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China is the largest rice producer and consumer in the world, and mercury (Hg) levels, particularly
methylmercury (MeHg), in rice and health exposure risks are public concerns. Total Hg (THg) and MeHg
levels in 767 (domestic = 709 and abroad = 58) Chinese commercial rice were investigated to evaluate
Hg pollution level, dietary exposures and risks of IHg and MeHg. The mean rice THg and MeHg levels
were 3.97 + 2.33 nug/kg and 1.37 + 1.18 ug/kg, respectively. The highest daily intake of MeHg and IHg were
obtained in younger groups, accounted for 6% of the reference dose-0.1 pg/kg bw/day for MeHg, 0.3% of
the provisional tolerance week intake-0.571 pg/kg bw/day for IHg. Residents in Central China and
Southern China meet the highest rice Hg exposure, which were more than 7 times of those in Northwest
China. Lower concentrations than earlier studies were observed along the implementations of strict
policies since 2007. This may indicate that a declining temporal trend of Hg in Chinese grown rice and
associated exposures could be obtained with the implementations of strict policies. Though there exist
Hg pollution in commercial rice, Hg levels in Chinese commercial rice is generally safe compared with Hg
polluted sites. Populations dwelling in China have relatively a quite low and safe MeHg and IHg exposure
via the intake of commercial rice. Strict policies contributed to the decrease in THg and MeHg levels in

Chinese-grown rice. More attention should be paid to younger groups.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mercury (Hg) pollution in rice has become an emerging topic of
concern since the beginning of this century. In 2003, Horvat and
colleagues firstly observed high MeHg levels in rice collected from
the Wanshan mercury mine in southwestern China, the world’s
third largest mercury mine (Horvat et al., 2003). Since that time,
researchers have realized that rice paddies are hot spots of Hg
methylation, and rice has a strong capability to bioaccumulate
methylmercury (MeHg) from rice paddies (Qiu et al., 2008).
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Subsequent studies have also found that rice consumption consti-
tutes >94% of the MeHg exposure for residents in Guizhou prov-
ince, southwestern China, who seldom eat fish (Zhang et al., 2010a).
With the knowledge that rice intake is an important human MeHg
exposure source in polluted areas (Feng et al., 2008), public concern
has risen in recent years, mainly because rice is the staple food of
more than half of the world’s population (FAOSTAT, 2019). Hg in rice
has been highlighted by the United Nations Environment Pro-
gramme (UNEP), World Health Organization (WHO) and a large
number of other international and national organizations. Simul-
taneously, a large number of scientists have started to study Hg
biogeochemistry in rice plants and rice paddies (Krupp et al., 2009;
Liu et al.,, 2019a; Rothenberg and Feng, 2012; Rothenberg et al.,
2014; Strickman and Mitchell, 2017; Windham-Myers et al., 2014;
Xu et al., 2016).

The provisional tolerable weekly intake (PTWI) for inorganic Hg
(IHg) is 4 pg/kg body weight (bw) (EFSA, 2012). The U.S.
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Environmental Protection Agency (USEPA) proposed 0.1 pg/kg bw/
day as a reference dose (RfD) for MeHg (Rice et al., 2000). The Joint
FAO/WHO Expert Committee on Food Additives (JECFA) recom-
mended a PTWI of 4 ng/kg bw for [Hg (JECFA, 2010). Thus, the daily
intake (DI) limit of IHg is 0.57 pg/kg bw/day. In China, the national
standard limit of 20 pg/kg THg in rice is recommended (GB2762,
2017). Currently, no standard limit is set for rice MeHg.

Previous studies found more active Hg methylation in rice
paddies than other kinds of farmlands (Qiu et al., 2008), and both
MeHg and IHg in rice grains originate from soil (Rothenberg et al.,
2014; Tang et al., 2017; Xing et al., 2019; Xu et al., 2019b; Zhang
et al.,, 2010b). MeHg levels in rice were highly variable at different
sites due to the differences in rice varieties, microorganisms, and
factors influencing Hg methylation (Beckers and Rinklebe, 2017; Ma
et al.,, 2019; Rothenberg et al., 2012; Rothenberg et al., 2014). Based
on the daily rice consumption (620 g/day) for adults with a bw of
60 kg in Hg mining areas, the MeHg absorption rate (95%), and a
RfD of 0.1 ug/kg bw proposed by the USEPA, we estimated that the
maximum allowed MeHg limit in rice should be 10.2 pg/kg (Feng
et al., 2008; Qiu et al., 2008; WHO-IPCS, 1990). Most studies on
rice Hg were conducted in Hg mining areas, and the average THg
levels were higher than Chinese national standard limit of 20 pg/kg,
with a range of 7.1—-1120 pg/kg (Table S2). And the mean rice MeHg
in Hg mining areas can be 38.9 pg/kg, with a range of 1.97—-174 ng/
kg. As shown in Fig. 1 and Table S2, except for those collected from
Hg polluted sites, the majority of rice samples had very low MeHg
levels (<10.2 pg/kg). This leads to the hypothesis that the MeHg risk
in rice may be overrated. Considering that rice is the dominant
staple food for more than half of the world’s population, it is
necessary to evaluate the MeHg levels of rice in international/na-
tional markets to fully understand the risk of human exposure.

China is the world’s leading rice producer and consumer,
constituting 28.5% of the world’s total production and 29.1% of the
world’s consumption in 2017 (FAOSTAT, 2019). Data indicated that
the average rice consumption was 212 g/capita/day in 2013 in the
country (FAOSTAT, 2019), approximately twice as high as that of
world population (148 g/capita/day). To date, most studies on rice
THg and MeHg have been conducted in China, mainly in Hg
polluted areas (Rothenberg et al., 2014). These studies that reported
some of the highest THg and MeHg levels in rice cannot be used to
represent national levels. A nationwide investigation of THg and
MeHg in commercial rice in China is therefore urgently needed.

In the present study, total Hg (THg) and MeHg levels in 767 rice
samples throughout Chinese markets were investigated. The ob-
jectives of this study are to (1) elucidate both THg and MeHg levels
in commercial rice in Chinese markets nationwide; (2) estimate the
daily exposure of [Hg and MeHg to Chinese populations associated
with the rice ingestion; and (3) discuss the temporal trend in THg
and MeHg levels in Chinese rice and associated risks compared to

those in previously reported data. This investigation is basic and
critical to the understanding of the risks of Hg via rice consumption
by the Chinese population.

2. Materials and methods
2.1. Sampling and preparation

Rice samples (domestic: n = 709; imported: n = 58) were
bought either from the local markets or online between August and
November 2017. The producing areas of the samples were acquired
from the information on each package. In summary, the samples
were from 29 provinces of China (n = 709) and 10 countries
(Cambodia: n = 8; India: n = 7; Laos: n = 6; Pakistan: n = 5; Spain:
n = 2; Italy: n = 3; Japan: n = 6; Russia: n = 7; Vietnam: n = 7; and
Thailand: n = 8) (Fig. S1 and Fig. S2). The samples were all polished,
but their varieties were not known due to the lack of detailed in-
formation on the packages.

Each sample consisted of 0.5 kg—10 kg rice, depending on the
package size. The samples were well mixed, and approximately
30 g of each sample was weighed, rinsed with distilled deionized
water (DDW, 18.2 Q cm water, Milli-Q, Millipore, USA), freeze-dried
for 48 h (FDU-2110, EYELA, Japan), ground (IKA-A11 basic, IKA,
Germany), passed through 80 mesh (size: 177 um) (Xu et al., 2020),
and stored in polyethylene bags prior to chemical analysis.

2.2. Total Hg and MeHg analysis

For THg analysis, approximately 0.5 g of sample was digested at
95 °C for 3 h with 5 mL HNOs and H;SO; mixture
(HNO3:HSO4 = 4:1; v:v) and measured by cold vapor atomic
fluorescence spectroscopy (CVAFS, Model III, Brooksrand, USA)
preceded by bromine chloride oxidation and stannous chloride
reduction, according to USEPA Method 1631E (USEPA, 2002). For
MeHg determination, approximately 0.5 g of sample was weighed
and digested with 5 mL 25% KOH in methanol (m/m) at 75 °C for
3 h. The MeHg in the rice samples was leached with dichloro-
methane (CH,Cly) and back-extracted into the water phase for
determination by gas chromatographic cold vapor atomic fluores-
cence spectrometry (GC-CVAFS) based on USEPA Method 1630
(USEPA, 2001). All the acids used in the present study were ultra-
pure grade, and other reagents were analytical grade (Sinopharm
Chemical Reagent Co., Ltd, China). The dichloromethane reagent
was chromatographic grade (Tedia company, Inc., USA). The vials
were rinsed with DDW water and preheated in a muffle oven
(500 °C, 45 min) to ensure low Hg blanks. The IHg concentrations
were calculated by THg minus MeHg (Xu et al., 2017).
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Fig. 1. Distribution of THg (a), MeHg (b), and MeHg/THg (c) in rice from polluted sites, non-polluted sites, and this study. (Rough data is derived from published literature in

Table S2).
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2.3. Quality assurance and quality control

The detection limits for THg and MeHg were 0.0120 ug/kg (30)
and 0.00600 pg/kg (3c), respectively. Quality assurance (QA) and
quality control (QC) were implemented using duplicates, method
blanks, matrix spikes and certified reference materials. The relative
percentage difference in the duplicate samples for THg and MeHg
were <9.5% and <16.4%, respectively. Recoveries from the matrix
spikes were 102%—110% for THg and 90%—108% for MeHg.

GBW10020 (citrus leaves) was used as a certified reference
material for THg determination. The obtained value of THg for
GBW10020 was 149 + 7 pg/kg (n = 30), with recoveries of 92%—
107%, which was consistent with the certified value (150 + 20 pg/
kg). TORT-2 (lobster, Hepatopancreas) was used as a certified
reference material for MeHg determination. The average MeHg
value for TORT-2 was 150 + 6.2 pg/kg (n = 30), with recoveries of
94%—104%, consistent with the recommended value (152 + 13 pg/
kg) (Fig. S3).

2.4. Statistical analysis

Statistical analysis was performed using SPSS 22 (Stanford,
California, USA). Figures were obtained using Origin 9 (©OriginLab
Corporation).

Dietary exposure to MeHg and IHg was assessed using the
Monte Carlo method and bootstrap values. Monte Carlo simulation
was employed to perform the analysis of sensitivity and uncer-
tainty, using input probability distributions based on empirical data
(Peng et al., 2016). Specifically, a Monte Carlo simulation is a sta-
tistical method that applies random statistical sampling techniques
to acquire a probabilistic approximation to the solution of a
mathematical equation or a model (Sofuoglu et al., 2014). The
simulation of the frequency distribution in Crystal Ball© (Oracle,
Redwood City, CA, USA) software was configured with 100000 it-
erations to guarantee the reliability of the results. The statistics of
the mean values and percentiles (P50, P90, P95, P97.5, P99, and
P99.9) were obtained using Monte-Carlo random distribution
numbers.

2.5. Dietary exposure and risk estimates

The DIs (ug/kg bw/day) of MeHg and IHg were calculated using
Egs. (1)—(3):

~ CiMeHg or 1Hg * IR x A x 1073

DI 1
Chio of MeHg :CMeHg X Bpio of MeHg X 100% (2)
Chio of IHg = Crhg % Bpio of THg — Chio of MeHg (3)

where Cyeng and Ciyg represent the MeHg and IHg concentrations
(ug/kg) of rice, respectively; IR represents the rice intake rate (g/
day); BW represents the bw (kg); A represents the absorption ef-
ficiency, which is assumed to be 8% for IHg and 95% for MeHg
(WHO-IPCS, 1990, 1991). Bpio of MeHg Fepresents the bioaccessibility
ratio of MeHg (pio of MeHg is 100% if there is without consideration of
the bioaccessibility). The BW and IR values for different population
groups (summarized in Table S1) were obtained from the Chinese
National Health and Nutrition (Yang and Zhai, 2006; Zhai and Yang,
2006).

Since there existed large differences in rice consumption rates
from different regions, rice intake rates in different provinces were
obtained from published studies and provincial statistical

yearbooks (Table S3). Due to the lack of data, some provinces were
not included in our study. A bw of 60 kg was employed to estimate
the rice MeHg and IHg exposure according to different intake rates.

The human health risks posed by chronic exposure to MeHg and
[Hg via rice consumption were estimated from the hazard quotient
(HQ) (Egs. (4) and (5)). The HQ is applied to express the risk of non-
carcinogenic effects (when a single substance exposure level is
higher than a reference dose, there may exist a risk of some ex-
pected negative health effects but not carcinogenic effects) of MeHg
and IHg, and the HQ for residents was evaluated by comparing with
the PTWI for IHg and the RfD for MeHg (Rothenberg et al., 2017;
USEPA, 2000; Vieira et al., 2011; Zheng et al., 2007). Based on the
additive effects, HQs can be summed to generate a hazard index
(HI) for the combination pathway (Eq. (6)) (Qian et al., 2010). HQ or
HI value > 1 indicates non-carcinogenic adverse health effects
owing to both MeHg and IHg exposure from rice intake, and HQ or
HI value < 1 denotes no adverse effects.

DI x 7

HQing = Hrv (4)
DI

HQMeHg = R (5)

HI=HQng + HQMeHg (6)

where the PTWI for IHg is 4 pg/kg bw/week from JECFA (JECFA,
2010); and the RfD is 0.1 ug/kg bw/day (Rothenberg et al., 2017).

3. Results and discussion
3.1. THg and MeHg in rice

The THg concentrations (0.640—31.7 pg/kg, n = 767) had
lognormal distributions (Table 1, Fig. 1a); therefore, the geometric
mean value was reported (3.97 + 2.33 pg/kg). Only 3 samples had
THg concentrations that exceeded the maximum limit of THg in
food (20 pg/kg) recommended by the Chinese National Food Safety
Standard (GB2762, 2017). Thus, > 99.5% of the rice from Chinese
markets was safe for THg. A few studies have reported the THg
levels in rice from Chinese markets, demonstrating a range of
0.860—47.2 pg/kg (Table S2). Other worldwide studies of rice have
shown similar THg levels of 0.30—85 ng/kg (Table S2). In general,
our results are within the range of the reported THg values of
commercial rice. In the present study, these three samples, which
exceeded the THg limit, were 31.7 pug/kg, 20.4 ng/kg, and 23.3 pg/kg
from Fujian (Longyan), Guangxi (Nanning), and Zhejiang (Jiaxing),
respectively. In the production areas of these three samples, soils or
food were reported to have elevated Hg due to the mixed discharge
of domestic and industrial sewage and the leaching of solid waste
(Chen, 2013; Li, 1999; Pang et al., 2011; Qin et al., 2006; Zheng,
2003).

The MeHg concentrations of the rice samples were also
lognormally distributed (Fig. 1b), with a mean value of
1.37 + 1.18 pg/kg (range: 0.020—19.0 pg/kg). More than 99.5% of the
samples had MeHg concentrations below 10.2 pg/kg, which is the
maximum limit of MeHg in rice according to our earlier estimation
in the Introduction Section. The MeHg levels of rice from Chinese
markets have been investigated by only two previous studies. Shi
et al. reported low MeHg levels of 1.90—10.5 pg/kg (mean: 4.70 ng/
kg) for commercial rice from 15 provinces in China, but these data
may not be representative due to the small sample sizes (n = 25)
(Shi et al, 2005). Li et al. reported similar MeHg levels of
0.130—18.2 ug/kg (mean: 2.47 pg/kg) from 7 provinces in southern
China with a sample size of n = 284 (Li et al., 2012). Generally, our
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Table 1
THg, MeHg, and IHg variation in rice samples of this study.
Country of origin Provinces Number of brands (n) THg (ug/kg) Range MeHg (ug/kg) (mean + SE) Range [Hg (ng/kg) Range
(mean =+ SE)
China Heilongjiang 68 4.04 +£1.73 1.28-7.94 1.18 + 0.500 0.317-2.89 2.86 + 1.67 0.402—-6.39
Jilin 30 3.27 + 0.900 1.96-5.14 1.37 + 0.643 0.585-2.92 190+ 0.648 1.17-3.62
Liaoning 20 397 +1.11 225-6.24 1.04 +0.352 0.501-1.80 2.76 + 1.01 1.72-5.00
Hebei 6 513 +3.83 2.34-12.7 1.12 £ 0.0530 0.629-1.88  4.01 + 4.00 1.34-12.0
Shandong 15 527 +2.32 1.61-842 0.891 + 0.254 0.467—-1.28 4.38 +2.17 1.09-7.88
Shanxi 5 1.66 + 0.655 1.08-2.77 1.02 + 0.384 0.495-1.44 0.635 + 0.435 0.261-1.33
Shaanxi 5 3.04 +1.26 0.970—4.32 1.21 +0.677 0.484-229 184+1.10 0.486—3.06
Tianjin 5 2.70 + 0.593 2.33-3.75 0.739 + 0.496 0.383-1.61 196+0.173 1.73-2.13
Ningxia 20 3.62 + 0.946 1.59-5.94 1.36 + 0.459 0.823—-2.96 2.26 + 1.08 0.663—4.69
Gansu 3 3.058 + 0.702 2.257-3.49 1.07 + 0.0680 0.736—220 143 +0.123 1.29-1.52
Xinjiang 20 272 +1.92 1.29-10.6 0.601 + 0.270 0.169—-1.50 2.12 + 1.95 0.544—-10.9
Inner Mongolia 20 4.03 + 1.49 2.12-829 211+146 0.727-439 192 + 0447 0.959-2.46
Jiangsu 36 1.56 + 1.92 1.04-8.19 1.31 + 0.869 0.0200-3.31 325+ 186  0.250-7.46
Anhui 35 3.56 + 1.52 1.07-7.54 1.23 +0.549 0.536—3.20 232+136  0.539-6.65
Zhejiang 19 524 +4.71 1.38-233 1.16 + 0.582 0.635—2.90 4.11 +4.28 0.399—-20.4
Hunan 53 4.17 +1.82 1.36-9.55 1.70 + 1.17 0.435-6.80 248 +136  0.0730—6.90
Hubei 35 5.14 + 2.53 1.12-13.1  1.99 + 1.09 0.648—5.62 3.16+244  0386-11.6
Jiangxi 41 3.93 + 2.09 1.01-8.59 1.31+0.717 0.0430-3.82 2.62+189 0.124-7.21
Henan 21 3.86 + 243 1.11-10.1 145 + 0.804 0.541-4.11 242 +1.89 0.0320-7.02
Shanghai 10 6.09 + 1.93 1.61-8.71 1.41 +0.554 0.467—1.28 4.68 + 1.61 1.09-7.88
Guangdong 43 3.62 + 1.91 0.638—12.0 1.40 + 0.0730 0.150-5.38 222+ 1.09  0.0120-6.69
Guangxi 38 424 +3.13 1.89-204 2.14 +2.35 0.595-150 2.10+1.14  0.617-6.45
Fujian 20 3.11 + 145 2.10-31.7 0.890 + 0.428 0.375-19.0 2.18 +1.34 1.36—-12.7
Hainan 17 3.25+2.16 0.769—6.98 0.898 + 0.755 0.0470—2.45 235+ 148 0.722—-4.93
Taiwan 14 472 £ 1.77 1.98-8.56  0.923 + 0.280 0.508—1.59 3.80 + 1.71 1.48-7.77
Yunnan 27 437 +2.26 1.33-104 1.89 + 140 0.0270—-6.21 247 +1.18 0.278-5.63
Guizhou 25 494 +1.81 1.65-7.86 1.52 + 1.06 0.0830—4.95 342 + 145 1.04-6.33
Sichuan 39 3.01 +1.27 0.883—6.11 1.11 + 0.588 0.178-293 190+1.09 0.155-5.19
Chongqing 19 2.56 + 1.24 0.808—5.63 0.912 + 0.453 0.298-199 165+ 1.16  0.650—4.65
Total Chinese domestic 709 4.03 +2.37 0.638—31.7 1.40 + 1.21 0.0200-18.6 2.63 +1.80  0.0123-20.4
Cambodia 8 3.92 + 1.02 1.79-5.02 1.56 + 0.580 1.11-2.86 236 +0.850 0.422-3.26
India 7 1.88 + 0.180 1.73-2.16  0.680 + 0.163 0.423-0.889 1.20+0.194 1.01-1.57
Laos 6 5.26 + 2.36 2.99-890 1.57 + 0.863 1.04-3.29  3.68 +1.78 1.93-6.24
Pakistan 5 2.33 + 0455 1.63—-2.85 0.738 + 0.261 0.338—0.988 1.587 + 0.230 1.29-1.86
Spain 2 2.30 + 0.00900 2.29-2.30 0.680 + 0.207 0.534-0.827 1.62+0.199 1.48-1.76
Italy 3 429 + 0200  4.09-4.49 1.90 + 0.600 1.40-2.57 239+0.796 1.52-3.09
Japan 6 374 +1.36 1.88—6.02 1.21 + 0.749 0.409-2.29 253 +0.846 1.47-3.73
Russia 7 259 + 1.14 1.48—4.67 0.584 + 0.360 0.184-1.10 2.01 +0.866 1.30-3.72
Vietnam 7 2.03 + 0.780 1.12-3.09 0.662 + 0.241 0.383-0.948 1.37 +£0.699 0.197-2.22
Thailand 8 3.44 + 1.59 1.74-5.81 0.820 + 0.491 0.0690—-1.47 2.62 +1.22 1.21-4.35
Total imported 58 3.82 + 1.56 1.12-8.90 1.02 + 0.639 0.0690—3.29 2.17 + 1.13 0.197-6.24
Total average 767 3.97 +2.33 0.638—31.7 1.37 + 1.18 0.0200-19.0 2.60 +1.14  0.0120-20.4

results of MeHg are within the range reported by previous studies.
Considering the sample size and sampling locations, our results are
currently representative of the MeHg level in rice from Chinese
markets.

In general, our MeHg results are compatible or slightly lower
than results from European markets (mean: 1.91 pg/kg, n = 87) and
other markets (or non-polluted sites) worldwide but much lower
than previous results on rice collected from polluted sites (e.g.,
mercury mines and coal-fired power plants) in China (Table S2).
Fig. 1b shows that rice collected from polluted sites had both THg
and MeHg levels that were approximately 1—3 orders of magnitude
higher than those collected from non-polluted sites and Chinese
markets. The samples with high Hg concentrations (n = 3 for THg;
n = 2 for MeHg) were in a small scale compared to those of the
whole sample size of this study (n = 767). We suggest that the Hg in
rice from Chinese markets is at a safe level. Since rice Hg pollution
does exist in Hg polluted sites in China, residents in Hg polluted
areas may meet a high THg exposure. Though residents in polluted
areas may consume rice from unpolluted areas, actions should also
be taken in polluted areas to prevent Hg polluted rice flowing into
the markets.

The THg and MeHg concentrations showed large spatial varia-
tions in China. Rice with relatively high THg and MeHg levels is

mainly located in Shandong, Henan, Hebei, Hubei, Anhui, Jiangsu,
Zhejiang, and Shanghai provinces in central and eastern China
(Fig. 2). China’s major heavy industries are located in these prov-
inces. Furthermore, in southern China, Jiangxi, Hunan, Guangxi,
Guizhou, and Yunnan provinces are non-ferrous metal production
base (note that Hg is extremely enriched in hydrothermal ore
minerals) in China. These provinces mentioned above account for
approximately 50% of the total Chinese population, and consume
>75% of the coal and oil in China (NBS, 2017). Anthropogenic ac-
tivities, especially fossil fuel combustion and non-ferrous metal
smelting release substantial amounts of Hg into the surrounding
environment, which may be the main reason for the high Hg levels
in rice in these provinces (Streets et al., 2005; Zhang et al., 2015).

The MeHg proportions (MeHg%) ranged from 0.5 to 98% (Fig. 1¢)
and were normally distributed, with a mean value of 36.3%. The
MeHg proportions were much higher than previous proportions for
on dry land crops such as corn and wheat, but were comparable to
previous results for rice, suggesting that rice has a strong capability
to accumulate MeHg (Qiu et al., 2008). Rice paddies have been
shown to be hot spots of Hg methylation, and rice mainly receives
MeHg from soil (Zhang et al., 2010b). Notably, 137 rice samples had
MeHg% exceeding 50%, and 96 of them were grown in southern
China. The remaining samples (n = 626) showed lower MeHg
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Fig. 2. Regional distribution of THg and MeHg in Chinese grown and imported rice.

proportions (29.8%). The high MeHg proportions in southern China
were likely caused by high MeHg in soil, which may be due to
higher soil Hg and temperature in southern China, since microbial
Hg methylation can be promoted under high temperature and soil
(Loseto et al., 2004; Ma et al,, 2019; Xu et al., 2017). Notably, the
MeHg% in rice from unpolluted sites may have been higher than
those in polluted sites (Fig. 1) and may be influenced by atmo-
spheric Hg deposition (Kwon et al.,, 2018). In comparison to un-
polluted sites, at polluted sites lower rice MeHg% values were
obtained (Fig. 1) because Hg in paddies from polluted sites is mostly
in poorly solubilized forms (Beckers et al., 2019; Beckers and
Rinklebe, 2017; O’Connor et al., 2019; Wang et al., 2019; Zhou
et al.,, 2015), making Hg less bioavailable for MeHg methylation
(Issaro et al., 2009). Meanwhile, MeHg% are also controlled by many
factors, such as rice varieties, soil properties (N, S, pH, and organic
matter), and microbial activities (Beckers and Rinklebe, 2017;
Rothenberg et al., 2012; Wang et al., 2014; Xing et al., 2019; Yin
et al.,, 2018).

3.2. Dietary exposure of MeHg and IHg via rice consumption

In the present study, the main factors of consumer bw, rice
intake rate, rice Hg concentration, age, and gender were taken into
account to evaluate exposure and risk. Notably, three widely used
limits: RfD-0.1 pg/kg bw/day by USEPA, PTWI-1.3 ng/kg bw/week
by the European Food Safety Authority, and PTWI-1.6 pg/kg bw/
week by JECFA for MeHg were all obtained from the epidemiologic
studies of fish intake (EFSA, 2012; FAO, 2007; Kjellstrom et al., 1986,
1989; Rice et al., 2000). Fish contain high levels of dososahexaenoic
acid (DHA), which may counteract the adverse health effects
associated with MeHg exposure; however, there is limited DHA in
rice, which means that the same dose of MeHg from rice will be
more harmful than that from fish (Rothenberg et al., 2011). The RfD
for MeHg in rice should be warranted and be stricter than the RfD
for fish. Thus, in this study, we employed the RfD of 0.1 pg/kg bw/
day to calculate the HQ of MeHg. To avoid underestimating the
exposure risk of Hg, in this study, we also considered both MeHg
and IHg intake for the first time. The DI values of IHg and MeHg for
male and female with different ages were calculated (Tables S4 and
S5), using Egs. (1)—(3).

For both male and female, the DI values of MeHg and IHg
decrease as their ages increase, and younger group (4—7 years old
for male; and 2—4 years old for female) have the highest DI values
(Fig. 3a). In general, male showed higher DI values of MeHg than
female of the same age, implying more MeHg exposure via rice
consumption. Generally, the mean DI values of MeHg (range:
0.005—-0.0109 pg/kg bw/day) and IHg (range: 0.0014—0.0017 ng/
kg bw/day) in our study were two orders of magnitude lower than
the RfD (0.1 ng/kg bw/day) recommended by the USEPA (Rice et al.,
2000). Meanwhile, the DIs of both IHg and MeHg via rice were
compatible or slightly lower than those obtained in non-polluted
sites in China, but several magnitudes lower than those obtained
in polluted sites (Table S2). This suggests that MeHg exposure via
rice consumption is limited in Chinese populations, which is sup-
ported by the low MeHg levels in the hair of rice consumers in
China (Du et al., 2018; Hong et al., 2016).

Residents in different regions showed regional differences in
MeHg and IHg exposure levels via rice intake (Fig. S4). Rice MeHg
and [Hg exposure of residents was MeHg: 6.71E-3+4.29E-3 png/
kg bw/day and IHg: 6.75E-3+4.25E-4 ug/kg bw/day in Central
China; and MeHg: 6.84E-3+4.38E-3 pg/kg bw/day; IHg: 6.89E-
4+4.33E-4 pgl/kg bw/day in Southern China, while residents in
Northwest China had the lowest rice MeHg and IHg exposure levels
(MeHg: 1.90E-4+5.88E-4 ng/kg bw/day; IHg: 9.30E-5+5.80E-5 ng/
kg bw/day) (Fig. S4). The Hg exposure levels of residents in the
highest rice consuming region were more than 7 times those in the
lowest rice consumption areas. Correspondingly, the highest
(Guangxi) and the lowest rice Hg exposure provinces (Inner
Mongolia) were located in the highest and lowest exposure regions
(Fig. S5), respectively. This is expected as the regional differences in
diet patterns are influenced by economic and sociodemographic
structure (Dong and Hu, 2010). Even in the highest rice MeHg
exposure region-southern China, the rice MeHg exposure was only
17.2% of the average rice MeHg exposure (0.039 pg/kg bw/day) in
previous studies (Liu et al., 2018; Liu et al., 2019b), suggesting a
decline of rice MeHg exposure in China. In addition, since studies
revealed that rice Hg pollution occurred mostly in southern China
(Table S2), indicating that the special attention should be paid to
residents in these areas.

High DI values of MeHg have been reported for residents from
Europe (0.050 pg/kg bw/day), Japan (0.280 pg/kg bw/day) and
Northern America (0.020 pg/kg bw/day), who are exposed to MeHg
through fish consumption (Iwasaki et al., 2003; Mahaffey et al.,
2004; Mangerud, 2005). Fish consumers from China and many
other countries also have shown high DI values (Gong et al., 2018; Li
et al,, 2012). Low Hg exposure via rice consumption in this study
was also consistent with the results of a recent study, which
demonstrated that in China, in comparison to rice consumption
(26%), fish intake (56%) plays a more important role in human
MeHg exposure (Liu et al., 2018).

For both male and female, the HQ and HI values showed the
same trends as the DI values (Fig. S6). The values at P50 (50th
percentile) demonstrated the median risk exposure of rice con-
sumers to the distribution, and the values at P95, P97.5, P99, and
P99.9 demonstrated the higher exposure to both MeHg and IHg
(Table S4). The Monte Carlo simulation derived the median P50,
P95, P97.5 (97.5th percentile), P99, and P99.9. The HQ values of
MeHg and IHg in all gender-age categories were all lower than 1,
suggesting a low health hazard for MeHg and IHg. Furthermore, the
corresponding HI values showed a decreasing trend similar to that
of HQ (Fig. S6), and all the HI values were less than 1. This indicated
that there is no non-carcinogenic risk of MeHg and IHg for the
Chinese population via commercial rice consumption.

Additionally, only a part of ingested Hg in food can be released,
which is defined as bioaccessibility (Bradley et al., 2017). The
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Fig. 3. Percentiles distribution of MeHg and IHg exposure via the intake of Chinese commercial rice.

bioavailability of Hg refers to the proportion of the ingested Hg in
food that enters into the systematic circulation and exerts its toxic
effects (Bradley et al., 2017). Bioaccessibility is dependent on sol-
uble fraction by the end of the digestion processes and could be
used as a conservative assessment of bioavailability since bio-
accessiblity is a maximum value in theory (Lin et al., 2019).Thus,
considering the THg and MeHg bioaccessibility of rice, the DIs of
both MeHg and IHg were substantially low (Fig. S7). Studies have
indicated that the bioaccessibility ratio of rice THg in rice ranges
from 6.50% to 47.3% (Wu et al., 2017), and the bioaccessibility of
MeHg in rice ranges from 15.9% to 56.3% (Gong et al., 2018). Even
based on the high bioaccessibility ratios of 47.3% for THg and 56.3%
for MeHg, for male and female, the DIs, HQs, and corresponding HI
values were approximately 41.2%—56.3% of those values when
without considering bioaccessibility, suggesting a much lower
exposure risk of Hg with the consideration of bioaccessibility
(Fig. 3b).

3.3. Temporal trend of Hg in Chinese rice

Compared with previous reported results, the results of this
study showed a decreased temporal change from 2007 to 2017. The
THg in Chinese-grown rice was 10.1 pg/kg in 2007, 5.80 pg/kg in
2008, 4.90 pg/kg in 2011, and 4.03 pg/kg in 2017, decreasing by rates
of 42.5%, 15.5%, and 17.7%, respectively (Li et al., 2012; Qian et al.,
2010; Zhang et al, 2014). Simultaneously, MeHg declined by
approximately 43.3% from 2.47 ug/kg in 2007 to 1.40 pg/kg in 2017
(Li et al., 2012). Hence, these results suggested apparent downward
trends in both THg and MeHg intakes via rice Hg exposure risk
within the last decade and Hg exposure risk as well (Fig. 4, Fig. S8
and Fig. S9).

Corresponding to the decrease in THg and MeHg in Chinese
commercial rice, a series of energy-saving and emissions-reduction
policies have also been issued in China since 2005 (Fig. 4). Studies
found that during the 11th Five-Year Plan, SO, emissions in China
were decreased by 14% of emission level in 2005 (Schreifels et al.,
2012), and NOx emissions in China were reduced by 21% in 2010
during the 12th Five-Year Plan (Liu et al., 2017). Specifically, in 2011,
the Chinese government announced a notice on developing pilot
work for the control of atmospheric Hg pollution in CFPPs. With the
implementation of these policies, a simultaneous decrease in at-
mospheric Hg emissions occurred in major Hg emissions sources,
such as CFPPs (removal efficiency: 73%), non-ferrous smelting
(removal efficiency: 79%), and coal-fired industrial boilers (removal
efficiency: 42%) (Ancora et al., 2015; Kwon et al., 2018; Wang et al.,
2012; Wu et al., 2016; Zhang et al., 2012).

Significant synergetic Hg removal, with efficiencies ranging
between 42% and 79%, from those major anthropogenic atmo-
spheric Hg sources with strict controls (Wang et al., 2012; Wu et al,,
2016), might result in a decrease in Hg deposition into the envi-
ronment. Recently, a study reported that a decreasing trend in at-
mospheric Hg has occurred since 2010 in background areas of China
(Tong et al., 2016). Moreover, a decline in the temporal trend of Hg
in water also occurred in the Pearl River and Yangtze River due to
more stringent control measures that were strengthened in recent
years (Duan et al., 2015; Liu et al., 2016a; Liu et al., 2016b; Xu et al.,
2019a). Since soil MeHg is believed to be the major origin of MeHg
inrice grains (Meng et al., 2011; Qiu et al., 2011; Zhang et al., 2010b),
and evidences suggested that IHg in grain originates from soil (Tang
et al., 2017; Xu et al., 2019b; Yin et al., 2013). Further studies have
revealed that newly deposited Hg is more bioavailable and ready
for methylation, and Hg methylation is regulated by newly
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Fig. 4. Temporal trend of rice THg and MeHg in China from 2007 to 2017. Investigated data is derived from published literature and this study (Li et al., 2012; Qian et al., 2010; Zhang

et al, 2014).

deposited Hg to soil (Kwon et al., 2018; Meng et al., 2011; Xu et al.,
2017). The low input rate of the newly deposited Hg reduces the
bioavailability of IHg and MeHg in paddy soils, resulting in a
decrease in Hg in rice grains (Xu et al., 2017). Hence, a series of
policies and regulations issued by the Chinese government since
2005 that aim to control air pollutants were a source of the
decrease in both THg and MeHg in Chinese-grown rice. Our results
are also in accordance with the results of a modeling study from a
previous study (Kwon et al., 2018), which indicated that atmo-
spheric deposition was the major source of Hg in rice for most re-
gions of China except where soil was contaminated by point source
Hg, and under strict policies, levels of rice Hg in China will show a
sharp decrease. The decrease observed in the present study

demonstrates a significant effect of the management of Hg reduc-
tion proposed by the Chinese government within the last decade,
confirming the effectiveness of the adopted management.

It should be noted that the results in 2007 were only from 7
provinces of southern China (Li et al., 2012), which may lead to the
bias when compared to the results in 2017. Considering that the rice
yield of these provinces is 46.4% of the total yield in China (Li et al.,
2012), we hypothesized that the MeHg trend might be represen-
tative to a certain extent. The rice production areas of the samples
collected in 2008, 2011, and 2017 (this study) covered approxi-
mately 95.3%, 83.1%, and 100% of total rice production in China,
respectively (NBS, 2017). Moreover, recent studies assessed rice Hg
exposure across China with reported data (Liu et al., 2018; Liu et al.,
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2019b), and the employed data were 3.21 and 2.40 times of the
measured THg and MeHg in this study, with ranges of 2.14—6.02
and 1.52—3.51 times in different regions (Fig. S10), respectively.
Correspondingly, this indicated rice THg and MeHg exposure wre
overestimated, and also suggested that rice THg and MeHg showed
a downward trend. Therefore, we believe that the results of these
studies could fully represent the rice Hg levels in China. The THg
results with a large sample size from 2008 to 2017 exhibited a
steadily declining trend, even when the results from 2007 were not
included.

4. Conclusion

We carried a nationalwide survey of both THg and MeHg in
Chinese commercial rice. Both THg and MeHg levels in Chinese
commercial rice are generally low and safe, though there exist Hg
pollution in commercial rice. Correspondingly, rice IHg and MeHg
exposures in different Chinese age-gender groups were quite lower
compared to RfD-0.1 pg/kg bw/day and PTWI-0.57 pg/kg bw/day.
Residents in Central China and Southern China meet the highest
rice Hg exposure, which were more than 7 times of those in
Northwest China. While rice Hg pollution a valid concern for Hg-
contaminated sites, there does not to be much worry about Hg
exposure from Chinese markets. With the efforts of strict policies to
control Hg implemented by the Chinese government, Hg emissions
to the environment have declined, and Hg concentrations in rice
are expected to decrease in the future. Hence, concerns related to
Hg contamination in rice should not be overemphasized, consid-
ering the fact that >99.5% of rice in the market is low in Hg.
However, the high ratios of MeHg to THg observed in rice might
cause chronic low-dose exposure to humans, particularly sensitive
populations of pregnant women and children, and should be given
more attention in the future. Moreover, MeHg bioaccumulation is
an issue at Hg-contaminated sites, and this situation should be
resolved with proper controls, such as phytoremediation of soils
and rice planting bans.
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