below 

surface waters are extremely unlikely to be affected by carbon monoxide.  

3.6 Suspended particulate matter 

In March 2005, two liters of seawater were filtered on deck through previously 

precombusted GF/F filters (nominal pore size 0.7 m) and frozen to make a depth profile 

from the surface to 275 m (  = 16.8) with 2-5 m resolution in the oxycline/suboxic region. 

Samples from June 2005, May 2007, October 2007, and July 2008 were processed similarly 

except that 5 L of seawater was filtered and filters were dried at 60 C. After returning to the 

lab, filters sat in HCl fumes for 24 hours to remove particulate carbonates. Isotopes, 

concentrations, and C:N ratios were measured in the SIL with a Finnigan Delta XL isotope 

ratio mass spectrometer connected to a NC2500 CE Instruments Elemental Analyzer by a 

Finnigan MAT ConFlo II. Unused precombusted filters were used as a blank. Nicotinic Acid 

standards produced reproducible and accurate isotopic results down to 13 g of N. Thus the 

isotopic values of samples with less than 13 g of N were discarded. For March 2005 



 

samples, since 2 L of water was filtered rather than 5L, sample sizes were too small to obtain 

good isotopic values at deeper depths including the suboxic zone. Suspended particulate 

nitrogen concentrations, but not isotopes, for May and October 2007 have been previously 

published (Kirkpatrick et al., 2018).  

4. Results 

The concentration and nitrogen isotope (14N and 15N) values for N2, NO3
-, total or 

dissolved organic nitrogen, and suspended particulate organic nitrogen were sampled in the 

Western Central Gyre in March 2005 and in the northeast Black Sea in June 2005, May and 

October 2007 and July 2008 (Fig. 1). As will be seen below, the March 2005 data from the 

end of the spring bloom had both organic matter and N2 gas maxima in the hypoxic waters of 

the oxycline above the suboxic zone. This N2 gas maximum in the hypoxic zone was in 

addition to the large suboxic zone N2 gas peak consistently found in the Black Sea 

(Fuchsman et al., 2008). The other four cruises in the northeastern Black Sea, as well as 

previously published data from May 2001, are used to represent lower productivity summer 

and fall conditions in the Black Sea. Concentration and isotope data presented here can be 

found in the supplementary data.  

 
4.1 Nutrients and Hydrographic Conditions 

As is typically seen, density surfaces were at deeper depths in the northeastern Black 

Sea than at the Western Gyre (Oguz, 2002; Fig. S1). Surface densities varied significantly 

between cruises and were freshest in the northeast Black Sea due to the influence of 

freshwater input into that region (Table 1; Fig. S1). The July 2008 cruise occurred soon after 

a large storm.  

Oxygen and sulfide profiles were fairly consistent on density surfaces between cruises 

(Fig 2a). However, there was some variability in the density of the upper boundary of the 



 

suboxic zone (~10 mol L-). The width of the suboxic zone varied from 17 m in May 2007 to 

35 m in May 2001 (Table 1). Sulfide was generally first detected at   =16.10 (Table 1) and 

increased to 378 mol L-1 at 2000 m. Nitrate was generally below detection in surface waters, 

except in May 2007 when it was 0.5 mol L-1 (Figure 2d). Nitrate concentrations increased to 

a maximum of 4.5 to 7 mol L-1 right above the suboxic zone (Figure 2; Table 1). Nitrite 

concentrations generally had both a shallower and deeper maximum, which varied between 

0.05 and 0.19 mol L-1. The highest nitrite concentrations were seen in June 2005 and May 

2001 (Figure 2c; Table 1). Ammonium concentrations were generally < 0.1 mol L-1 until the 

lower suboxic zone (  =15.8-16.0; Table 1) where they increased continuously to 98 mol L-

1 at 2000 m. However, in October 2007, ammonium was low but measurable in the oxycline 

(Figure 2e). 

 
4.2 Concentrations and isotopes of suspended particulate organic matter 

The Black Sea typically has high concentrations of S-POC and S-PON in surface 

waters, which decrease with depth through the oxycline and upper suboxic zone. A second 

maximum is found at the chemosynthesis maximum at the boundary with the sulfidic zone 

(Coban-Yildiz et al., 2006). Variations on this typical profile can be seen in the four NE 

Black Sea datasets and in May 2001 (Figure 3 and S2). For example, in June 2005 in the 

northeast Black Sea, concentrations of suspended particulate organic carbon (S-POC) and 

nitrogen (S-PON) decreased from the surface (6.9 mol C L-1; 1.1 mol N L-1) to the middle 

of the suboxic zone (1.1 mol C L-1; 0.14 mol N L-1) (  = 15.8; 143 m) where 

concentrations then began to increase again (Fig. 3c and S2).  15N values in the euphotic 

aximum 15N values were [S-

PON] concentration minima from =14.5 to =15.9.  At the bottom of the suboxic zone, 



 

[S-PON] concentration increased (0.4 mol N L-1), and 15N values were depleted as much as 

 (Fig. 3d).  

In May and October 2007 and July 2008 S-POC and S-PON had similar shaped depth 

profiles as in June 2005 (Fig. 3c and S2; Kirkpatrick et al., 2018). In May 15N values in the 

euphotic zone were between -1 to + 5- 3

suboxic zone (Fig. 3d). In October 15N values in the euphotic zone were 1.5-

increased to 9 8  (Fig. 3d). In July 2008 15N 

values in the euphotic zone were 4-4.5 1.5 8-10

in the suboxic zone (Fig. 3d).  

The profile of suspended particulate organic matter concentrations, in the Western 

Gyre in March 2005, was significantly different than seen in any of these other cruises (Fig. 

3a,b). In March 2005 S-POC and S-PON were 9 mol C L-1 and 1.2 mol N L-1 in the 

surface and then significantly increased in the oxycline with a maximum of 14 mol L-1 C 

and 1.3 mol L-1 N at =15.2. Then S- POM decreased sharply to 3 mol L-1 C and 0.25 

mol L-1 N at =15.6.  The maximum in particulate organic matter extended for ~10 meters, 

from 60 to 70 meters. The 15

( =14.5-15.2) and then increased to 11  (Fig. 3b). The C:N ratios increased from about 6 

in the organic matter maximum to 8-10 in and below the suboxic zone (Fig. 3a). Below the 

suboxic zone [S-PON] concentrations were 0.4 mol L-1 N and [S-POC] were 4 mol L-1 C.  

The maximum in suspended particulate material observed in the oxycline in March 

2005 corresponded with a sharp reduction in transmissivity (Fig. 4), which decreased from 

84% in surface waters to 73% at 63 meters. Below this thin transmissivity minimum, 

transmissivity increased to 88%.  This minimum in transmissivity was accompanied by a 

maximum in fluorescence (9.9 g L-1 chlorophyll a) (Fig. 4).  Salinity was uniform until 



 

=14.5 (60 m) and then increased with depth.  

(30-60 meters) and then increased with 

depth. Thus, the transmissivity minimum and fluorescence maximum were found right below 

the Cold Intermediate Layer, in the oxycline, at a depth range of sharp density increase. The 

transmissivity minimum was at the same depth (63 m) on 29 March and on 03 April, 

suggesting that the bulk of the organic material remained at that depth. However, the 

magnitude of both transmissivity and fluorescence anomalies were reduced on 03 April (from 

73% to 78% transmissivity and from 9.8 to 6 g L-1 chlorophyll a [data not shown]), 

indicating some organic matter loss.  

4.3 15N-NO3-, TON and 15N-TON 

15N-NO3
- was fairly variable in the upper water column. 15N-NO3

- ranged from 5-

( =15.2-15.4) on both 2005 cruises (Figure 2b, c). In May 2007, 15N-

NO3
- was 8- the  (Figure 2d). In July 

15N-NO3
- 

the oxycline (Figure 2f).  

15N-NO3
- profiles typically have an enriched maximum in the lower suboxic zone 

(Fuchsman et al., 2008), and similar profiles were seen in most of the sample sets shown here 

(Fig 2). In March 2005, 15N-NO3
- =15.85. In June 2005, the 15N-

NO3
- only =15.95 (Fig. 2). In May 2007, 15N-NO3

- 

in the lower suboxic zone (Figure 2d).  In July 15N-NO3
- 

suboxic zone (Figure 2f). 

In October 2007 15N-NO3
- was measured from 2 different types of samples

acidified samples and frozen samples. Both results were similar with between 5-

throughout the oxic water column and then in  (Figure 



 

2e). In July 2008, frozen and acidified samples were also similar, though not necessarily 

measured at the same depths (Figure 2f). These values are quite similar to those seen in the 

oxycline and suboxic zone of the Baltic Sea (Frey et al., 2014).  

Concentrations of total organic nitrogen (TON) in March 2005 increased from 13-14 

mol L-1 in the surface to 17 mol L-1 at =14.6-14.7 and then decreased to 10-11 mol L-1 

in the suboxic zone (Fig. 5a). TON concentrations are elevated throughout the =14.6-15.3 

region of the [PON] maximum in March 2005.  When PON concentrations are subtracted 

from TON, these dissolved organic N (DON) concentrations are still elevated in this region 

(Figure S3).  Concentrations were fairly similar between TON/DON samples from March 

2005 and DON samples from May and October 2007 (Figure 5a). In May 2007, DON 

concentrations were 14 mol L-1 from the surface to the upper oxycline and the decreased to 

10-12 mol L-1 in the suboxic zone, and in October 2007, DON concentrations were highest 

at 30 m (21 mol L-1) and the decreased to 11 mol L-1 in the oxycline and then further to 8 

mol L-1 in the suboxic zone (Figure 5a). However, in July 2008, DON concentrations were 

the lowest seen, with concentrations highest at 30 m (12 mol L-1) and decreasing to 8 mol 

L-1 in the oxycline and suboxic zone (Figure 5a). In June 2005, TON concentrations were 

quite high (15-24 mol L-1) (Figure 5a). These values are consistent with coastal 

measurements from 2001 (Ducklow et al., 2007), implying some coastal influence in June 

2005. 

Surprisingly, isotopic values for TON/DON samples were quite variable between 

cruises. 15N-TON from June 2005 

the lower suboxic zone (Fig. 5b). 15N-DON from May 2007 was between 4-

the oxic and suboxic water column (Fig. 5b). Though only collected 5 months later, in 

October 2007, the 15N-



 

between 10-  (Fig. 5b). In 

July 2008 15N-

to 13-  (Fig. 5b). In contrast, 15N-

 (Fig. 5b).  15N-TON in March 2005 was 

different from all the other cruises in that it was more enriched in the oxycline compared to 

the suboxic zone.  

Though some samples were prefiltered (DON) and some were not (TON), the 

concentrations of N in particulates is generally quite small compared to the dissolved or total 

organic N. For example, at =15.4 in March 2005 [TON] is 11 mol L-1 and 15N-TON is 

mol L-1 and 15N-PON is 

TON to calculate DON, the isotope At =15.4 in June 

2005, [TON] is 17.5 mol L-1 and 15N- while [PON] is 0.25 mol L-1 and 15N-

The suspended PON pool is generally too small to shift the 

TON pool and its isotopes, so we feel it is acceptable to examine these sample sets together.  

4.4 N2 and Ar  

N2:Ar ratios in March 2005 had two maxima. A large maximum in the suboxic zone, 

similar to those seen in other years (Fuchsman et al., 2008) and a smaller maximum in the 

oxycline above the suboxic zone (Fig 6a). Recalibrated 15N-N2 values for March 2005 had a 

-0 6b).  

In June 2005, only a N2:Ar maximum in the suboxic zone was seen. Both N2 and Ar 

were unusually supersaturated in all the northeast Black Sea samples when compared with 

data from March 2005 and previous measurements from the Western Gyre (Fuchsman et al., 

2008). In June 2005, N2:Ar supersaturation increased from 1.008 in the surface to a 



 

maximum of 1.026 at =15.9 and then decreased 1.012 in the deep water (Fig. 6a). Seawater 

in the Black Sea below the CIL is formed from the mixing of the high salinity Bosporus 

outflow with the Cold Intermediate Layer (CIL) (Murray et al., 1991). The Ar and N2 

supersaturation due to this mixing was calculated in Fuchsman et al. (2008) and is seen in 

Figures 6c, d as the mixing line. In all cruises, argon concentrations decreased with 

increasing temperature and depth. However, argon concentrations from the northeast Black 

Sea were greater than predicted values calculated from mixing of the Bosporus with the CIL 

(Fuchsman et al., 2008), (Fig. 6c) and to data from the Western Gyre in March 2005 

(Fuchsman et al., 2008) (Figure 6c). As argon is an inert gas, the high argon concentrations 

seen here could be due to two possibilities: mixing with an unknown end member, or tiny air 

contamination due to the lack of CO2 to flush the neck of the sample bottle during sampling 

(see Methods). As the data was reproducible within and between cruises, an air leak would 

have to have been constant (except for three samples with high Ar concentrations that were 

removed as definite air contamination). This seems unlikely. The shape of the N2:Ar profile 

(except the oxycline) was extremely similar between the March 2005 and June 2005 cruises.  

For June 2005, the 15N-N2 was 0.60-0.65  zone, and values in the 

oxycline mirrored that of March 2005. 15N-N2 for May 2007, October 2007 and July 2008 

have not been previously published. Values in the upper water column hovered around 

equilibrium with air, but values became somewhat lighter in the oxycline (0.5-

were between 0.6- in the suboxic zone and upper sulfidic zone in May and October and 

 (Figure 6b).  

 



 

5. Discussion 

15N values of nitrate, S-PON, and TON/DON are variable in the Black Sea and can 

shift in time scales less than a year. 15N of TON/DON and S-PON appear to shift together 

(Figures 3, 5). More depleted organic N values in May 2007 could be related to the presence 

of 0.5 M nitrate in the surface waters. Larger surface nitrate concentrations allow 

phytoplankton to fractionate the nitrate, making the organic N more depleted (e.g. Rafter et 

al., 2013). Consistent with this, the 15N-NO3
- in surface waters was quite enriched in May 

2007 (Figure 2d).  We suspect a similar situation in June 2005, but nitrate isotope samples 

were not obtained for surface water samples. The greatly enriched 15N of S-PON and DON 

values in July 2008 could be due to the lower DON and S-PON concentrations on this cruise 

compared to the others, presumable due to consumption (Figures 3, 5). The entire 15N-NO3
- 

profile was also more enriched in July (Figure 2f) potentially because nitrate at depth was 

formed from remineralized organic matter. Total or dissolved organic N contains both 

reactive and unreactive organic N. The variability of TON/DON isotopes with time (Figure 5) 

indicates that a significant proportion of the organic N was reactive. 

In the following sections, we use samples from the northeast Black Sea in June 2005, 

May and October 2007, and July 2008 as a comparison to data from the Western Gyre in May 

2001 (Fuchsman et al., 2008) and March 2005. An autonomous profiling float deployed in 

the Western Gyre at 200 m took 6 months to travel in the Rim Current from the western to 

the NE Black Sea (Korotaev et al., 2006). Thus, the two sites are connected in time scale 

comparable to the sampling intervals investigated here.  

 



 

5.1 Suspended matter comparison 

There is evidence that fresh organic matter was exported to the oxycline in March 

2005, the typical time of year for a spring bloom (Mikaelyan et al., 2017). A maximum in 

monthly averaged satellite chlorophyll a concentrations occurred in February 2005 with 

significant amounts of chlorophyll still present in March (Nezlin, 2008). Chloroplasts from 

both diatoms and a member of the Cryptophyta phylum were found in pyrosequences of 16S 

rRNA at =15.3 in March 2005 (Fuchsman et al., 2011), indicating the origin of this organic 

matter. Concentrations of suspended organic matter in the Western Gyre in March 2005 had a 

large maximum at =14.5-15.2, then decreased sharply with depth (Fig. 3a, b). The 15N of 

and C:N values were ~6, (Figure 3a) indicated 

fresh, non-degraded, material (Rice & Tenore, 1981). The distributions of suspended 

particulate organic carbon and nitrogen seen in June 2005, May and October 2007 and July 

2008 in the northeast Black Sea (Fig. 3c) and in May 2001 in the Western Gyre (Fig. 3c; 

Coban-Yildiz et al., 2006; Fuchsman et al., 2008) were simpler and did not include a 

maximum in the oxycline. Instead concentrations steadily decreased from the surface to the 

middle of the suboxic zone where they increased (Figure 3c) due to chemoautotrophic 

production with reduced sulfur (Coban-Yildiz et al., 2006; Yilmaz et al., 2006). 15N-PON 

values from the northeast Black Sea (5-

(Figure 3d; Coban-Yildiz et al., 2006) were also more enriched than those seen in March 

2005 indicating more degraded material.  

The suspended matter maximum in the oxycline in March 2005 was also recorded as a 

transmissivity minimum and fluorescence maximum at 63 m ( = 15.1) (Fig. 4). However, 

the increase in phytoplankton biomass at 60-65 meters was surprising since the euphotic 

zone, as delineated by 1% light level, was not measured, but is usually at 15-30 meters 

(Yilmaz et al., 2006). The transmissivity and fluorescence anomalies were at the same depth 



 

(63 m) on 29 March and 03 April but diminished over time, suggesting that the bulk of the 

particulate organic material remained at that depth though some was either consumed or 

continued to sink. It should be noted that the 60-70 meters region corresponds to a large 

density change ( =14.68-15.3; Fig 4). Marine snow has been found to accumulate at density 

discontinuities when the density change  > 0.04 (MacIntyre et al., 1995). The change in 

density in March 2005 was an order of magnitude larger. We hypothesize that a sinking 

bloom of phytoplankton got caught at the density discontinuity.  In any case, it appears that 

the bloom injected fresh organic material straight into the oxycline of the Black Sea where 

oxygen was 30-50 .  

 

5.2 N2:Ar comparison 

 Data from all cruises showed a N2:Ar maximum in the suboxic zone. In March 2005, 

there was also an additional N2 and N2:Ar maximum in the oxycline above the suboxic zone 

associated with the fresh organic matter. 15N-N2 from the maximum in the oxycline in 

March 2005 was enriched compared to equilibrium with air (Figure 6). 15N-N2 from the 

oxycline in March 2005 was similar in magnitude to enriched 15N-N2 data from a N2 

maximum in the oxycline above the ETSP oxygen deficient zone in a highly productive eddy 

(Altabet et al., 2012). Both of these oxycline datasets are enriched compared to 15N-N2 in 

the Black Sea suboxic zone (Figure 6) or 15N-N2 in oceanic oxygen deficient zones 

(Fuchsman et al., 2018). The maximum in 15N-N2 in March 2005 (Western Gyre) was 

slightly offset deeper than the organic matter maximum and encompassed the entire depth 

range where the organic matter was consumed ( =15.2-15.5; Fig. 7). The N2:Ar depth 

profile also had a maximum in this same depth range.  There was no maximum in N2:Ar in 

the oxycline depth range ( =15.2-15.5) in June 2005, May 2007, July 2008 or in the western 



 

gyre in May 2001 (Fig 6a) (Fuchsman et al., 2008). In October 2007, which occurred at the 

beginning of the fall bloom period when productivity was higher than on the other 

northeastern cruises, N2:Ar supersaturation was higher than found in the other NE Black Sea 

cruises (Figure 6a) and mRNA from denitrifying bacteria were present in the upper suboxic 

zone (Kirkpatrick et al., 2012).  

We assume that the extra N2 gas from the oxycline in March 2005 is produced in situ. 

The Western Gyre is in the center of the Black Sea, separated from coastal sediments by the 

rim current (Figure 1). Thus, the nitrogen gas in the oxycline has three potential sources: 

 

[Total N2] = [Abiotic N2] + [Biogenic N2 diffused from below] + [In situ biogenic N2]     [1] 

 

N2 saturation values are determined by equilibration with the atmosphere at specific 

temperatures and salinities (Fig 6d) (Hamme & Emerson, 2004). However, because seawater 

in the oxycline forms by mixing of the Bosporus inflow with the CIL and this mixing results 

in supersaturation of gases, a mixing line better represents the abiotic component of the N2 

gas in Eq. 1 (Fig 6d) (Fuchsman et al., 2008).  

The N2:Ar profiles from the NE Black Sea are all shifted to larger concentrations 

when compared to those in the Western Gyre. We know from mRNA data that both 

anammox and denitrifying bacteria were consistently active in the lower suboxic zone of the 

NE Black Sea (Kirkpatrick et al., 2012). However, due to the extra super saturation of both 

N2 and the inert gas argon throughout their depths profiles, including deep waters, it appears 

that the northeast Black Sea has another end member that is mixing N2 and Ar into the water. 

The argon supersaturation in the northeast Black Sea increased with depth (Fig S4), which is 

consistent with a shelf sediment end member source. For example, the northeast Black Sea is 

home to many methane seeps (Egorov et al., 2008; Marina et al., 2011). Excess mantle-



 

derived argon is known to be found in hydrothermal vent fluids (Stuart & Turner, 1998; 

Winckler et al., 2001) and argon is known to degas in water rock interaction (Tolstikhin et al., 

1996). Whatever the actual source, we can use the excess argon seen in the northeast Black 

Sea to quantify the potential magnitude of the third end member and remove it, allowing 

comparison to the Western Gyre N2 data. For the northeast Black Sea June 2005 data, if we 

subtract the argon mixing line from the measured argon concentration, multiply the residual 

by 50 N2:Ar (Figure S4) and then subtract from the measured N2 concentration, we can make 

the northeast and Western Gyre profiles overlap (Figure S5). Similarly, the May and October 

2007 and July 2008 data from the northeast Black Sea will overlap with the March 2005 data 

if the residual is multiplied by 60 N2:Ar (Figure S4-S5). From this calculation, we estimate 

the ratio of N2:Ar in this third end member to be 50-60. The ratio of N2:Ar in air is 83.6. Thus 

the ratio of 50-60 is less than air and is consistent with the production of argon from water 

rock interactions or similar sources. After this removal, the difference between N2 from 

March 2005 and June 2005 at the oxycline maximum above the suboxic zone were 2-3 

the calculations below.  

 

5.3 N2 production in the oxycline 

The concentrations of excess N2 at the March 2005 oxycline maximum relative to the 

N2 gas mixing line, ranged from 3.5 to 8 mol kg-1 (Figure 8). As seen in equation 1, we may 

not be able to simply compare N2 gas in the oxycline in March 2005 to an abiotic mixing line 

because some biogenic N2 may be found in the oxycline due to vertical diffusion of biogenic 

N2 from the suboxic zone below (Fuchsman et al., 2008; Konovalov et al., 2008). We 

compare N2 concentrations from March 2005 to a previously published profile from May 

2001 (Fig 6d) (Fuchsman et al., 2008) and an inverse model of the March 2005 (Fig 6d) 



 

(Konovalov et al., 2008). The inverse model replicates the initial conditions before the N2 

production event described here because the calculations did not include N2 production in the 

oxycline and failed to fit the N2 maximum in the oxycline (Konovalov et al., 2008). By 

subtracting concentrations from May 2001, or modeled data (Konovalov et al., 2008) from 

measured concentrations in the oxycline in March 2005, we estimated the extra N2 produced 

during this event. Values varied from 2-4 mol kg-1 (Figure 8), which is very similar to 

values calculated from the residual to corrected northeast N2 data (Figure S4).  For 

comparison, biologically produced excess N2 in the suboxic zone in March 2005 had a 

maximum of 10 mol kg-1 (Fuchsman et al., 2008).   

In order to calculate the 15N-N2 produced during this event, we assumed that the 

15N-N2 Knox et al., 1992) represented the initial condition in 

the Western Gyre before the N2 production event in March 2005. An upward flux of N2 from 

the suboxic zone would also have similar isotopic values (0.6-0.7  Figure 6). We used the 

extra excess of N2 calculated using data from May 2001, the inverse model, and the mixing 

line as the background concentrations, and found the isotopic composition of the extra excess 

N2 by mass balance. The calculated 15N-N2 of the in situ biological N2 in the oxycline in 

March 2005 ranged from +7 to +38 with the largest concentrations 

of extra N2 had the least enrichment (Fig. 8). Exact numbers should not be taken too literally 

as a difference in 0.5 mol kg-1 extra excess can change the 15N of the produced N2 by 3-

in situ biological N2 due to this event 

would be greatly enriched compared to dissolved gas that has been equilibrated with the 

atmosphere.   

The ratio of transformation rates of 14N to 15N is defined by an isotope effect ( ), and 

is often negative as lighter isotopes undergo transformation at a higher rate. The isotope 



 

effect for denitrification from cultures is between -10 and - (Kritee et al., 2012) and 

is ~ - for N2 production in marine oxygen deficient zones (Fuchsman et al., 2018). For 

anammox in wastewater treatment facilities, the isotope effect is -23 to -

and - (Brunner et al., 2013). In oxycline of the Black Sea in March 2005, a -

25  isotope effect with the reactant nitrate at 5-7  would produce instantaneous N2 of -18 

to -20 . However, the calculated 15N-N2 of the in situ biological N2 in the oxycline in 

March 2005 ranged from +7 to + .  Even though these isotope effects are reduced in 

systems like the Black and Baltic Seas, where reactants are completely consumed in the 

suboxic zone (Frey et al., 2014; Konovalov et al., 2008), in all normal cases, the reactant, 

NOx
-, should become more enriched and the product, N2, more depleted.  

The important question is how can enriched N2 be produced in the oxycline. Nitrate 

with 15N-NO3
- at 4-7 is more depleted than the enriched N2 (Fig. 2b). The 15N of 

=14.6 to 15.2, but the S-PON sample 

from =15.4 had 15N-PON of  (Figure 3b). Total organic N is the most isotopically 

enriched N species measured (Figure 5b). 15N-TON reached and 15N-

just below the zone of enriched N2 (Fig. 3, 5, 6). Thus, in March 2005 TON 

and S-PON at these depths were greatly enriched compared to ambient nitrate, but were 

similar to organic N values seen in October 2007 and July 2008 (Fig. 5). We suggest organic 

N was a potential N source for the excess N2.  

We examined suspended PON. Sinking and suspended PON have been found to have 

different 15N values in the euphotic zone in the open ocean due to trophic effects during 

consumption and defecation by zooplankton (Altabet, 1988). In our case consumption by 

zooplankton would produce sinking particles at least 3.5  more enriched (for one trophic 

level) or greater (for more than one trophic level). For the phytoplankton in the organic 



 

matter maximum at =15.2, consumption by zooplankton would increase the 15N to at least 

However, sinking PON was not collected, so the exact values are unknown.  

 

5.4 N2 production within particulate matter 

The maximum suspended PON at =15.2 was 2 mol L-1 in March 2005 and 

decreased to 0.3 mol L-1 at the top of the suboxic zone (Figure 3b). Total organic N has 

much higher concentrations (Figure 5). However, consumption of DON would not allow 

physical separation of the N2 producing bacteria from the high oxygen concentrations. This 

purported N2 production would be occurring in water with 30-50 mol L-1 oxygen, even 

though anammox and denitrification are 50% inhibited at 900 nM and 300 nM oxygen 

respectively (Dalsgaard et al., 2014). In the marine environment, there are oxygen gradients 

inside organic matter aggregates (Ploug, 2001; Ploug et al., 1997; Ploug & Bergkvist, 2015). 

In diatom aggregates, which at least partially form the organic matter here (Fuchsman et al., 

2011), diffusion limitation of oxygen occurred starting at ambient O2 concentrations of 100 

(Ploug & Bergkvist, 2015; Stief et al., 2016) 

O2 (Ploug & Bergkvist, 2015). It is likely that oxygen concentrations were reduced inside the 

particles during this high organic matter event in the Black Sea, allowing conditions inside 

the particles that were conducive to denitrification. The molecular diffusion coefficient (k) in 

seawater  of oxygen (1.55 10-5 cm2s-1) is greater than that of nitrate (1.16 10-5 cm2s-1). 

Thus, nitrate, at concentrations <5 , would also be diffusion limited in this system.   

We can test our theory of local N use within the particle with a simple calculation of 

volumetric respiration rates of both oxygen and nitrate. The balance between the source and 

sink for oxygen and nitrate inside a particle can be calculated as follows: 

 [2] 



 

where DBL is the diffusive boundary layer or the width of the layer around the particle where 

diffusion determines fluxes into the particle and k is the molecular diffusion coefficient 

(Ploug et al., 1997). GradientC represents the gradient of oxygen or nitrate between inside and 

outside of the particle. If we compare O2 respiration and nitrate respiration in the same 

particle, the surface area of the particle (cm2), volume of the particle (cm3), and diffusive 

boundary layer (cm) of the particle cancel in equation 2. In the zone of enriched N2
 in the 

oxycline ( =15.2-15.4), ambient nitrate was 4.5 - 4.8 mol L-1 and the oxygen concentration 

was 52 - 33 mol L-1 in March 2005. As both oxygen and nitrate concentrations are low in 

the surrounding waters, here we assume that there is total consumption of oxygen and nitrate 

within the particle. The oxygen flux is larger than the nitrate flux when we assume molecular 

diffusion coefficients (k) in seawater. Using stoichiometry for aerobic respiration (Eq. 3) 

(Anderson, 1995), we can calculate the amount of ammonia produced and then oxidized to 

nitrate during organic matter degradation.  

 

C106H175O42N16P + 150 O2  106 CO2 + 16 HNO3 + H3PO4 +78 H2O       [3]  

 

If ammonium produced and oxidized to nitrate is compared to the nitrate diffusing in 

from the ambient water in the zone of enriched N2 ( =15.2-15.4), the ratio of N atoms 

originating from particulate matter to the number of N atoms diffusing from ambient water 

would be 1.1 3 for denitrification. If anammox, which uses ammonium and nitrite, 

occurred inside the particles instead of denitrification, the ratios would be 1.6 4 as more 

oxygen would be available to oxidize organic matter instead of ammonium. Ammonium and 

nitrite oxidation can occur even under very low oxygen conditions (Bristow et al., 2016; Lam 

et al., 2007) and have been previously documented in particles (Klawonn et al., 2015). DNA 

for a member of the ammonia oxidizing genus Nitrosospira, (Teske et al., 1994) was found at 



 

=15.3 (Fuchsman et al., 2011) and ammonia oxidizing archaea have been previously found 

at these depth in the Black Sea (Lam et al., 2007). These calculations suggest, assuming 

ammonium oxidation occurs inside a particle, that in the oxycline, there is the potential for 

more NOx
- to be produced from organic N inside the particle than arrives by diffusion from 

ambient seawater. 

 

 

5.5 N2 producing bacteria 

The water column 15N-N2 values are not useful for clarifying the relative importance 

of anammox versus denitrification for N2 production. However, bulk water DNA samples 

from the western central gyre in March 2005 ( =14.9-16.4) along with one particulate 

sample (> 30 m) at =15.8 were analyzed with both TRFLP and pyrosequencing of the V6 

variable region of 16S rRNA (Fuchsman et al., 2011; Fuchsman et al., 2012b; Fuchsman et 

al., 2012a). Though the maximum in anammox normalized TRFLP peak height does correlate 

with the maximum of N2 gas in the suboxic zone (Fuchsman et al., 2012a) (Fig. 7), both 

datasets indicate that anammox bacteria were not present in the oxycline. Out of 10,000 

pyrosequences from =15.3 in the oxycline, none were related to known anammox bacteria 

(Fuchsman et al., 2011). Bacteria that perform the anammox process are monophyletic, or 

closely related, and all anammox bacteria found in the marine environment are in the genus 

Scalindua (van de Vossenberg et al., 2013), so these data suggest the absence of the 



 

anammox process. Particulate and water samples from the suboxic zone were compared in 

March 2005, and the anammox bacteria were clearly free-living in the suboxic zone 

(Fuchsman et al., 2012a). Anammox was also found to be free-living in two open ocean 

oxygen deficient zones (Ganesh et al., 2014, 2015), indicating that this is its general lifestyle. 

Thus, we conclude that anammox bacteria were not associated with the particles or the 

anomalous 15N-N2 in the oxycline of the Black Sea (30- 2).  

In contrast, both V6 pyrosequencing and TRFLP did detect a phylotype of the 

Methylophilus family of betaproteobacteria  [BS029; Accession number GU145414] in the 

oxycline (Fuchsman et al., 2011), and the Methylophilus TRFLP depth profile had a 

maximum peak height from =15.3 to 15.6 and then decreased to undetectable at = 15.9, 

correlating with decreasing nitrate concentrations (Fig. 7). In other systems, stable isotope 

probing techniques have identified Methylophilus relatives as potential denitrifiers using 

methanol (Ginige et al., 2004; Kalyuhznaya et al., 2009). However, relatives of 

Methylophilus can also use oxygen (Doronina et al., 2005) and Methylophilus was not 

particle-attached in the suboxic zone (Fuchsman et al., 2011). Unlike anammox, 

denitrification is not monophyletic (Zumft, 1997), so other unknown denitrifying bacteria 

may also have been present. In fact, most nitrite reductase (nirS) sequences from Black Sea 

samples in 2003 and 2007 did not match known denitrifiers (Kirkpatrick et al., 2012). 

Additionally, denitrification genes were enriched in the particulate fraction in two oxygen 

deficient zones (Fuchsman et al., 2017; Ganesh et al., 2014, 2015), implying that at least 

some denitrifiers live in particles.  In summary, anammox bacteria were not found in the 

oxycline where N2 production occurred, but a potential denitrifying bacterium was present 

and other denitrifying bacteria may have been present as well.  

 

5.6 Calculation of 15N2 created from particle N 



 

We can use a simple calculation to see if our data are consistent with denitrification 

inside sinking aggregates. From the calculation above (Eq. 2 and 3), we use a ratio of 1.1 N 

atoms from nitrate produced inside the particle for every 1 N atom from nitrate that diffuses 

in from outside. Assuming complete consumption and using the ratio of 1.1 N atoms from 

nitrate produced within the particle ( 15NO3
-,produced  for every 1 N atom from nitrate 

diffused from ambient water ( 15NO3
-,ambient and the range of possible values, we use 

Eq. 4 to calculate the 15N-N2  N2.  

  

The 15N of nitrate that diffused in from the ambient water was 5- 2b). We 

can compare this to calculations of nitrate produced from organic matter remineralization, 

where the fractionation factor is -3.5 (Macko et al., 1994). At the same depth where 15N-

TON  and 15N-  (Figures 3b, 5b). In addition, heterotrophic 

denitrification preferably utilizes proteins (Van Mooy et al., 2002), and in algae proteins are 

(Macko et al., 1987), implying that the organic N 

actually consumed by denitrifiers could be more enriched than our bulk values. Nitrate 

produced from the heavy organic matter would be 7.5-  As nitrate was diffusion 

limited, we assume the nitrate in the particle is a small pool that is completely consumed 

without fractionation.  

Using equation 4, the predicted 15N-N2 2 was in the range from 6.3  

8.8 . The calculated 15N-N2 of the in situ biological N2 from the oxycline in March 2005 

from measured N2 ranged from 7- . Our calculations indicate that denitrification within 

particulate matter, where nitrate was diffusion limited and completely consumed, could 

produce enriched N2 under the conditions observed in March 2005 in the Western Gyre. On 

the other hand, fractionation of nitrate in the water column ) 



 

would produce highly depleted 15N-N2, which would not be consistent with our 

measurements. Denitrification in particles is the most parsimonious explanation for enriched 

N2 measurements in the oxycline in March 2005.   

6. Conclusions 

In March 2005, high concentrations of organic matter were found in the oxycline 

above the suboxic zone of the Western Gyre in the Black Sea. A maximum N2 concentration 

correlated with the consumption of organic matter in the oxycline (30-50 mol L-1 O2). DNA 

of anammox bacteria was not found at these depths (Fuchsman et al., 2011; Fuchsman et al., 

2012a). However, a potential denitrifying bacterium was found and other denitrifiers were 

suspected to be present. The combination of microbial data and N2 gas concentrations 

indicate that denitrification could have occurred in the oxycline of the Black Sea during this 

high organic flux event in March 2005. 15N-N2 produced during this event was calculated 

three ways, all of which indicated a source of significantly enriched N2. Organic matter was 

enriched while ambient nitrate was not. Enriched 15N-N2 at these depths could be most 

logically explained by the occurrence of denitrification inside organic matter aggregates. In 

this scenario, half of N atoms that formed N2 originally came from organic matter, but were 

immediately oxidized to nitrate or nitrite inside the aggregate. These data suggest that 

denitrifiers may be adapted to live and be active inside sinking aggregates in low oxygen 

water columns. Thus, denitrification in hypoxic waters may be temporally variable, with rates 

linked to organic matter export from the euphotic zone. This event most likely occurred 

because a sinking spring phytoplankton bloom got stuck at a sharp density gradient in the 

oxycline of the Black Sea and injected fresh organic matter directly into low oxygen waters, 

causing enough denitrification to occur to perturb the isotopic composition of the large N2 

pool.   



 

A N2 gas maximum and enriched 15N-N2
 in an oxycline layer has also been reported 

above the ETSP Oxygen Deficient Zone under highly productive conditions in an eddy 

(Altabet et al., 2012). The enrichment of 15N-N2 in the oxycline of the ETSP eddy was of 

similar magnitude to the anomaly in the Black Sea discussed here. The biological N2 

produced in the oxycline at this station in the Eastern Tropical South Pacific was greater than 

predicted from nitrate consumption (Altabet et al., 2012), which would be consistent with an 

additional N source from particulate organic matter.  Additionally denitrification rates have 

been measured in the oxyclines above both the ETNP and ETSP oxygen deficient zones 

despite the inhibition of denitrification at nanomolar oxygen concentrations (Babbin et al., 

2015; Dalsgaard et al., 2014; Ji et al., 2015). We suggest that heterotrophic denitrification in 

aggregates under hypoxic conditions may be common over oxygen depleted waters but may 

become more pronounced and more easily detectable during high productivity events. Future 

studies should provide experimental evidence to support or adjust the claim that half of 

marine water column denitrification occurs in hypoxic waters on particles (Bianchi et al., 

2018).  
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Figure 1. Map of the Black Sea indicating the stations described in this study. A schematic of 

the Rim Current is shown in a dashed line and the current direction is indicated by arrows. 

The Bosporus inflow is indicated by a black square. Both the Western Gyre (May 2001 and 

March 2005) and Northeast Black Sea (June 2005, May and October 2007, July 2008) are 

repeat stations.  

  



 

 

Figure 2. Contextual data. (A) Oxygen and sulfide data from all cruises, (B) nutrient and 

15N NO3
- profiles from March 2005, (C) from June 2005, (D) from May 2007, (E) from 

October 2007 and (F) from July 2008. 15N NO3
- from acidified samples are in black and 

from frozen samples are in grey. Dashed lines indicate the boundaries of the suboxic zone 

(SOZ) and the bottom of the Cold Intermediate Layer (CIL).   
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