Accepted Manuscript

This is an Accepted Manuscript of an article published by Taylor & Francis Group in Botany Letters on 07 Jan 2020, available online: http://www.tandfonline.com/10.1080/23818107.2019.1703808

Ivana Trbojević, Aleksandra Marković, Jelena Blaženčić, Gordana Subakov Simić, Petra Nowak, Andreas Ballot & Susanne Schneider (2020) Genetic and morphological variation in Chara contraria and a taxon morphologically resembling Chara connivens, Botany Letters, 167:2, 187-200, DOI: 10.1080/23818107.2019.1703808

It is recommended to use the published version for citation.

Genetic and morphological variation in *Chara contraria* and a taxon morphologically resembling *Chara connivens*

Ivana Trbojević^{*a}, Aleksandra Marković^b, Jelena Blazenčić^a, Gordana Subakov Simić^a, Petra Nowak^c, Andreas Ballot^d, Susanne Schneider^d

^a University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac" Takovska 43, 11 000, Belgrade, Serbia

^b Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

^c University of Rostock, Institute of Biosciences, Ecology, Albert-Einstein-Str. 3, 18059 Rostock, Germany

^d Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway

* Corresponding author: Trbojević Ivana
University of Belgrade, Faculty of Biology
Address: Studentski trg 16, 11000 Belgrade, Serbia
Phone: +381 11 3244 847
Fax: +381 11 3243 603
E-mail: <u>itrbojevic@bio.bg.ac.rs</u>

Ivana Trbojević is a researcher at the University of Belgrade, Faculty of Biology, mainly interested in ecology, taxonomy and biodiversity of freshwater benthic macroalgae –charophytes. She is striving to understand phylogeny concepts of this ancient group of algae. Contribution: field work, manuscript writing.

Aleksandra Marković is Assistant Research Professor at the University of Belgrade, Institute of Chemistry, Technology and Metallurgy, mainly interested in ecology of aquatic macrophytes, particularly in charophyte algae ecology. Contribution: field work, manuscript writing.

Jelena Blazenčić is a retired full-time professor at the University of Belgrade, Faculty of Biology, with a long and fruitful career devoted to charophyte research, prevalently in Balkan Peninsula. Her bibliography confirms her as one of the leading experts in the field of charophytes research. Contribution: field work, manuscript writing. Gordana Subakov Simić is associate professor at the University of Belgrade, Faculty of Biology. She is mainly interested in ecology, diversity and invasive species distribution in freshwater phytoplankton and phytobenthos. Contribution: field work, manuscript writing.

Petra Nowak is a marine biologist at the University of Rostock specializing in the biodiversity and evolution of macroalgae. Besides the taxonomical aspect, she is interested in molecular and morphological approaches towards understanding the acclimation and adaptation processes of macroalgae. Contribution: sequencing, manuscript writing.

Andreas Ballot is a senior scientist at the Norwegian Institute for Water Research. He is mainly interested in the ecology and phylogeny of phytoplankton and macrophytes. Contribution: genetic and phylogenetic analyses, manuscript writing.

Susanne C. Schneider is a senior scientist at the Norwegian Institute for Water Research, and adjunct professor at the Norwegian University of Life Sciences. She is mainly interested in the ecology of macrophytes and benthic algae. Contribution: field work, manuscript writing.

Genetic and morphological variation in *Chara contraria* and a taxon morphologically resembling *Chara connivens*

Charophyte species delineation is regularly based on a set of thallus morphological characteristics, but considering pronounced phenotypic plasticity, difficulties and doubts commonly occur in Chara species determination. DNA barcoding may contribute to solving these challenges. Here we characterize Chara contraria with an unusual set of morphological characteristics, and specimens morphologically resembling Chara connivens collected in Serbia, by describing their morphological traits and analysing matK barcoding results. Our results indicated that dioecious Chara specimens, tentatively determined as Chara "connivens" based on morphological traits, were genetically more closely related to C. globularis. These Chara "connivens" specimens formed a sister group to a monophyletic C. globularis cluster, suggesting that it may be neither C. connivens nor C. globularis. We strongly encourage further barcoding of C. "connivens" samples from freshwater, in order to find out if there are consistent genetic differences between the dioecious freshwater C. "connivens" and monoecious C. globularis. Barcoding of matK placed the monoecious Chara specimens, which based on morphological characteristics initially were determined as C. virgata, into the C. contraria group. This indicates that the microscopic traits which commonly are used for Chara species determination sometimes are misleading. In general, our study challenges the commonly used phenetic species concept in Charophyte taxonomy and illustrates the importance of molecular approaches to evaluate the validity of morphological characteristics of the plant thallus in species delineation.

Keywords: algae; barcode; Charales; charophyte; matK

Introduction

Charophytes are macroscopic benthic algae with a complex morphology, vaguely resembling Equisetum (Pukacz et al. 2014.; Schneider et al. 2016). They are also called stoneworts, due to the calcium carbonate encrustations which are firmly attached to the surface of their thalli (Pełechaty et al. 2013). Charophytes are well known providers of ecosystem services. By providing habitat, shelter, and food to various organisms, charophytes contribute to maintaining biodiversity in freshwater ecosystems (Schneider et al. 2015). Charophyte meadows effectively act as nutrient sinks, by incorporating nutrients in biomass, coprecipitation of phosphorus with calcium carbonate and restriction of sediment resuspension, thereby enhancing water clarity and quality (Kufel and Kufel 2002). At the same time, charophytes are sensitive to environmental impacts, e.g. eutrophication and climate change (Blindow, 1992; Auderset Joye and Rey-Boissezon, 2015). Because of their species-specific sensitivity to eutrophication, charophytes are often used as bioindicators to indicate eutrophication or ecological status of water bodies according to the Water Framework Directive (e.g. Melzer, 1999; Schneider et al. submitted). Consequently, accurate identification of charophytes is important, in order to assess the ecological status of water bodies as correctly as possible.

Morphological characteristics of the plant thallus are commonly used for charophyte species delineation (Schneider et al. 2015). However, this often is difficult, because the morphology of a species may vary, and morphological traits used for species delineation may overlap between species or differ among determination keys (Boegle et al. 2007). Both, environmental conditions and genetic differences may contribute to phenotypic plasticity of charophytes (Boegle et al. 2007; Schneider et al. 2016). It has recently been shown that characters which commonly are used for *Chara* species delineation – such as the number and length of spines and stipulodes, do not coincide with genetic differences (Schneider et al. 2016).

DNA barcoding is a reliable tool for detecting genetic variability and phenotypic plasticity within genetically similar units. It has successfully been applied also in charophytes (e.g. Schneider et al. 2015; Karol et al., 2018). In DNA barcoding, short regions of DNA (barcodes) are sequenced and matched to a reference library. *MatK*, a rapidly evolving coding

section of the plastid genome, is, along with *rbcL*, recommended as standard DNA barcode for plants (CBOL Plant Working Group 2009), and has previously successfully been used for barcoding of *Chara* species (Schneider et al. 2016; Karol et al., 2018; Langangen et al., in press).

Chara contraria is described as an extratropical cosmopolite mainly occurring in the Northern hemisphere (Krause 1997). The species is relatively common in Europe (Doege and van de Weyer 2016). *Chara contraria* inhabits various types of water bodies, but it seems to prefer larger lakes, either natural or artificial, which can be colonized to greater depths (Doege and van de Weyer 2016). *Chara contraria* has frequently been found in Serbia and is currently regarded as being at Low Risk (nearly threatened) in the Red List of species in Serbia (Blaženčić 2014).

Chara connivens is considered to be a brackish water species, but it also occurs in freshwater habitats such as lakes, ditches and temporary ponds (Torn and Martin 2004). *Chara connivens* occurs in Europe, Africa and Northern Asia (Torn and Martin 2004). In Europe, it is reported mainly from coastal habitats, from Scandinavia to the Mediterranean (Torn and Martin 2004; Becker 2016), but also from inland waters in central and southern Europe, such as lake Balaton in Hungary and the Danubian floodplain in Romania and the Balkans (Krause 1997; Blaženčić et al. 2006). Still, this species is not common outside coastal habitats, and by now in Serbia it was found only in one locality, thus it is considered critically endangered (Blaženčić 2014).

Difficulties and doubts commonly occur in *Chara* species determination, and we also experienced doubts in the determination of samples which showed "untypical" morphological characteristics. Barcoding of genetic markers may contribute to solving these challenges. We here use barcoding of *matK*, together with the characterization of morphological traits, to characterize the morphological and genetic variability of samples collected in Serbia. One of

the samples was preliminarily identified as *C. connivens*, while the morphology of the other sample had characters from *C. contraria* and *C. virgata*. Since the barcoding results clearly identified this sample as *C. contraria*, we refer to it as *C. contraria* in the entire manuscript.

Methods

Localities and charophyte sampling

Samples of C. contraria and C. connivens were collected in Dulin pond and Sava lake.

Dulin Pond is a shallow (maximum depth 1.5 m; surface area 11.8 ha; 68 m a.s.l.) permanent water body situated in the Nature Reserve Deliblato Sands at the southern margin of the Pannonian Plain, along the river Danube (44°51'11.7"N, 21°17'52.5"E). It is separated from the Danube-Tisa-Danube Canal by a narrow bank and situated nearby a regional highway (Fig. 1). The total phosphorus concentration is high (400 µg TP/l; unpublished data from a single measurement in June 2017). Other available data on water chemistry indicate that Dulin Pond contains freshwater (not brackish water; Ca 17 mg/l, Mg 14 mg/l, conductivity 226 µS/cm, total hardness 5.5 dH; average values from 3 measurements in 2018).

Sava lake is a permanent water body situated in the city of Belgrade (44° 47' 02.28" N, 20° 23' 25.64" E; 73 m a.s.l.; surface area 81.7 ha, maximum depth 12 m, average depth 4.5 m). It is a former arm of the river Sava. The lake is intensively used for recreation. Total phosphorus concentrations are around 10 μ g/l (average of measurements taken at 6 sites around the lake taken in October 2017 and April 2018). The macrophyte vegetation is dominated by *Myriophyllum spicatum* L., and the macrophytes are regularly removed in the littoral during the summer season, to enable recreational use of the lake.

[Figure 1 near here]

Macrophytes in Dulin pond were collected in June 2017 along two transects, and fresh *Chara* samples were collected in August 2017 at one sampling point for genetic analyses (Fig. 1), by using a grapnel and a rake. Macrophytes in Sava lake were collected in July 2017 at the easternmost shore of the lake, by using a grapnel, and by snorkelling. Charophyte specimens which were difficult to determine due to unusual morphology were analysed by barcoding. Light microscope (LM) images of taxonomically relevant morphological characteristics of *Chara* specimens were obtained by using Carl Zeiss AxioImager M1 microscope and a digital camera AxioCam MRc5 with AxioVision 4.8 software.

DNA barcoding

Two different methods were used to isolate genomic DNA from *Chara* samples investigated in this study. An overview over which samples were analyzed with which method is given in Table 1. The sequence data were deposited in the European Nucleotide Archive (ENA) under the accession numbers given in Table 1.

Method A: Genomic DNA from *Chara* material was isolated after Schneider et al. (2016). PCR for the *matK* gene was performed on a Bio-Rad CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, Oslo, Norway) using the iProof High-Fidelity PCR Kit (Bio-Rad Laboratories, Oslo, Norway). Amplification of the *matK* gene region was conducted using the primers F-Chara (agaatgagcttaaacaaggat) and R-Chara (acgatttgaacatccactataata). The following cycling protocol was used: one cycle of 5 min at 94 °C, and then 35 cycles each consisting of 10 s at 94 °C, 20 s at 62 °C, and 20 s at 72 °C, followed by a final elongation step of 72 °C for 5 min. PCR products were visualized by 1.5% agarose gel electrophoresis with GelRed staining (GelRed® Nucleic Acid Gel Stain (Biotium, Fremont, USA)) and UV illumination. For sequencing the same primers and the intermediate primers charaintF (gatggctattcaagcagga), charaintR (ctaccgataagttcgtcct), charaBt2F (datatggcaacaycaaaagac) and charaBT2R (atacagaccatgcagcytt) were used. For each PCR product, both strands were sequenced on an ABI 3730 Avant genetic analyser using the BigDye terminator V.3.1 cycle sequencing kit (Applied Biosystems, (Applied Biosystems, Thermo Fisher Scientific Oslo, Norway) according to the manufacturer's instructions.

Method B: Preparation of total DNA was performed using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), following the manufacturer's protocol. Amplification of the *matK* gene region was performed with a Taq PCR Master Mix (Qiagen, Hilden, Germany), using the primers *matK*-F2 (aatgagettaaacaaggatte) and *matK*-R1b (geageettatgaattggatage). The following PCR protocol was used: 10 cycles of one minute each at 94° C, 55° C, and 72° C, followed by one minute each at 94° C, 52° C, and 72° C for 25 cycles. The amplified DNA was purified with the Biometra-innuPrep Gel ExtractionKit (Analytik Jena, Jena, Germany) according to the manufacturer's instructions and was sequenced directly on a 3130×L GeneticAnalyzer (Applied Biosystems, NY, USA) using the BigDye terminator V.1.1 cycle sequencing kit (Applied Biosystems, Thermo Fisher Scientific, Darmstadt, Germany). Sequencing primers were identical to the primers that were used for the PCR reactions. Achieved sequences were proofed and manually edited using the BioEdit programme (Hall 1999).

[Table 1 near here]

Phylogenetic analyses

Sequences were analysed and aligned using Seqassem (version 04/2008) and Align (version 03/2007) MS Windows-based manual sequence alignment editor (SequentiX - DigitalDNA Processing, Klein Raden Germany) to obtain DNA sequence alignments, which were then corrected manually. In addition to two samples collected in Dulin pond and one sample from Sava lake, a *matK* set containing 50 other *Chara* sequences (Table 1), and 1067 nucleotide

positions were used for phylogenetic analysis. *Nitellopsis obtusa* (AY170447) was used as an outgroup taxon in the *matK* tree. The dataset was analyzed using maximum likelihood (ML), maximum parsimony (MP) and distance (neighbor-joining (NJ)) in MEGA version 7 (Kumar, Stecher, and Tamura 2016) and using Bayesian inference (BI) in MrBayes (No. of generations: 2,000,000; burn-in fraction: 0.25) (Ronquist et al.2012). GTR+G was selected as the best-fitting evolutionary model for the *matK* gene region. ML, MP, and distance analyses were performed with 1000 bootstrap replicates in MEGA version 7 (Kumar, Stecher, and Tamura 2016).

Results

Macrophyte species composition

The following floating and submerged macrophyte species were recorded in Dulin pond: Nymphaea alba L., Nuphar lutea (L.) Sm., Ceratophyllum demersum L., Elodea nuttallii (Planch.) St. John, Myriophyllum spicatum, Najas marina L., Najas minor All., Polygonum amphibium L., Potamogeton lucens L., Stuckenia pectinata (L.) Börner, Trapa natans L., Chara globularis Thuill., Chara contraria A. Braun ex Kütz. and Nitellopsis obtusa (Desv.) J. Groves. In addition, we found dioecious Chara specimens more closely described below.

The following macrophyte taxa were recorded at the sampling site in Sava lake: *Myriophyllum spicatum* L., *Najas minor* All., *Najas marina* L., *Potamogeton nodosus* Poir., *Potamogeton pusillus* L., *Stuckenia pectinata* (L.) Börner, *Zannichellia palustris* L., *Tolypella intricata* (Trentep. ex Roth) Leonh., and *Nitella* C. Agardh sp. In addition, we found *Chara* specimens more closely described below.

Description of Chara specimen with "unusual" morphology

Chara "connivens" from Dulin pond

We found dioecious *Chara* specimens (Fig. 2) which tentatively were determined as *Chara* "*connivens*", although the branchlets were longer than what is given in the determination keys (Table 2). *Chara* "*connivens*" was most abundant and partly dominant in the shallow littoral, up to 0.8-1 m depth, where it occurred mostly together with *Chara globularis*. Gametangia were well developed. In male plants, branchlets were markedly connivent and shorter than in female plants, where branchlets were straight and usually longer (Fig. 2). Species traits of *C. connivens*, as given in the most commonly used charophyte determination literature in Europe, together with the respective traits we found in the samples from Dulin pond, are given in Table 2.

[Figure 2 near here]

[Table 2 near here]

Chara contraria from Sava lake

We found monoecious *Chara* specimens which initially were determined as *C. virgata*. These specimens were found relatively sparsely at around 4-6 m water depth, together with *Myriophyllum spicatum*. The plants were roughly 20 cm long, and the plant habitus generally resembled *C. contraria*. However, the microscopic traits did not match the description of *C. contraria* given in the literature. *C. contraria* is generally described as diplostichous, with (slightly) elongated stipulodes in two tiers and short but generally (slightly) elongated spines (Krause 1997). In contrast, our samples were mainly triplostichous, had very short rudimentary spine cells, and globular stipulodes (sometimes the upper row of stipulodes was slightly elongated) (Fig. 3).

[Figure 3 near here]

Barcoding results

Both, *C. contraria* and *C. virgata* formed monophyletic clusters supported by bootstrap values \geq 99%, and the species were well separated from each other and from other species (Fig. 4). Despite its untypical morphology, which microscopically resembled *C. virgata*, barcoding of *matK* clearly placed the sample from Sava lake (S110) into a group with 20 other *C. contraria* samples collected in seven different countries within Europe (Fig. 4; Table 1). There was some genetic variability within *C. contraria*, but sample S110 was identical to three samples from Germany, and one sample from Greece (Fig. 4; Table 1).

Our samples of *C. connivens* also formed a well-defined cluster supported by a bootstrap value of 100%. However, *C. connivens* AY170422 obtained from Genbank was located in a separate cluster (Fig. 4). Samples S111 and S112, however, which were collected in Dulin pond, were closely related to *C. globularis*, and formed a sister group to a monophyletic *C. globularis* cluster. The clearest morphological difference between *C. globularis* and *C. connivens* is that *C. globularis* is monoecious, while *C. connivens* is dioecious (Krause, 1997). Our samples clearly were dioecious (Table 2), which suggests that it is *C. connivens*. However, barcoding results so far indicate that it may be neither *C. connivens* nor *C. globularis* (Fig. 4).

[Figure 4 near here]

Discussion

The phenetic species concept, which Charophyte taxonomy generally relies on, was in the last decades often challenged by molecular approaches, aiming to evaluate the validity of morphological characteristics of the plant thallus in species delineation (Boegle et al. 2007; Kato et al. 2010, Boegle et al. 2010a, 2010b, Urbaniak and Combik 2013; Schneider et al. 2016; Nowak, Schubert, and Schaible 2016;). Schneider et al. (2016) challenged the

usefulness of a number of morphological traits, such as partial or total loss of cortication, sex differentiation, or the number and length of spine cells, bract cells and stipulodes for *Chara* species differentiation, and highlighted the importance of genetic support for species delineation. In Schneider et al. (2016), 47 individuals from nine different countries in Europe formed the "*C. contraria*-cluster". Among these 47 individuals were monoecious and dioecious specimens, individuals with short and elongated branchlets, as well as ecorticated, partly ecorticated and normally corticated specimens. Interestingly, however, all individuals were diplostichous (Schneider et al. 2016). In contrast, our *C. contraria* sample from Sava lake (S110) was mainly triplostichous (Fig. 3). This indicates that also the number of cortex cell rows may be variable within a genetically homogeneous *Chara* group. Occasional occurrence of triplostichous cortex in *C. contraria* was mentioned before, but exclusively as an irregularity and anomaly in cortex development (Wood and Imahori 1965; Mouronval et al. 2015; Doege and van de Weyer 2016).

Commonly used determination keys (Wood and Imahori 1965, Gollerbah and Krasavina 1983; Krause 1997; Schubert and Blindow 2004; Urbaniak and Gąbka 2014; Mouronval et al. 2015; etc.) use a set of morphological traits such as cortication, length and number of spine cells, length of stipulodes and bract cells, as well as sex differentiation, to differentiate *Chara* species. Our results, together with earlier studies, have shown that all these traits vary within genetically homogeneous groups. Because of the microscopic traits (triplostichous, short stipulodes with the upper row sometimes a little elongated, rudimentary spine cells) we initially wrongly determined the *C. contraria* sample (S110) from Sava lake as *C. virgata*. Only the overall plant habitus resembled *C. contraria*, mainly because the specimen were more «greyish green» than *C. virgata* usually is, and because the branches were curved, rather than straight as is commonly observed in *C. virgata*. This made us doubt our determination, and double-check it using DNA-barcoding. Species determination keys

usually contain a short description of plant habitus, but this is not based on a uniform set of traits and relies on subjective impression. Habitus thus is usually only marginally (if at all) considered in species delineation. On the other hand, the experienced eye of the professional can recognize the habitus of some *Chara* species at the first sight. Unfortunately, habitus as morphological trait can hardly be uniformly and unambiguously described in practice. Nevertheless, we suggest that overall plant habitus may be "trusted" more in *Chara* species determination, particularly when overall habitus and microscopic morphological traits do not match, as was the case in our *C. contraria* sample from Sava lake.

In our barcoding results, the dioecious C. "connivens" from Dulin pond did not cluster with other C. connivens samples, but instead formed a separate cluster within C. globularis where it nevertheless was separated from the monoecious C. globularis samples (Fig. 4). This could mean that our C. "connivens" from Dulin pond may belong to a new, hitherto undescribed, species. Following the traditional determination keys, morphological traits (triplostichous, reduced spines and stipulodes, dioecious) clearly lead to C. connivens. However, typical C. connivens is described from brackish water (Torn and Martin 2004; Urbaniak and Gabka 2014; Mouronval et al. 2015), and only occasionally from eutrophic calcareous freshwaters characterized by high conductivity (Brzeska et al. 2015; Becker 2016). Dulin pond, however, is a typical freshwater environment, characterized by high phosphorus concentrations but relatively low conductivity and water hardness, compared to the general ecological preferences of C. connivens (Becker 2016). According to the same author, such conditions could be comparable with a habitat of C. connivens in Lower Saxony in Germany (Becker, own data, cited in Becker 2016). We hypothesize that the typical brackish water "connivens" may be a different species than specimens with a similar morphology from freshwater. However, more data are needed before conclusions can be drawn.

Specimens of *C. connivens* were once determined in Serbia before, in 1983 in a channel near Silver lake, about 15 km from Dulin pond (Blaženčić 2014). There was always a hint of doubt attached to this record, because also this location is a typical freshwater habitat. Hitherto unpublished drawings of this material (Fig. 5 a) show that they were morphologically similar to the samples we found in Dulin pond. Cytological analyses done at the time showed that the chromosome number was 21 (Fig. 5b), which is more than what Proctor (1971) found in *C. connivens* (n=14), but less than in *C. globularis* (n=28/42/ca.77). We therefore hypothesize that this old record of *C. "connivens"* found in the channel near Silver lake was the same species as the sample we now found in Dulin pond. Unfortunately, no herbarized material of any of these specimens exists, and no new findings at this locality have been made since 1983.

[Figure 5 near here]

The question whether dioecious and monoecious forms of otherwise morphologically similar *Chara* individuals automatically are to be considered as distinct species has been debated for a long time. Wood and Imahori (1965) did not recognize monoecious and dioecious forms as separate species. This was criticized by Sarma and Khan (1967) who, based on cytological findings, argued that dioecism and monoecism is a reliable species delineation character. Proctor (1975) found that some strains (very few, not all) of dioecious *C. connivens* and monoecious *C. globularis* can cross with one another, although their hybrid offsprings (recovered at low frequences) were invariably monoecious and self-sterile. He suggested that at some point during evolution *C. connivens* (or a closely related dioecious form) gave rise to the monoecious *C. globularis*, but in present, he suggested that these two fully deserve recognition as distinct species. Also, Krause (1997) considered dioecism and monoecism as fully reliable character for species delineation. Schneider et. al. (2016) showed that sex differentiation (monoecious-dioecious) was not always reliable to separate species,

because dioecious *C. arcadiensis* and *C. imperfecta* were not genetically different from monoecious individuals within the *C. contraria* cluster, while monoecious *C. tenuispina* indeed was different from dioecious *C. aspera*. Kato et al. (2010) showed that *rbc*L sequence data of monoecious *C. altaica* and dioecious *C. canescens* were identical, and we also have an unpublished sequence of a monoecious *Chara* sample which genetically clusters with dioecious *C. canescens*. We therefore suggest that monoecism-dioecism in some but not all cases indicates genetic separation of otherwise similar species. In some cases, the separation has gone a long way, and this is reflected in different barcodes. In other instances, separation is relatively new, such that barcoding differences have not yet become apparent.

In this context, we suggest that the dioecious *C. "connivens*" samples from Dulin pond are unusual - different from monoecious *C. globularis*, but also from the other dioecious *C. connivens* samples included in this study. We encourage further barcoding of *C. "connivens*" samples from freshwater, in order to find out if there are consistent genetic differences between the dioecious freshwater *C. "connivens*" and monoecious *C. globularis*. Overall, our study illustrates that using morphological traits for *Chara* species determination is challenging and stresses the importance of general plant habitus as a taxonomic trait.

Acknowledgements: Sampling of the *Chara* material in Sava lake was financially supported by the Norwegian Ministry of Foreign Affairs (STAR-WALK project). Sampling of the *Chara* material in Dulin pond was financially supported by the Serbian Ministry of Education, Science and Technological Development, Republic of Serbia, Project No. OI 176020 and Rufford foundation (Rufford Small Grant No. 25789-1). Serbian authors are very grateful to Mrs Milica Petrović Đurić, for the expertise and commitment in *Chara* material processing. Sequencing of the *Chara* material and phylogenetic analyses were partly funded by the Norwegian Biodiversity Information Centre.

Disclosure statement No potential conflict of interest was reported by the authors.

References

- Becker, Ralf. 2016. "Chara connivens". In Armleuchteralgen. Die Characeen Deutschlands, edited by Arbeitsgruppe Characeen Deutschlands, 270–279. Springer Verlag, Heidelberg.
- Blaženčić, Jelena. 2014. "Overview of the Stoneworts (Charales) of Serbia with the Estimation of the Threat Status." *Botanica Serbica* 38 (1): 121-130.
- Blaženčić, Jelena, Branka Stevanović, Živojin Blaženčić, and Vladimir Stevanović. 2006.
 "Red Data List of Charophytes in the Balkans." *Biodiversity & Conservation* 15 (11): 3445-3457. doi: 10.1007/s10531-005-2008-5
- Blindow, Irmgard. 1992. "Decline of Charophytes during Eutrophication: Comparison with Angiosperms." *Freshwater Biology* 28 (1): 9-14. doi: 10.1111/j.1365-2427.1992.tb00557.x
- Boegle, Michael G., Susanne C. Schneider, Beate Mannschreck, and Arnulf Melzer. 2007.
 "Differentiation of *Chara intermedia* and *C. baltica* compared to *C. hispida* based on Morphology and Amplified Fragment Length Polymorphism." *Hydrobiologia* 586 (1): 155-166. doi: 10.1007/s10750-006-0571-8
- Boegle, Michael G., Susanne C. Schneider, Arnulf Melzer, and Hendrik Schubert. 2010a.
 "Distinguishing *Chara baltica*, *C. horrida* and *C. liljebladii*—Conflicting Results from Analysis of Morphology and Genetics." *Charophytes* 2 (2): 53-58.
- Boegle, Michael G., Susanne C. Schneider, Hendrik Schubert, and Arnulf Melzer. 2010b.
 "Chara baltica Bruzelius 1824 and Chara intermedia A. Braun 1859—Distinct
 Species or Habitat Specific Modifications?." Aquatic Botany 93 (3): 195-201. doi: 10.1016/j.aquabot.2010.07.001
- Brzeska, Paulina, Adam Wozniczka, Mariusz Pelechaty, and Irmgard Blindow. 2015. "New Records of *Chara connivens* P. Salzmann ex A. Braun 1835-an Extremely Rare and Protected Species in Polish Brackish Waters." *Acta Societatis Botanicorum Poloniae* 84 (1). doi: 10.5586/asbp.2015.010
- CBOL (Consortium for the Barcode of Life) Plant Working Group. 2009. "A DNA Barcode for Land Plants." *Proceedings of the National Academy of Sciences USA* 106 (31): 12794–12797. doi: 10.1073/pnas.0905845106
- Doege, Angela, and Klaus van de Weyer. 2016. "Chara contraria". In Armleuchteralgen. Die Characeen Deutschlands, edited by Arbeitsgruppe Characeen Deutschlands, 282– 292. Springer Verlag, Heidelberg.

- Hall, Tom A. 1999. "BioEdit: a User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT." *Nucleic acids symposium series* 41 (41): 95-98.
- Joye, Dominique Auderset, and Aurélie Rey-Boissezon. 2015. "Will Charophyte Species Increase or Decrease their Distribution in a Changing Climate?." *Aquatic Botany* 120: 73-83. doi: 10.1016/j.aquabot.2014.05.003
- Karol, Kenneth G., Mitchell S. Alix, Robin W. Scribailo, Paul M. Skawinski, Robin S. Sleith, Joseph A. Sardina, and John D. Hall. 2018. "New Records of the Rare North American Endemic *Chara brittonii* (Characeae), with Comments on its Distribution." *Brittonia* 70 (3): 277-288. doi: 10.1007/s12228-018-9527-3
- Kato, Syou, Hidetoshi Sakayama, Hideharu Morishima, Satomi Sano, Yuji Oomori, Nobushige Kato, Motomi Ito, Fumie Kasai, Makoto M. Watanabe, and Hisayoshi Nozaki. 2010. "Morphology and Molecular Phylogeny of *Chara altaica* (Charales, Charophyceae), a Monoecious Species of the Section Desvauxia." *Cytologia* 75 (2): 211-220. doi: 10.1508/cytologia.75.211
- Krause, Werner. 1997. "Charales (Charophyceae)." In Sübwasserflora von Mitteleuropa, edited by H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer, Vol. 18, 202. Stuttgart: Fischer.
- Kufel, Lech, and Irena Kufel. 2002. "Chara Beds Acting as Nutrient Sinks in Shallow Lakes—a Review." *Aquatic Botany* 72 (3-4): 249-260. doi: 10.1016/S0304-3770(01)00204-2
- Kumar, Sudhir, Glen Stecher, and Koichiro Tamura. 2016. "MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets." *Molecular biology* and evolution 33 (7): 1870-1874. doi: 10.1093/molbev/msw054
- Langangen, Anders, Anderas Ballot, Petra Nowak, Susanne C. Schneider. Charophytes in Warm Springs on Svalbard (Spitsbergen): DNA Barcoding Identifies *Chara aspera* and *Chara canescens* with Unusual Morphological Traits. *Botany Letters*. in press; https://doi.org/10.1080/23818107.2019.1672104.
- Melzer, Arnulf. 1999. "Aquatic Macrophytes as Tools for Lake Management." *Hydrobiologia* 395/396: 181–190. doi: 10.1007/978-94-017-3282-6_17
- Mouronval, Jean-Baptiste, Simon Baudouin, Nicolas Borel, Ingeborg Soulié-Märsche, Mario Klesczewski, and Patrick Grillas. 2015. *Guide des Characées de France Méditerranéenne*. Office National de la Chasse et de la Faune Sauvage, Paris.

- Nowak, Petra, Hendrik Schubert, and Ralf Schaible. 2016. "Molecular Evaluation of the Validity of the Morphological Characters of Three Swedish *Chara* Sections: Chara, Grovesia, and Desvauxia (Charales, Charophyceae)." *Aquatic Botany* 134: 113-119. doi: 10.1016/j.aquabot.2016.08.001
- Pełechaty, Mariusz, Andrzej Pukacz, Karina Apolinarska, Aleksandra Pełechata, and Marcin Siepak. 2013. "The Significance of Chara Vegetation in the precipitation of Lacustrine Calcium Carbonate." *Sedimentology* 60 (4): 1017-1035. doi: doi.org/10.1111/sed.12020
- Proctor, Vernon W. 1971. "*Chara globularis* Thuillier (= *C. fragilis* Desvaux): Breeding Patterns Within a Cosmopolitan Complex." *Limnology and Oceanography* 16 (2): 422-436. doi: 10.4319/lo.1971.16.2.0422
- Proctor, Vernon W. 1975. "The Nature of Charophyte Species." *Phycologia* 14 (2): 97-113. doi: 10.2216/i0031-8884-14-2-97.1
- Pukacz, Andrzej, Mariusz Pełechaty, Marcin Frankowski, Artur Kowalski, and Kinga
 Zwijacz-Koszałka. 2014. "Seasonality of Water Chemistry, Carbonate Production,
 and Biometric Features of Two Species of *Chara* in a Shallow Clear Water Lake."
 The Scientific World Journal 2014. doi: 10.1155/2014/167631
- Ronquist, Fredrik., Maxim Teslenko, Paul van der Mark, Daniel L. Ayres, Aaron Darling,
 Sebastian Höhna, Bret Larget, Liang Liu, Marc A. Suchard, and John P. Huelsenbeck.
 2012. "MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model
 selection across a large model space". *Systematic Biology* 61 (3): 539-542.
- Sarma, Y. S. R. K., and M. Khan. 1967. "Dioecism and Monoecism as Taxonomic Criteria in Charophyta." *Current Science* 36 (9): 245-247.
- Schneider, Susanne C., Petra Nowak, Ulla Von Ammon, and Andreas Ballot. 2016. "Species Differentiation in the Genus *Chara* (Charophyceae): Considerable Phenotypic Plasticity Occurs Within Homogenous Genetic Groups." *European Journal of Phycology* 51 (3): 282-293. doi: 10.1080/09670262.2016.1147085
- Schneider, Susanne C., Anuar Rodrigues, Therese Fosholt Moe, and Andreas Ballot. 2015.
 "DNA Barcoding the Genus *Chara*: Molecular Evidence Recovers Fewer Taxa Than the Classical Morphological Approach." *Journal of Phycology* 51 (2): 367-380. doi: 10.1111/jpy.12282
- Schneider, Susanne C., Sonja Trajanovska, Vera Biberdžić, Aleksandra Marković, Marina Talevska, Alma Imeri, Elizabeta Veljanovska-Sarafilovska, Pavle Đurašković,

Katarina Jovanović, and Magdalena Cara. "The Balkan Macrophyte Index (BMI) for Ecological Status Classification of Lakes." *Acta Zoologica Bulgarica*. Submitted.

- Schubert, Hendrik, and Irmgard Blindow. 2004. *Charophytes of the Baltic Sea*. Königstein: Koeltz.
- Torn, Kaire, and Georg Martin. 2004. "*Chara connivens*." In *Charophytes of the Baltic Sea*, edited by Schubert, Hendrik, and Irmgard Blindow, 70–81, Königstein: Koeltz.
- Urbaniak, Jacek, and Michał Combik. 2013. "Genetic and Morphological Data Fail to Differentiate *Chara intermedia* from *C. baltica*, or *C. polyacantha* and *C. rudis* from *C. hispida*." *European Journal of Phycology* 48 (3): 253-259. doi: 10.1080/09670262.2013.805249
- Urbaniak, Jacek, and Gąbka Ä. Maciej. 2014. *Polish Charophytes: an Illustrated Guide to Identification*. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław.
- Wood, Richard D., and Kozo Imahori. 1965. A Revision of the Characeae: Vol. 1, Monograph of the Characeae. Verlag Von J. Cramer, Weinheim.
- Gollerbah, M.M., and L.K. Krasavina. 1983. *The determinant of freshwater algae of the USSR: Stoneworts algae Charophyta*. Science 14: 190, Leningrad. (In Russian).

Identification	Field ID	GenBank accession number	Method	Coll. year	Country	Author
C. aspera	MB76	LR590598	А	2001	France	Willd. 1809
C. connivens		AY170442				Salzm. ex A. Braun 1835
C. connivens	GJ31	MK914581	В	2009	Sweden	
C. connivens	GJ37	MK914581	В	2009	Sweden	
C. connivens	GJ38	MK914582	В	2009	Sweden	
C. connivens	EST-HG8	MK914584	В	2018	Estonia	
C. connivens	001NS42	MK914583	В	2012	Poland	
C. "connivens"	S111	LR590596	А	2017	Serbia	
C. "connivens"	S112	LR590597	Α	2017	Serbia	
C. contraria	10AD10c	MK914585	В	2010	Germany	A. Br. ex Kütz. 1845 s. str.
C. contraria	10AD10e	MK914586	В	2010	Germany	
C. contraria	10AD22b	MK914594	В	2010	Germany	
C. contraria	12AD18e	MK914587	В	2012	Germany	
C. contraria	12AD21a	MK914588	В	2012	Germany	
C. contraria	12AD21b_f	MK914589	В	2012	Germany	
C. contraria	12AD2a	MK914595	В	2012	Germany	
C. contraria	12AD2c	MK914596	В	2012	Germany	
C. contraria	D-DS01-1	MK914590	В	2018	Germany	
C. contraria	CS29	MK914591	В	2012	France	
C. contraria	CS34	MK914592	В	2012	France	
C. contraria	DH5d	MK914593	В	2011	UK	
C. contraria	M17	LR590599	А	2008	Norway	
C. contraria	M25	LR590600	А	2008	Norway	
C. contraria	MB22	LR590601	А	2005	Greece	
C. contraria	MB70	LR590602	А	2000	Austria	
C. contraria	MB82	LR590603	А	2000	Germany	
C. contraria	TK82	MK914606	В	2009	Sweden	
C. contraria	TK86	MK914607	В	2009	Sweden	
C. contraria	TK88	MK914608	В	2009	Sweden	
C. contraria	S110	LR590604	Α	2017	Serbia	
C. globularis	16	LR590605	А	2009	Macedonia	Thuillier 1799
C. globularis	17	LR590606	А	2009	Macedonia	
C. globularis	D-BW-CG2	MK914602	В	2018	Germany	
C. globularis	DH6a	MK914597	В	2011	UK	
C. globularis	DH7c	MK914598	В	2011	UK	
C. globularis	GJ29	MK914599	В	2009	Sweden	
C. globularis	GJ30	MK914600	В	2009	Sweden	
C. globularis	IW5a	MK914603	В	2012	Germany	
C. globularis	IW5b	MK914601	В	2012	Germany	
C. globularis	MB29	LR590607	А	2005	Sweden	
C. globularis	MB60	LR590608	А	2001	France	
C. globularis	T83	LR590609	А	2011	Norway	
C. hispida	49	LR590610	A	2012	Germany	(L.) Hartm. 1820

C. tomentosa	S18	LR590611	А	2009	Macedonia	L. 1753
C. virgata	10	LR590612	А	2009	UK	Kütz. 1834
C. virgata	39	LR590613	А	2012	Finland	
C. virgata	50	LR590614	А	2012	Germany	
C. virgata	GJ41	MK914604	В	2009	Sweden	
C. virgata	GJ43	MK914605	В	2009	Sweden	
C. virgata	S12	LR590615	А	2009	Norway	
C. virgata	T79	LR590616	А	1992	Norway	
C. virgata	T86	LR590617	А	1929	Norway	
C. vulgaris	MB53	LR590618	А	2001	France	L. 1753
Nitellopsis obtusa		AY170447				(Desvaux in Loisel.) J. Groves 1919

Table 1. List of 53 *Chara* individuals (and one *Nitellopsis obtusa*) used in the present study. "Method" refers to the method used for DNA-sequencing described in DNA barcoding subsection in Materials and Methods. Specimen collected in Dulin pond (S111 and S112) and Sava lake (S110) are marked in bold.

Literature	Wood and	Gollerbah	Krause 1997.	Schubert and	Urbaniak and	Mouronval <i>et</i>	Dulin Pond
source	Imahori	and		Blindow	Gąbka 2014.	al. 2015.	sample
	1965.	Krasavina		2004.			description
		1983					
Species	Chara	Chara	Chara	Chara	Chara	Chara	Chara
name	<i>globularis</i> f.	connivens	connivens	connivens	connivens	connivens	"connivens"
	connivens	Salzm. ex	Salzmann ex	Salzm. ex	Salzm. ex	Salzmann ex	
	(Salzm. ex	A.Br.	A. Braun	A.Braun	A.Braun	Braun	
	A.Br.) R. D.		1835	1835	1835		
	W. (<i>C</i> .						
	connivens						
	Salzm. ex						
	A.Br.)						
Height	Up to 40 cm	(10)15-25	small, rarely	mostly of	small and	(10) 15-30	(8.7) 13-15
		(40) cm	medium size,	small size, 15	slender plant	(40) cm	(20)
			15 cm, rarely	cm, rarely up	(5-15 cm), up		
			up to 40 cm	to 40 cm	to 25 cm		
			high				
Habitus	dioecious,	dioecious,	dioecious,	dioecious,fre	dioecious,	dioecious,the	dioecious,
description	slender,	light green,	light green,	sh green, not	yellowish to	upper parts	light green,
	delicate	slender,	not	or lightly	light green,	have whorls	slightly
	green, more	weakly	incrustated,	incrusted	not or only	of fertile	encrusted
	or less	branched, yet	fragile. When		slightly	branches,	moderately
	incrusted	many shoots	removed		incrusted	lower parts	branched,
		from the	from water			of talli	slender,
		base, weakly	keeping			usually have	many shots
		incrusted,	shape.			5-6 sterile	from the base
		still fragile				whorls,	when fresh,
						separated by	not fragile,
						long	moderately
						internodia.	tough
						weakly	
						branched,	
						weakly or not	
						incrusted	

Axes

diameter	up to 0.4 mm	0.5 mm	0.4-0.6 mm		0.3-1.4 mm	0.4-0.6 (0.8) mm	0.35-0.7 mm
Internodes 1. x branchlet lentht	1. 2-4 x branchlet legnth	1. up to 6 x branchlet length	1.	1. up to 6 x branchlet length	1. shorter or as long as branches	1. 0.5 – 4 branchlet length	1. up to 6 x branchlet legth
2. lenght	2. up to 5 cm	2.	2.	2.	2.	2.	2. (1) $2 - 6$ (8) cm
Cortex	triplostichous , isostichous	triplostichous, isostichous	triplostichous, isostichous	triplostichous, isostichous	triplostichous , isostichous	triplostichous, isostichous	triplostichous, isostichous
Spine cells							
1. description	1. rudimentary	 rudimentary, globular, wart like 	 inconspicuou s, papilliform 	 almost lacking, papilliform 	 lacking or rudimentary, papilliform 	1. rudimented or absent	 globular - short conical
2. dimension	2.	2.	2.	2.	2.	2.	2.
Stipulodes							
1. description	1. 2 tiers, globular cells, in upper row slightly larger than lowers	1. 2 tiers, 2 sets per branchlet, slightly larger cells in upper row	1. rudimentary	1. papilliform	1. 2 tiers, rudimentary almost globular	1. 2 tiers, 2 sets per branchlet, cells are subspheric, very weakly developed or indistinct, especially at the lower nodes	1. 2 tiers, 2 sets per branchlet. In lower row rudimentary or indistinct, globular. In the upper row elongated and conical shape
2. cell dimensions	2.	2.	2.	2.	2.	2.	2.
a) upper row	a) 75-150 μm long, 75-105	a)	a)		a)	a)	a) 50 – 160

	μm wide in the base						(223) μm long, 40 – 100 (120) μm wide in the	
b) lower row	b) 60-100 μm, sometimes absent	b)	b)		b)	b)	base b) 40 – 150 μm	
Branchlets 1. number in a whorl and description	1. usually 8 in a whorl, strongly incurved	1. in male plants brnchlets connivent and shorter in comparison to females 6- 10	1. 6-10 in a whorl, connivent in male plants, longer in female plants	1. in a whorls, 6-8 branchlets, curved inwards in male plants	1. 6-9, in male plants branchlets curved inward	1. 6-10, branches stiff and in upper parts of talli strongly curved in in male plants, while straight or slightly curved in female plants. In the lower parts of talli, branches are rather divergent in both seves	1. 7-9 (11), in male plants branchlets connivent and shorter in comparison to females where branchlets are straight and longer	
2. lenght	2. up to 1.4 cm	2. 0.5-1.6 cm	2.	2.	2.	2.	2. (0.6) 1 -3.3 cm	
3. number of segments	3. 8-10	3.	3. 6-11	3. 8-10	3. 6-10	3 In male plants branches	3. (6) 7 – 10 (13)	

4. cortication of segments	4. 7-9 are corticated, end segment ecorticated	4. 6-10 corticated and 1- ecorticated	4. upper 1-2 ecorticated, short	4. upper 1-2 ecorticated	4. 6-8 corticated, the last one ecorticated	relatively short, strongly curved 6-9 segments, in females long and thin 8-13 segments 4. 1-3 terminal segments acorticated	4. Terminal segment ecorticated
5. terminal	5.	5.	5.	5.	5.	5.	5.
segment a) number of cells in terminal	a) 1-2 cell	a) 1-2 cell	a) 1-2	a) 1-2	a) 1-2	a)	a) 1 -2 cell
b) terminal cell	b)	b) short, conical, obtuse	b) short, ecorticated	b) short, ecorticated	b)	b)	b) ecorticated, acuminate
Bract cell	7-8, rudimentary, short conical	rudimentary, 6-8	rudimentary, 5-7		7-8 very short, rudimentary		5 – 6, conical, very short, rudimentary
Bracteole	2-4 in females, 2 in males, well developed, as long as or slightly shorter than oogonia,	2-4 in females, 2 in male plants	2-3, as long as gametangia		papilliform or shorter than oogonia		4 in females, 2 in males; well developed in females, about half as long as or slightly

acuminate. shorter than oogonia Gametangia 1. solitary 1. 1. 1. 1. solitary 1. on separate 1. single 1. on separate conjoined plants, plants, sollitary solitary **2.** 3-4 lowest **2.** 1-3 lowest 2. 3-4 lowest 2. lowest **2.** 3-4 2. position at 2. 2. 3-4 upper the branchlet branchlet branchlet branchlet branchlet nodes lowest branchlet nodes nodes nodes nodes nodes Oogonia 1. 1. 1. 1. 1.1, usually 1. number in 1. 1, long, 1. 1, long, node elipsoid elipsoid long, ellipsoid 2. dimensions 2. 695 µm-2. (675) 750 -2.650-750 2.650-1100 2.605-775 2. ellipsoid **2.** 420 - 810µm x 330-(length x 690 µm (excl. 1150 µm (µm x 320μm (excl. μm (excl. height) coronula) x excl. coronula) x 550 µm 410 µm coronula) x 250 - 460330 µm -375 coronula) x 330-400 µm μm 320-550 µm μm 3. number of **3.** 14-15 **3.** 13-14 3.14-15 3.13-15 3. 3. **3.** 12–15 convolutions 4. coronula 4. elongated, 4. tight, 200-4. elongated 4. 4. 4.200-240 4.110-160 conical, 225-, 200-240 µm µm x 100-240 µm x μm, cells 150-185 µm, x 160 µm 150 µm, 240 µm x converge to 150-180 µm cells conical, form conical cells conical, wide in base, tip wide in base, narrow on narrow on top top **Oospore** 1. 1. dark 1. dark 1. dark 1. dark 1. dark 1. color 1. dark brown or brown to brown to brown to brown to brown to black, long black, long, black black black, long black ellipsoid to elipsoid to cylindrical, cylindrical

	terminating in basal claws	cylindrical					
 2. dimensions (lenght x height) 3. ridges description 	 2. 555-580 μm x 300-320 μm 3. faint ridges 	2. 500-770 μm x 240-350 (440) μm 3. thin	 2. 500-700 μm x 250-350 μm 3.strong 	 2. 500-700 μm x 240-350 μm 3. weakly distinguishab le ridges 	2.485-595 μm x 205-325 μm 3.	2. 3.	 2. 480-550 μm x 270- 340 μm 3. medium prominent, distinguishab le
4. ridges number	4. 12-13	4. 11-13	4.12-14	4. 11-14	4.	4.	4. 9-12
5. fossa	5. 49 μm	5.	5.	5.	5.	5.	5. 40-60 μm
6. membrane coloration	6. dark reddish brown, opaque	6. thick, stout, opaque,dark reddish brown	6.	6.	6.	6.	6. light brown
7. membrane structure	 smooth or minutely granulate 	7. granulated	7.	7.	7.	7.	7. smooth
Antheridia							
diameter and description	up to 540- 600 μm	(500) 600- 700 (1100) μm	600-1000 μm, orange- red		650-1000 μm	0.6-1.1 mm, intense red, 1, rarely in pair	(450) 600- 650 (710), intense red / orange

Table 2. Species traits of *Chara connivens*, as described in the most commonly used charophyte determination literature in Europe, and traits measured in 119 (66 male and 53 female) samples from Dulin pond.

.

Figure captions

Figure 1. Map of the sampling localities.

Figure 2. *Chara "connivens"* from Dulin Pond. a) habitus of male (left) and female plant (right); b) branchlet of the male plant with antheridia; c) branchlet of the female plant with oogonia; d) antheridium; e) oogonium; f) stipulodes; g) triplostichous, isostichous cortex with rudimentary spines. Scale 200 μm.

Figure 3. *Chara contraria* from Sava lake. a) habitus; b) short papillary stipulodes; c) triplostichous cortex, rudimentary spines. Scale 200 μm.

Figure 4. Maximum Likelihood tree of the matK gene of Chara spp. The scale bar indicates 2% sequence divergence. Bootstrap values above 50 are included. Bootstrap values are depicted in the following order: ML/BI/MP/NJ. Sample S110 (in bold) is from Sava lake, and samples S111 and S112 (in bold) are from Dulin pond.

Figure 5. a) Drawings of the unusual *C. connivens* found in the channel near the Silver Lake, Serbia in 1983; b) chromosomes in actively growing cells of antheridial filaments of the same specimens (drawings & cytological analysis done by P.Firbas).