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Information about the distribution of a study object (e.g., species or habitat) is essential
in face of increasing pressure from land or sea use, and climate change. Distribution
models are instrumental for acquiring such information, but also encumbered by
uncertainties caused by different sources of error, bias and inaccuracy that need to be
dealt with. In this paper we identify the most common sources of uncertainties and link
them to different phases in the modeling process. Our aim is to outline the implications
of these uncertainties for the reliability of distribution models and to summarize the
precautions needed to be taken. We performed a step-by-step assessment of errors,
biases and inaccuracies related to the five main steps in a standard distribution
modeling process: (1) ecological understanding, assumptions and problem formulation;
(2) data collection and preparation; (3) choice of modeling method, model tuning and
parameterization; (4) evaluation of models; and, finally, (5) implementation and use. Our
synthesis highlights the need to consider the entire distribution modeling process when
the reliability and applicability of the models are assessed. A key recommendation is
to evaluate the model properly by use of a dataset that is collected independently of
the training data. We support initiatives to establish international protocols and open
geodatabases for distribution models.

Keywords: assumptions, bias, distribution modeling, equilibrium, errors, inaccuracies, spatial prediction,
uncertainties

INTRODUCTION

What Is Distribution Modeling?
Distribution modeling is a process which aims to understand and visualize, in a spatial
context, the past, present or future distribution of a study object by relating it to predictor
(explanatory) variables (Guisan and Zimmermann, 2000). The predictors can be stand-alone
variables, interactions between variables, or even abstract complex-gradients (Simensen et al.,
2020). This places distribution modeling among gradient analysis techniques (Halvorsen, 2012)
as a correlative procedure for modeling the realized distribution of the study object (Wiens et al.,
2009). Distribution modeling methodology has proliferated strongly over the last two decades
(Franklin, 2010; Yates et al., 2018), and is now used to predict the distribution of single species,
species assemblages, species richness, communities, and habitats (e.g., Drew et al., 2011; Moriondo
et al., 2013; Horvath et al., 2019).
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The diversity of research disciplines in ecology, questions
asked, data collected and methods used for distribution
modeling, has led to the development of several parallel
distribution modeling practices (Araújo et al., 2019). These
practices compete with and/or encompass a variety of terms,
such as ecological niche modeling, habitat suitability modeling,
species distribution modeling and occupancy modeling (see e.g.,
Gogol-Prokurat, 2011; Sales et al., 2021, and references therein).
The practices differ in many respects, but they build on a
common theoretical basis that focus on correlative predictions
of distributions in general (e.g., Guisan and Zimmermann, 2000;
Austin, 2007; Halvorsen, 2012). Although there are many ways of
presenting distribution modeling (see Brown and Yoder, 2015;
Mazzoni et al., 2015; Rodríguez-Rey et al., 2019; Zurell et al.,
2020), for the purpose of this synthesis we have generalized
the process into a five-step conceptual framework illustrated in
Figure 1: (step 1) ecological understanding, assumptions and
problem formulation; (step 2) data collection and preparation;
(step 3) modeling method: choice, tuning (determining options
and settings) and parameterization; (step 4) model evaluation;
and (step 5) implementation and use, e.g., presentation of
modeling results in the form of maps of an object’s predicted
distribution, in a given area (space) and/or at a given time.

FIGURE 1 | A conceptual framework for the distribution modeling process
described in this synthesis. The broken arrows from Step 4 to Step 1–3
illustrate the recommended path after evaluating the model, i.e., formulating
new problems, collecting new data and/or making new model choices and
tunings. The broken arrow between Step 5 and Step 1 illustrates feedbacks
from end users that may trigger new problem formulations, collection of new
training data and/or improvements to other parts of the modeling process.
The reciprocal arrows between Step 4 and 5 opens for feedback from model
use to model evaluation, i.e., by facilitating collection of new evaluation data,
which again can lead to improved model implementation and use.

The Purpose of This Synthesis
A series of important decisions are made throughout the
distribution modeling process. The reliability, or uncertainty,
of the output will be determined by the errors, biases and
inaccuracies that have accumulated throughout the process, from
problem formulation to model evaluation and use (Lindner
et al., 2014). Identification of potential uncertainties at each
step (Figure 1) challenges the modeler’s knowledge of the study
object, the dataset and of modeling methodology in general.
While the modeler is responsible for providing end users with
information about the reliability of the model, the responsibility
for appropriate use of the modeling outcome (which typically
is a map) lies with the end user. Although the attention given
to reliability in distribution modeling is increasing (e.g., Beale
and Lennon, 2012; Mouquet et al., 2015; Yates et al., 2018),
most studies addressing this have focused on specific parts
of the distribution modeling process, such as the implication
of missing environmental variables or low spatial resolution
(Suárez-Seoane et al., 2014), lack of map layers that represent
biotic interactions (Svenning et al., 2014; Kass et al., 2021),
quality of input data (Aubry et al., 2017), the relative performance
of statistical methods (Elith et al., 2006; Lobo et al., 2008),
sampling bias (Varela et al., 2014; Støa et al., 2018), transferability
(Yates et al., 2018) or model evaluation (Halvorsen et al., 2016;
Fernandes et al., 2018). The many sources of uncertainties in
distribution models strongly call for a systematic approach to
avoid, reduce, or at least understand, the major sources of
uncertainty at each step in the modeling process. In order to
improve the quality of distribution models and facilitate model
interpretation, such a systematic approach should inspect the
effects of uncertainties accumulated throughout the process.
The purpose of this synthesis is therefore to identify the main
sources and main implications of accumulated errors, biases,
and inaccuracies for the reliability of distribution models, to
describe how uncertainties may be reduced, and to come up
with recommendations, in the form of step-by-step guidelines,
for dealing with these uncertainties. We accomplish this aim by
presenting and discussing each of the five steps in the distribution
modeling process (Figure 1). Our ambition is that this synthesis
will be useful for both modelers and end users of distribution
modeling results, such as planning authorities, nature managers
and industry stakeholders. The focus of this synthesis is limited to
correlative distribution models and will neither address dynamic
(e.g., Horvath et al., 2021) nor mechanistic (e.g., Dormann et al.,
2012), i.e., process-based, models.

STEP 1: ECOLOGICAL
UNDERSTANDING, ASSUMPTIONS, AND
PROBLEM FORMULATION

Theoretical Basis: Ecological
Understanding and Assumptions
A major challenge for distribution modeling has been, and to
some extent still is, the lack of a unified theoretical basis and
consensus on best-practice standards (but see Halvorsen, 2012;
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Araújo et al., 2019; Zurell et al., 2020). Incomplete knowledge of
the natural variation of the study object and its environment, and
lack of understanding of the ecological processes responsible for
the study object’s relationship with its surroundings, may result in
suboptimal decisions at some point in the distribution modeling
process. Species’ distributions are controlled by four main
structuring processes: (1) the inherent biological adaptations
of the species, which set limits for their ecophysiological
tolerance; (2) biotic interactions with other organisms, such
as competition, amensalism, mutualism, and predation (e.g.,
Svenning et al., 2014); (3) demographic processes such as
dispersal, establishment, survival and space limitation (e.g., van
Groenendael et al., 2000); and (4) feedback mechanisms with the
abiotic surroundings (e.g., Bonan, 2008) or engineering of the
ecosystem by the species themselves (Linder et al., 2012). Lack
of knowledge about causality and the object’s abiotic or biotic
constraints may lead to misleading or even meaningless models.

A fundamental assumption of distribution models is the
existence of an equilibrium between the study object and the
surrounding environment, i.e., that the object occurs in all
or a predictable fraction of suitable sites and is absent from
all unsuitable ones (Guisan and Zimmermann, 2000). This
is, however, not necessarily true, even for species typical of
relatively stable habitats. Species may, for instance, maintain
sink populations in some areas for some time or moderate
the ecosystem to their specific needs (Linder et al., 2012).
Moreover, environmental change causes lack of equilibrium in
species abundances and time-lagged responses, in the forms
of extinction debts or immigration credits (Jackson and Sax,
2010). The time-lags involved in community dynamics may vary
from species to species and from area to area, depending on
properties such as generation time, the mode and capacity of
dispersal and the rates of environmental change (Svenning and
Skov, 2005). The more extensive the environmental change, the
larger extinction debt and immigration credit can be expected.
This is particularly relevant for distribution models developed
for evaluation of range shifts, such as altitudinal or latitudinal
responses to climate change (e.g., tree lines, Bryn et al., 2013).
Invasive species that have not yet reached all suitable habitats
also violate the assumption of equilibrium with the environment
(Barbet-Massin et al., 2018; Dimson et al., 2019).

Problem Formulation
Distribution modeling methods can be applied for a variety of
reasons. The most basic purpose of distribution modeling is to
produce a model that fits a study object’s distribution within an
area at a specific time-point (or time interval) in the best possible
way (Franklin, 2010). Distribution modeling methodology can
also be used to transfer model predictions to another spatial
and/or temporal setting than the one represented by the available
data (Yates et al., 2018). Examples are efforts to predict effects of
future climate change, for cost-efficient search for rare species,
to identify areas suitable for habitat restoration, or in search for
optimal locations for an activity, such as aquaculture.

Most purposes of distribution modeling can be placed along
one single gradient of distribution modeling purposes. In
accordance with Halvorsen (2012), we use the terms spatial

prediction modeling (SPM) and ecological response modeling
(ERM) for the end-points of this gradient. In SPM, the fit
between model predictions and the true distribution of the study
object in a specific geographical space is optimized, while in
ERM the object’s response to major environmental variables, i.e.,
a relationship in a general ecological space is modeled. While
SPM represents a purely descriptive purpose, ERM comes with
an intention of understanding the study object’s distribution.
The extremes along the gradient of distribution modeling
purposes call for different sampling designs and methods for data
collection (step 2), as well as different choices at the subsequent
steps in the modeling process (steps 3–5). Because lack of a
clearly formulated modeling purpose at step 1 may severely
impair the reliability and applicability of distribution modeling
end products, the specific problem formulation and the position
of the modeling purpose along the SPM-ERM gradient could
guide the choices made during all steps in the modeling process.

Step 1 Guidelines
The lack of a unified theoretical basis and consensus on
best-practice standards poses both advantages and challenges.
Advantages have been creative proliferation, leading to rapid
mobilization of data, development of new methods and
operationalization of these methods in user-friendly software.
Challenges are a large diversity of distribution modeling concepts
built on different assumptions, with different demands on
data quality and methods. The reliability of the resulting
plethora of methods and models obviously varies, but lack
of a unified theoretical basis makes them hard to compare.
A statement of model assumptions and a clear formulation of the
problem are necessary for transparency in the communication of
modeling results.

To be able to formulate a modeling purpose precisely, a
certain degree of ecological understanding of the relationship
between the study object, environmental predictors and other
important structuring factors (such as biotic interactions) is
needed. Furthermore, it should be noted that the purpose of
projecting modeling results to a different area or future climate
scenarios, requires models that addresses the general relationship
of the study object with the environment, i.e., an ERM model.
Furthermore, knowledge of relationships in the new area or
assumptions about processes that drive future development is
crucial. A complete understanding of causality is, however,
difficult, even often impossible, to achieve; distribution modeling
basically addresses correlative relationships (see Shipley, 2016).
Biotic interactions, time-lags (e.g., dispersal processes) and
historical constraints (e.g., isolation due to ice age barriers)
are particularly difficult to take into account in distribution
modeling, as these mechanisms are difficult to represent by
predictor variables. Acknowledging the lack of information on,
for example, biotic interactions, as a source of reduced model
performance are therefore important (Dormann et al., 2018a).
We therefore recommend a conscious selection of a scale (both
spatial and temporal) for the study that accord with its purpose.
Of relevance in this context is that although biotic interactions
are basically neighbor (local) phenomena that affect coexistence
of species at finer scales, biotic interactions may occur so regularly
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or over so large areas that they add up to patterns that are
recognizable on regional scales (Giannini et al., 2013). Moreover,
when genetically and ecologically different sub-populations are
to be modeled, knowledge on the ecological response at sub-
population level is needed.

Violation of the assumption of equilibrium between the
distribution of the modeled object and its environment reduces
the reliability of the model (Chen and Leites, 2020). Violating
this assumption will likely lead to under- or overpredictions
by the model, depending on whether the object is a “leading
edge” or a “rear end” species (e.g., Rumpf et al., 2018)
and on the environment’s direction of change. Accordingly, a
complex pattern of environmentally conditioned under- and
overpredicted sites may result for one and the same study area. In
such cases, the distribution model provides a map of the potential
distribution of the study object given a specific set of assumptions
(see Wiens et al., 2009). Even then, the map may be useful for
specific purposes, but it should be specified that the model is
predicting suitable habitats rather than a map of the realized
distribution (see e.g., Gogol-Prokurat, 2011).

The properties of the modeled object and the size of the
study area relative to the extent of the study object’s occurrence
influence the expected level of uncertainty in distribution models
(Stokland et al., 2011): weak relationships with the environment
result in distribution models with lower predictability, as
expected for instance for short-lived compared to longer-lived
species (Hanspach et al., 2010) and for fast growing and early
successional tree species compared to slow-growing species with
high competitive abilities (Guisan et al., 2007). Furthermore,
dispersal constraints are expected to be rare when the size of the
study area is small, or if the study object is widely distributed
(Soberón and Peterson, 2005).

In theory, although not yet tested in practice, compensating
for violation of the assumption of equilibrium between the

object’s distribution and its environment should be possible,
given that the following conditions are satisfied: First, the main
reason for lack of equilibrium must be recognized, for example
that climate warming causes upward treeline shifts. Second,
an idea about the response time or distributional time-lag of
the study object is needed. For example, the time needed for
treeline trees to disperse and grow tall at higher elevations. Third,
historic and up-to-date climate data as well as the response of
the study object must be available at the resolution relevant
for distribution modeling, for example high-resolution data
layers on temperature and monitoring data of treeline dynamics.
If these assumptions hold true, time-lag corrected predictions
can be obtained by parameterizing a model using response
data that represent the present distribution and appropriate
historical climate data, and project to the present climate.
An example of how the response- or predictor data can be
used to compensate for non-equilibrium situations is given
in Figure 2. For species with rapidly advancing ranges, such
as invasive species, the equilibrium assumption may be tested
by building retrospective models (Barbet-Massin et al., 2018;
Dimson et al., 2019).

STEP 2: DATA COLLECTION AND
PREPARATION

Study Object (Response) Data
According to Osborne and Leitão (2009), sampling bias is the
biggest potential source of error in response variable data for
a study object. Other errors are related to imprecise or wrong
georeferencing and direct errors such as misidentification of
species and typing (punching) errors. All of these shortcomings
introduce uncertainties into distribution models. While the
accumulated impact of direct errors on the modeling result is

FIGURE 2 | An example of how time-lags can be dealt with in distribution modeling by compensating for violation of the assumption of equilibrium between the
object’s distribution and its environment. In the example, a time-lag of 40 years is expected to take place for trees and forests lines to expand to a specific, higher,
elevation following a period of climate warming. To compensate for this lack of equilibrium, the empirical treeline in 2020 can be used as response variable in a model
of the equilibrium forest line in 1980. The illustration shows the forest and tree lines in 1980 and 2020, illustrating a time-lagged process. Altitudinal intervals (A,C)
indicate forest lines elevations whereas (B,D) indicate treelines elevations. Pot, Potential.
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simply proportional to the number of such errors, georeferencing
errors/inaccuracies and sampling bias have more complex effects.

Georeferencing inaccuracies. We often assume that the study
object is recorded without georeferencing errors (Osborne and
Leitão, 2009). However, positioning inaccuracies are, to some
degree, present in all georeferenced data, e.g., due to imprecision
in the equipment used for recording positions. This is the case for
museum records (Bloom et al., 2017), but in particular for data
from citizen science projects, where considerable variation in the
quality of the equipment (GPS) used for georeferencing must be
expected. When mapping objects at sea, weather conditions, such
as strong winds, waves and currents, will impact the precision
of the recordings (Figure 3). Overall, positioning accuracy and
reliability of georeferenced data has improved considerably over
the last decades, after GPS equipment came into common
usage. This will introduce differences in georeferencing accuracy
among old and new observations. Also, the effect of positioning
inaccuracies may vary in space, e.g., be higher in areas with large
variation in environmental conditions over short distances, such
as in steep terrain, or within the narrow tidal zone along the coast.

Spatial autocorrelation is the systematic spatial variation in a
variable, i.e., the tendency of observations from closely situated
sites to be more similar (positive spatial autocorrelation) or
less similar (negative spatial autocorrelation) than observations
made further apart. Positive spatial autocorrelation is most
common in data representing ecological phenomena. Spatial
autocorrelation in data used for training as well as evaluation
of distribution models poses challenges, and has been shown
to impact both coefficients and inference in statistical analyses

(e.g., Dormann et al., 2007 and references therein). This is
exemplified by Tognelli and Kelt (2004) who found that the
relative importance of explanatory variables may depend on
the presence or absence of spatial autocorrelation in the data.
Halvorsen et al. (2016) argue that challenges with spatial
autocorrelation in the context of distribution modeling arise from
autocorrelated residuals in the response variable and point to
the importance of accounting for the spatial autocorrelation by
predictor variables in the model.

Sampling bias is a broad term that encompasses many types of
biases. We find it useful to distinguish between spatial, temporal
and study-object bias; see discussions in Robertson et al. (2010)
and Støa et al. (2018). Spatial bias is very common and occurs
when some parts of the geographical and environmental space are
sampled more intensively than others or when object detections
are imperfect (see e.g., Lahoz-Monfort et al., 2013; Tobler
et al., 2019 and references therein). That is, where the sampled
frequency distribution deviates from the objects’ true distribution
in the geographical and environmental space (Støa et al., 2018).
This typically applies to deep oceans, high mountains, extremely
strongly wave-exposed sites, war zones or other sites that are
difficult to access. Spatial bias in the form of oversampling is
likely to occur in particularly easily accessible locations (e.g.,
Wollan et al., 2008), for example as a result of sampling by
citizen science (Hughes et al., 2021). Temporal bias occurs if an
object is more intensively sampled during some periods (e.g.,
summer or daytime) than others or if, e.g., new museum material
is digitized and made available before older material. Study-object
bias results from specific properties of the study object (e.g.,

FIGURE 3 | Collecting data from a boat at sea is associated with many potential uncertainties. Wind, waves and currents may, for instance, give rise to
geopositioning inaccuracy in seabed samples.
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species or habitat). Thus, rare and/or inconspicuous species may
be represented by too few observations to give an appropriate
picture of their distribution (e.g., Varela et al., 2011) while more
charismatic, “iconic” or commercially interesting ones are more
prone to oversampling. Study-object bias influences the reliability
of model comparison studies.

Explanatory (Predictor) Data
Contrary to the response data, which are sampled as point
data, wall-to-wall data layers of the whole study area is needed
for wall-to-wall predictive maps (Franklin, 2010). This is an
important constraint which typically precludes many relevant
predictors from being available for distribution modeling. Also, a
predictor layer may itself be the output of a modeling process, e.g.,
climate data interpolated from observations at weather stations
or composite layers (Simensen et al., 2020; Tessarolo et al.,
2021). Depending on their origin, explanatory (predictor) data
used for distribution modeling are subject to many sources of
inaccuracies and errors, such as imprecise or erroneous variable
values and inappropriate resolution (in space or time). Too
often, the predictor variables used in distribution models come
with unknown degrees of uncertainty. Typical examples are
WorldClim data for terrestrial modeling (Fick and Hijmans,
2017), Bio-ORACLE for marine modeling (Assis et al., 2018) and
variables derived from digital elevation models (DEM), as well
as land-cover and land-use maps. When many such variables are
used to build distribution models, uncertainties accumulate to an
unknown magnitude.

Lack of explanatory data needed to predict an object’s
distribution accurately may give rise to negative results (models
with no or low predictability). This is a type of “omission error”
that is likely to be underreported because of the tendency for
a positive publication bias, i.e., that negative results fail to get
published (Kicinski, 2013). Factors known to be important for the
distribution of a species cannot be included as a predictor in the
analysis unless available as wall-to-wall maps.

Lack of ecological relevance of the explanatory variables
included in a distribution model is common, attributed to the
fact that when variables that adequately represent the factors
likely to govern the distribution of the study object are not
available, we use proxies or substitutes instead. Examples of
predictors that are hard or impossible to obtain wall-to-wall
coverage for, are nutrient availability, oxygen level or substrate
type in marine systems (Bekkby et al., 2008; Rinde et al., 2014)
and water deficiency in terrestrial systems (Slette et al., 2019).
Lack of relevant predictors will inevitably reduce the explanatory
power of a model. Although use of proxies or substitutes that
are correlated with the causal factors may improve the predictive
ability of spatial prediction models, they are inappropriate for
ERMs unless their relationship to the putatively causal factors is
well known. Moreover, inclusion of redundant predictors may
lead to errors in parameter estimates (because of collinearity),
reduce precision in parameter estimation and lead to overfitting
of SPM models (see e.g., Beale and Lennon, 2012; Dormann et al.,
2013; Cade, 2015) and make ERMs inapplicable for their purpose.

Imprecise or erroneous predictor variable values may, for
instance, be introduced by spatial interpolation of environmental

models (Peters et al., 2009) based on a limited number of
observations, of which each comes with its own uncertainties.
The quality and relevance of modeled predictor variables used
in distribution modeling studies are rarely discussed, and
deserve more attention.

Inappropriate spatial resolution of important explanatory
variables may impact the final model. Contrary to the response
data, which are typically registered at a fine resolution in a
restricted study area, predictor layers are often generated from
DEM, remote sensing products or interpolated from climate data,
and therefore usually available as broad-scale, low-resolution
maps. Mismatch between the spatial resolutions of predictor and
the response variable(s) often results in a modeling of fine-scale
distributions by use of coarse-scale explanatory variables.

Inappropriate temporary resolution is exemplified by predictor
variable data that do not represent the environmental conditions
at the time when the distribution of the modeled object was
shaped. Averaged or composite climate variables have low
explanatory power when the object’s distribution is restricted
by past weather extremes (e.g., Wernberg et al., 2012). The
same may be the case when historic distributional data are
modeled as a response to predictors that describe present
environmental conditions.

Step 2 Guidelines
Georeferencing inaccuracies should always be reduced to a
minimum. This can be accomplished by using high-quality, state-
of-the-art GPS equipment. However, an off-the-shelf GPS with
an accuracy of 2–10 m will be sufficient for most distribution
modeling purposes. If historic data (with low georeferencing
quality) or data sampled under suboptimal conditions (e.g., bad
weather or turbulent sea) have to be used, reliable estimates of the
uncertainty should be taken into account when the distribution
map is interpreted. This applies both to the model builder and
the model user. The impact of georeferencing uncertainty on
distribution modeling results can be estimated by simulating
random location errors (see Graham et al., 2008). A general
recommendation is to choose a pixel resolution that is large
enough to reduce the impact of georeferencing uncertainty while
at the same time accord with the modeling purpose (see e.g.,
Gábor et al., 2020). Finally, standardized protocols for correction
of inaccurate geographic coordinates may be used, for example
the SAGA protocol proposed by Bloom et al. (2017) for museum
data. Such protocols are useful for correction of already sampled
data, but a more provident solution is to develop rigorous
protocols for sampling of new data so that the problem itself
diminishes with time.

Although recent studies have indicated that spatially
autocorrelated response data for the study object influences
modeling results less than previously assumed (Halvorsen
et al., 2016), spatial autocorrelation may still represent a
challenge. Several measures can be taken to reduce the effects
of this phenomenon. For instance, a number of studies enforce
minimum distances between presence observations (e.g., Bryn
et al., 2013) or buffering methods to avoid spatial autocorrelation
(e.g., Simensen et al., 2020), whereas other studies apply
systematically sampled (area-representative) training data (e.g.,
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Horvath et al., 2019). An alternative approach, which is based on
the assumption that spatial autocorrelation is less problematic
than previously assumed, is “background thickening” (Vollering
et al., 2019a). By this method, the density of randomized
uninformed background observations to be used in presence-
only distribution modeling is increased or decreased locally to
match the density of presence points.

In order to reduce sampling bias, knowledge about the
study object’s autecology is crucial. A basic requirement for
good distribution models is that the sampling design provides
accurate information about the frequency of presence (FoP) of
the modeled object along all important environmental gradients
(Merow et al., 2013; Halvorsen et al., 2015; Støa et al., 2018)
and that the sampling matches the detectability of the study
object. Irregularities in the sampling, i.e., parts of important
environmental gradients that are under- or overrepresented in
the sample, may be detected by comparison between observed
and theoretical FoP curves (Støa et al., 2018). Identifying
areas or contexts where the model is not valid, i.e., parts of
gradients not adequately represented by data, will help to identify
the problem. When already sampled data, for instance from
museum collections or public databases (e.g., GBIF), are used for
distribution modeling, all available information about sampling
design and other methodological aspects related to the sampling
should be used to assess potential sampling bias inherent in the
dataset. Ideally, only external data that are described properly
should be used. Fortunately, the number of peer reviewed data
papers are increasing rapidly, e.g., in GBIF from 1 in 2011 via 13
in 2014 to 27 in 2018 (GBIF, 2019).

Small datasets come with more stochasticity, which
normally entails higher difficulties in obtaining significant
and interpretable patterns by modeling. Ideally, data should
be collected specifically for each modeling study, based on
a tailor-made sampling design that matches the specific
modeling purpose. The spatial pattern of objects with “clumped
distributions” and specific environmental demands can generally
be modeled with greater precision than patterns of widely
distributed objects (Carrascal et al., 2006; Hernandez et al., 2006;
Stokland et al., 2011). In order to model “ubiquitous” objects,
the spatial resolution of the predictor variables should be high
enough to capture variation along relevant local environmental
variables (Halvorsen, 2012). MacKenzie et al. (2002) and Tyre
et al. (2003) provide methods for taking imperfect detection of
small, rare and inconspicuous organisms into account when
building models.

Lack of access to explanatory variables that may directly
represent factors known to be important for an object’s
distribution can be dealt with by using available proxies. This
could be ocean depth as a proxy for solar irradiance at the sea
floor, or altitude as a proxy for terrestrial temperature. However,
the use of proxies reduces the interpretability of the studied
object’s relationship with the environment, as many proxies
are strongly correlated with several predictor variables. Global
environmental models, such as those provided by WorldClim
(Fick and Hijmans, 2017) and Bio-ORACLE (Assis et al.,
2018) for terrestrial and marine environments, respectively, have
rapidly become very popular, and are used in many bioclimatic

studies. Still, they should be used with caution, for several
reasons. First, such models are often developed from data with
unknown levels of inaccuracy. Second, generic data may not
match the appropriate scale for a specific study and hence
be more or less irrelevant, or even direct the study toward a
suboptimal choice of spatial resolution. Advantages of using
easily accessible, modeled predictor data are that they have
typically been described, tested and analyzed with respect to
uncertainty in many studies, and that much experience has been
gained by their use for practical distribution modeling (e.g., Bedia
et al., 2013). Furthermore, in general we think that the use of
remote sensing based explanatory variables could be exploited
more in ecological distribution models (see e.g., Tang et al., 2020).

One way to deal with imprecise predictor variables, or biased
response data, is to create a confidence map, which provides the
user with information about where a distribution model is judged
or estimated to be reliable and where it is less so (e.g., Hemsing
and Bryn, 2012). A confidence map may, for instance, contain
information about the number of data points that back up each
pixel value, areas with poor coverage of satellite data, areas where
comparable datasets produced by others deviate, or areas where
predictions from models obtained by different methods deviate.

The use of correlative (i.e., not causative) predictors in space
or time can be justified if the aim is to obtain the model
that best predicts patterns of presence in a certain area in a
specific time interval, i.e., SPM. In these cases, the correlative
predictors may serve as useful proxies for missing relevant
variables. However, if the aim is ERM, in order to understand
ecological relationships or to transfer (extrapolate) predictions to
another spatial and/or temporal setting than those represented by
the data, great caution should be taken when using non-causative
variables in the modeling.

STEP 3: MODELING METHOD: CHOICE,
TUNING, AND PARAMETERIZATION

A vast number of different distribution modeling methods, as
well as a variety of software and interfaces, have been developed
and applied for distribution modeling over the last decades.
This has made distribution modeling more accessible as a tool,
and easier to adapt for different types of data and purposes.
Early distribution modeling packages and procedures, such as
BIOCLIM (Busby, 1991) and HABITAT (Walker and Cocks,
1991) were developed for envelope modeling. Other models
were based on dissimilarity or ecological distance, such as
DOMAIN (Carpenter et al., 1993) and ENFA (Hirzel et al.,
2002), respectively. The different methods come with different
assumptions and tuning options and are vulnerable to errors,
biases and inaccuracies in different ways and to different degrees.
The momentum of distribution modeling has later turned toward
more flexible methods, such as boosted regression trees (BRT;
Elith et al., 2008), maximum entropy (MaxEnt; Phillips et al.,
2006) and random forest (RF; Breiman, 2001). This change
of focus is most likely related to the easy access of presence-
only data available through open access geodatabases such as
GBIF. Modeling methods which use presence-absence data, such
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as generalized linear models (GLM; Guisan et al., 2002) and
generalized additive models (GAM; Guisan et al., 2002) are also
frequently used in distribution modeling studies. Presence-only
(PO) and presence-absence (PA) data differ fundamentally with
respect to size and type of uncertainties. PA data contain concrete
information about presence and absence localities for the study
object, if assuming perfect detection and identification. PO data,
on the other hand, only contains a sample of localities with
known presence. Most distribution modeling methods adapted
for use with PO data, such as MaxEnt, makes use of uninformed
background observations. The uninformed background may
contain presence as well as absence observations.

The modeling methods are constantly developed, improved,
and adapted to specific purposes, data processes and input
data formats (Barry and Elith, 2006; Beale and Lennon, 2012;
Fernandes et al., 2018). A strong, recent trend is to make the
methods available as code-packages in R (e.g., Phillips et al.,
2017; Vollering et al., 2019b). Both regression-based and machine
learning methods can potentially fit models well to the response
data. With regression-based methods the user can define the
form of the relationship and any interaction a priori, whereas
machine learning methods have the advantage of modeling non-
linear relationships and interactions among variables based on
the data. Both may sometimes produce highly overfitted or
underfitted models (Figure 4), depending on how the model is
tuned under options and settings. Different methods are suited
for different kinds of data, allow for different kinds of tuning
and are affected differently by errors, biases and inaccuracies. For
example, Fernandes et al. (2018) showed that models with high
fit (e.g., using Random Forest) were more negatively influenced
by errors and biases (lower predictive success) compared with
models with lower fit (e.g., GLMs), whereas models assuming
a linear relationship (e.g., GLMs/GLMMs) are more affected by
collinearity and multicollinearity. Schank et al. (2019) showed
that integrated distribution models can improve the handling of
sampling bias whereas Tobler et al. (2019) discuss the impact
of measurement errors and correlation between objects in joint
distribution models.

Step 3 Guidelines
To avoid biologically unrealistic or otherwise unreliable modeling
results and interpretations, a deep ecological understanding of
the study object is needed (Figure 5). Thus, the choice of

modeling method and the tuning of different parameters to
optimize predictive accuracy should be guided by the modeling
purpose and the properties of the study object and the types of
response and predictor data used. The type of response data,
such as PO, PA, ordered factor, or continuous, call for different
choices of method. Methods for PO data call for particular
attention to the sampling design for uninformed background or
pseudo-absence observation, which may heavily impact modeling
results (Stokland et al., 2011; Støa et al., 2018). Several alternative
sampling strategies have been proposed, for example “target-
group background,” “presence thinning,” and “background
thickening” (Phillips and Dudík, 2008; Støa et al., 2018; Vollering
et al., 2019a). In general, model performance is more affected by
false positives than false negatives (Fernandes et al., 2018).

Different distribution modeling approaches rely on different
assumptions and have different advantages and disadvantages
(see discussion in Shabani et al., 2016). For instance, some
methods lean on a priori assumptions about the residual
distribution (e.g., normal, binomial or poisson) or response curve
shapes (e.g., linear or non-linear); some methods are suitable
for capturing non-additive behaviors and complex interactions;
some produce complex and often overfitted models that open
for spurious interpretations while others may tend to produce
too simple models. Some methods are robust to noise, some
require large datasets, whereas others may perform well also
with small samples (see Heikkinen et al., 2006). Furthermore,
although many modeling methods are flexible with respect to
data properties, available data and data formats will reduce the
number of appropriate modeling methods. For instance, some
methods handle presence-only data well (e.g., MaxEnt), others
are developed for analyzing presence-absence data (e.g., GAM),
whereas others again handle ordinal response variables (e.g.,
CLM). Explorative statistical analyses of data, such as calculation
of descriptive statistics and analysis of frequency-of-presence
(FoP) curves, should be standard elements in all distribution
modeling studies, conducted before any definite decisions about
modeling setup is made.

Many distribution modeling methods come with considerable
flexibility with respect to tuning for complexity. In general,
the choice between simpler or more complex models should
be guided by modeling purpose; a complex SPM model is not
overfit if its predictive ability is better than any simpler model,
while ERM models are overfit if they include predictors that

FIGURE 4 | Examples of response (Y) plots from GAM analyses showing an overfitted, underfitted and acceptably fitted curve against the predictor variable (X).
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FIGURE 5 | The effect of sampling pattern on the shape of a species’ response to a predictor variable. Aggregated performance is a collective term for the species’
performance (e.g., probability of occurrence, average cover etc.), aggregated for observations units in each segment of an environmental gradient (the predictor
variable). (A) Unimodal response in a sample that spans the entire tolerance of the species. (B) Truncated unimodal response in a sample that includes the species’
optimum and one of its tolerance limits. (C) Hinge-shaped response in a sample that only includes a smaller portion of the environmental gradient close to one of the
species’ tolerance limits. (D) Apparently linear response in a sample that neither includes the optimum nor any tolerance limit. Inserts show which part(s) of the
species’ tolerance that is not sampled (gray). Figure reproduced from Halvorsen (2012).

are not generally important for the distribution of the study
object (Halvorsen, 2012). The tuning options of, for example,
the regularization multiplier (Warren and Seifert, 2011) or the
significance level of the F-ratio test in MaxEnt (Halvorsen, 2013)
or the smoothing function in GAM (Guisan et al., 2002) are
examples that control the fit of the model to data and modeling
purpose. Empirically based advices on how to make these choices
are, among others, given by Merow et al. (2013) and Halvorsen
et al. (2015). Building models with an appropriate degree of
complexity (fit) is critical for robust inference (Merow et al.,
2014). Complexity indicators such as number of parameters and
shapes of predicted relative FoP curves (Støa et al., 2018) are
important tools for assessment of model reliability.

Model averaging or ensemble modeling, with the purpose
of generating a unified (and agreed-on) model are increasingly
used in distribution modeling studies (Buisson et al., 2010;
Dormann et al., 2018b). Ensemble modeling may reduce the
effect of biases, inaccuracies and errors in each component model.
However, the merging of results from different approaches
does not resolve fundamental challenges such as modeling
with biased training data, missing explanatory variables, model
misspecification or under- and overfitted models. Merging the
outputs from many models may make detection of such pitfalls
more difficult, among others by signaling degrees of precision
and quality that are not supported by the models. A general
advice is therefore to run distribution models with different
methods, not with the purpose of obtaining and presenting

one unified model, but as a means for comparing results and
testing model robustness. For averaging and ensemble modeling,
it would be beneficial to establish protocols for how to present
the material, methods and outputs. An example of this is
the World Climate Research Programme (WCRP), where the
Coupled Model Intercomparison Project (CMIP) was established
to standardize multi-model output formats of Earth System
Models, as well as other goals (Eyring et al., 2016).

STEP 4: MODEL EVALUATION

Distribution models can be built with biased data, without a
relevant spatial raster resolution, without important explanatory
variables, and with inappropriate choice of methods or options
or inappropriate tuning of these options. Ecologically nonsense
models may result if the pitfalls, shortcomings and uncertainties
discussed above at each step in the modeling process are not
taken into account. This is why all distribution models, in
fact all models, should be evaluated (e.g., Oreskes et al., 1994;
Araújo and Guisan, 2006). Several approaches to evaluation of
distribution models are available (Araújo et al., 2005); e.g., re-
substitution, cross-validation and data partitioning. However,
these methods share the basic shortcoming that the training and
evaluation datasets are subsets of the same sample, collected
by the same sampling design and under the same “knowledge
regime.” The data used for modeling and evaluation then contain
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the same errors, biases, and inaccuracies (Roberts et al., 2017).
A fully independent evaluation implies collecting evaluation data
independently of the data collected for parameterization of the
model, i.e., at a different place, at a different time, and/or by using
a different sampling design (Araújo et al., 2005; Halvorsen, 2012).

Modeling methods developed for handling presence-absence
(PA) data, such as GLM and GAM, are frequently used for
distribution modeling. When used with PA data, these methods
provide estimates of predicted probabilities of presence (PPP) in
the terminology of Halvorsen (2012), i.e., occurrence probability
values on the 0–1 probability scale. In contrast, the use of
presence-only (PO) data with these or other methods provides
relative probabilities of presence (RPPP; Halvorsen, 2012) or
relative occurrence rates (Merow et al., 2013), i.e., a ranking
of the sites by occurrence probability. Despite the fundamental
difference between these two types of output, Yackulic et al.
(2013) found that approximately 50% of the reviewed MaxEnt
studies, in which the default logistic output format was applied,
contained erroneous interpretations of model predictions as PPP.

Distribution models used for predictions in time, for example
to predict future range shifts under varying climate scenarios
or the potential spread of invasive species (Gallien et al., 2012),
cannot be evaluated in the strict sense of the term. When the
predicted events have not yet taken place, no “true” distributions
exist that can be described by sampling of evaluation data
(Buisson et al., 2010). This is also the case for hindcasts, when
historical evaluation data is not available. For forecast and
hindcast, the evolutionary plasticity and potential for adaptions
of the target, often termed niche conservatism (see e.g., Wiens
and Graham, 2005), should be considered when modeling
decades or centuries in time (depending on the study object).

Step 4 Guidelines
Evaluation by use of fully independent data is the only way
to completely circumvent pitfalls related to sampling bias in a
dataset (Austin, 2007; Veloz, 2009). Most likely, an independently
collected evaluation dataset will not include the same errors,
biases and inaccuracies as the training dataset, but it may come
with its own shortcomings. The ideal dataset for evaluation of
distribution models is collected by a sampling strategy that avoids
sampling bias of any kind. Many uncertainties of models that
are based upon PO data can only be circumvented by access
to independent PA data for model calibration (Merow et al.,
2013; Halvorsen et al., 2015); i.e., assessment of the numerical
accuracy of model predictions. According to Harrell et al. (1996),
independent presence-absence data are required for any kind of
model calibration, i.e., the conversion of model predictions from
a relative (RPPP) to a predicted probability scale (PPP).

Independent P-A evaluation data can be obtained by a
wide spectrum of different approaches, e.g.: (1) Stratified
random sampling, using modeled RPPP values as a criterion
for stratification (Halvorsen et al., 2015). (2) Environmentally
stratified sampling, by which all levels along all environmental
gradients important for the study object is deliberately captured.
(3) Spatially systematic sampling involves the selection of
observations according to a pre-designed spatial sampling.
This method avoids over- or underrepresentation (spatial

clustering or the converse) of data points (Horvath et al., 2019).
These three sampling procedures have different advantages and
disadvantages. While approach (1) may be optimal for testing one
particular model, it is less useful for testing other models. Also,
it implies a two-phase sampling procedure. Environmentally
stratified sampling (2) may be theoretically optimal because it
provides balanced data for calculation of frequency-of-presence
(FoP) curves (e.g., Halvorsen et al., 2015), but difficult to carry
out in practice when models are complex with many predictor
variables. Both of approaches (2) and (3) may fail to provide
enough data for valid evaluation of models for study objects
with low prevalence due to spatially aggregated and/or restricted
occurrences. Furthermore, these approaches will be practically
unmanageable for study areas with large extent and/or contains
a large fraction of remote or otherwise inaccessible areas.

When the modeling purpose is predictions in time, and
evaluation by independent data is not possible, comparing
models trained with different data and parallel use of several
modeling methods is pivotal (e.g., Elith et al., 2006).

STEP 5: IMPLEMENTATION AND USE

Since many of the choices made during this process are
determined by the modeling purpose, use of models outside their
intended purpose is not recommended and should, in any case,
be done with great care. However, once a distribution model is
published and available “out there,” it will be picked up by other
scientists, managers, planners, NGOs, politicians, industrialists or
others. Typically, knowledge of errors, biases and uncertainties
tend to be lost during transfer of a distribution model from
developer to multiple potential users. An example of this is when
results of a local study is extrapolated to a larger area or to other
areas, for instance as part of spatial planning. Models based on
fine-resolution data are often used for prediction in other areas,
using input data with coarser resolution, without ensuring that
the model is robust to this change of scale (Yates et al., 2018).
Such use may, e.g., lead to misinterpretation of areas as suitable
for an object or of marginal areas for a threatened study object
as its core area.

Pearson (2010) points out that end users of distribution
models may get an impression of reliability simply by being
impressed by the apparent complexity of the technology.
Whether this is common or not is hard to assess, but as
mentioned above (Step 4), even model builders themselves often
misinterpret the output of their modeling (Yackulic et al., 2013).
Thus, although not yet supported by research, the risk that
non-scientific users misinterpret modeling results is expected
to be even greater. Incorrectly interpreted models, errors and
biases that are overlooked, and unfounded faith can all lead to
wrong decisions, such as the initiation of inappropriate actions
or putting required management on hold.

Step 5 Guidelines
To make a distribution model and model-derived results useful
for other purposes and other users than originally intended,
these auxiliary users should be provided the basic information
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needed to make well-informed judgments of the appropriateness
of the product for their intended use. Models should therefore
be accompanied by a fact sheet that includes understandable
information on the original modeling purpose, the data and
the methods used, and, if relevant, specific restrictions to
the generality of the model. Confidence maps and other
documentation or judgments of biases, errors and uncertainties
should be standard elements in the fact sheet. The ODMAP
protocol suggested by Zurell et al. (2020), or the INSPIRE data
infrastructure for mapping and modeling in EU, which also
includes standards for metadata1, may be relevant.

The users of distribution models need to be reminded that a
distribution model is not a true map of the object’s distribution
or abundance, but rather mapped predictions of the (relative)
potential for a given object to be present in each grid cell based on
the available explanatory variables and response data. The study
object may well be absent from a grid cell with high predicted
probability of presence, or present in a cell with low predicted
value. This uncertainty calls for special care when models are used
for prioritization for conservation purposes (Schuetz et al., 2015).
Information about the predictive performance of the model
(e.g., Mouton et al., 2010), preferably obtained by evaluation on
independent data, is therefore essential.

Maps resulting from distribution modeling can be tailored
to different purposes by, for instance, selecting different cut-
off values, i.e., threshold values used to transform predictions
from a continuous scale to binary predictions (presences and
absences, Figure 6; Scherrer et al., 2020). It is often assumed that
binary predictions makes prediction maps easier for managers
and planners to understand and use than continuous maps.
Binary maps based upon a high threshold value may be useful
for users who want to identify areas of high probability of finding

1https://inspire.ec.europa.eu

the study object (Figure 6). However, for users who want to
identify areas that maximize the chance of covering the range of a
study object, a low cut-off value is more appropriate (see Freeman
and Moisen, 2008). It should be noted, however, that conversion
from continuous to binary predictions inevitably implies loss of
information. Another possibility is to refine or post-process the
distributions models afterward (e.g., Kass et al., 2021), so that the
models are improved according to the specific needs.

SYNTHESIS

In this synthesis, we have described the uncertainties associated
with each step of the distribution modeling process (Figure 1).
We have explained how biases, errors and inaccuracies influence
model reliability and tried to provide some general guidelines
on how to deal with them. Although quoted many times, we
think it is appropriate to repeat the famous words of Box
(1979, p. 202): “All models are wrong, but some are useful.”
Although distribution models vary with respect to assumptions,
data material, methods and evaluation schemes, the complexity
of ecological relationships and the modeling process itself
(Figure 1) inevitably implies accumulation of biases, errors and
inaccuracies, some of which may be recognized, while others
will remain hidden. At some level of detail, all distribution
models are bound to be wrong, but for the specific purposes they
may yet be useful.

Different errors, biases and inaccuracies have different
implications for end users. Most of these implications are,
however, hard or impossible to recognize, of unknown
magnitude, with effects that will remain unexplored. Their
impact may vary in space (e.g., be more influential in steeper
than in flat terrain), in time (e.g., being more serious for old than
for new data), and/or between species (e.g., mobile species being

FIGURE 6 | Example of distribution model with continuous prediction values (left) converted into two binary maps for practical management purposes, using high
(mid; Equal training sensitivity and specificity) and low thresholds (right; Equate entropy of thresholded and original distributions).

Frontiers in Ecology and Evolution | www.frontiersin.org 11 November 2021 | Volume 9 | Article 658713

https://inspire.ec.europa.eu
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-658713 November 17, 2021 Time: 10:33 # 12

Bryn et al. Reliability in Distribution Modeling

more difficult to model than sedentary ones) or other objects.
Since distribution models, like other results of statistical analyses,
are simplifications of the real world, removing all uncertainty is
not possible. But we can aim for minimizing the uncertainties and
understand their sources and their implications on the reliability
of the end product. Table 1 sum up our recommendations on
how to deal with the uncertainties at the different steps of the
distribution modeling process.

A major focus in distribution modeling is to identify spatial
patterns in datasets and to use these patterns to predict the
potential distribution of study objects. Practical experience
with distribution models suggests that these models are often
reasonably good in spite of the uncertainties that accumulate
throughout the modeling process. We believe that a major reason
for this is the strong structuring of geographical patterns by
fundamental ecological complex gradients (Halvorsen, 2012)
such as temperature, precipitation, seawater salinity, soil cation
concentrations and soil moisture. Together these predictors
explain a large fraction of the variation in the distribution of
species and habitats at local and regional scales (see Bekkby et al.,
2008; Horvath et al., 2019).

All in all, we recommend a standard for distribution modeling
to ensure that the model and the data on which it is based are
clearly communicated. This could be done in fact sheets that
may include confidence maps, metadata and model evaluation
results, e.g., following the ODMAP protocol (Zurell et al., 2020).
Furthermore, despite the costs, evaluation of distribution models
by truly independent data should become the norm rather than
a rare exception. We also want to stress the difference between
deductive implementation of distribution models, by which data
are sampled with the aim of testing a hypothesis, and inductive
approaches, by which hypotheses are generated from analysis of
observations. Inductive studies, which prevail today, are useful
for creating hypotheses about poorly known study objects. They
may serve SPM as well as ERM purposes. When specific ecological
hypotheses are to be tested, deductive studies are recommended.
Linking the correlative approach of distribution modeling to
mechanistic and dynamic modeling (Dormann et al., 2012),
may improve both methods and increases the credibility if they
support the same ecological story (Horvath et al., 2021).

Finally, the accumulated uncertainty throughout the
distribution modeling process is hardly possible to coerce into

TABLE 1 | Summary of considerations regarding biases, errors and inaccuracies at each step in the process of distribution modeling, and recommendations on how
to deal with them.

Step 1—Ecological understanding, assumptions and problem formulation

Ecological theory
and assumptions

Knowledge on the study object, the predictors and their relationship, including biological interactions, and non-equilibrium constraints, is
needed. When projecting in time or space, knowledge of space-time relationships and transferability is crucial. Methods exists that take
violation of the assumption of equilibrium into account.

Problem
formulation

Distribution modeling is a correlative approach and does not address causal relationships. Purposes of distribution modeling can be ordered
along a gradient from spatial prediction as such (SPM) to ecological relationships (ERM). Leaning on wall-to-wall explanatory data and
representative information about the study object, focus in distribution modeling should be on accuracy and resolution of the available data and
the scale of the relationship between the study object and the environment.

Step 2—Data collection and preparation

Study object
(response) data

The sampling design used for collecting response data affects subsequent steps in the modeling process. Issues that should be considered
and, whenever necessary, addressed by appropriate measures include spatial autocorrelation and georeferencing inaccuracies. Data properties
should guide the choice of the spatial resolution for model output. Sampling bias is a major source of uncertainties. The sampling design needs
to match the detectability of the study object, and its distribution along the environmental gradients needs to be adequately covered. If
previously collected data are used, information about the data set should be assembled, e.g., to find if the data represent the object’s natural
distribution, both in time and space. FoP curves are instrumental for bias detection.

Explanatory
(predictor) data

Global environmental data, which are often interpolated or otherwise modeled, should be used with caution. Data with low resolution may hide
important variation. Proxies for missing explanatory variables can be used, but with great caution. Explanatory data that lack ecological
relevance should be avoided in studies with ERM purpose, including in studies that aim at extrapolation in time or space. Providing metadata for
all explanatory variables as well as confidence maps is recommended.

Step 3—Modeling methods: choice, tuning and parameterization

Choosing a method Data format, data distribution, response-curve shape and other properties of the data have to match the assumptions of the chosen method(s).
Running several modeling methods in parallel is recommended to improve the robustness of modeling results. A standardized model
intercomparison project, like CMIP for climate modelers, should be established.

Model tuning Together with modeling purpose, the data and the study object’s properties should guide choice of options and settings for these options.
Modeling of presence-only data require careful consideration of how to sample the uninformed background. Many distribution modeling
methods come with flexible options for controlling complexity, which need to be tuned to accord with the purpose of modeling.

Step 4—Model evaluation

Evaluation
approach

Use of fully independent presence-absence data for model evaluation is the only way, for all practical purposes, to circumvent confounding
effects of sampling bias on evaluation results. Re-substitution, cross-validation and data partitioning are not recommended for model evaluation.
Access to independent presence-absence data opens for calibration of model output from relative (RPPP) into predicted probabilities (PPP).

Step 5—Implementation and use

Understanding the
distribution model

In order to interpret and use a distribution model correctly, the original purpose, the data and the methods need to be presented and
understood by the user. The documentation of distribution models should include confidence maps and exhaustive metadata. A product sheet
that summarize and explain possible uncertainties of the presented distribution modeling map should be encouraged, preferably using
international standards such as the ODMAP protocol proposed by Zurell et al. (2020).
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simple indices. The potential influence of each error, bias and
inaccuracy that enters the final model at each step of the
distribution modeling process is too diverse to be expressed
by simple estimators. Instead, each step should be dealt with
successively and confronted with the goals of the study, so that
measures to increase the reliability can be taken during all parts
of the modeling process.
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