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Summary 
 
This project is a continuation of the previous research and development project ‘Performance and 
applications of satellite remote sensing data for water quality in Norwegian lakes’, evaluation of MERIS, 
Sentinel-2 and Sentinel-3 products for the Norwegian Environmental Agency (Miljødirektoratet), 
conducted between 2017-2019. The final report had a focus on the theoretical and technical aspects 
of water quality assessment from remote sensing data as well as the state-of-the- art for the methods 
used. Future needs and steps for an operational service and a road map were also identified. The 
current study takes further steps towards the use of remote sensing data from Sentinel 2 and Sentinel 
3 for operational monitoring of water quality in Norwegian lakes. In 2020, six lakes spread over 
Norway, that are included in the ØKOSTOR monitoring program, were investigated; Mjøsa, Selbusjøen, 
Gjende, Røssvatnet, Snåsavatnet and Femunden. Remote sensing (RS) data from the Sentinel 2A and 
2B satellites as well as the Sentinel 3A and 3B satellites from the European Commission´s Copernicus 
satellite program was used. The RS data was downloaded and processed with the C2RCC atmospheric 
correction algorithm for each lake between 2016 or 2017 to 2020, during the growth season in May-
September. Surface in-situ measurements of optical parameters (chlorophyll-a concentration (chl-a) 
and absorption, humic substances, turbidity, absorbance, attenuation and back-scattering) were 
collected from each lake by a joint effort from the monitoring team. In Mjøsa dedicated in-situ match-
up data was collected by water samples and in-situ reflectance measurements were done at the same 
time as satellite overpasses. The time-series of both monitoring and RS data at monitoring stations 
show similar variability of chl-a and the seasonal patterns are clearly seen. The spatial time-series data 
from the satellite was used to calculate a spatial chl-a average for the full lake area and for the area 
corresponding to each monitoring station. The averages over several years showed that the lakes have 
consistent spatial patterns, and that the spatial variability can be large in some of the lakes. The RS 
results from Gjende were very patchy and the full area of the lake could not be processed. This was 
most likely due to strong adjacency effects and mountain shadows from the surrounding high 
mountains and high turbidity. The multi-year chl-a average for each lake was used to estimate the chl-
a status classification sensu the Water Framework Directive (WFD) using the same thresholds as for 
the integrated 0-10 m depth in-situ samples from the monitoring stations. The results showed good 
agreements for Mjøsa and Selbusjøen, but the RS chl-a data was overestimated for Gjende, Røssvatnet, 
Snåsavatnet and Femunden. This can be due to several reasons, e.g. the difference between the RS 
estimate down to about half the Secchi depth compared to the integrated 0-10 m in-situ sample. 
Another explanation can be that the relationship used to estimate the chl-a concentration from the 
chl-a absorption differs from the actual relationships found in the lakes, as indicated by the preliminary 
results from this study. To find a robust relationship, more detailed studies would be required. 
However, the in-situ data set was relatively small for the lakes where the largest differences were 
observed, which makes it difficult to draw conclusions. For the lakes with more data e.g. Selbusjøen, 
an empirical relationship could be made and used for corrections of the RS data. Hence, the use of RS 
data makes it possible to follow both the temporal and spatial variability and can therefore contribute 
with new insights and knowledge for lakes that are sampled infrequently, or not at all, by providing 
data in between sampling occasions and years. By gathering the RS data, it is possible to follow changes 
in the variability and concentrations although the exact chl-a values may need to be improved. The 
amount of data available from Sentinel 2 and 3 is vast and for an operational system to be in place for 
all Norwegian lakes, many of the processing, quality assurance and the analytical steps need to be 
automated, but still with manually made quality checks on a regular basis. NIVA is a partner of 
EODataBee (i.e. European RS consortium for customizable service for water quality information 
derived from Earth Observation and other source), and have access to current developments, expertise 
and collaboration.  



NIVA 7659-2021 

6 

Sammendrag 
Tittel: Utviklingstrinnene mot klassifisering av tilstand i norske innsjøer med satellittdata – 
metodeutvikling og eksempel 
År: 2023 
Forfatter(e): E. Thérèse Harvey, Kai Sørensen 
Utgiver: Norsk institutt for vannforskning, ISBN 978-82-577-7395-3 
 
 
Dette prosjektet er en videreføring av forsknings- og utviklingsprosjektet ’Bruk av satellittdata til 
overvåking av innsjøer’, vurdering av MERIS-, Sentinel-2- og Sentinel-3-produkter, for Miljødirektoratet 
gjennomført mellom 2017-2019. Sluttrapporten hadde fokus på teoretiske og tekniske aspekter ved 
vannkvalitetsvurdering fra fjernmålingsdata (RS) og de mest aktuelle metodene ble brukt. Fremtidige 
behov og trinn for en operasjonell driftstjeneste og et veikart ble identifisert. Denne studien har tatt 
ytterligere skritt mot bruk av RS fra Sentinel satellittene for operasjonell overvåking av vannkvaliteten 
i norske innsjøer. I 2020 ble seks innsjøer spredt over hele Norge, som inngår i ØKOSTOR-
overvåkingsprogrammet, undersøkt; Mjøsa, Selbusjøen, Gjende, Røssvatnet, Snåsavatnet og 
Femunden. Fjernmålingsdata fra Sentinel 2A- og 2B-satellittene samt Sentinel 3A- og 3B-satellittene 
fra Europakommisjonens Copernicus-satellittprogram ble brukt. RS-dataene ble lastet ned og 
behandlet med C2RCC atmosfærisk korreksjonsalgoritme for hver innsjø mellom 2016 eller 2017 til 
2020, i vekstsesongen mai-september. Overflate in-situ målinger av optiske parametere (klorofyll-a 
konsentrasjon (chl-a) og absorpsjon, humus stoffer, turbiditet, absorbans, lysvekning og spredning) ble 
samlet inn fra hver innsjø ved en felles innsats fra overvåkingstemaet. I Mjøsa ble det samlet inn 
dedikerte in-situ match-up-data av vannprøver og in-situ reflektansemålinger samtidig med 
satellittpasseringeringene. Tidsserien med både overvåkings- og RS-data på overvåkingsstasjoner viser 
tilsvarende variasjon av chl-a og sesongvariasjonen kommer tydelig frem. Spatiale tidsseriedata fra 
satellitten ble brukt til å beregne et romlig chl-a gjennomsnitt for hele innsjøområdet og for området 
som tilsvarer hver overvåkingsstasjon. Flerårige gjennomsnitt viste at innsjøene har konsistente 
romlige mønstre og at romlig variasjon kan være stor i noen av dem. RS-resultatene fra hele 
innsjøområdet i Gjende kunne ikke behandles. Dette skyldtes mest sannsynlig skyggeeffekter eller 
tilbakestråling til atmosfæren fra de omkringliggende fjellene som påvirker vannpikselene samt for 
høye mengde partikler for satellitten. Det flerårige chl-a gjennomsnittet for hver innsjø ble brukt til å 
estimere chl-a statusklassifiseringen sensu Water Framework Directive med samme grenseverdi som 
for de integrerte 0-10 m dybde in-situ-prøvene fra overvåkingsstasjonene. Resultatene var gode for 
Mjøsa og Selbusjøen, men RS-dataene overestimerte chl-a for Gjende, Røssvatnet, Snåsavatnet og 
Femunden. Dette kan skyldes flere årsaker, for eksempel forskjellen mellom RS-estimatet ned til 
omtrent halvparten av siktedypet sammenlignet med integrert 0-10 m dybde in-situ prøven. En annen 
forklaring kan være at forholdet som brukes i algoritmen for å estimere chl-a konsentrasjonen fra chl-
a absorpsjonen er forskjellig fra de faktiske forholdene i innsjøene, hvilket de foreløpige resultater 
basert på datasettet for denne studien indikerer. Dette emnet vil imidlertid trenge detaljerte studier 
med et større datasett for å finne et robust forhold som kan testes for å bruke det til behandling av 
RS-dataene. For innsjøene med høyest forskjell var in-situ-datasettet lite, hvilket gjør det vanskelig å 
trekke konklusjoner. For innsjøer med mer data, f.eks. Selbusjøen, kan det gjøres et empirisk forhold 
som kan brukes til korreksjoner av RS-dataene. Bruken av RS-data gjør det mulig å følge både 
tidsmessig og romlig variasjon og kan derfor bidra med ny innsikt og kunnskap for innsjøer som ikke 
overvåkes eller sjelden prøvetas, gjennom å gi data mellom prøvetakinger og år og endringene i 
variabiliteten og konsentrasjonene ville være mulig å følge selv om de nøyaktige verdiene kan trenge 
justeringer. Datamengden som er tilgjengelig fra Sentinel 2 og 3 er meget stort, og for at et operativt 
system skal være på plass, som kan gi data for alle norske innsjøer, må mange av behandlingene, 
kvalitetssikringen og de analytiske trinnene bli mer automatiserte, men fortsatt med regelmessige 
manuelle kvalitetskontroller. NIVA er partner i EODataBee (dvs. et europeisk RS-konsortium som 
utvikler tilpassede service for vannkvalitetsinformasjon avledet fra Jordobservasjon og andre kilder), 
og har dermed tilgang til aktuell utvikling, kompetanse og samarbeid.  
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1 Introduction 

1.1 Background 

This project is a continuation of the previous research and development project ‘Bruk av satellittdata 
til overvåking av innsjøer’ (Ledang et al., 2019). The main goal of this continuation is to examine a 
service development towards a more operational use of remote sensing (RS) data for the 
environmental monitoring and status classification of water quality, conducted in Norwegian lakes by 
the Norwegian Environmental Agency (Miljødirektoratet).  
 
The Norwegian lakes are many, variable and some are very remotely located, making it challenging to 
observe the dynamic processes on appropriate time and spatial scales. A few stations, or in some cases 
one station within a relatively large lake, cannot be expected to represent the full variability in both 
time and space. Other methods are needed in order to gain better knowledge about the spatial 
dynamics in the lakes, such as satellite remote sensing. Since the lakes are not sampled yearly, satellite 
data can provide a good complementary dataset to the in-situ data so that the developments can be 
followed during the times of the year when in-situ sampling is not taking place and/or in the years 
without in-situ sampling.  
 
Miljødirektoratet have expressed a need for a complementary dataset of water quality that could be 
used for deriving the water quality status classification for the EU Water Framework Directive (WFD) 
according to Vannforskriften for Norwegian lakes (Direktoratsguppen, 2018). Remote sensing data 
from satellites can provide robust data which makes it possible to monitor the changes in optical 
properties and water quality for water bodies that change rapidly in space and time. With the 
Copernicus program and the two twin-satellite sets of Sentinel 2 and Sentinel 3, the possibilities for 
remote sensing monitoring have never been better, and there are several ongoing efforts for research 
and application development within Europe to continuously improve the data quality. Satellite 
observations from Sentinel 3 sensor OLCI (Ocean and Land Colour Instrument, 300 m spatial resolution) 
take place daily in the summer period in Norway and every 4-5 days from the Sentinel 2 sensor MSI 
(Multi-Spectral Instrument (MSI), 60 m spatial resolution). This means that during cloud free days 
remote sensing-based data can provide a valuable collection of supplementary data for water quality 
data. Relevant products for the WFD classifications are e.g. seasonal or monthly averages of 
chlorophyll-a (chl-a), total suspended matter (TSM) and Secchi depth. Once the RS data has been 
collected by the sensors it is possible to derive data from previous years for use in e.g. an averaged 
classification of water status. 
 
In the previous study by Ledang et al. (2019) there was a focus on the theoretical and technical aspects 
of water quality assessment from remote sensing data as well as the state-of-the-art methods used. 
The future needs for an operational service and a road map were also identified (Figure 1) (Ledang et 
al., 2019). Both the current and the previous project have focused on the first two steps in the 
conceptual model: R&D of remote sensing products. In this study a dedicated ground-truthing 
campaign was carried out in Mjøsa and a further 5 lakes with variable conditions and locations were 
selected where the regular monitoring program was supplemented with extra sampling of in-situ 
optical parameters. 
 
To be able to use remote sensing data of water quality parameters, such as chl-a, as well as for status 
classifications it is necessary to test different algorithms and satellite sensors to find out which ones 
are the most suitable for the lake conditions studied and which variables that can be retrieved for the 
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different lakes. The most common approach is to collect optical in-situ data simultaneously with a 
satellite over-pass, so-called match-up sampling (IOCCG, 2000). These special campaigns are called 
ground-truthing and aim to gather as much match-up data as possible under favorable conditions with 
clear skies. Data commonly collected for a match-up are in-situ optical parameters (Water leaving 
reflectance (Lu), Remote sensing reflectance (Rrs), light attenuation coefficient (Kd)) and bio-optical 
parameters (chl-a), coloured dissolved organic matter (Humic substances, cDOM) and total suspended 
matter (TSM). The in-situ data is collected simultaneously with a satellite over-pass, within a time 
window optimally 30 min but can be extended to 2 hours if the water masses are relatively stable. 
Since all remote sensing products are derived from the Rrs product (see Ledang et al. 2019 and 
references therein), the match-up data is needed to be able to conduct a validation of the satellite 
derived Rrs from the atmospheric corrections. The dataset can also be used for testing regional 
empirical algorithms and conversion factors for chl-a. Optical data are rarely collected on a regular 
basis and the data collected within this project are valuable for evaluating the satellite products, even 
though not all of them are dedicated match-up data.  
 

Figure 1. Road map for an operational system of remote sensing data in Norwegian lakes. The red ring marks the 
steps covered by the previous (Ledang et al., 2019) and the current projects and the two arrows represents 
feedback on the system for developments.  

 

1.2 Project objectives 

This study has several purposes and examines different questions related to chl-a retrieval from 
Sentinel 2 and takes further steps towards a status classification of Norwegian lakes using satellite data 
by method developments and sampling and evaluation of 6 case studies. The specific objectives of the 
study were; 
 

• To collect in-situ optical parameters for a wide range of Norwegian lakes 

• To collect dedicated match-up data including reflectance data on Mjøsa 

• Derive the chl-a classification for each lake based on historical RS data from 4-5 years back 

• Further develop the method towards a use of an operational remote sensing service as a 
complementary method within Miljødirektoratet´s regular monitoring and water classification 
of Norwegian lakes 

• Evaluate the results from the different satellite sensors, Sentinel 2A & B and Sentinel 3A &B 

• Provide a first analysis and assessment of what is good enough in relation to using satellite 
data for monitoring of Norwegian lakes 

• Evaluate the next steps towards classification for based on remote sensing data  
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2 Methods 

2.1 Lakes included in 2020 

The field study included six selected lakes included in the ØKOSTOR monitoring program in 2020, two 
lakes in northern Norway (Røssvatnat and Snåsavatnet), one in central Norway (Gjende), two in 
eastern central Norway (Selbusjøen and Femunden) and one lake in southern Norway (Mjøsa) (Figure 
2). The different water type definitions based on monitoring categories within the WFD for each of the 
lakes are found in Table 1. 
 

 
Figure 2. Location of the six lakes included in the study. The color coding in the maps indicates how often the lakes 
are sampled during a 4-year period. 
 
Table 1. Characteristics based on water type definitions (VannNett-Portal, 2021), 2016-2020. * indicates the 
official chl-a status reported on Vannet-Portal in 2021.  

Lake  Water Type  
Areal, 
km2  

Status 
chl-a * 

Average 
depth, m  

Chl-a, 
μg/l  

Secchi 
depth, m  

Colour, 
mg Pt/l  

Turbidity, 
FNU  

Mjøsa  
2014-2020 

L107: Very large, 
moderate Calcium, clear 

366 High 155 2.1 7.8 11.9 0.54 

Selbusjøen  
2013-2020  

L105b: Large, low 
Calcium, clear 

57 High 70 0.8 - 26 0.3 

Gjende  
2013-2020 

L204: Middel, low 
Calcium, very clear 

16 High 66 0.96 6.7 3 1.8 

Røssvatnet  
2016, 2020 

L207: Large, moderate 
Calcium, clear 

219 High 66 0.4 - 7 - 

Snåsavatnet  
2016, 2020 

L107: Large, moderate 
Calcium, clear 

122 High 46 0.9 - 34 0.5 

Femunden  
2016, 2020 

L205: Large, moderate 
Calcium, clear 

204 High 15 0.7 8.5 11.3 0.1/0.3 
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2.2 In-situ data  

2.2.1 In-situ sampling 

In-situ sampling within this project had two objectives: 
 

1) To increase the dataset of optical parameters, such as cDOM, chl-a, chlorophyll pigment 
absorption (aChl-a) and non-algal particles (aNAP) for a wider range of Norwegian lakes that later 
can be used for e.g. algorithm developments and tuning 

2) Conduct a dedicated match-up dataset for validation of the satellite products, such as the 
water leaving reflectance  

 

2.2.1.1 Lake monitoring data 
Data for each lake was collected under the framework of ØKOSTOR (17078025, Lyche Solheim et al., 
2020), which is the national monitoring program for large Norwegian lakes led by NIVA and conducted 
by NIVA and partners. The monitoring program analyses an integrated mixed water sample between 
0- 10 m depth, collected by a hose. Additional surface water samples, as recommended for match-up 
data (Zibordi et al., 2019) were collected at 0-0.5 m depth for bio-optical analyses within this study. 
The sampling was coordinated with the current field work to be able to collect data from a range of 
different lakes in an efficient way and was analysed by NIVA. The monitoring data was used when 
assessing the chl-a water quality status.  
 

2.2.1.2 Match-up data 
A main priority identified in the previous study (Ledang et al., 2019) was to collect match-up data and 
in-situ water leaving reflectance, so this was a focus in 2020. Collection of good quality match-up data 
is dependent on optimal conditions for sampling with clear skies and preferably calm weather.  
 
Lake Mjøsa was therefore chosen to be studied based on the good accessibility for fieldwork, which 
makes it easy to go out and sample with a short notice when the conditions are correct and there is a 
satellite overpass. As one or sometimes both of the Sentinel 3 sensors pass every day the focus was to 
match the in-situ sampling with the Sentinel 2 sensors, as those include data from both sensors. We 
installed a new reflectance rig that could be mounted on a small boat which was kept at NIVA’s Hamar 
office the whole season. The ordinary monitoring program sampling in Mjøsa takes place at 4 stations, 
Brøttum (MO71), Kise (MO72), Furnesfjorden (MO73) and Skreia (MO74) (Figure 3, Table 2), every 
month during the full season and with an additional station (M074 – Skreia) monitored bi-weekly.  
 
Surface samples taken at approximately 0.5 m depth and reflectance measurements were collected 
during the ordinary monitoring program sampling. In 2020 we were able to collect match-up for 30 
observations. A test run to set up the reflectance rig and training for the team performing the sampling 
took place on 16/6-2020. We managed to complete four dedicated match-up sampling campaigns 
following a transect from land to open water on 10/8-2020, 11/8-2020, 25/8-2020 and 17/9-2020 
(Figure 3, Figure 4). 
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A 

 

B

 

Figure 3. A: the monitoring stations in Mjøsa. B: the match-up transects for satellite validation. 
 

 

 

 
Figure 4. Images of the in- situ campaign in Mjøsa 2020. Photos by Henriette Kildahl and Asle Økelsrud/NIVA. 
 
Table 2. Sampling day of the month for the in-situ campaign 2020, a * indicates either a match up point or a 
match-up transect (Mjøsa). 

Month/Lake Mjøsa Gjende Selbusjøen Røssvatnet Snåsavatnet Femunden 

June 16, 23  25  23 30 

July 7, 8, 15, 20 1, 28 22, 26 6 15,21 27 

August 
10*, 11*, 15*, 20*, 

25*, 26, 28* 
 24 11 27  

September 17* 1 21 7 23 1 

Stations,  
Observations, n 

8 
30 

1 
3 

1 
5 

1 
3 

1 
5 

1 
3 
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2.2.1.3 Sampling methods 
All water samples were collected from a boat at the surface (0-0.5 m depth) and kept cold and dark 
until analysis. The in-situ methods used for chl-a, cDOM, Secchi depth, turbidity follow the same 
procedures and protocols as the ordinary national monitoring program conducted by NIVA in the 
framework of ØKOSTOR (Lyche Solheim et al., 2020), and the method for deriving attenuation, total 
absorption, backscattering, aChl-a and aNAP are described in the earlier report (Ledang et al., 2019). 
 

Reflectance data 
A new rig with a TriOS RAMSES light sensors for measuring the above-water reflectance was establish 
in June 2020 for mounting on small boats used for monitoring in calm waters. Images of the set up are 
shown in Figure 5. Reflectance data is a light measurement that uses 3 sensors: one sensor for 
detecting the total incoming light from the atmosphere (Irradiance sensor, Ed); one sensor for the 
downwelling light that enters the water, which is not reflected at the surface (Downwelling sensor, 
Ld); and one sensor for the light coming back from the water to the atmosphere (Radiance, upcoming 
light, Lu). The information from the 3 sensors are used to calculate the remote sensing reflectance, Rrs, 
which is a proxy for the light that reaches the satellite sensor. The Rrs data from the satellite is used 
within the algorithms to derive e.g. the chl-a concentrations, see Ledang et al. (2019) for details. The 
sensors measure the full light spectra between 350-900 nm and are regularly calibrated against NIST 
standard lamps at the radiometric calibration laboratory at NIVA.  
 

  
Figure 5. Set up of the rig and computer with TriOS RAMSES light sensors measuring the above reflectance for 
Mjøsa, 1) Irradiance sensor; incoming light, Ed 2) downwelling, Ld and 3) radiance sensor; upcoming light, Lu. 
Photo: Sørensen/NIVA. 
 

2.2.1.4 Processing and data analysis 
All the bio-optical parameters were analyzed from June to September 2020 and the results are 
presented in section 3. Chl-a was analyzed according to standard and accredited methods (Lyche 
Solheim et al., 2020). Absorption of cDOM was measured spectrophotometrically and the absorption 
values at 443 nm (acDOM) and the slope values (ScDOM) were derived. The ScDOM indicates the optical 
signal of the cDOM pool where higher values represents a steeper exponential curves, often associated 
with less degraded terrestrial material (Stedmon et al., 2000; Vodacek et al., 1997). cDOM parameters 
were calculated by a least square fitting between 350 and 500 nm with the program “cdom” in R 
(Loiselle et al., 2009; Massicotte & Markager, 2016; R Core Team, 2013). The mean turbidity (Turb) 
values were based on triplicate measurements from each station. The chl-a pigment absorption (aChl-

a) and absorption of non-algal particles (aNAP) were analyzed according to the Tassan & Ferrari (1995) 
method, with adjustments (Ledang et al., 2019). The results for aNAP are not presented. 
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2.3 Satellite remote sensing data - Sentinel 2 and Sentinel 3 

The coding solutions for a smooth data flow and processing schemes, including downloading that NIVA 
developed during the previous project and EU DCS4COP (DataCube Service for Copernicus) project 
(DCS4COP, 2021; EODataBee, 2021), were modified to the current lakes and were used for this study 
as well. All available RS scenes from Sentinel 2 and Sentinel 3 for the regions of interests (i.e. the lake 
polygons) were automatically downloaded from the Norwegian ColHub data center and processed in 
house and manually with the C2RCC (Case 2 Regional CoastColour RS processor) atmospheric 
correction (Brockmann et al., 2016). For details on the satellite sensors used and the atmospheric 
corrections applied please see details in Ledang et al. (2019) and references therein. 
 

Quality assurance of data 
The remote sensing reflectance data is used in the algorithms to derive the estimated concentrations 
of the parameters, e.g. chl-a. It is therefore important that the shape, range and magnitude of the 
reflectance spectra is correct. The retrieval is affected by various factors including e.g. clouds or cirrus 
clouds (high thin clouds), bottom reflectance, too-high concentrations of the bio-optical parameters, 
which all can interfere with the signal in a negative way. A standardized data sorting was used to ensure 
high quality data and various quality flags were applied to all the RS scenes to exclude non-valid data 
(i.e. flags for clouds, cloud shadow, high concentration of bio-optical parameters as well as sun glint). 
All data that was used in the analyses were also tested to pass the criteria set by the reflectance value 
at around 443 nm to be lower than at 490 nm (band 1 and 2  for Sentinel 2  and band 3 and 4  for 
Sentinel 3), which means that the Rrs spectra should have a normal shape with values at 443 nm lower 
than at 490 nm.  
 

Pixel extraction 
For each valid scene and for each monitoring station in the lakes the satellite data from a 3*3 matrix 
around the station was derived and the average was calculated. These values were used to compare 
with the in-situ data and used to assess the water quality status of chl-a for each station or lake.  
 

Binning 
Binning of remote sensing data is when several scenes for the same location but from different times 
are temporally averaged to e.g. retrieve the average monthly, yearly or assessment period (here 2016-
2020 and 2017-2020 for Mjøsa) mean values. The results from the assessment period for each lake 
were used for the WFD water quality assessment based on remote sensing data. The binning was done 
for Sentinel-2 data and is presented as integrated chl-a maps in chapter 4.  
 

Mosaicking 
Mosaicking is applied when one lake needs two Sentinel 2 scenes to cover the full lake, with some 
overlaps. One can say that mosaicking is stitching the two scenes together using correct georeferencing 
and averaging the overlapping pictures. This was applied to Sentinel 2 data for Mjøsa, Røssvatnet and 
Femunden. This is illustrated for Røssvatnet in Figure 6. The Sentinel 3 images cover each lake in one 
tile.  
 

Analyses 
The Sentinel 2 and Sentinel 3 data were used for deriving time-series of data from the full area of all 
lakes (Sentinel-2) and for each of the monitoring stations and match-up stations in Mjøsa (Sentinel 2 
and Sentinel 3). The data was used for time-series comparisons with the in-situ chl-a monitoring data 
and for as well as for the WFD assessment analyses.  
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Northern scenes Southern scenes 

  

  

Figure 6. RGB images of Røssvatnet from Level-2 S2MSI2A data and schematic images showing the coverage of 
each scene from Creodias/Copernicus (Home Page - CREODIAS, 2021). The left panel shows an example of the 
northern scenes, and the right-hand panel shows an example of the southern scenes. The results from the 2 scenes 
are stitched together by mosaicking. The white and black rings show the location of the lake. 
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3 Results and discussion 

The results of the in-situ 0.5 m depth surface samples for each of the hydrographic and optical 
parameters collected during June to September in 2020 for all six lakes are presented and the findings 
are discussed. Data from Mjøsa was collected more often and at different stations and are presented 
in more detail in a chapter 3.2. The remote sensing data are focused on chl-a and reflectance data 
from Sentinel 2, the results from Sentinel 3 are presented in a separate stand-alone Appendix. 
 

3.1 In-situ data: Hydrographic and optical parameters 

3.1.1 Chlorophyll-a concentration and chlorophyll-a pigment absorption 

All lakes had relatively low concentrations of chl-a but it was higher in Mjøsa, with distinctive peaks of 
higher concentrations compared to periods with lower data (Figure 7A). The other lakes showed more 
stable chl-a concentrations over the season, with slightly higher concentrations in June for 
Snåsavatnet, Gjende and Femunden. It should be noted that the data in Mjøsa is from 4 different 
stations, whilst the other 5 lakes each have observations from a single station.  
 

A

 

B 
 

 

Figure 7. A: Surface (0.5 m depth) chl-a data (μg/l) from each lake between June- September 2020. Error bars 
represent a general 20% uncertainty of the method. Mjøsa includes 4 stations and the other lakes 1 station each. 
B): Chl-a specific absorption, aChl-a, m-1 from this study in relation to the chl-a concentration on a log-log scale. 
The black circles are data from the other lakes; Gjende; Snåsavatnet; Selbusjøen; Røssvatnet and Femunden and 
the open circles are data from Mjøsa.  

 
The chl-a pigment absorption was analyzed for all lakes and the relationship to the chl-a concentrations 
is presented in Figure 7B. Standard relationships between the chl-a concentration and the chl-a specific 
absorption is used in the remote sensing algorithms. It is important that the conversion factors used 
are as close as possible to the natural conditions and based on the natural variability, to be able to 
retrieve high quality chl-a data from satellite sensors. The collection of this data is tedious with a high 
workload, both in terms of measurements as well as data processing. There are not many bio-optical 
studies of Norwegian lakes and therefore the data from this study is an important initial data set that 
with potential to be used for more detailed studies of algorithm developments and tuning. The data 
set is too small to allow us to draw conclusions, but when the data from this study was placed in a 
broader perspective in comparision with other studies and the chl-a absorption (aChl-a) ~chl-a 
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concentration relationship from (Sørensen et al., 2007) (Figure 8A) they agree well. However, when 
calculating the chl-a values based on the relationship from all lakes and all lakes without Mjøsa in 2020 
(Figure 8B) the relationship differs from Sørensen et al. (2007) at concentrations above 2 μg/l, and is 
gives much lower chl-a values (2-4 times). Since the conversion factor in the C2RCC equals the 
Sørensen et al. (2007) factors, this algorithm will most likely overestimate the chl-a values. The chl-a 
concentrations retreived from the 2020 data also show an overestimation. It should be noted that 
these are preliminary results as there are very few data points (aChl-a and chl-a) on which to base the 
models. The results of the models should ideally also be validated against an independent in-situ data 
set.  
 

A 

 

B 

 

Figure 8. A: Chlorophyll specific absorption from this study in comparison with data from other studies and areas 
on a log-log scale. The relationship between chl-a concentration and the chlorophyll specific absorption from this 
study (blue squares and green triangles) lines up well with the other studies. B: shows the chl-a concentrations if 
we calculated based on the 2020 relationships for the lakes compared to Sørensen et al. (2007). The aChl-a are the 
output from the processor. The open circles are based on Sørensen et al. (2007), the black dots are based on all 
lakes in 2020 and the triangles are based on all lakes except Mjøsa. 
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A 

 

B 

 
C 

 

D 

 
Figure 9. Surface data (0.5 m depth) from each lake between June - September 2020, several stations in Mjøsa and 1 station in each of the other lakes. A: Turbidity (FNU). Error bars represent 

1 standard deviation calculated from the sample variability and mean, B: Secchi depth (m). Error bars represent a general 20% uncertainty of the method, C: Absorption of cDOM, m-1 at 443 

nm. Error bars represent 6% error of the method and D: cDOM slopes, m-1, between 350 and 500 nm. Error bars represent 5% error of the method.
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3.1.2 Turbidity 

The turbidity values were highest in Gjende (Figure 9A) with an increase over the season, while 
Snåsavatnet and Femunden showed a decrease with season. The variable data in Mjøsa are attributed 
to the 4 different stations with variable inflows from larger rivers.  
 

3.1.3 Secchi depth 

The Secchi depth varied between about 2 to 14m (Figure 9B), with clearer waters in Røssvatnet, 
Femunden and Mjøsa, which is on average a bit higher than the reported values for Femunden and 
Mjøsa (Table1). Snåsavatnet and Selbusjøen had low Secchi depth which corresponds to the high 
colour values of 34 and 26 (Table 1). However, Gjende has a colour number of 3 but had very low Secchi 
depths, especially at the end of the season.  
 

3.1.4 cDOM absorption and cDOM slopes 

The cDOM absorption was analyzed for all lakes (Figure 9C), and the low absorption found in Gjende 
and Femunden correspond to the low colour numbers, 3 and 11.3 respectively (Table 1). The colour 
value of 34 for Snåsavatnet follows the pattern with high cDOM absorption and the low Secchi depth, 
followed by Selbusjøen, Mjøsa and Røssvatnet, although the cDOM absorption was more variable. The 
cDOM slopes (Figure 9D) are usually less variable than the cDOM absorption as they depend on the 
structure and characteristics of the cDOM molecules, although it can vary with season (Harvey et al., 
2015). The slope in Røssvatnet was lower in August than in July and September, where both the cDOM 
absorption and turbidity were higher. This can be connected to e.g. heavy rainfall that increased the 
runoff to the lake. The other lakes showed less variability, except Mjøsa, which include data from more 
than one station. If the slopes values are known the cDOM absorption at other wavelengths can easily 
be calculated.  
 

3.1.5 Total absorption, attenuation and backscattering 

Samples of attenuation (c), total absorption (a) and backscatter (bb) were measured at 9 different 
wavelengths (412, 440, 488, 510, 532, 555, 650, 676 and 715 nm) by an ac9 instrument in the lab. The 
absorption (Figure 10A) and attenuation (the extinction or the gradual loss of light through the water) 
(Figure 10B) declines with wavelength. Corrections for pure water contribution and temperature and 
salinity effects were applied according to Röttgers et al. (2013) and Sullivan et al. (2006). Total 
absorption includes all absorption in the water column, i.e. including cDOM and chl-a specific 
absorption and non-algal absorption. The magnitude of the absorption differs between lakes and 
between months. The attenuation also varies in the same way as the total absorption between the 
sampling months and the magnitude between the stations, where Snåsavatnet stands out with a much 
higher attenuation in the blue than the others, probably connected to the high cDOM absorption and 
the high "Farge”. The total backscattering (Figure 10C) is a measure of how much the particles scatters 
the light within the water column and is related to the turbidity (which is a proxy for scatter) and the 
suspended particles within the water. The backscattering is not as pronounced wavelength dependent 
as the absorption and attenuation, which is seen in the graph, but the scattering is still wavelength 
dependent. The highest scattering is seen in Gjende, which is expected as it has a glacial connection 
and the melt water from glaciers are known to bring high loads of sediments to the water, and thus 

increasing the scattering. High scattering usually affects the chl-a retrieval from the sensors.  
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A  

 

 

B 

 

 

C  

 

 

Figure 10. A: Total absorption, atot, m-1. B: total attenuation, m-1 from ac9 data per wavelength, nm (x-axis) 

from each lake between June- August 2020. C: backscattering, bb, m-1 from ac9 data per wavelength, nm (x-axis) 
from each lake between June- August 2020.   
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3.2 Lake Mjøsa  

As there was an extra focus on collecting data in Mjøsa at different stations and with more frequent 
observations in the 2020 season, these data are presented separately and analysed further. Monitoring 
data from previous years are also presented for comparisons with RS data. Two types of in-situ data 
were gathered 1) monitoring data based on an integrated mix-sample (0-10 m depth) and 2) surface 
(0.5 m depth) match-up data for the satellite overpasses at station Brøttum, Skreia and along the 
transects (see maps, Figure 3). In 2020 was the match-up data set 30 observations (Table 2). This is a 
unique data set for Norwegian lakes and will be used in more detailed studies in the future.  
 

3.2.1 Chlorophyll-a 

The monitoring data in Mjøsa have been collected regularly and a time-series between 2016 and 2020 
for the summer months are presented for each monitoring station in Figure 11A. The chl-a 
concentration is based on an integrated sample of water from mixed depths. The time-series shows 
several summer blooms and the concentrations in 2020 seem to be a bit higher in August at both Skreia 
and Kise. Surface samples were collected in 2020 and the chl-a concentrations are presented in Figure 
11B. For station Brøttum and Skreia both the surface and the mix-sample data are plotted, where the 
mix-samples at station Skreia sometimes was as much as 2 times higher than the surface samples. 
 

A 

 
B 

 
Figure 11. A: Time-series of chl-a (μg/l) from 0-10 m, at the 4 monitoring stations (Brøttum, Skreia, Kise and 
Furnesfjorden), May- October 2016-2020. B: chl-a (μg/l) for surface match-up data 0.5 m (blue) and monitoring 
mix-sample 0-10 m (red) for stations Brøttum and Skreia and the transect stations (Skreia St2-St4 and Tangen 
St1-St3), May/June- September 2020. Error bars represent a general 20% uncertainty of the method. 
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3.2.2 Turbidity 

The turbidity data is measured in the monitoring program from the integrated mix-sample between 0-
10 m at 2 stations, Brøttum and Skreia. Time-series between 2017-2020 are shown in Figure 12A. The 
turbidity was generally higher at station Brøttum, which also shows a higher variability than station 
Skreia, especially in 2018. In 2020 the turbidity values seemed to be higher at stations Skreia, like with 
the chl-a concentration, especially in July (Figure 12A). Results from the 2020 match-up surface 
samples shows that the turbidity has a peak in the summer months and a slightly decrease in 
September (Figure 12B). The turbidity at the surface was higher than the mix-sample at Skreia. 
 

A 

 
B 

 
Figure 12. A: Turbidity data (FNU) for the 2 of the monitoring stations (Brøttum and Skreia) in Mjøsa between 
June- September 2017-2020. B: Turbidity data (FNU) for surface match-up data 0.5 m (blue) and monitoring 
integrated mix-sample data 0-10 m (red), including the monitoring stations Brøttum and Skreia and the transect 
stations (Skreia St2-St4 and Tangen St1-St3). Error bars in fig B represent a general 20% uncertainty of the 
method. 
 

3.2.3 Secchi depth 

Time series of Secchi depth show that it varies between the stations, season and year (Figure 13). The 
highest values are found in spring and the lowest during the summer months. Secchi depth is a 
parameter that can be assessed by remote sensing data from satellites and is one of the supporting 
parameters for the status assessment within the WFD. It has a long record of monitoring data, which 
makes it good to use for long term studies. However, the parameter is itself a proxy for the light 
availability in the water column which is affected by the absorption and scattering of the constituents 
within the water. Secchi depth is therefore strongly related to several bio-optical parameters, like the 
cDOM absorption, the amount of total suspended matter and chl-a absorption, the turbidity as well as 
the total attenuation and total back-scattering. In this study the focus has been on chl-a, but more 
dedicated studies of remote sensing and light and Secchi depth would be valuable.  
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Figure 13. Secchi depth data, for the 4 of the monitoring stations (Brøttum, Skreia, Kise and Furnesfjorden) in 
Mjøsa between May- October 2016-2020. Error bars represent a general 20% uncertainty of the method. 
 

3.2.4 cDOM absorption and cDOM slope 

Absorption by cDOM is not included in the monitoring program, instead ‘Farge’ i.e. the colour, is 
measured which is related to cDOM, see Ledang et al. (2019) for an estimated relationship between 
the two parameters. In 2020 cDOM absorption was measured for all surface match-up samples and 
the data set for the stations in Mjøsa are presented in Figure 14A. The variability in Mjøsa is large 
during the season with highest values in spring and lower absorption in autumn. The high spring 
absorption is most likely related to river-run off, which has been shown in other studies (Harvey et al., 
2015). The slope values varied in the same way as the cDOM absorption (Figure 14B).  
 

A 

 
B 

 

Figure 14. A: Absorption of cDOM, m-1 at 443 nm and B: cDOM slopes, m-1, between 350 and 500 nm in Mjøsa 

2020. Error bars represent a 6 % and 5% error, respectively of the method. 
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3.2.5 Reflectance, absorption, attenuation and back-scattering 

Remote sensing reflectance, Rrs (sr-1) were calculated from data sampled continuously by the RAMSES 
sensors, whilst collecting the water samples, with the newly installed rig on the Hamar office boat. The 
data was filtered for QA based on the ratio between 750 nm/550 nm. If the ratio was above 1, the 
spectra was excluded. In general, reflectance data collected in Mjøsa looks good, but the magnitude is 
in the lower range, which is expected when the waters are clear (Figure 15). The shapes of the spectra 
show some differences between stations and days, indicating that there are differences in the optical 
parameters across the lake. The Rrs data from the dedicated match-up campaigns are presented as 
separate figures so that the variability within the lake, i.e. per station can be seen (Figure 16A, B, C and 
D). The bump around 680 nm is likely a combination of a chl-a fluorescence peak and chl-a absorption.  
 

   

 

   

 

Figure 15. In-situ remote sensing reflectance data between 350-900 nm at different stations and dates from 
2020, sampled during monitoring campaigns. The black line represents the average Rrs.  

 

  

  

Figure 16A. In-situ remote sensing reflectance data between 350-900 nm at different stations on 2020-08-10. 
The black line represents the average Rrs.  
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Figure 16B. In-situ remote sensing reflectance data between 350-900 nm at different stations on 2020-08-25. 
The black line represents the average Rrs.  

 

  

  
Figure 16C. In-situ remote sensing reflectance data between 350-900 nm at different stations on 2020-08-28. 
The black line represents the average Rrs.  
 

Figures 16A-C represent transects from Skreia towards land and figure 16D shows a more coastal 
transect at Tangen. At Tangen St3 it seems to be some noise or 2 different types of waters that was 
measured during the transect, as the reflectance data shows two different peaks, possibly due to 
drifting of the boat. 
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Figure 16D. In-situ remote sensing reflectance data between 350-900 nm at different stations on 2020-08-11. The 
black line represents the average Rrs.  

 
The total absorption, attenuation and backscattering from the ac9 measurements in surface waters 
between May to September 2020 are presented in Figure 17. The difference between June and August 
is mostly seen at station Brøttum, but the differences between months can also be seen at Skreia. At 
station Skreia 2 on 16/6-2020 all values are higher, which would need an extra evaluation for an 
explanation, it could e.g. be more particles in the water or a faulty measurement.  
 

 

 

 

Figure 17. Total absorption (atot), m-, total attenuation (c), m-1 and backscattering (bb), m-1 from ac9 data per 

wavelength, nm (x-axis) from each station within Mjøsa. Each line represents a different date.  
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3.2.6 Remote sensing data 

Sentinel 2 and Sentinel 3 time-series and reflectance data are presented for Mjøsa. The other lakes 
were analysed, and the data was quality assured and used for the chl-a status assessment quality in 
Chapter 4, but the individual time-series are not presented here.  
 

3.2.7 Time-series of chlorophyll-a in Lake Mjøsa 

Lake Mjøsa is covered by two different tiles of Sentinel-2 data so the downloading and processing were 
done separately for the southern and the northern part. In total 335 Northern scenes and 326 Southern 
scenes between 1 April to 30 Sep. 2017-2020 where downloaded and processed for Sentinel 2 A and 
B. Out of those 28-32 scenes were selected for further analyses, based on their cloud cover, reflectance 
spectra, and outliers defined as; chl-a values above 25 μg/l, TSM above 30 mg/l and Euphotic depth 
above 15 m. Either Sentinel 3 A or B passes Mjøsa every day and on some days both do.  In total 1150 
scenes between 1 March to 31 Oct. 2017-2020 were downloaded and processed for Sentinel 3 A and 
B and 12.7 %- 19.4% scenes (147-223) were used for further analyses based on the same quality criteria 
as for Sentinel-2. Cloud cover is the most common reason for excluding a scene. 
 
The phenology of the chl-a concentrations at station Brøttum (Figure 18) station Skreia (Figure 19A) 
from in-situ measurements (open circles) aligns in general very well with the S2 data (black circles) and 
is capturing the seasonal variation well. Some S2 observations overestimate the chl-a concentrations, 
which might be due to a to high signal-to-noise ratio. However, both the dedicated match-up surface 
samples in 2020 (marked as red triangles in the figure) and the monitoring mix-sample data show 
higher concentrations than the S2 data (Figure 19B and 19C). For sentinel-3 data the results for 
Brøttum (Figure 20A) are similar, although it seems like Sentinel 3 capture higher chl-a concentrations 
both in spring and during autumn due to more days of observations than both Sentinel 2 and in situ 
data. This is also seen for station Skreia (Fig. 20B), but 2019 shows variable results. In the figures the 
error bars for the in-situ data represents a general 20 % error of the method but the variability is usually 
higher during spring and autumn. For the RS data the standard deviations from the pixels are used. 
Time series for stations Furnesfjorden and Kise but without match-up data are found in Appendix A.  
 

Chl-a, station Brøttum 2016-2020 

 

Figure 18. Time-series Sentinel 2 chl-a and in situ data for Brøttum in Mjøsa from 2016-2020. The black circles 
show the Sentinel 2 data and the open circles the in-situ data taken by a mix-sample sample from the surface 
down to 10 m depth. The red triangles are surface samples from 0.5 m depth, collected during the current project 
in 2020.  
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A) Chl-a, station Skreia 2016-2020 

 
B) Chl-a, station Brøttum 2020 

 
C) Chl-a, station Skreia 2020 

 
Figure 19. A: Time-series Sentinel 2 chl-a and in situ data in in Mjøsa for station Skreia 2016-2020, B: Time-series 
of chl-a for station Brøttum from April to September 2020, C: Time-series of chl-a for station Skreia in Mjøsa from 
April to September 2020. The black circles show the Sentinel 2 data and the open circles the in-situ data taken by 
a mix-sample from the surface down to 10 m depth. The red triangles are surface samples from 0.5 m depth, 
collected during the current project in 2020.  
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Figure 20. Time-series of Sentinel 3 chl-a and in situ data in Mjøsa for A) station Brøttum and B) station Skreia 
from March to October 2017-2020. The black circles show the Sentinel 3 data and the open circles the in-situ data 
taken by a mix-sample from the surface down to 10 m depth. The red triangles are surface samples from 0.5 m 
depth, collected during the current project in 2020.  
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3.2.8 Sentinel 2 reflectance data 2020 

Remote sensing reflectance from Sentinel 2 is important to study as it is one of the main inputs to the 
C2RCC algorithm. The data for Brøttum (Figure 21) shows a general good pattern over the seasons 
while some data seems to be erroneous with high Rrs values in the blue wavelengths. For Skreia the 
data shows a similar pattern (Figure 22).  
 

 
Figure 21. Remote sensing reflectance data, Rrs sr-1, from Sentinel 2, C2RCC, April to October at station Brøttum 

2020. The different lines for each month represent different days. 
 

 
Figure 22. Remote sensing reflectance data, Rrs sr-1, from Sentinel 2, C2RCC, April to October at station Skreia 
2020. The different lines for each month represent different days. 
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4 Chl-a status classification sensu WFD 

4.1 Remote sensing integrated chlorophyll-a concentration 

Sentinel 2 
All available scenes of Sentinel 2A and 2B, between 1 May to 30 September, were downloaded and 
processed with the C2RCC algorithm (Brockmann et al., 2016 and Ledang et al., 2019) for each lake 
between 2017-2020 and for Mjøsa between 2016-2020. Mjøsa, Femunden and Røssvatnet are 
relatively large and in order to have a full coverage over the lakes, two different tiles of Sentinel 2 data 
need to be processed, doubling the amount of time and storage needed to obtain all the relevant 
Sentinel 2 data to be for the analyses. The other three lakes, Gjende, Selbusjøen and Snåsavatnet are 
all covered by one Sentinel 2 tile. The maximum number of scenes covering each lake ranged between 
292 (Gjende) and 377 (Røssvatnet north), depending on the revisiting times, average cloud cover, 
placements (e.g. adjacency effects or mountain shadow) and latitude (Table 3). Although the number 
of scenes is high the number of pixels used for the average chl-a concentration and status classification 
ranged between 4.1% to 17.5%. The lowest value was attributed to Gjende (Table 3a) which seems to 
be a major challenge for retrieving RS data with high adjacency effects from the mountains and 
possibly scattering from the sediments. In Figure 23 and 24 this is seen by large areas with many pixels 
filtered out and thus without data for Gjende. The most probable reason is that it is surrounded by 
high mountains, which interfere with the water leaving reflectance. 
 
Table 3a. S2 C2RCC data used in this study for each lake between May-September 2016/7-2020 

Lake 
Scenes 

processed 

Scenes used Total pixels Pixels used 

min mean max n n % 

Mjøsa north 341 1 97 127 379 712 34 576 9.1 
Mjøsa south 335 1 82 112 280 924 49 135 17.5 
Gjende 292 2 64 75 21 720 891 4.1 
Selbusjøen 369 1 41 94 62 460 9 871 15.8 
Røssvatnet north 377 1 54 87 24 190 30 711 12.7 
Røssvatnet south 366 1 53 83 242 190 31 748 13.1 
Snåsavatnet 371 1 46 77 182 245 25 275 13.9 
Femunden north 363 1 38 68 177 366 26 380 14.9 
Femunden south 326 1 39 72 177 366 27 622 15.6 

Average (Gjende excluded)  59     

 
All valid pixels were binned, and an integrated chl-a value was calculated between 1 May to 30 
September for all years for each of the six lakes (Figure 23). The averaged spatial distribution of the 
lakes is clearly seen as well as areas with higher concentrations connected to e.g. river inflows. RS data 
from October was excluded as the sun angle may be too low to retrieve reliable data.  

 

Sentinel 3 
Also all available scenes of Sentinel 3A and 3B, between 1 May to 30 September, were downloaded 
and processed with the C2RCC algorithm (Brockmann et al., 2016 and Ledang et al., 2019) for each lake 
between 2017-2020. All six lakes are covered in one Sentinel 3 tile. The maximum number of scenes 
covering each lake ranged between 1016 (Femunden) and 1756 (Selbusjøen), depending on the 
revisiting times, average cloud cover, placements (e.g. adjacency effects or mountain shadow) and 
latitude (Table 3b). The spatial resolutions are compensated by the higher visiting time with between 
64 to 79% more available scenes for Sentinel 3 are than for sentinel 2. The spatial binning for each lake 
was only made for Sentinel 2 data so the number of pixels used was not estimated for the Sentinel 3, 
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however the value will be less than for Sentinel 2 data, as the resolution is lower. The lowest number 
of observations was attributed again to Gjende (Table 3b) with only 10 scenes used after filtration, 
which is 540% less than for Sentinel 2. Here we can see that Sentinel 3 has major challenged retrieving 
data whereas for all other lakes than Femunden (63% less than Sentinel 2) Sentinel 3 provides between 
22-61% more observations than Sentinel 2.  
 
Table 3b. S3 C2RCC data used in this study for each lake between May-September 2017-2020 

Lake 
Scenes 

prosessed  Scenes used  

Percentage difference to S2 

Available Used 

Mjøsa, Skreia 1150 159 70 43 
Gjende 1029 10 72 -540 
Selbusjøen 1756 77 79 47 
Røssvatnet  1626 69 77 22 
Snåsavatnet 1591 117 77 61 
Femunden  1016 24 66 -63 

Average 79   

 

4.2 Chlorophyll-a status classification 

The chl-a status for each pixel in every lake was assessed by comparing the integrated chl-a value to 
the thresholds based on the defined water type definitions and according to the method described in 
‘Vanndirektivet 2018. Veileder 02:2018 Klassifisering av miljøtilstand i vann’ (Direktoratsguppen, 
2018). According to the method shall all indexes be based on a minimum of monthly observations 
during the growth season, i.e. 6 samples between May and October in the southern Norway and four 
observations between June and September in Northern Norway, north of Saltfjellet. The status value 
for chl-a, EQR are calculated as: 

𝐸𝑄𝑅𝐶ℎ𝑙𝑎
𝐶ℎ𝑙𝑎𝑟𝑒𝑓

𝐶ℎ𝑙𝑎𝑂𝑏𝑠
 

 
Where chl-aref is the pre-defined reference value for that waterbody or lake and chl-aObs is the observed 
averaged chl-a concentration. The parameter value, chl-aObs are then compared to the specific class 
boundary value for High, Good, Moderate, Poor or Bad classes for the current water type of the lake. 
The class the EQR value falls within defines the status classification (Direktoratsguppen, 2018). The 
EQR were calculated for 1) the average of all pixels covered by the lake for Sentinel 2 data, 2) the 
monitoring stations based on the average chl-a value derived from Sentinel 2 and Sentinel 3 RS data 
by pixel extraction and 3) the in-situ data at each monitoring station based on the average in-situ chl-
a values. Data between May-September from 2016-2020 and 2017-2020 was used for the Sentinel 2 
RS derived EQR average values and for Sentinel 3 the data from May-September 2017-2020 was used 
(Table 4a & 4b). The in-situ data observations were between May-October 2016-2020. The standard 
deviation was calculated based on yearly average data for in-situ samples and pixel variability for the 
RS data. The standard deviation for the full lake average is based on all pixels used, also presented in 
Table 4.  
 
The chl-a status classification of the lakes was compared to the lake specific chl-a threshold limits for 
each class and divided in the corresponding class depending on the chl-a value, and the calculations 
were done in different ways. First, pixel by pixel assessment of the Sentinel 2 RS data, providing a 
spatial map of the classification within each lake (Figure 24). This illustrates that the classes are 
distributed differently over the lake, either with separate basins or areas or differences between the 
coastal and open sea waters. Secondly the chl-a average was calculated for 1) the full lake based on 
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Sentinel 2 RS data and 2) 3 by 3 pixels around each monitoring station based on Sentinel 2 or Sentinel 
3 RS data and 3) for each monitoring station based on in-situ monitoring data.  
 
Table 4a. Status classification of the lakes based on all pixels from Sentinel 2 compared to in-situ observations. 
The average chl-a concentrations are presented for Sentinel 2 data of the whole lake and per station and the in-
situ data per station with standard deviation in brackets and italics, [μg l-1] (stdev, μg l-1).  

Lake 

Chl-a S2 
average Lake  

Chl-a average stations  
          S2                    In-situ 

Status S2 
mean Lake 

Status average 
stations 

μg l-1 StDev μg l-1 StDev μg l-1 StDev       S2  S2 In-situ 

Mjøsa, Skreia 1.93 0.62 2.37 0.26 2.44 0.51 High Good Good 

Gjende na na 3.07 0.76 1.17 0.34 NA Mod. High 

Selbusjøen 2.60 1.01 2.13 0.48 0.96 0.19 Good Good High 

Røssvatnet 3.05 1.06 5.06 0.83 0.34 0.03 Good Mod. High 

Snåsavatnet 3.95 1.52 4.91 0.10 0.94 0.20 Good Mod. High 

Femunden 4.01 2.02 6.77 0.18 0.70 0.18 Mod. Mod. High 

Mjøsa other monitoring stations 

Brøttum   1.58 0.31    High  

Furnesfjorden   1.78 0.11    High  

Kise   1.32 0.19    High  

 
Table 4b. Status classification of the lakes based on all pixels from Sentinel 3 compared to in-situ observations. 
The average chl-a concentrations are presented for Sentinel 3 per station and the in-situ data per station with 
standard deviation in brackets and italics, [μg l-1] (stdev, μg l-1).  

Lake 

 Chl-a average stations  
          S3                    In-situ 

 Status average 
stations 

  μg l-1 StDev μg l-1 StDev  S3 In-situ 

Mjøsa, Skreia   3.03 0.98 2.44 0.51  Good Good 

Gjende   1.19 0.41 1.17 0.34  High High 

Selbusjøen   3.07 1.72 0.96 0.19  Good High 

Røssvatnet   1.54 0.34 0.34 0.03  High High 

Snåsavatnet   5.70 0.91 0.94 0.20  Mod. High 

Femunden   6.49 2.01 0.70 0.18  Mod. High 

Mjøsa other monitoring stations 

Brøttum   3.21 1.11    Good  

Furnesfjorden   3.49 1.79    Good  

Kise   2.39 0.92    Good  

 
The 2 first methods (i.e. RS data) class boundaries and averages were compared to the last method 
(i.e. in-situ monitoring data), presented in Table 4. For the full lake assessment based on Sentinel 2 RS, 
the status was defined as 1 class higher for Mjøsa (Skreia) and one lower for Selbusjøen. The Sentinel 
2 RS data from the same station location were in the same class for Mjøsa (Skreia) and one class lower 
for Selbusjøen. For Gjende, the RS status was based on data approximately 600 m west of the 
monitoring station as there were no valid data from the same coordinates as the station and the 
assessment for the full lake was excluded as the retrieval was not optimal for the lake, and would need 
to be studied more detailed for a proper evaluation, e.g. if some specific adjacency effect filters can be 
applied. The assessment for the monitoring station of RS data was 2 classes lower than the in-situ 
samples (Table 4a). The classifications based on the Sentinel 3 data were more aligned with the in situ 
monitoring datasets and much improved for Gjende and Røssvatnet, classified in the same class (Table 
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4b). For direct comparisons between a station the amount of data is based on the days of observations, 
where Mjøsa had 59 in-situ observations and 90 observations from Sentinel 2 and 159 from Sentinel 
3, which is almost twice and three times as many days with observations. For Selbusjøen the number 
of observations were 29, 41 and 77, respectively. The number of RS observations was more than 3 
times higher than from in-situ (64 compared to 19 observations) in Gjende for Sentinel 2. For 
Røssvatnet, Snåsavatnet and Femunden the differences between the in-situ and RS were larger with 
lower status for both Sentinel 2 and 3 data. In these 3 lakes the number of observations for Sentinel 2 
was an order of magnitude greater than those from in-situ measurements, making direct comparison 
difficult (Table 4 and 5). However, when using about 85 000 observations compared to 59 observations 
(every Sentinel 2 pixel used for Mjøsa) and almost 10 000 observations compared to 29 for Selbusjøen, 
differences are to be expected. Perhaps direct comparisons like this should be avoided as it does not 
provide the same type of data (Table 3 and 5 and Figure 25). Nevertheless, can data from Sentinel 2 
and 3 be used to fill out the days in-between sampling days, and provide better knowledge on the 
variations over time.  
 
Table 5. Data used for status classification. There were no data for Røssvatnet, Snåsavatnet and Femunden from 
other years than 2020. The amount of days with an observation (n observations) is equivalent to an in-situ sample 
or a RS scene from one day. The average number per year is presented in italics in brackets.  

Lake 

Years, months n observations 

In-situ Sentinel 2 Sentinel 3 In-situ Sentinel 2 Sentinel 3 

Mjøsa, 
Skreia 

5 (2016-2020), 
May-Oct 

5 (2016-2020), 
May-Sep 

4 (2017-2020), 
May-Sep 

59 (11.8) 90 (18) 159 (55) 

Gjende 5 (2016-2020), 
May-Oct 

4 (2017-2020), 
May-Sep 

4 (2017-2020), 
May-Sep 

19 (3.8) 64 (16) 10 (2.75) 

Selbusjøen 5 (2016-2020), 
May-Oct 

4 (2017-2020), 
May-Sep 

4 (2017-2020), 
May-Sep 

29 (5.8) 41 (10.25) 77 (26.25) 

Røssvatnet 1 (2020),  
June-Oct 

4 (2017-2020), 
May-Sep 

4 (2017-2020), 
May-Sep 

5 54 (13.5) 69 (18.5) 

Snåsavatnet 1 (2020),  
May-Oct 

4 (2017-2020), 
May-Sep 

4 (2017-2020), 
May-Sep 

6 46 (11.5) 117 (55.5) 

Femunden 1 (2020),  
June-Sept 

4 (2017-2020), 
May-Sep 

4 (2017-2020), 
May-Sep 

4 39 (9.75) 24 (6) 

 
The chl-a averages were higher from Sentinel than in-situ for all lakes, except for Sentinel 2 in Mjøsa 
and Sentinel 3 in Gjende (Table 4 and Figure 25). The comparison at station Skreia and Gjende are very 
good whereas the differences are larger for Selbusjøen. Selbusjøen has quite low chl-a values and low 
turbidity, and the cDOM absorption was the second highest for all lakes. The total absorption was also 
quite high and the scattering low. The high cDOM and the low scattering make it more difficult to 
retrieve a strong Rrs signal at the satellite sensor, which increases the uncertainty associated with the 
chl-a estimate. High cDOM is also known to affect the algorithms so that the chl-a is more easily 
overestimated, which can have affected the results in Selbusjøen. In Gjende the differences were 
smaller, but the large variation in observed values makes it difficult to evaluate potential sources of 
difference. The difference in chl-a for Røssvatnet, Snåsavatnet and Femunden was large but the 
amount of data is not equivalent. A better assessment would be to only include the data from 2020 
from Sentinel 2 as any possible interannual variability is not captured by the in-situ data but can have 
been included in the Sentinel 2 data set. However, with so few in-situ measurements the uncertainty 
of the in-situ data is very high. For Gjende the spectral resolution was better with Sentinel 3, but even 
fewer days could be retrieved due to the lower spatial resolution over the narrow lake. Studies of the 
bi-weekly or monthly average from all the years from the Sentinel data could help reveal a more 
detailed picture of the variability within those less frequently sampled lakes.  
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One of the main questions is how the RS data should be applied. Should we look upon it with the same 
eyes as the in-situ data, which is represented by about 1 L of water from a whole lake or by using the 
signal from the top layer (i.e. half Secchi depth) of the whole water body? For water quality status 
classifications, it important that the actual status is correct as management are dependent on the 
results. Overestimated chl-a values from RS data will make actual assessment less accurate. However, 
for lakes that are so seldom measured or not measured at all the use of RS data is an invaluable source 
of information. It would provide the temporal and the spatial dynamics of the lakes and at their 
monitoring stations. If chl-a after more in-situ data is collected, and preferably from the surface down 
to 0.5 m, it appears that chl-a concentrations still are biased, then one could test new algorithms,  
adjust existing algorithms or simply apply a correction factor when the amount of the bias is known. 
Once such a relationship is established for one lake it is possible to process the RS data and analyze 
the actual variability in the chl-a concentrations. It would also be possible to apply similar relationships 
to similar kind of lakes, i.e. turbid, clear, high in humic substances, glacial inputs etc. 
 

 
Figure 25. Comparison between the average chl-a values used to calculate the EQR values at station Skreia in 
Mjøsa, Gjende and for Selbusjøen. The in-situ data are based on a mix-sample sample between 0-10 m. n stands 
for number of days with observations.  
 
Evaluation of the surface in-situ match-up samples for status assessment could improve the results as 
they e.g. for Snåsavatnet seems to be higher than the mix-sample and would therefore be more aligned 
with the RS data. In Ledang et al. (2019) it was shown that surface chl-a samples from 0.5 m depth 
corresponded better with RS data than the mix-sample. The surface samples usually represent the 
conditions that affects the reflectance reaching the satellite to a higher degree. The ‘depth eye’ of the 
satellite sensor depends on how deep the light reaches in the water column, and a rule of thumb that 
about 90% of the signal comes from half the Secchi depth. For these lakes that would mean somewhere 
between 3-5 m depth or as much as 7-8 m and for periods with up to up to 16 m Secchi depth. The 
integrated data reaching the satellites will rarely represent depths up to 10 m, which would require a 
Secchi depth of 20 m.  
 
Another factor can be the difference found for the conversion factors/algorithms used to calculate the 
chl-a concentrations from the chl-a absorption (preliminary results shown in Figure 8B). The Chl-a data 
of the Sentinel data from the in-situ data is most often higher and could then be explained by this 
relationship, where the algorithm (C2RCC) used today would provide chl-a values 2-4 times higher than 
with the preliminary relationship based on the data from this study. If more suitable conversion 
factors/algorithms were used the chl-a values would likely be better approximate the in-situ data.  
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Figure 23. Maps showing the 4- or 5- year chl-a average for each lake based on Sentinel 2A and 2B data. The placement of the monitoring stations within the regular 
program are showed with a black star.  
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Figure 24. Maps showing the 4- or 5- year chl-a status classification for each lake based on Sentinel 2A and 2B data. The placement of the monitoring stations within 
the regular program are showed with a black star.  
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5 Future perspectives and research needs 

The status of the lakes determined from Sentinel 2 data when using all available pixels are slightly 
worse than the classifications derived from in-situ data. This might be because there are more data 
included from near shore areas or areas of the lake where there is a higher inflow from land, leading 
to higher chl-a values. It could also be due to a bias in the RS products leading to an overestimation by 
the algorithm, caused by incorrect reflectance spectra e.g. caused by mountain shadows, strong 
scattering, bottom reflectance or adjacency effects or incorrect conversion factor for calculating the 
chl-a concentration. This could be solved by setting stricter maximum chl-a criteria for inclusion in the 
binned product based on the known variability within the lake. Another possibility is to buffer out the 
pixels that are close to land, and thereby assess only the ‘core’ open part of the lake. It was seen that 
some of the lakes also had very high cDOM absorption, that also can lead to overestimations of chl-a. 
For these lakes other RS algorithms might perform better.  
 
However, comparing the chl-a average based on all pixels of a full lake area to the chl-a average based 
on in-situ data from one monitoring station is not very suitable. The average from the full lake captures 
all the variations taking place in the different areas within the lake, whereas the monitoring station 
represents one basin or the open part of the lake. Instead, the spatial information gained from the RS 
data should be utilised to a larger extent within the monitoring program to add another layer for 
understanding the dynamics of the lakes. The spatial and temporal information is very valuable for 
studies of e.g. the possible drivers of change, connected to e.g. temperature, rainfall, river inflow, 
snowmelt in spring, ice thawing and glacial run-off, when applicable. By placing the observations in a 
larger context, the knowledge of possible changes will be better known, and the understanding of the 
systems will improve, especially for lakes that are remote and/or seldom sampled. The RS data can 
also be used to study the differences between basins within one lake, e.g. the temporal variation of 
chl-a within each basin or if they are optically different, like the differences between e.g. the area 
around station Brøttum, Furnesfjorden and the area around station Skreia in Mjøsa. Further, RS data 
can provide a higher temporal resolution for lakes that are sampled bi-weekly during the summer 
season and reveal more insight into ecosystem dynamics.  
 
Direct comparison between stations can be studied for lakes that have substantial in-situ data sets. 
Where there are differences between in-situ and RS estimates, and when they can be quantified in a 
systematic way, correction factors can be applied. We now have a better understanding of the lake’s 
optics and improvement of the algorithms should also be possible as a natural next step. This would 
e.g. be a possibility for the results in Selbusjøen, and maybe Gjende, although the in-situ data is 
presently limited for such an analysis. It becomes more difficult for lakes where the in-situ data are 
scarce and differences between the methods are great (Røssvatnet, Snåsavatnet and Femunden). For 
these types of lake, a 1-year comparison would be beneficial, so that the interannual variability is 
reduced, as well as dedicated tests of alternative or adjusted RS algorithms. One usual approach is to 
make a comparison for the same individual days or maximum of a few days difference instead of 
monthly means. The result from the study shows that the Sentinel 2 data for Røssvatnet, Snåsavatnet 
and Femunden (Table 4) overestimate to such a high degree that the use for chl-a status classifications 
presently cannot be recommended. The use of other atmospheric correction algorithms could improve 
the results and the full data set is processed with Acolite (Vanhellemont, 2019), but those results have 
not yet been analysed. Another way to improve the results can be to test how well the chl-a is in line 
with the in-situ data after tuning of the chl-a absorption coefficient in the algorithms. The empirical 
relationships between the chl-a concentration and the chl-a absorption based on the data that has 
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been gathered for the lakes could be used to tune the C2RCC algorithm. Another factor affecting the 
results is the difference between the depth where the samples are measured and the depth to which 
the satellite measures. In clear lakes the signal reaching the satellite can come from as much as 10 m 
depth, and in such a situation the mixed-sample from the surface down to 10 m of the in-situ sample 
are more comparable than a surface sample from 0.5 m. Whereas, for a very turbid, euphotic or humic 
lake the depth of the RS signal is much less and the comparison to the 10 m mix-sample becomes 
problematic, such that corrections might be needed. But again, information of the changes and the 
relative variation would still be of high value and it should be possible to make generalisations for lakes 
that are not monitored in-situ but have similar conditions as other regularly monitored lakes.  
 
Other products from the satellite sensors can provide highly valuable information of the lakes and their 
water quality. Secchi depth is a parameter that is included as a supporting parameter within the WFD. 
Different indicators of the light environment such as; 1) Kd(PAR)- Photosynthetic Active Radiation, i.e. 
the integrated light measurement between 350-700 nm; 2) the light attenuation coefficient (i.e. the 
reduction in light intensity as it travels through the water) and euphotic depth (Zeu), (i.e. the depth in 
the water column, from the surface, where there is enough light for photosynthesis to occur) are all 
important factors to study in terms of e.g. coastal darkening or brownification (Frigstad et al., 2020).  
 

5.1 Steps needed for an operational remote sensing service 

To be able to fully incorporate remote sensing data into the Norwegian ecosystem monitoring 
program, it would be advisable to further test and tailor the algorithms to regional or local conditions. 
This could be achieved to some extent with the data set developed in this and previous projects, but 
that the work required work lies outside the scope of this project. A preliminary analysis of the 
relationship between chl-a absorption and chl-a concentration based on 2020 years data (Figure 8B) 
showed differences in the results based on different algorithms for that relationship. This is an 
important result as the algorithm used by C2RCC2 is based on the Sørensen et al. (2007) results from 
the North Sea and seems not to be as applicable to some of the lakes. The differences in the 
relationship between chl-a absorption and chl-a concentration is one example of why the retrieval of 
chl-a concentrations from satellites can be a challenge. Other parameters, such as suspended particles, 
turbidity, light attenuation (Kd) and Secchi depth, do not have these inherent uncertainties, but are 
based on more robust physical relationships and are therefore usually retrieved with higher accuracy 
than chl-a from the satellite sensors.  
 
This project has gathered a substantial remote sensing and bio-optical in-situ data set that is not fully 
evaluated in terms of all the aspects mentioned above, as well as for time-series analyses for all lakes 
and other parameters than chl-a, e.g. Secchi depth, Kd (light), euphotic depth, turbidity, cDOM as well 
as the Rrs at different wavelengths. Statistical approaches to the match-up data and chl-a classifications 
would help evaluate the accuracy of the methods and could provide a more detailed evaluation of the 
comparability and potential differences between the methods, both for multi-year and single year 
analyses. Combined analysis based on all data from 2020 would also be able to show how the methods 
compare overall as well as for the different lakes. Other available optical data from Norwegian lakes 
were collected to a limited extent in 2019 for the earlier RS lake project (Ledang et al., 2019) and more 
extensively in 2019 and 2020 under the DCS4COP project (DCS4COP, 2021). It would also be very 
interesting to investigate the potential for development and test of an integrated method, resulting in 
hybrid products, where both data from the RS satellites and in-situ data are used. It is worth 
mentioning that in-situ data are also associated with errors so one should investigate the best 
approach to how RS and in-situ data should be used together. 
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5.2 Data processing and product developments 

For a near-real time dataset and visualisation, it would be preferable to develop a more automated 
coding routine and cloud based set up for processing data, algorithm selection based on the Rrs etc., 
as done for both the Copernicus high resolution coastal data set and the OSPAR chl-a assessment based 
on RS data. Such a near-real time data product could provide updated information related to lake 
conditions to facilitate a faster management or reduced mitigation response time to possible issues. It 
would e.g. also be fundamental for a cyanobacteria alert system to be in place and operational that 
can provide citizens with cyanobacteria bloom reports before or when visiting a lake or bathing site. 
This could be achieved by the following steps:  

• Automatization of downloading and processing in place which gives a smooth data flow, 
although some manual post-processing steps should be included.  

• Automatization of quality assurance (QA)  

• Automatization for producing level-3 products  

• Visualisation and integration with in-situ data done for test cases 

• Development of a cyanobacteria alert system 
 
EODataBee is a newly establish European remote sensing consortium that is the continuation of the 
research team and product developed under the Horizon 2020 DCS4COP project (DCS4COP, 2020, 
2021; EODataBee, 2021), of which NIVA is a partner. EODataBee provides a fully customizable data 
cube service for water quality information derived from Earth Observation and other sources. 
EODataBee comprises four core Service Elements: 
 

• Water quality products 

• Scientific consultancy 

• Data Cube generation, operation, and visualization service 

• Training for customers 
 

As a partner in EODataBee, NIVA have access to the most current developments, expertise and 
collaboration within Europe for water quality data services and NIVA are able to design targeted 
products and solutions that are asked for.  
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6 Conclusions 

This study shows a promising use of satellite derived chl-a data for several of the lakes included in the 
national monitoring program, especially in Mjøsa and Selbusjøen. The results from Gjende are more 
difficult to evaluate as the RS retrieval seems to have problems with high turbidity and mountain 
shadows. This was clearly seen for the Sentinel 2 data whereas the valid scenes from Sentinel 3 was 
fewer but with better results. For Røssvatnet, Snåsavatnet and Femunden the direct comparisons 
showed larger differences and the amount of in-situ data were very scarce compared to the RS data, 
making comparisons difficult. 
 
Some main conclusions can be drawn: 

• Sentinel 2 and Sentinel 3 works in general well for retrieving chl-a data per month, year and 
for an assessment period of 4-5 years in certain lakes  

• The amount of data for each lake are increased as RS data increases the number of 
observations. Sentinel 3 measures the lakes ones or twice a day, which will increase the 
number of possible scenes, providing a daily temporal coverage during certain periods. 
Hence, RS data delivers a lot of spatial data and temporal data that is in between ordinary in-
situ samplings, and this has a demonstrable impact on monitoring of the Norwegian lakes 
physical and chemical conditions 

• The spatial patterns of both the chl-a concentration and the uniformity of lake status 
classifications can only be achieved with RS data and make a basis for new monitoring 
products as RS can provide new knowledge of the lakes’ spatial and temporal dynamics 

• This study shows that the results from both Sentinel 2 and Sentinel 3 are overestimating the 
chl-a values for monthly means for half of the lakes, which would give rise to a lower 
classification status of chl-a compared with in-situ data 

• Sentinel 2 performs better for some lakes (Mjøsa), whereas Sentinel 3 is better for others 
(Gjende) 

 

• The results suggest that the absolute value of chl-a retrieved by the RS data can be improved 
by better conversion factors between chl-a absorption and chl-a concentration  

• Evaluation of other atmospheric correction algorithms, e.g. POLYMER or Acolite may improve 
chl-a retrieval 

• Detailed comparisons based on observations from the same day for each lake should be done 
The lakes investigated here are low to moderate in chl-a and the Sentinel 2 sensor should have 
a higher potential for more eutrophic lakes where the reflected signal is higher 

• RS data is a good complement to ordinary sampling for water quality classifications of 
Norwegian lakes, but for some lakes it needs some more in-depth work for possible 
adjustments and corrections  

• Detailed studies of different basins or areas within the lake can be made to investigate how 
they differs in temporal changes and chl-a concentrations 

• The RS data can also provide water quality information of lakes that are not a part of the 
monitoring programs as well as for the years in between in-situ sampling 

 

• Not all lakes are suitable for RS data, depending on their locations or extreme bio-optical 
properties that are outside what the algorithm can handle, but in the study 3-4 out of 6 lakes 
were suitable with confidence and data could only be derived to a limited extent for one lake 
(Gjende).  
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Appendix A.  
 

Time-series Kise and Furnesfjorden  
Time series from Mjøsa for Sentinel2 and in situ data in stations Kise and Furnesfjorden are presented 
in Figure A1 and A2. The equivalent time series for Sentinel 3 are shown in Figure A3.  
 

Time-series Sentinel 2 data, C2RCC atm correction and in-situ data 2016-2020 
Chl-a, station Kise  

 

 
Figure A1. Time-series Sentinel 2 chl-a and in situ data from 2016-2020 for station Kise in Mjøsa. The black circles 
show the Sentinel 2 data and the open circles the in-situ data taken by a mix-sample sample from the surface 
down to 10 m depth.  
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Chl-a, station Furnesfjorden 

 
 

 
Figure A2. Time-series Sentinel 2 chl-a and in situ data from 2016-2020 for station Furnesfjorden in Mjøsa. The 
black circles show the Sentinel 2 data and the open circles the in-situ data taken by a mix-sample sample from 
the surface down to 10 m depth.  
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Figure A3. Time-series of Sentinel 3 chl-a and in situ data in Mjøsa for A) station Kise and B) station Furnesfjorden 
from March to October 2017-2020. The black circles show the Sentinel 3 data and the open circles the in-situ data 
taken by a mix-sample from the surface down to 10 m depth. The red triangles are surface samples from 0.5 m 
depth, collected during the current project in 2020. 



Gaustadalléen 21 • NO-0349 Oslo, Norway
Telephone: +47 22 18 51 00 
www.niva.no • post@niva.no

NIVA: Norway´s leading centre of competence in aquatic 
environmentes 

The Norwegian Institute for Water Research (NIVA) is Norway’s 
leading institute for fundamental and applied research on 
marine and freshwaters. Our research comprises a wide array of 
environmental, climatic and resource-related fields. NIVA’s world-
class expertise is multidisciplinary with a broad scientific scope. 
We combine research, monitoring, evaluation, problem-solving 
and advisory services at international, national and local levels.


