Vis enkel innførsel

dc.contributor.authorAllesson, Lina
dc.contributor.authorKoehler, Birgit
dc.contributor.authorThrane, Jan-Erik
dc.contributor.authorAndersen, Tom
dc.contributor.authorHessen, Dag O
dc.date.accessioned2020-10-27T15:04:36Z
dc.date.available2020-10-27T15:04:36Z
dc.date.created2020-10-15T13:34:33Z
dc.date.issued2020
dc.identifier.citationLimnology and Oceanography. 2020.en_US
dc.identifier.issn0024-3590
dc.identifier.urihttps://hdl.handle.net/11250/2685352
dc.description.abstractMany boreal lakes are experiencing an increase in concentrations of terrestrially derived dissolved organic matter (DOM)—a process commonly labeled “browning.” Browning affects microbial and photochemical mineralization of DOM, and causes increased light attenuation and hence reduced photosynthesis. Consequently, browning regulates lake heterotrophy and net CO2‐efflux to the atmosphere. Climate and environmental change makes ecological forecasting and global carbon cycle modeling increasingly important. A proper understanding of the magnitude and relative contribution from CO2‐generating processes for lakes ranging in dissolve organic carbon (DOC) concentrations is therefore crucial for constraining models and forecasts. Here, we aim to study the relative contribution of photomineralization to total CO2 production in 70 Scandinavian lakes along an ecosystem gradient of DOC concentration. We combined spectral data from the lakes with regression estimates between optical parameters and wavelength specific photochemical reactivity to estimate rates of photochemical DOC mineralization. Further, we estimated total in‐lake CO2‐production and efflux from lake chemical and physical data. Photochemical mineralization corresponded on average to 9% ± 1% of the total CO2‐evasion, with the highest contribution in clear lakes. The calculated relative contribution of photochemical mineralization to total in‐lake CO2‐production was about 3% ± 0.2% in all lakes. Although lakes differed substantially in color, depth‐integrated photomineralization estimates were similar in all lakes, regardless of DOC concentrations. DOC concentrations were positively related to CO2‐efflux and total in‐lake CO2‐production but negatively related to primary production. We conclude that enhanced rates of photochemical mineralization will be a minor contributor to increased heterotrophy under increased browning.en_US
dc.language.isoengen_US
dc.publisherASLOen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe role of photomineralization for CO2 emissions in boreal lakes along a gradient of dissolved organic matteren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authorsen_US
dc.source.pagenumber13en_US
dc.source.journalLimnology and Oceanographyen_US
dc.identifier.doi10.1002/lno.11594
dc.identifier.cristin1839836
dc.relation.projectNorges forskningsråd: 196336en_US
dc.relation.projectNorges forskningsråd: 224779en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal