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 Preface 

	
This	report	is	a	product	of	a	joint	effort	between	The	Norwegian	Institute	for	Water	Research	(NIVA)	
and	SpectroFly	A/S.	The	idea	and	project	design	were	initiated	by	Kasper	Hancke	and	Robert	
Nøddebo	Poulsen	as	a	spin-off	from	work	on	using	drones	and	image	classification	for	coastal	habitat	
mapping.	Bjørn	Maaløe	Torsvik	(SpectroFly	A/S)	performed	the	object-based	image	analysis	and	the	
project	aimed	to	test	the	performance	of	the	commercial	software	package	eCognition	for	detecting	
marine	litter	in	the	form	of	macroplastic	object	in	beach	zones	from	drone	images.	The	project	is	
based	on	drone-captured	images	collected	by	NIVA	at	opportunity	during	multiple	field	studies;	
including	the	“Pilot-Møre”	project,	the	“Strategisk	instituttsatsing	på	digitale	metoder	for	
miljøovervåking	og	forskning”,	and	the	“Frisk	Oslofjord”	project	(www.friskoslofjord.no).	We	
acknowledge	the	assistance	during	fieldwork	and	analysis	from	involved	colleges	and	coworkers.	
Analysis	and	reporting	were	funded	by	NIVA’s	strategic	funds	for	New	digital	methods	for	monitoring	
and	research	(DigiSIS),	and	the	National	Research	Infrastructure	SeaBee	-	Norwegian	Infrastructure	
for	Drone-based	research,	mapping	and	monitoring	in	the	coastal	zone	(www.seabee.no).		

	
	
	

Oslo,	19.11.2020	
	

Kasper	Hancke	
	
	
	



NIVA	7553-2020	

4	

Table of contents 
 

1 Introduction	................................................................................................................	7 
1.1 Background	.............................................................................................................	7 

2 Methods	......................................................................................................................	8 
2.1 Theory	.....................................................................................................................	8 

 Image	classification	.................................................................................	8 
 Accuracy	assessment	...............................................................................	9 

2.2 Project	Area	..........................................................................................................	10 
2.3 Data	and	Equipment	.............................................................................................	13 

 Time	of	data	collection	..........................................................................	13 
 Plastic	pieces	.........................................................................................	13 
 Ground	truth	..........................................................................................	13 
 Drones	and	camera	specifications	.........................................................	15 
 Photogrammetric	processing	................................................................	17 

2.4 Methodology	........................................................................................................	19 
 Image	Classification	...............................................................................	19 
 Accuracy	Assessment	............................................................................	21 
 Settings	in	the	four	scenarios	................................................................	22 

3 Results	.......................................................................................................................	25 
3.1 Segmentation	........................................................................................................	25 
3.2 Classification	and	accuracy	assessment	................................................................	28 

 Scenario	1:	Akerøya	2019	RGB	..............................................................	28 
 Scenario	2:	Dymna	2018	RGB	with	pre-set	configuration	.....................	30 
 Scenario	3:	Dymna	2018	RGB	................................................................	34 
 Scenario	4:	Akerøya	2019	MS	................................................................	37 
 Summary	of	the	statistical	measurements	of	accuracy	.........................	39 

3.3 Area	of	True	and	False	positives	...........................................................................	39 
3.4 Size	of	detectable	objects	.....................................................................................	40 

4 Discussion	.................................................................................................................	41 
4.1 Recommendations	................................................................................................	43 

5 Conclusion	.................................................................................................................	45 

6 References	................................................................................................................	47 

 
	 	



NIVA	7553-2020	

	

5	

Summary 
	
More	than	eight	million	tonnes	of	plastic	is	transported	into	the	ocean	each	year,	and	large	amounts	
end	up	in	the	beach	zone	on	all	continents	of	the	globe.	Here	plastic	debris	are	accumulated	and	
buried	into	the	sand,	often	consumed	by	animals,	or	washed	back	into	the	ocean.	Currently,	cost-
efficient	methods	are	lacking	to	detect	and	quantify	macroplastic	debris	on	beaches	which	is	
essential	to	determine	the	amount	of	plastic	debris	in	beaches	and	to	guide	clean-up	initiatives	and	
monitoring.		

The	aim	of	this	pilot	study	was	to	investigate	the	feasibility	of	detecting	macroplastic	in	beach	zones	
using	high-resolution	images	in	the	Red-Green-Blue	(RGB)	to	Near-Infrared	(NIR)	spectrum	collected	
from	flying	drones	(Unmanned	Aerial	Vehicles,	UAV)	combined	with	object-based	image	analysis	
(OBIA)	classification	techniques.	

Two	coastal	environments	(beaches)	were	sampled	to	investigate	the	capabilities	of	OBIA	to	detect	
plastic	objects	of	2-50	cm	in	size.	The	first,	Akerøya	(Oslofjord),	was	a	sandy	beach	fragmented	with	
piles	of	macroalgae.	The	second,	Dymna	(Møre	region),	was	a	stony	beach	with	multiple	stones	and	
rocks	of	various	sizes	and	colors.	High	resolution	RGB	or	multispectral	images	were	collected	using	
either	rotor-	or	fixed-winged	drones	at	both	locations.	Three	classification	scenarios	were	analyzed	
using	RGB	data	and	for	one	scenario	a	6-band	multispectral	dataset	in	the	RGB-NIR	range	was	used	
to	improve	detection.		

Object-based	image	classification	was	used	for	plastic	detection	applying	the	commercial	software	
eCognition.	Analyses	included	multi-resolution	segmentation	and	supervised	classification,	applying	
Support	Vector	Machine	classifier	algorithms	in	three	scenarios	and	Random	Trees	in	one.	Both	
segmentation	and	classification	are	recognized	as	important	steps,	crucial	to	the	detection	of	plastic	
and	its	resulting	accuracy.	In	the	three	scenarios	using	RGB	data,	between	45%	and	75%	of	the	
plastic	pieces	were	detected	(i.e.	the	sensitivity	measure).	Correspondingly,	precision	ranged	
between	3%	and	21%	leading	to	an	accuracy	(F-score)	of	0.06	to	0.33.	The	classification	of	the	fourth	
scenario	including	NIR	information	showed	the	highest	accuracy	of	0.67	(50%	sensitivity	and	87%	
precision),	arguing	for	the	advantages	of	including	NIR	bands	for	improved	plastic	detection.		

Objects	of	plastic	at	sizes	down	to	3.5	x	3.5	cm	were	segmented	and	classified	successfully	
corresponding	to	approximately	4	times	the	pixel	width	of	the	classified	images.	Overall	conclusions	
should	be	approached	with	some	caution,	due	to	the	relatively	few	ground	truth	data	points	(13-37	
geolocated	plastic	pieces)	and	their	different	characteristics	regarding	color	and	size.	

This	pilot	study	demonstrates	UAV-based	image	collection	being	a	promising	technology	for	plastic	
detection	in	beach	zones	and	we	recommend	object-based	image	analysis	and	UAV-based	data	
collection	being	further	developed	for	marine	litter	detection.	
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Sammendrag 
	
	
Tittel:	Plastregistrering	i	strandsonen	ved	bruk	av	droner	og	objektbasert	bildeanalyse	
År:	2020		
Forfattere:	Bjørn	Maaløe	Torsvik,	Robert	Nøddebo	Poulsen,	Bert	van	Bavel,	Hege	Gundersen	og	
Kasper	Hancke	
Utgiver:	Norsk	institutt	for	vannforskning,	ISBN	978-82-577-7288-8	
	
Mer	enn	åtte	millioner	tonn	plast	havner	hvert	år	i	havet,	og	en	stor	andel	av	dette	ender	opp	i	
strandsonen	på	alle	verdens	kontinenter.	Her	samles	plastrester	som	ofte	begraves	i	sanden,	blir	
konsumert	av	dyr,	eller	skylles	tilbake	i	havet.	Det	finnes	i	dag	ikke	kostnadseffektive	metoder	for	å	
registrere	og	kvantifisere	makroplast	på	strender,	noe	som	er	viktig	for	å	bestemme	mengden	av	
plast	samt	for	å	koordinere	oppryddingstiltak	og	overvåking.	
	
Målet	med	denne	pilotstudien	var	å	undersøke	muligheten	for	å	oppdage	makroplast	i	strandsoner	
ved	bruk	av	høyoppløselige	bilder	tatt	med	RGB	(rød-grønn-blå)	og	nær-infrarød	kamera	fra	flygende	
droner	(såkalt	UAV)	kombinert	med	objektbasert	bildeanalyse	(OBIA).	
	
Vi	undersøkte	to	ulike	kystmiljøer	(strender)	og	evaluerte	hvor	effektivt	vi	var	i	stand	til	å	oppdage	
plastgjenstander	med	størrelse	2-50	cm	ved	hjelp	av	OBIA.	Det	første,	Akerøya	i	Oslofjorden,	var	en	
sandstrand	med	hauger	av	makroalger.	Det	andre,	Dymna	på	Møre,	var	en	steinstrand	bestående	av	
steiner	i	forskjellige	størrelser	og	farger.	Det	ble	tatt	RGB-	eller	multispektrale	bilder	med	høy	
oppløsning	ved	hjelp	av	både	rotor-	og/eller	fastvinge-droner	på	begge	lokaliteter.	Tre	
klassifiseringsscenarier	ble	analysert	ved	bruk	av	RGB-data,	og	for	ett	scenario	ble	i	tillegg	et	6-bånds	
multispektral	datasett	i	RGB-NIR-området	anvendt	for	å	forbedre	deteksjonen.	
	
Objektbasert	bildeklassifisering	ble	brukt	for	plastdeteksjon	ved	bruk	av	den	kommersielle	
programvaren	eCognition.	Analysene	inkluderte	«multi-resolution»	segmentering	og	styrt	
klassifisering,	ved	bruk	av	algoritmer	for	«Support	Vector	Machine»	(SVM)	i	tre	scenarier	og	ett	
scenarium	ved	bruk	av	«Random	Trees».	Både	segmentering	og	klassifisering	er	viktige	trinn	for	
påvisning	av	plast	og	nøyaktig	posisjonering.	I	de	tre	scenariene	der	RGB-data	ble	brukt,	ble	mellom	
45	og	75	%	av	plastbitene	oppdaget	(dvs.	sensitivitet).	Tilsvarende	varierte	presisjonen	mellom	3	og	
21	%,	noe	som	gav	en	nøyaktighet	(F-score)	fra	0,06	til	0,33.	Klassifiseringen	i	scenario	4,	der	NIR	var	
inkludert,	viste	høyeste	F-score	på	0,67	(med	50	%	sensitivitet	og	87	%	presisjon).	Dette	resultatet	
taler	for	å	inkludere	NIR-bånd	for	best	plastdeteksjon.	
	
Analysene	viste	at	objekter	i	størrelser	ned	til	3,5	x	3,5	cm	kunne	segmenteres	og	klassifiseres	som	
plastikkbiter.	Dette	tilsvarer	påvisning	av	objekter	ned	i	en	størrelse	tilsvarende	fire	ganger	
pikselbredden	i	de	tilgjengelige	bildene.	Disse	resultatene	bør	anvendes	med	en	viss	forsiktighet,	på	
grunn	av	det	relativt	lite	antall	«ground	truth»	datapunkter	(kun	13-37	geolokaliserte	plastbiter),	
som	i	tillegg	varierte	i	farge	og	størrelse.	
	
Denne	pilotstudien	viser	at	bilder	tatt	med	flygende	droner	i	kombinasjon	med	objektbasert	
bildeanalyse	er	en	lovende	metode	for	registrering	av	plast	i	strandsonen,	og	vi	anbefaler	en	videre	
utvikling	av	denne	teknologien.	
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1 Introduction 

1.1 Background 
More	than	eight	million	tonnes	of	plastic	are	going	into	the	ocean	each	year	(Jambeck	et	al.	2015),	
and	plastic	debris	in	the	coastal	environments	and	in	beach	zones	cause	dramatic	negative	impacts	
on	animals	and	human	populations	(UNEP,	2016).	Plastic	debris	reaches	the	beach	zones	where	it	is	
buried	into	the	sand	and	sediments	or	washed	back	out	into	the	ocean,	or	in	some	cases	consumed	
by	animals.	All	of	this	on	scales	and	rates	that	we	have	very	limited	data	on,	and	we	severely	lack	
understanding	about	the	dynamics	of	these	processes	(Andersen	2019).		

Gathering	quantitative	information	of	the	amount	of	plastic	debris	in	coastal	environments	is	
fundamental	to	understand	its	sources,	the	pathways	of	transport,	the	temporal	trends	of	its	
appearance,	and	for	studying	the	impacts	of	plastic	debris	on	marine	ecosystems.	Currently,	cost-
efficient	methods	are	lacking	to	detect	and	quantify	macroplastic	debris	on	beaches	which	is	
essential	to	determine	the	amount	and	distribution	of	this	global	problem,	and	to	guide	monitoring	
programs	and	clean-up	initiatives.		

General	guidelines	and	some	operational	protocols	for	beach	litter	assessments	and	compilations	
have	been	proposed	suggesting	mainly	visual	identification	methods	which	require	a	high	number	of	
operators,	is	subjective,	labor-intensive,	time-consuming,	and	spatially	limited	(e.g.	GESAMP,	2019).		

To	overcome	these	limitations	new	approaches	are	required	for	faster,	autonomous	and	cost-
efficient	detection	and	mapping	of	plastic	debris	in	the	coastal	zone.	It	has	been	proposed	crucial	to	
plan	and	implement	routine	environmental	monitoring	measured	and	standard	monitoring	protocols	
for	marine	litter	including	spatial	and	temporal	mapping	on	beaches	(e.g.	OSPAR	Commission,	2010;	
GESAMP,	2019).	

In	recent	years,	Unmanned	Aerial	Vehicles	(UAV)	also	referred	to	as	flying	drones	has	become	
available	and	open	new	avenues	to	explore	and	monitor	large	areas	in	cost-efficient	ways.	Combined	
with	sophisticated	optical	sensors,	UAV’s	will	enable	collection	of	large	scale,	high-resolution	data,	
and	create	data	products	that	will	improve	research	and	management	efforts	for	healthier	and	
cleaner	environments.		

The	scope	of	this	pilot	study	was	to	investigate	the	feasibility	of	detecting	macroplastic	from	regular	
color	images	(RGB)	to	multispectral	high-resolution	data	collected	from	UAVs	and	evaluate	the	
efficiency	of	using	object-based	image	analysis	(OBIA)	classification	techniques.	

The	following	questions	are	sought	answered:	

• To	what	extent	can	macroplastic	objects	be	detected	in	RGB	imagery	using	segmentation	
classification?	

• What	is	the	performance	of	a	classification	configuration	trained	in	one	area	for	detecting	
macroplastic	in	a	new	area?		

• How	does	ground	surface	characteristics	affect	plastic	detection?	
• Can	addition	of	near-Infrared	(NIR)	band	information	improve	macroplastic	classification	

detection?	
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2 Methods 

2.1 Theory 

 Image classification 
Image	classification	of	high	resolution	remotely	sensed	imagery	can	include	segmentation,	which	
opens	the	possibility	to	change	the	process	from	classical	pixel-based	approach	to	an	object-based	
approach,	called	object-based	image	analysis	(OBIA).	OBIA	includes	both	segmentation	and	
classification.		

2.1.1.1 Segmentation 
Segmentation	is	the	process	were	pixels	are	grouped	together	into	segments	prior	to	the	
classification,	to	define	objects	of	interest.	If	objects	are	erroneously	split	into	several	segments	it	is	
called	over-segmentation.	Whereas	under-segmentation	refers	to	the	opposite	situation	where	
objects	are	in	segments	were	also	surrounding	pixels	are	included.		

Multiresolution	segmentation	is	an	algorithm	that	combines	the	image	pixels	based	on	the	spectral-	
and	shape	heterogeneity.		

The	heterogeneity	threshold	is	defined	by	the	“Scale”	parameter,	setting	the	tolerance	of	the	
variation	inside	a	segment.	The	higher	the	scale	parameter	the	higher	the	tolerance	of	variation	
typically	resulting	in	larger	and	fewer	segments.	

How	the	heterogeneity	is	measured	is	controlled	by	the	“Color/Shape”	parameter	defining	the	
amount	of	weight	put	on	color	versus	shape.	Color	refers	to	the	standard	deviation	of	the	pixel	value	
of	the	bands	whereas	shape	measures	the	deviation	from	a	shape.		

Shape	heterogeneity	is	measured	according	to	the	smoothness	or	the	compactness	of	the	segment	
(Chen	et	al.	2019)	formulated	in	the	two	equations	1	and	2	below.	A	graphical	illustration	of	the	
relationship	between	the	two	parameters	is	displayed	in	Figure	1.		

	
"#$$%ℎ'()) = 	 +,-./0	12	/0,	3145,4	12	/0,	6,.7,-/

+,-./0	12	/0,	3145,4	12	/0,	318-59-.	31:	12	/0,	6,.7,-/
		 	 Eq.	1	

	

;$#<=>%'()) = 	 +,-.0/	12	/0,	3145,4	12	/0,	6,.7,-/
?4,@	12	/0,	6,.7,-/

	 	 	 	 Eq.	2	
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Figure	1.	Relations	between	the	parameters	to	adjust	in	the	segmentation	settings	in	eCognition	
(Aminipouri,	2009).	
	
2.1.1.2 Classification 
Image	classification	can	be	divided	into	unsupervised	and	supervised	classification.	Unsupervised	
classification	(or	clustering)	is	grouping	pixels/segments	into	similar	clusters	without	any	prior	
knowledge	of	the	classes.	Subsequently	the	clusters	are	classified	into	meaningful	classes.	
Supervised	classification	is	classifying	the	pixels/segments	into	classes	provided	by	the	user.	The	user	
selects	representative	pixels/segments	for	each	class.	The	algorithm	uses	the	training	data	to	create	
models	that	classifies	the	remaining	pixels/segments	according	to	the	user	provided	classes.	Many	
different	classification	algorithms	exist,	for	instance	Support	Vector	Machine	(SVM)	and	Random	
Forest	(e.g.	Acuña-Ruz	et	al.,	2018;	Gonçalves	et	al.,	2020;	Qian	et	al.,	2014).		

 Accuracy assessment 
One	way	of	assessing	the	accuracy	of	image	classification	is	the	error	matrix	(also	called	confusion	
matrix).	When	assessing	two	classes	in	an	error	matrix,	the	number	of	true	positives	(TP),	false	
positive	(FP),	false	negative	(FN)	and	true	negatives	(TN)	are	counted.	The	error	matrix	is	the	basis	
for	statistical	measures	of	sensitivity	(S),	precision	(P)	and	the	so-called	F-score	(Gonçalves	et	al.,	
2020).	The	sensitivity	is	a	measure	of	how	good	the	classification	is	at	detecting	the	ground	truth,	i.e.	
the	percentage	of	ground	truth	that	is	right	classified	(Eq.	3).	Precision	measures	how	precise	the	
classification	is	by	measuring	the	percentage	of	the	class	that	are	TP	(Eq.	4).	F-score	combines	
precision	and	sensitivity,	measuring	how	well	the	classification	performs.	Results	ranging	from	0	to	1,	
with	0	as	the	lowest	(worst)	score	and	1	as	the	highest	(best)	score	(Eq.	5).	

" = 	 AB
ABCDE

	 	 Eq.	3	

	

F = 	 AB
ABCDB

	 	 Eq.	4	

	

G = 	2	I B	:	J
BCJ

	 	 Eq.	5	
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2.2 Project Area  
Two	coastal	study	areas	in	Norway	was	included	in	this	project.	One	location	was	Akerøya	at	the	
south	east	entrance	to	the	Oslofjord,	and	the	second	site	called	Dymna	located	on	Dimnøya	
approximately	5	km	south	west	of	Ulsteinvik	on	the	west	coast	(Figure	2).	Akerøya	was	a	sandy	
beach	location,	partially	covered	by	piles	of	dead	seaweed	and	infrequent	presence	of	small	stones	
and	shells	(Figure	3).	Dymna	was	a	rocky	beach,	dominated	by	stones	of	multiple	sizes	and	colors,	
but	also	areas	with	grass	vegetation.	Also,	at	Dymna,	seaweed	was	sporadically	distributed	on	the	
beach	(Figure	4).	The	two	locations	where	chosen	to	represent	distinctly	different	however	common	
backgrounds	for	plastic	detection.	

	
Figure	2.	Location	of	the	two	study	sites	at	the	Norwegian	coast.	
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Figure	3.	Close-up	image	of	the	sandy	beach	at	the	Akerøya	location,	southern	Norway.	
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Figure	4.	Close-up	image	of	the	stony	beach	at	the	Dymna	location,	western	Norway.	
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2.3 Data and Equipment 

 Time of data collection 
	
Data	was	collected	at	Dymna	on	the	27th	of	June	2018	approximately	4	pm	using:	

• RGB	sensor	(Zenmuse	X5)	mounted	on	DJI	Matrice	600	Pro	rotor	drone	(Figure	5a)	

Data	was	collected	at	Akerøya	on	the	27th	of	August	2019	approximately	7	pm	using:	

• RGB	sensor	(SODA)	on	a	Sensefly	eBee	X	fixed-wing	drone	(Figure	5b),	and	
• Multispectral	(MS)	sensor	(Tetracam	Macaw)	mounted	on	DJI	Matrice	600	Pro	rotor	drone	

(Figure	5a)	

a)		 	 	 	 	 	 	b)	

	 	
Figure	5.	The	two	drones	used	in	the	study,	a)	DJI	Matrice	600	Pro	rotor	drone	and	b)	Sensefly	eBee	
X	fixed-wing	drone.	Photos	by	NIVA/K	Hancke.		
	

 Plastic pieces 
At	both	study	locations	macroplastic	pieces	of	various	sizes,	color,	and	composition	were	
intentionally	placed	using	a	random	placement	design.	Plastic	can	be	categorized	based	on	its	
physical	size;	into	macro-	(>	25	mm),	meso-	(5	mm	to	<	25	mm)	and	microplastic	(1	mm	to	<	5	mm)	
(Acuña-Ruz	et	al.,	2018).	All	plastic	detection	in	this	project	was	focused	on	detection	of	
macroplastic.		

 Ground truth 
At	Akerøya	16	plastic	pieces	were	geolocated	with	real-time	kinematic	(RTK)	global	positioning	
system	(GPS).	The	plastic	objects	ranged	in	size	from	small	pieces	of	a	few	centimeters	(Figure	6A)	up	
to	around	50	cm	(Figure	6B).	Plastic	of	both	soft	and	hard	composition	were	included.	Colors	were	
white	(8	pieces),	blue	(4),	orange	(1),	red	(3),	pink	(1),	green	(2),	metallic	(1),	semitransparent	(1)	and	
transparent	(4).	

At	Dymna	37	pieces	was	geolocated,	ranging	from	3.5	cm	to	a	little	less	than	half	a	meter	in	size	
(Figure	6C	and	Figure	7).	Four	pieces	was	white	rectangles	of	28,	14,	7	and	3.5	centimeters	(Figure	
6C)	and	nine	pieces	were	cans	(soda	or	beer).	Materials	included	both	soft	and	hard	plastics.	Colors	
included	white	(included	in	19	pieces),	blue	(5),	yellow	(2),	grey	(1),	green	(3),	red	(3),	brown	(7),	
metal	(9),	black	(2),	semitransparent	(4)	and	transparent	(1).	The	numbers	in	the	parentheses	do	not	
add	up	to	the	total	amount	of	pieces	since	more	than	one	color	is	counted	for	some	pieces.		
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Figure	6.	A)	Close-up	picture	of	a	
smaller	sized	plastic	piece	at	the	
Akerøya	study	area.	B)	Close-up	
picture	of	a	larger	sized	plastic	piece	
at	Akerøya	study	site.	C)	Four	
rectangle-shaped	pieces	of	plastic	of	
size	28,	14,	7	and	3.5	centimeter	
across,	used	at	Dymna	study	site.	
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Figure	7.	Close-up	picture	of	a	larger	sized	plastic	piece	(a	plastic	bag)	at	Dymna	study	site.	
	
2.3.3.1 GPS measurements 
The	equipment	used	for	geolocation	was	a	Leica	RTK	GPS	comprising	a	Leica	GS16	with	the	CS20	
tablet.	It	measures	the	position	(longitude,	latitude	and	altitude)	with	an	accuracy	of	2-3	cm.	

2.3.3.2 Ground Control Points 
Before	initiating	the	drone	surveys,	white	wooden	crosses	(50	cm	in	diameter)	were	placed	in	the	
survey	area	and	positioned	with	RTK	GPS.	These	were	used	as	ground	control	points	in	the	
subsequent	postprocessing	to	obtain	geopositioned	high	accuracy	orthomosaics.	

 Drones and camera specifications 
Two	drone	systems	were	used	for	data	collection:	1)	a	fixed-wing	Sensefly	Ebee	X	(Figure	5a)	with	a	
maximum	flight	time	of	90	minutes	(www.sensefly.com),	and	2)	a	rotary	wing	drone	of	type	DJI	
Matrice	600	Pro	(Figure	5b)	capable	of	carrying	a	payload	of	several	kilograms	(www.dji.com).	Three	
camera	systems	were	applied,	1)	RGB	Sensefly	S.O.D.A.	(equipped	at	the	Ebee	drone),	2)	RGB	DJI	
Zenmuse	X5	(equipped	at	the	Matrice	drone)	and	Multispectral	Tetracam	Macaw-6	(equipped	at	the	
Matrice	drone).		
	
2.3.4.1 Sensefly S.O.D.A. 
Sensefly	S.O.D.A.	collects	data	from	three	bands,	red,	green,	and	blue	(RGB),	with	mean	wavelengths	
of	660	nm,	520	nm	and	450	nm	respectively	(Figure	8a).	S.O.D.A.	is	a	20	MP	RGB	camera	for	drone	
mapping	(Figure	8b),	producing	a	ground	sample	distance	of	2.5	cm/pixel	at	100	m	altitude.	
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Figure	8.	left)	Band	responses	of	the	three	bands	captured	by	the	SODA	camera	
(www.spatialtechnologies.ca)	and	right)	The	Sensefly	S.O.D.A.	camera	seen	from	the	front	
(www.skyviv.com)	
	
	
2.3.4.2 Zenmuse X5 
DJI	Zenmuse	X5	collects	data	from	three	bands,	red,	green	and	blue	(RGB),	unfortunately	no	
specifications	of	the	average	wavelengths	are	available.		

	

2.3.4.3 Tetracam Macaw 
The	multispectral	camera	Macaw-6	from	Tetracam	
is	a	6	narrowband	camera	with	a	1.3	MP	
resolution,	corrected	for	incident	light,	
wavelengths	are	shown	in	Table	1.	

	

	 Figure	9.	Tetracam	Macaw-6	
(www.tetracam.com)	

	
Table	1.	Wavelengths	of	the	6	bands	of	the	Macaw	camera.	Filter	shows	the	
mean	wavelength	and	band	width,	both	in	nm.	

Channel	 Filter	[nm]	 Band	Width	[nm]	

Band	1	 840	 10	

Band	2	 490	 10	

Band	3	 550	 10	

Band	4	 670	 10	

Band	5	 700	 10	

Band	6	 720	 10	
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 Photogrammetric processing 
All	RGB	datasets	were	processed	in	the	photogrammetric	software	Pix4D.	Details	about	the	
photogrammetric	processing	is	available	at	www.pix4d.com.	The	multispectral	dataset	was	
processed	in	another	photogrammetric	software	package	–	the	Simactive	Correlator3D.	Again,	
details	about	the	photogrammetric	processing	in	Correlator3D	is	available	at	www.simactive.com.	

2.3.5.1 Projection 
All	geographic	data	is	in	the	projection	Universal	Transverse	Mercator	(UTM)	zone	32	north	ETRS89.	

2.3.5.2 RGB Data 
RGB	data	were	available	as	orthomosaics	with	RGB	bands	in	8-bit	unsigned	(values	from	0-255).	The	
Akerøya	RGB	orthomosaic	from	2019	has	a	1.6	x	1.6	cm	resolution	(Figure	10),	whereas	the	Dymna	
RGB	orthomosaic	from	2018	has	0.9	x	0.9	cm	resolution	(Figure	11).	

	

	
Figure	10.	An	RGB	orthomosaic	of	Akerøya	2019	captured	from	55	m	altitude,	with	a	1.6	x	1.6	cm	
pixel	resolution	of	the	ground.	Satellite	imagery	is	used	as	background	(Google	Earth).		
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Figure	11.	An	RGB	orthomosaic	of	Dymna	2018	captured	from	35	m	altitude,	with	0.9	x	0.9	cm	pixel	
resolution	of	the	ground.	Satellite	imagery	is	used	as	background	(Google	Earth).	
	
	
2.3.5.3 Multispectral Data 
The	multispectral	dataset	from	Akerøya	was	available	as	an	orthomosaic	of	the	6	bands	in	8-bit	
unsigned	(values	from	0-255)	in	a	resolution	of	1.7	x	1.7	cm	(Figure	12).		

	
Figure	12.	The	orthomosaics	of	multispectral	bands	4,	3	and	2	is	here	used	in	RGB	composite	
visualization	showing	the	dataset	coverage	of	Akerøya	2019.	The	images	were	captured	from	32	m	
altitude,	with	1.7	x	1.7	cm	pixel	resolution	of	the	ground.	
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2.4 Methodology 
The	present	chapter	describes	how	the	analyses	were	performed	and	evaluated	as	well	as	specific	
settings	applied.	Also,	a	general	description	is	given	of	the	classification	methods	and	accuracy	
assessments	applied	to	the	different	study	areas.		

The	process	of	classification	was	performed	in	four	different	scenarios,	according	to	location,	data	
type	and	approach	(Table	2).	The	RGB-dataset	from	Akerøya	2019	was	analyzed	first	by	fine-tuning	
the	settings	for	that	area	(scenario	1).	The	obtained	configuration	of	this	classification	model	was	
subsequently	applied,	without	adjustments,	to	the	Dymna	2018	RGB	dataset	(scenario	2).	Hereby	
testing	the	performance	of	a	preset	configuration	from	another	area	with	only	partial	matching	
landcover	classes.	Next	was	the	RGB-dataset	from	Dymna	2018	where	parameters	were	fine-tuned	
to	meet	the	characteristics	of	the	specific	study	area	(scenario	3).	This	was	done	to	test	whether	a	
site-specific	classification	to	Dymna	was	an	improvement	compared	to	the	previously	tested	preset	
configuration.	Finally,	the	multispectral	dataset	from	Akerøya	2019	was	investigated	in	order	to	
evaluate	if	the	NIR	band	together	with	a	site-specific	adjusted	classification	(scenario	4)	could	
improve	the	classification	compared	to	the	classification	based	on	only	the	RGB	dataset	from	
Akerøya	2019.	

	

Table	2.	Parts	included	in	the	four	scenarios.	

Scenario	number	 Location	(year)	 Data	 Approach	

1	 Akerøya	(2019)	 RGB	 Finetune	to	the	area	

2	 Dymna	(2018)	 RGB	 Preset	configuration	(Akerøya	RGB)	

3	 Dymna	(2018)	 RGB	 Finetune	to	the	area	

4	 Akerøya	(2019)	 MS	(RGB+NIR)	 Finetune	to	the	area	

	

 Image Classification 
The	image	classification	process	included	segmentation	of	pixels	and	subsequent	classification	of	
segments.	Both	segmentation	and	classification	were	conducted	using	Trimble	eCognition	Essentials	
(version	1.3).	Accuracy	assessment	was	done	in	ArcGIS	Pro.	Figure	13	visualize	a	flowchart	of	the	
general	methodology	applied	in	scenario	1,	3	and	4.	The	method	is	based	on	camera,	GPS	data	and	
the	iterative	parts	of	the	segmentation	process	and	subsequent	classification	of	segments,	and	
finally	the	classification	accuracy	assessment.	
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Figure	13.	Flowchart	of	the	general	method	applied	in	scenario	1,	3	and	4.	
	
	
2.4.1.1 Segmentation 
Imagery	data	comprise	a	high	resolution	and	since	the	plastic	objects	consists	of	several	pixels	an	
object-based	approach	was	used	instead	of	a	pixel-based.	To	reduce	the	processing	time	needed	and	
exclude	unnecessary	landcover	classes	a	region	of	interest	(ROI)	was	selected	in	eCognition	
containing	all	plastic	pieces.	

A	multiresolution	segmentation	was	used	as	the	segmentation	method.	The	optimal	settings	were	
found	by	an	iterative	trial	and	error	approach,	by	visually	evaluating	the	resulting	segmentation.	The	
visual	qualitative	evaluation	focused	on	three	segmentation	parameters	1)	the	purity	of	segments,	
regarding	plastic	piece	versus	surrounding	landcover	pixels,	2)	how	well	small	plastic	pieces	was	
captured	by	a	single	segment	minimizing	over-	or	under-segmentation	of	the	pieces,	and	3)	keeping	
over-segmentation	of	larger	plastic	pieces	at	a	minimum.	The	segmentation	evaluated	as	the	best	
fitting	was	applied	in	the	subsequent	classification.		

2.4.1.2 Classification 
As	with	the	segmentation	method,	the	optimal	selections	and	settings	were	adjusted	in	an	iterative	
trial	and	error	approach.	In	this	process	adjustments	were	evaluated	by	a	visual	qualitative	and	semi-
quantitative	approach	of	the	resulting	classification.	The	evaluation	focused	on	1)	the	number	of	
true	positives,	2)	the	number	of	false	positives,	and	3)	general	fitting	of	the	classes	to	the	visually	
interpreted	landcovers.	The	classified	segments	with	the	chosen	configuration	were	exported	from	
eCognition	for	later	quantitative	assessment	of	the	accuracy	of	the	classification.	Additionally,	
segments	used	as	training	data	were	exported	as	points	and	the	ROI	as	a	polygon.	
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 Accuracy Assessment 
To	assess	the	classification	accuracy,	the	classified	plastic	segments	were	compared	with	the	
geolocated	(ground	truth)	plastic	objects.	Accuracy	was	assessed	based	on	geolocated	plastic	objects	
not	included	as	training	data	for	the	classifying	models.	An	error	matrix	and	related	percentage	
measures	was	produced	to	enable	evaluation	and	comparison	of	the	different	classification	results.	
Segments	in	the	error	matrix	was	counted	as	True	Positive	(TP),	False	Positive	(FP),	False	Negative	
(FN)	or	True	Negative	(TN)	as	shown	in	Table	3.	To	enable	this	procedure	the	classification	was	
transformed	into	a	two-class	system	of	Plastic	and	Other	prior	to	the	accuracy	assessment.	This	was	
done	by	grouping	all	plastic	classes	in	the	Plastic	class	and	all	remaining	classes	into	the	Other	class.		

	

Table	3.	Relation	between	error	matrix	term	and	landcover/class	combination	of	segments.	

Error	matrix	term	 Landcover	=	class	

True	positive	(TP)	 Plastic	=	plastic	

False	positive	(FP)	 Other	=	plastic	

False	negative	(FN)	 Plastic	=	other	

True	negative	(TN)	 Other	=	other	

	

The	ground	truth	of	the	plastic	objects	was	not	found	to	be	sufficient	for	accuracy	assessment,	since	
the	geolocation	only	covered	one	position,	while	plastic	objects	and	their	segments	covered	areas.	
To	match	the	number	of	GT	plastic	objects	with	the	number	of	segments,	each	plastic	object	was	
only	counted,	as	one	segment,	even	though	it	in	practice	consisted	of	several	segments.	For	a	plastic	
object	to	be	classified	as	a	TP,	only	one	of	its	segments	required	to	be	classified	as	plastic.	Similarly,	
when	several	segments	were	covering	a	plastic	object,	only	one	plastic	segment	counted	as	a	TP.	All	
other	segments	not	covering	plastic	pieces	was	considered	as	ground	truth	for	the	class	“Other”.	The	
statistical	measures	included	sensitivity,	precision,	and	accuracy	assessment	(F-score)	were	
calculated	for	each	scenario.	
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 Settings in the four scenarios 
The	region	of	interest	(ROI)	for	Akerøya	2019	RGB	dataset	was	420	m2	including	17	ground-truth	
points	of	16	plastic	pieces	(Figure	14A).	The	Dymna	2018	RGB	dataset,	used	for	scenario	2	and	3,	had	
a	ROI	comprising	536	m2	including	37	ground-truthed	plastic	objects	(Figure	14B).	At	Akerøya,	the	
multispectral	2019	dataset	used	for	scenario	4,	comprised	a	360	m2	ROI,	including	13	ground-truthed	
plastic	objects	(Figure	14C).	

	

	

	
	 	

Figure	14.	A)	Yellow	line	outlines	the	ROI	for	the	
Akerøya	2019	RGB	dataset,	ground	truth	marked	by	
red	crosses.	B)	Yellow	line	outlines	the	ROI	for	the	
Dymna	2018	RGB	dataset,	ground	truth	marked	by	
red	crosses.	C)	Yellow	line	outlines	the	ROI	for	the	
Akerøya	2019	MS	dataset,	ground	truth	marked	by	
red	crosses.	
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Table	4	presents	the	parameters	applied	among	the	four	scenarios.	The	“scale”	parameter	was	set	to	
range	from	5	to	200	in	all	scenarios,	to	make	the	selected	value	comparable	between	the	scenarios.	
The	Color/Shape	parameters	ranged	from	0-1,	where	0	indicates	maximum	weight	of	Color	and	1	
maximum	weight	on	Shape.	The	subdivision	of	the	shape	factor	by	Smoothness/Compactness	was	
also	ranging	from	0	to	1,	where	0	gives	maximum	weight	to	smoothness	shape	calculation	and	1	
maximum	weight	to	compactness	shape	calculation	method.	Classification	settings	applied	in	the	
four	different	scenarios	are	presented	in	Table	5.	

	
Table	4.	Settings	used	in	the	segmentations	in	the	different	scenarios	as	well	as	size	of	ROI,	the	
number	of	segments	and	the	number	of	GT	included.		
Parameter	 Akerøya	

2019	RGB	
Dymna	2018	RGB	

preset	configuration	
Dymna	

2018	RGB	
Akerøya	
2019	MS	

Scenario	number	 1	 2	 3	 4	

Scale	 28	 28	 16	 12	

Color/Shape	 0.1	 0.1	 0.5	 0.55	

Smoothness/Compactness	 0.4	 0.4	 0.5	 0.45	

ROI	 420	m2	 536	m2	 536	m2	 360	m2	

Segments	 5,117	 29,303	 60,084	 9,887	

Ground	Truth	points	 17	 37	 37	 13	

- Used	for	training	 3	 0	 7	 2	
- Excluded	 1	 0	 0	 0	
- Available	for	accuracy		 13	 37	 30	 11	
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3 Results 

Selected	results	from	segmentation,	classification,	and	accuracy	assessment	are	presented	in	the	
current	section.	Further	details	about	the	applied	segmentation	and	classification	procedures	are	to	
be	found	in	a	work	log	that	can	be	received	from	the	authors	upon	request	(written	in	Danish).	

3.1 Segmentation 
Selected	examples	of	the	resulting	segmentation	are	presented	in	this	section.	Division	of	pixels	into	
segments	are	shown	in	Figure	15	illustrating	a	segmentation	nicely	capturing	a	small	plastic	piece.	A	
closeup	picture	of	the	plastic	piece	is	presented	in	Figure	16.	Some	plastic	objects	were	not	as	nicely	
captured	by	the	segmentation	and	was	consequently	over-segmentated,	i.e.	object	divided	into	
several	segments.	An	example	on	over-segmentation	is	shown	in	Figure	17.	Figure	18	shows	a	
closeup	picture	of	the	plastic	object,	in	this	case	a	rope.	The	opposite	is	also	observed,	under-
segmentation,	where	the	plastic	piece	is	segmented	together	with	the	surrounding	pixels	as	
displayed	in	Figure	19.	Figure	20	shows	a	closeup	picture	of	the	plastic	piece	to	be	identified.	Hereby	
mixing	the	spectral	information	of	the	object	with	its	surroundings	in	the	later	classification,	
potentially	increase	the	risk	of	misclassification.		

	
Figure	15.	Screen	shot	from	the	eCognition	essentials	software	package	with	an	example	of	a	small	
white	plastic	piece	marked	by	the	red	cross	and	the	segmentation	capturing	the	plastic	piece	
depicted	as	polygons	with	blue	outlines	in	the	right	side	of	the	picture.	Example	origins	from	RGB	
orthomosaic	Akerøya	used	in	scenario	1.	
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Figure	16.	Left:	Closeup	picture	of	the	plastic	object	in	Figure	15.	Right:	Red	line	depict	the	extent	by	
the	closeup	picture,	example	from	RGB	orthomosaic	from	Akerøya	used	in	scenario	1.		
	
	

	
Figure	17.	Screenshot	from	the	eCognition	essentials	software	package	with	an	example	of	a	blue	
plastic	piece	(a	rope)	and	the	segmentation	depicted	as	polygons	with	blue	outlines.	The	right	picture	
shows	the	plastic	object	divided	into	several	segments,	termed	over-segmentation.	The	example	
originates	from	the	RGB	orthomosaic	from	Akerøya	(scenario	1).	
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Figure	18.	Close-up	picture	of	the	plastic	object	shown	in	Figure	17.	

	

	
Figure	19.	Screenshot	from	the	eCognition	essentials	software	package	with	an	example	of	a	small	
grey	plastic	object	marked	by	the	red	cross	and	the	segmentation	depicted	as	polygons	with	red/blue	
outlines.	The	plastic	object	is	segmented	together	with	surrounding	pixels.	The	example	originates	
from	the	RGB	orthomosaic	from	Dymna	(scenario	2).	
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Figure	20.	Close-up	picture	of	the	plastic	object	shown	in	Figure	19.	
	
	

3.2 Classification and accuracy assessment 

 Scenario 1: Akerøya 2019 RGB  
The	classification	of	scenario	1	was	divided	into	7	classes	(Figure	21).	The	best	classification	scheme	
consisted	of	white	and	blue	plastic	and	four	classes	of	sand	mainly	comprising	different	colors	(sand,	
sand	wet,	sand	light,	sand	overexposed)	and	one	class	for	seaweed.	The	dominating	class	was	bright	
sand	highlighted	in	yellow,	plastic	classes	highlighted	in	blue	and	pink	(Figure	21).	The	error	matrix	
for	the	scenario	1	classification	is	presented	in		
Table	6.	In	all,	12	plastic	objects	were	included	in	the	accuracy	assessment,	4	plastic	pieces	was	used	
as	training	data	and	one	was	excluded	since	the	same	plastic	piece	was	covered	twice.	See	Table	5	
for	information	about	number	of	segments	used	as	training	data	per	class.	Nine	plastic	pieces	were	
identified,	3	non-detected	and	33	segments	was	misclassified	as	plastic.	The	sensitivity	of	identifying	
the	plastic	pieces	was	75%,	but	due	to	the	FP	the	precision	was	only	21%	causing	the	resulting	F-
score	to	become	0.33	(Table	7).	In	other	words,	the	classification	had	a	plastic	detection	sensitivity	of	
75	%	finding	most	of	the	plastic,	but	at	the	same	time	only	a	plastic	classification	precision	of	21	%,	
meaning	the	plastic	class	was	including	a	lot	other	than	actual	plastic.	The	location	of	the	plastic	
objects	that	is	identified,	non-detected	or	excluded	due	to	inclusion	as	training	data	is	shown	in	
Figure	22.		
	
Table	6.	Error	matrix	of	scenario	1	classification.	

	 	 Classification	 	 	
	 	 Plastic	 Other	 In	total	

Ground	Truth	 Plastic	 9	TP	 3	FN	 12	
	 Other	 33	FP	 5110	TN	 5143	
	 	 42	 5113	 n	=	5155	

	
Table	7.	Measures	of	sensitivity,	precision	and	accuracy	assessment	(F-score)	for	scenario	1.	
Measure	 Value	
S	 75%	(9/12)	
P	 21%	(9/42)	
F-score	 0.33	
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Figure	21.	Classification	result	of	scenario	1	with	the	location	of	the	plastic	pieces	marked	by	red	
crosses.	
	

	
Figure	22.	Identified	plastic	pieces	marked	with	red	crosses,	non-detected	marked	with	red	crosses	
outlined	with	a	black	line	and	excluded	objects	with	white	circle	around	the	red	crosses.	 	
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 Scenario 2: Dymna 2018 RGB with pre-set configuration 
The	classification	of	Scenario	2	was	also	divided	into	7	classes	(Figure	23).	Since	the	configuration	of	
the	classification	origin	from	scenario	1,	the	classification	scheme	is	the	same.	The	brown	seaweed	
class	was	dominating	the	ROI,	again	segments	classified	as	plastic	was	attributed	blue	and	pink	
colors.		

	
Figure	23.	Classification	results	from	scenario	2	with	the	plastic	objects	marked	as	red	crosses.	 	
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The	classification	was	done	with	the	configuration	from	Akerøya	2019	RGB	and	no	new	training	data	
was	used.	Thus	all	37	plastic	pieces	was	included	in	the	accuracy	assessment.	The	error	matrix	is	
displayed	in	Table	8,	24	plastic	pieces	was	found,	13	non-detected	and	525	segments	misclassified.	A	
sensitivity	of	65%	is	accompanied	by	a	precision	of	4%,	the	F-score	is	0.08	(Table	9).	The	location	of	
the	plastic	pieces	that	was	identified	or	non-detected	is	displayed	in	Figure	24	for	the	northern	half	
of	the	ROI	and	Figure	25	for	the	southern	half.	
	

Table	8.	Error	matrix	of	the	scenario	2	classification.	
	 	 Classification	   
	 	 Plastic	 Other	 	

Ground	Truth	 Plastic	 24	TP	 13	FN	 37	
	 Other	 525	FP	 28721	TN	 29246	
	 	 549	 28734	 n	=	29283	

Time	frame:	 minimum	 	 	 	
	
	
Table	9.	Statistical	measures	of	sensitivity,	precision	and	F-score	for	scenario	2.	
Measure	 Value	
S	 65%	(24/37)	
P	 4%	(24/549)	
F-score	 0.08	
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Figure	24.	Scenario	2	(northern	half):	Location	of	identified	plastic	pieces	are	marked	with	red	
crosses,	non-detected	pieces	are	marked	with	black	squares.	
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Figure	25.	Scenario	2	(southern	half):	Location	of	odentified	plastic	pieces	are	marked	with	red	
crosses;	non-detected	pieces	are	marked	with	black	squares.		
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 Scenario 3: Dymna 2018 RGB 
The	classification	of	Scenario	3	was	divided	into	11	classes	(Figure	26).	The	classes	included	plastic	as	
one	class,	stone/rocks	was	six	classes	due	to	different	colors	(stone	overexposed,	stone	light,	stone	
medium,	stone	dark,	stone	miscellaneous	and	stone	covered	with	black	lichen),	gravel,	two	classes	of	
seaweed	of	different	colors	(seaweed	and	dark	seaweed)	and	grass.	

	

Figure	26.	Classification	result	from	scenario	3	with	the	location	of	the	plastic	pieces	marked	by	red	
crosses.	ROI	marked	as	green	outline.	 	



NIVA	7553-2020	

35	

Seven	plastic	objects	were	used	for	training,	leaving	30	plastic	objects	to	be	included	in	the	accuracy	
assessment.	The	error	matrix	shows	13	objects	was	identified,	17	non-detected	and	362	misclassified	
(Table	10).	The	values	above	resulted	in	a	sensitivity	of	43%,	precision	of	3%	and	a	accuracy	(F-score)	
of	0.06	(Table	11).	The	locations	of	the	plastic	pieces	that	was	identified	or	non-detected	are	
displayed	in	Figure	27	for	the	northern	half	of	the	ROI	and	Figure	28	for	the	southern	half	of	the	
investigated	area.	
	
	
Table	10.	Error	matrix	of	scenario	3	classification.	

	 	 Classification	 	 	
	 	 Plastic	 Other	 	

Ground	Truth	 Plastic	 13	TP	 17	FN	 30	
	 Other	 362	FP	 59211	TN	 59573	
	 	 375	 59228	 n	=59603	
	 	 	 	 	

Time	frame:	 2	hours	 	 	 	
	
	
Table	11.	Statistical	measures	of	sensitivity,	precision	and	F-score	for	scenario	3.	

Measure	 Value	
S	 43%	(13/30)	
P	 3%	(13/375)	

F-score	 0.06	
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Figure	27.	Scenario	3	northern	half:	Location	of	detected	plastic	pieces	are	marked	with	red	crosses;	
non-detected	pieces	are	marked	with	black	squares.	Plastic	pieces	used	for	training	data	are	marked	
with	yellow	circles.	
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Figure	28.	Scenario	3	southern	half:	Location	of	detected	plastic	pieces	are	marked	with	red	crosses;	
non-detected	pieces	are	marked	with	black	squares.	Plastic	pieces	used	for	training	data	are	marked	
with	yellow	circles.	
	
	

 Scenario 4: Akerøya 2019 MS 
The	classification	of	scenario	4	was	divided	into	7	classes	(Figure	29).	The	best	classification	scheme	
fell	like	in	scenario	1	into;	two	plastic	classes,	one	for	white	plastic	and	one	for	blue	plastic,	two	
classes	of	sand	of	different	colors	(sand	wet,	sand	bright),	two	classes	for	seaweed	(seaweed	and	
dark	seaweed)	and	one	class	for	overexposed	areas.	



NIVA	7553-2020	

38	

	
Figure	29.	Classification	result	from	scenario	4	with	the	location	of	the	plastic	pieces	marked	by	red	
crosses.	
	
Since	the	multispectral	dataset	of	Akerøya	was	covering	a	smaller	area	than	the	RGB	dataset	of	
Akerøya,	it	resulted	in	fewer	plastic	objects	than	in	Scenario	1.	In	total,	13	plastic	pieces	were	
included,	two	objects	was	used	as	training	data	for	the	plastic	classes	leaving	11	plastic	pieces	for	the	
accuracy	assessment	shown	in	Table	12.	The	statistical	measurements	of	accuracy	were	55%	for	the	
sensitivity,	87%	for	the	precision	and	0.67	for	the	accuracy	assessment	(F-score,	Table	13).		

	
Table	12.	Error	matrix	of	scenario	4	classification.	
 	 Classification	 	 	
 	 Plastic	 Other	 	
Ground	Truth	 Plastic	 6	TP	 5	FN	 11	

	 Other	 1	FP	 9830	TN	 9831	
	 	 7	 9835	 n	=	9842	

Time	frame:	 4	hours	 	 	 	
	
	
Table	13.	Statistical	measures	of	sensitivity,	precision	and	F-score	for	scenario	4.	
Measure	 Value	
S	 55%	(6/11)	
P	 87%	(6/7)	
F-score	 0.67	

	

The	location	of	the	plastic	pieces	that	was	identified	or	non-detected	as	well	as	used	as	training	data	
are	displayed	in	Figure	30.	Red	crosses	mark	the	identified	objects,	black	squares	mark	the	non-
detected	objects	and	the	yellow	circles	identify	objects	that	was	used	for	training	data.	
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Figure	30.	Scenario	4:	Location	of	detected	plastic	pieces	are	marked	with	red	crosses,	non-detected	
pieces	are	marked	with	black	squares.	Plastic	pieces	used	for	training	are	marked	with	yellow	circles.	
	

 Summary of the statistical measurements of accuracy 
The	statistical	values	from	the	accuracy	assessment	of	the	four	scenarios	above	are	displayed	in	
Table	14.	The	detection	accuracy	of	the	classification	from	scenario	1	is	performing	the	best	and	
scoring	the	highest	with	a	sensitivity	at	75%.	Both	precision	and	F-score	was	highest	with	the	
classification	in	scenario	4	that	was	based	on	the	multispectral	dataset.		

Table	14.	Comparing	the	statistical	measurements	of	accuracy	from	all	four	scenarios.	
Classification	 Scenario	

no.	
Sensitivity	 Precision	 F-score	

Akerøya	2019	RGB	 1	 75%	(9/12)	 21%	(9/42)	 0.33	
Dymna	2018	RGB	(preset	configuration)	 2	 65%	(24/37)	 4%	(24/549)	 0.08	
Dymna	2018	RGB	(Fine	tune)	 3	 43%	(13/30)	 3%	(13/375)	 0.06	
Akerøya	2019	MS	 4	 55%	(6/11)	 87%	(6/7)	 0.67	

	
	

3.3 Area of True and False positives 
First	having	detected	plastic	pieces	in	a	beach	zone,	it	is	possible	from	the	classification	output	of	the	
eCognition	software	package	to	calculate	the	total	area	of	detected	objects	in	a	GIS	program,	which	
is	useful	when	aiming	to	quantify	the	amount	of	detected	plastic	in	a	specific	beach	zone.	The	area	of	
TPs,	FPs	and	ROI	for	scenario	1,	3	and	4	as	well	as	the	percent	coverage	of	plastic	out	of	the	total	
investigated	area	are	presented	in	Table	15.	In	scenarios	1,	3	and	4	the	sum	of	the	area	of	TP	and	FP	
were	0.15%,	0.31%	and	0.06%	for	the	three	scenarios,	respectively.		
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Table	15.	Area	of	TP,	FP,	ROI	and	the	percentage	the	sum	of	the	area	of	TP	and	FP	is	of	the	ROI	area	
of	scenario	1,3	and	4.	
Scenario	

no.	
TP	area	
m2	

FP	area	
m2	

ROI	area	
m2	

TP	+	FP	area	percentage	of	ROI	area	
	

1	 0.35	 0.27	 420	 0.15%	
3	 0.23	 1.45	 536	 0.31%	
4	 0.18	 0.03	 360	 0.06%	

	
	

3.4 Size of detectable objects 
The	size	of	the	objects	of	interest	is	of	relevance	for	the	detection	success	and	thus	we	performed	a	
simple	test	to	access	the	response	of	size	on	the	detection	success.	At	the	Dymna	study	site,	four	
rectangular	objects	of	white	plastics	of	28,	14,	7	and	3.5	cm,	respectively,	were	placed	inside	the	ROI	
functioning	as	a	scale	of	the	detectable	object	sizes.	All	four	rectangles	were	identified	in	the	
segmentation,	and	in	scenario	2	also	classified	as	plastic	objects	even	though	the	main	central	part	of	
the	largest	rectangle	was	classified	as	other	than	plastic	(see	yellow	square	in	Figure	31).	The	smallest	
detectable	object	was	then	3.5	x	3.5	cm,	which	is	12.25	cm2,	corresponding	to	approximately	15	
times	the	pixel	area	of	the	RGB	imagery	used	in	scenario	2	(0.9	x	0.9	cm).	Objects	down	to	
approximately	4	times	the	pixel	width	can	be	detected.	

	
Figure	31.	The	four	plastic	rectangles	placed	at	the	Dymna	study	site.	Left:	RGB	orthomosaic	of	the	
four	rectangles	with	sizes	in	centimeters.	Right:	Classification	result	from	scenario	2	displayed	
together	with	the	used	segments	marked	by	black	lines.	Light	red	and	blue	color	represent	the	two	
plastic	classes,	while	the	yellow	class	represents	the	class	for	sand.	 	
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4 Discussion 

Scenario	1	performed	best,	regarding	the	plastic	detection	sensitivity	(75%)	probably	due	to	a	simpler	
background	color	and	texture	at	Akerøya	compared	to	Dymna.	The	plastic	objects	were	easy	to	
identify	on	a	relatively	homogenous	background	dominated	by	sand	at	Akerøya.	Whereas	the	more	
heterogeneous	background	at	Dymna	was	more	challenging,	comprising	various	stone	sizes,	
overexposed	stones,	grass	speckled	with	blooming	white	flowers	and	gravel.	Somewhat	surprising,	
the	sensitivity	of	scenario	2	(Dymna)	with	the	preset	configuration	from	scenario	1	(Akerøya)	
performed	with	the	second	highest	score	of	65%,	outperforming	both	scenario	4	and	3	with	55%	and	
43%,	respectively.	However,	the	relatively	high	sensitivity	of	Scenario	2	was	in	combination	with	a	
low	precision	of	4%,	resulting	in	a	low	F-score	of	0,08	for	this	scenario.	Hereby	having	a	plastic	class	
that	is	detecting	65	%	of	the	plastic	pieces,	but	as	well	consist	of	96	%	other	than	plastic.	

When	the	configuration	from	Scenario	1	was	used	in	Scenario	2,	it	performed	better	on	all	three	
measures	compared	to	Scenario	3,	still,	the	precision	and	the	F-score	ended	up	in	almost	the	same	as	
Scenario	3.	The	difference	in	used	classifier	algorithm	(SVM	in	Scenario	2	and	RF	in	Scenario	3)	
possibly	blur	the	comparison	a	bit,	but	as	the	best	possible	classification	was	the	objective	in	
Scenario	3,	RF	was	evaluated	in	the	process	and	found	to	perform	better	than	SVM.	Thereby	the	
performance	of	Scenario	3	was	a	little	less	than	Scenario	2	and	can	still	be	considered	a	valid	overall	
result.	In	the	more	detailed	comparison,	it	is	not	possible	to	pinpoint	to	what	degree	differences	
arise	from	the	choice	of	classifier	or	the	tailored	adjustment	of	the	remaining	settings.	Worth	noting	
was	that	the	number	of	FP	decreased	with	174	(almost	1/3)	from	549	in	Scenario	2	to	375	in	Scenario	
3.	The	concurrent	decrease	in	TP	was	the	main	reason	for	the	lack	of	improvement	of	the	precision.	
This	indicates	a	connection	between	the	FP	and	TP;	typically	a	decrease	of	the	FP	as	well	result	in	a	
decrease	in	TP	and	vice	versa	demonstrating	that	increased	sensitivity	and	thus	success	rate	for	
detection	(TP)	also	follows	an	increasing	number	of	False	Positives.	At	Dymna	this	connectedness	is	
between	segments	of	plastic	objects	and	the	overexposed	parts	of	stones	and	shell.	An	increase	in	
the	TP	segments	of	plastic	objects	in	the	plastic	class	would	also	increase	the	FP	segments	of	
overexposed	parts	of	stones	included	in	the	plastic	classes.	The	connectedness	probably	exists	
because	some	segments	of	the	plastic	pieces	are	too	similar	with	other	segments	of	overexposed	
parts	of	stone	and	shell.	The	bands	and	features	included	(Table	5)	in	the	classification	process	is	
lacking	information	that	reveal	the	difference	between	the	segments.	This	additional	information	
could	be	from	an	extra	band	of	another	spectral	wavelength.		

The	structural	differences	in	the	background	and	texture	of	the	beach	zone	between	the	two	
locations	were	also	expected	to	influence	the	precision.	The	number	of	potential	FP	at	Dymna	
(overexposed	stones)	seems	to	exceed	the	potential	FP	at	Akerøya	(overexposed	sand,	small	stones	
and	shells).	That	was	also	reflected	in	the	scenarios	with	the	two	highest	precision	measures	found	in	
Scenario	1	and	4,	i.e.	data	from	Akerøya,	respectively	at	21%	and	87%	as	opposed	to	the	Dymna	data,	
where	classifications	resulted	in	precision	values	of	4%	and	3%	in	scenario	2	and	3,	respectively.	This	
indicate	the	importance	of	the	characteristics	of	the	surroundings	and	the	complications	caused	by	
areas	with	spectral	similarity	of	plastic	objects.	Here	again	additional	information	making	the	
distinction	between	FP	segments	and	TP	segments	would	probably	improve	the	classification	by	
decreasing	FP	and	increasing	TP.		

Comparing	the	F-score	of	Scenario	1	and	4	showed	the	double	value	in	Scenario	4	(0.33	compared	to	
0.67)	even	though	the	sensitivity	was	considerably	higher	in	Scenario	1	with	a	difference	of	20	
percentage	points	(75%	compared	to	55%).	A	likely	reason	was	the	inclusion	of	the	NIR	band	
information	that	improved	the	classification	by	lowering	the	percentage	of	FP	as	the	high	precision	of	
87%	reflects.	However,	a	lowering	of	FP	also	resulted	in	a	lowering	of	the	TP,	as	seen	at	Dymna.	The	
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relation	between	number	of	TP	and	FP	showed	to	be	relevant	comparing	Scenario	1	and	4.	Since	the	
sensitivity	was	different	for	the	two	scenarios,	the	uncertainty	exist,	whether	the	FP	could	be	
reduced	in	Scenario	1,	while	keeping	TP	high	enough	to	achieve	a	similar	F-score	as	in	Scenario	4.	Still	
the	inclusion	of	the	NIR	band	was	considered	as	an	advantage,	referring	to	high	precision	along	with	
the	higher	F-score.	Another	aspect	of	comparing	Scenario	1	and	4	was	the	difference	in	ROI	and	
thereby	the	included	plastic	objects	in	the	two	scenarios.	Two	of	the	three	non-detected	plastic	
objects	from	Scenario	1	was	not	included	in	Scenario	4,	which	compromise	the	direct	comparability	
of	the	two	scenarios	classification	accuracy.	However,	our	assessment	is	that	the	high	precision	
would	not	have	decreased	substantially	if	the	plastic	objects	were	to	be	included.		

The	time	required	for	applying	a	preset	configuration,	as	done	in	Scenario	2,	enhance	the	speed	and	
usability	of	the	classification	process,	making	it	relevant	to	investigate	how	to	improve	this.	Even	
though	beach	background	was	not	the	same	in	Scenario	4	and	Scenario	2,	an	inclusion	of	additional	
information	from	e.g.	NIR	could	possibly	have	reduced	the	number	of	FP	in	Scenario	2.	Hereby	
increasing	the	low	precision	and	potentially	leading	to	a	higher	F-score.	In	a	longer	perspective,	
building	up	a	database	on	classifications,	grouped	according	to	certain	coastal	properties,	could	
improve	re-use	of	classification	settings	and	thus	improve	plastic	detection	on	routine	basis	in	terms	
of	workhour	load.	

Since	results	from	this	pilot	study	were	based	on	relatively	few	ground	truthed	plastic	objects,	it	
should	only	serve	as	an	early	demonstration	of	some	of	the	methodological	possibilities	and	
challenges	using	remotely	sensed	UAV	data	for	plastic	detection.	During	the	process	of	selecting	
optimal	settings	we	experienced	large	variations	in	classification	results,	with	only	minor	changes	of	
settings,	e.g.	in	the	segments	used	as	training	data.	The	size	of	available	ground	truth	points	and	the	
high	variation	between	the	plastic	pieces	(size,	material,	and	color)	resulted	in	few	segments	to	
include	as	training	data	and	therefore	quite	possibly	affecting	the	robustness	of	the	findings.	An	
earlier	study	by	Qian	et	al.	(2014)	found	that	optimization	of	the	methods	of	selecting	best	possible	
settings	for	classification	algorithm	together	with	increasing	training	data	increased	the	accuracy	of	
the	resulting	OBIA	classification.	Also	automation	and	optimization	of	the	selected	segmentation	
settings	with	quantitative	evaluation	measures	could	possibly	improve	the	segmentation	(Chen	et	al.,	
2019)	and	thereby	likely	also	the	accuracy	of	the	plastic	detection.	With	the	relatively	limited	extent	
of	this	project	in	mind,	the	results	depicted	here	increase	the	expectations	regarding	potential	
findings	in	future	projects.	Meaning	future	projects	could	lead	to	cost	effective	UAV-based	solutions	
for	detecting	and	monitoring	plastic	objects	in	the	coastal	zone,	obtaining	classifications	with	higher	
F-scores.	Such	future	studies	should	ideally	include	collection	of	more	comprehensive	and	more	
systematically	collected	training	datasets	as	well	as	additional	information,	e.g.	from	alternative	color	
spaces	(Gonçalves	et	al.,	2020)	or	bands	from	the	near	infrared	(NIR)	and	shortwave	infrared	(SWIR)	
domain	(Garaba	&	Dierssen,	2018;	Acuña-Ruz	et	al.,	2018)	to	improve	the	detection	performance.	
This	will	increase	the	usability	and	value	of	the	technology	and	therefore	support	further	
investigation	in	technologies	of	plastic	detection	based	on	data	collected	from	UAV.		
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4.1 Recommendations 
When	training	models	in	order	to	improve	classification	algorithms	it	is	essential	to	secure	sufficient	
ground	truth	data	to	assess	the	accuracy	of	the	classification	for	proper	algorism	validation.	The	
numbers	of	ground	truth	objects	(data	set)	should	be	carefully	planned	and	assessed	in	the	project	
planning	phase	prior	to	data	collection.	A	minimum	of	30	and	preferably	50	ground	truth	samples	per	
class	has	been	proposed	for	the	generation	of	high	quality	error	matrix	generation	(Green	et	al.,	
2017).	In	smaller	projects,	as	the	present	one	we	recommend	to	balance	the	desire	for	statistical	
strength	and	needed	accuracy	assessment	with	what	is	feasible	to	collect	of	ground	truth	data	with	
the	available	resources.		

In	determination	of	the	needed	number	of	ground	truth	samples	the	available	bands	of	data	have	to	
be	included	in	the	consideration.	For	instance,	an	RGB	dataset	forces	the	need	for	plastic	pieces	of	
similar	color	or	alternatively	adequate	number	of	pieces	per	color	to	secure	creation	of	classes	for	
each	color.	Too	few	ground	truth	samples	result	in	the	need	of	a	class	for	undefined	colors,	which	
will	result	in	a	weaker	model.		

Possibly	the	plastic	color	would	be	a	less	discriminating	factor,	if	NIR	and/or	SWIR	bands	were	
available,	either	directly	or	for	calculating	specific	indices	with	high	affinity	for	the	properties	of	
plastic.	Plastic	in	various	colors	absorbs	similar	wavelength	in	the	electromagnetic	spectrum	as	
displayed	in	Figure	32Feil!	Fant	ikke	referansekilden..	This	could	potentially	reduce	the	need	for	
collecting	training	data	according	to	plastic	objects	color.	Additionally,	it	could	possibly	improve	the	
precision	by	reducing	the	number	of	the	FP	as	indicated	by	the	improvement	of	the	precision	of	the	
classification	in	Scenario	4	compared	to	Scenario	1.		

	
Figure	32.	Reflectance	at	different	electromagnetic	wavelength	of	colored	plastic	pieces	from	marine	
litter	(Source:	Garaba	&	Dierssen,	2018).	 	
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Even	with	low	precision	due	to	many	FP	segments,	results	from	the	classification	show	that	the	ROI	
area	can	be	substantially	reduced,	to	the	size	of	the	TP	and	FP	segments	area	sum	(see	section	3.3).	
In	Scenario	1,	3	and	4	the	sum	of	the	TP	and	FP	areas	was	lower	than	0.5%	of	the	total	ROI	area.	This	
could	be	a	relevant	simplifying	approach	to	reduce	the	amount	of	data,	without	losing	too	much	
information.	In	future	studies,	collecting	even	more	data,	this	could	become	a	valuable	step	for	faster	
data	processing	with	a	minimal	loss	of	information.		

Using	Scenario	1	as	an	example,	the	plastic	objects	were	found	with	75%	sensitivity	and	even	though	
the	precision	was	low,	meaning	many	segments	were	classified	as	FP,	only	0.15%	of	the	full	ROI	area	
comprised	the	TP	and	FP	detected	objects.	The	used	approach	with	OBIA	on	RGB	(or	RGB+NIR)	data	
could	possibly	be	used	as	a	method	for	reducing	the	total	amount	of	information.	Filtering	the	total	
dataset	to	the	most	relevant	areas,	and	possibly	adding	a	buffer	area	around	detected	objects	could	
serve	as	an	efficient	way	to	significantly	simplify	and	reduce	the	dataset	size	and	speed	up	processing	
time	for	additional	analyses	on	a	targeted	portion	of	the	ROI	area.		

In	future	developments	of	the	detection	technique,	it	would	be	helpful	to	include	a	description	of	the	
included	plastic	objects	regarding	size,	color,	material,	and	contrast	to	the	surroundings.	
Characteristics	of	the	plastic	objects	and	neighboring	surroundings	could	lead	to	further	insights	in	
the	classification	as	well	as	the	segmentation	performance	and	enabling	more	quantitative	measures	
on	the	detection.	

Segmentation	represent	a	highly	important	step	in	the	OBIA	process	since	classifications	are	bound	
to	the	segmentation.	How	well	the	segments	represent	objects	of	varying	size,	color	and	contrast	to	
surroundings	could	possibly	be	improved	by	including	multiple	segmentation	levels.	This	functionality	
is	available	in	the	more	advanced	but	also	more	expensive	software	package	“eCognition	
Developers”.	The	“eCognition	Essentials”	software	package	used	in	this	project	is	restricted	on	this	
aspect.	Automized	optimization	of	the	segmentation	and	classification	parameters	are	also	features	
that	can	improve	for	detection	performance	and	therefore	relevant.	The	“Developers”	version	and	
other	solutions	enabling	automized	optimization	will	possibly	result	in	improved	detection	of	plastic	
objects	of	relative	heterogeneous	nature	and	is	therefore	recommended	further	tested	in	future	
projects.	

The	accuracy	assessment	was	in	this	project	based	on	detection	without	taking	the	object	area	into	
account.	If	just	one	small	segment	was	classified	as	plastic	the	whole	object	was	considered	
detected.	If	the	analysis	instead	of	the	number	of	objects	focused	on	area	of	the	correctly	detected	
objects	it	could	in	future	project	be	relevant	to	include	the	area,	as	previously	recommended	
(Radoux	&	Bogaert,	2017).		 	
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5 Conclusion 

Object	based	image	analysis	(OBIA)	classification	was	applied	to	detect	plastic	objects	including	
segmentation	and	supervised	classification.	The	segmentation	was	highly	important	for	detecting	of	
plastic	objects	since	adjustment	of	the	segmentation	affected	the	classification	accuracy.	
Performance	of	the	segmentation	was	not	tested	in	this	project	but	considered	highly	relevant	for	
future	projects.	Also,	an	automated	process,	that	iteratively	optimize	segmentation	settings	would	
be	valuable	for	the	performance,	especially	for	larger	datasets.		

With	RGB	imagery,	macroplastic	pieces	(>3.5	cm)	was	detected	with	a	sensitivity	of	up	to	75%	and	a	
precision	of	21%	resulting	in	a	F-score	of	0.33	(Scenario	1,	Akerøya).	Illustrating	that	it	is	possible	to	
detect	macroplastic	from	RGB	imagery	even	though	the	plastic	class	includes	79%	false	positive	
segments.	The	configuration	from	this	classification	detected	plastic	pieces	with	a	sensitivity	of	65%	
when	applied	to	another	area	(Scenario	2,	Dymna).	Here	the	percentage	of	true	positives	decreased	
to	4%	resulting	in	a	F-score	of	0.08.	Surprisingly	a	finetuning	of	the	classification	to	the	specific	area	
(Scenario	3,	Dymna)	did	not	improve	the	accuracy	of	the	classification	but	instead	reduced	the	
sensitivity	to	43%	detected	plastic	pieces	and	the	precision	to	3%	true	positive	segments	in	the	
plastic	class,	together	giving	a	F-score	of	0.06.		

It	seems	like	a	more	heterogeneous	ground	surface	characteristic	affected	the	classification	accuracy	
negatively,	as	from	comparing	the	results	from	Scenario	1	(Akerøya	being	relatively	homogeneous)	to	
Scenario	2	and	3	(Dymna	being	relatively	more	heterogeneous).		

The	highest	gained	accuracy	assessment	(F-score)	was	0.67	with	a	sensitivity	of	55%	and	a	precision	
of	87%	based	on	11	ground	truth	plastic	objects.	This	result	originates	from	a	sandy	beach	with	RGB	
and	NIR	data	(scenario	4,	Akerøya),	demonstrating	that	plastic	detection	from	a	UAV	platform	is	
possible	and	that	the	NIR	band	gave	additional	discriminating	value.	Including	the	NIR	band	improved	
the	F-score	from	0.33	to	0.67	(respectively	Scenario	1	and	4).	

Plastic	objects	were	detected	down	to	sizes	as	small	as	3.5	cm	x	3.5	cm	corresponding	to	
approximately	15	times	the	pixel	area	or	4	times	the	pixel	width	of	the	used	RGB	data.	

This	pilot	study	indicates	the	potential	of	plastic	detection	from	flying	drones,	but	results	should	be	
used	with	caution	since	the	dataset	was	relatively	small	and	the	robustness	of	the	conclusion	
likewise.		

We	compiled	a	list	of	recommendations	and	considerations	for	future	plastic	detection	studies	(Table	
16),	and	recommend	this	list	being	assessed	when	designing	new	projects	using	unmanned	aerial	
systems	and	OBIA.	
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Table	16.	Recommendations	and	considerations	for	planning	future	plastic	detection	studies.	
Checklist	

Survey	conditions:	
Plastic	object	
characteristics	

Plastic	object	characteristics	
- Color	[consider	enough	similar	colored	plastic	objects	for	each	color,	most	
importantly	if	only	RGB	bands	are	available	for	detection.	Too	few	objects,	to	
both	train	and	classify,	likely	result	in	reduced	detection	performance]	

- Material	[different	plastic	types	can	reflect	the	sunlight	differently,	creating	
additional	challenges	in	detection]	

- Shape	[differently	shaped	plastic	objects	can	complicate	fitting	of	the	
segmentation]	

- Size	[Diverse	sized	plastic	objects	can	complicate	the	fitting	of	segmentation	
possibly	reducing	the	plastic	detection,	especially	if	only	one	level	of	
segmentation	is	available]		

- Number	of	similar	plastic	pieces	[30-50	objects	per	class	are	advisable	if	
resources	are	available]	

	
Survey	conditions:	
Region	of	interest	
considerations	

Plastic	object	location:	
- Plan	the	region	of	interest	vs.	sensor	FOV	if	single	image	analysis	is	desirable)	
- Consider	light	conditions	[sunlight	create	shadows	which	complicate	OBIA	
data	processing	and	are	ideally	avoided]	

- Color	difference	to	plastic	objects	[The	larger	the	contrast	between	the	
plastic	color	and	the	background	improves	the	object	detection]		

- Consider	the	region	of	interest	homogeneity	compared	to	the	plastic	objects.	
[Increasing	differences	between	the	background	and	the	plastic	objects	
improves	detection	if	the	bands	are	spectrally	separable.	Heterogeneous	
background	increase	complexity	and	reduce	detection	performance.]	

	
Survey	conditions:		
Drone	flight	

Flight	planning:	
- Consider	flight	altitude,	sensor	resolution,	GSD	compared	to	plastic	object	
sizes.	[OBIA	is	useful	when	plastic	objects	consist	of	several	pixels]	

- If	image	analysis	on	single	image:	Single	image	FOV	compared	to	region	of	
interest.	[consider	if	all	plastic	objects	are	visible	in	a	single	image	versus	
orthomosaic]	

- If	image	analysis	is	carried	out	on	orthomosaic	it	is	important	to	ensure	
sufficient	overlap	between	images	to	reduce	artifacts/blurry	areas	in	the	
orthomosaic.	[Blurry	areas	can	cause	problems	in	the	detection	of	the	plastic	
objects	since	the	border	between	the	plastic	object	and	the	surroundings	will	
be	less	clear	possibly	influencing	the	segmentation]	

- Needed	vs.	available	bands	(e.g.	RGB,	NIR,	SWIR)	in	sensor	on	the	drone.		
- NIR	and	SWIR	bands	looks	like	they	hold	more	information	and	gives	
additional	information	to	improve	detection	
	

Software	 Ideally	budget	for	eCognition	Developers	or	other	solutions	that	hold	
functionality	supporting:	
- Multi-level	segments	[Can	likely	improve	detection	performance	of	different	
sized	and	shaped	objects]	

- Automatic	parameter	optimization	[can	possibly	reduce	time	consumption	
and	potentially	improve	detection]	
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