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Abstract 

The Deepwater Horizon oil spill constituted an ecosystem-level injury in the northern Gulf of Mexico. 

Much oil spread at 1100-1300 m depth, contaminating and affecting deepwater habitats. Factors such as 

oil-biodegradation, ocean currents and response measures (dispersants, burning) reduced coastal oiling. 

Still, >2100 km of shoreline and many coastal habitats were affected. Research demonstrates that oiling 

caused a wide range of biological effects, although worst-case impact scenarios did not materialize. 

Biomarkers in individual organisms were more informative about oiling stress than population and 

community indices. Salt marshes and seabird populations were hard hit, but were also quite resilient to 

oiling effects. Monitoring demonstrated little contamination of seafood. Certain impacts are still 

understudied, such as effects on seagrass communities. Concerns of long-term impacts remain for large 

fish species, deep-sea corals, sea turtles and cetaceans. These species and their habitats should continue to 

receive attention (monitoring and research) for years to come. 
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1. Introduction 

On April 20th 2010, an explosion on the Deepwater Horizon (DWH) drilling rig led to a catastrophic oil 

and gas blowout at the BP operated Macondo Prospect (MC252) at 1522 m depth, in the east Mississippi 

Canyon area (N 28.73667 W 88.38694) in the northern Gulf of Mexico (NGOM), 66 km off the coast of 

Louisiana (LA). When the well was capped 87 days later a vast area of NGOM was oil polluted (Figure 

1). According to decisions in the US v. BP trial (2015) 3.19 million barrels (roughly 500,000 m3) of oil 

were released into the ocean during the spill, in addition to several hundred thousand tons of hydrocarbon 

(HC) gases. The response operation applied roughly 7,000 m3 of oil-dispersing agents, 40% of it added to 

the gusher at the seabed and 60% to surface oil slicks offshore (but not nearshore or at the coast). The 

unprecedented deep-sea application of dispersant contributed to formation of large plumes of HC rich 

water that spread laterally in deep waters (>1000 m depth) and led to contamination of deep water 

habitats. Much of the oil surfaced and formed oil slicks that at their maximum on June 19 reached a size of 
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>40,000 km2, and that cumulatively covered >112,000 km2 of the ocean surface (DWH-NRDA, 2015). 

The spill weathering process produced oily aggregated materials which partly sank to the seabed as 

“marine snow”. Oil slicks were pushed towards the coast by ocean currents, wind and waves and were 

washed onto the shoreline in LA, Mississippi (MI), Alabama (AL) and Florida (FL). More than 2100 

kilometers of shoreline were affected, including beaches, marshes, wetlands and estuaries that are 

important habitats and nursery areas for a wide range of species. Fisheries in parts of NGOM were 

temporarily closed due to public concern that seafood might be contaminated with oil HCs. Research 

funding programs were established (see overview at: http://www.dwhprojecttracker.org/) to increase our 

understanding of how the DWH oil spill impacted the environment in NGOM. By January 2016 more than 

500 individual research papers addressing a wide range of environmental aspects of the spill had been 

published in peer reviewed journals. 

In this review we summarize the environmental research literature of the DWH oil spill under four key 

themes: (1) the environmental fate of spilled oil and gas; (2) biological/ecotoxicological effects in offshore 

ecosystems; (3) effects in nearshore and coastal sites; and (4) effects on long-lived marine organisms. The 

term offshore is understood as beyond the NGOM shelf edge (> 200 m depth), whereas the term nearshore 

represents the areas stretching from estuarine waters to the continental shelf edge (0 m – 200 m). Oil 

dispersants were not used nearshore or in connection with coastal cleanup operations during the DWH 

response. Nonetheless, a number of experimental studies have addressed effect issues related to dispersant 

application in oiled coastal systems. These studies are only superficially commented herein. 

2. Environmental research on Deepwater Horizon oil spill 

2.1 Fate of DWH spill 

Characterization and behaviour of released oil and gas 

The oil released from the MC252 well was a type A – Louisiana light sweet crude oil, which is a crude 

low in sulfur and high in gasoline/kerosene fractions in comparison to heavier oils. Due to the rapid 

pressure drop at the exit point, the oil fraction of the blowout stream was physically dispersed into small 

and microscopic oil droplets (10 µm – several mm). The size distribution of these oil droplets was a key 

factor for the fate of the oil in the subsequent seconds, minutes, days and months (Thibodeaux et al., 2011; 

Yapa et al., 2012; Zhao et al., 2014). As oil has a lower density than seawater, it generally moves upwards 

to the water surface. Large oil droplets rise more rapidly than smaller droplets; and micro-droplets smaller 

than a certain diameter (<70 µm) have a neutral relative buoyancy and will therefore stay entrained in the 

water column, unless they coalesce to form larger droplets. Small oil droplets are more prone to 

degradation by physical and microbial processes. Oil-dispersing chemicals break up oil into smaller 

http://www.dwhprojecttracker.org/
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droplets and increase the stability of those droplets, thereby modulating the behaviour and the fate of the 

oil. The oil-dispersing agents used during DWH were mainly Corexit® 9500 and Corexit® 9527, both 

with dioctyl sodium sulfosuccinate (DOSS) as the main surfactant component.  

Soon after the DWH explosion, large volumes of oil appeared at the surface, but because of the great 

depth it was suspected that an unknown but potentially large amount of the oil became trapped in deep 

waters (Figure 2). It was a challenge to find this deep plume and to characterize how its composition 

changed with time as a result of physical and microbial processes. In May 2010, Diercks et al. (2010) 

detected the plume at depths >1000 m by using in situ fluorescence and beam attenuation measurements. 

The plume extended mainly in a west-southwest direction from the still gushing wellhead. In the plume, 

they found polycyclic aromatic hydrocarbon (PAH) concentrations up to 189 µg/L (ppb) and calculated 

that PAH contamination at a level toxic to marine organisms extended at least 13 km from the wellhead. 

The depth and direction of the initial deep plume was confirmed by Camilli et al. (2010) in late June 2010. 

A neutrally buoyant plume was found at approximately 1100 m depth, up to 200 m high, and up to 2 km 

wide, extending continuously at least 35 km downstream from the wellhead. Concentrations of petroleum 

monoaromatics in the plume exceeded 50 µg/L and the estimated total input to the deep plume was more 

than twice that of natural seeps in NGOM. The latter comparison may be questioned however. Recent 

calculations indicate that the HC flux from natural seeps in the NGOM has been severely underestimated 

(Smith et al., 2014a).  

A large volume of gaseous HCs were incorporated into the deep plume in addition to oil. According to 

Reddy et al. (2012), the blowout flow had a gas/oil ratio (GOR) of 1,600 (GOR, defined as the standard 

cubic feet of gas per petroleum barrel at 15.6 °C and 1 bar). In water samples collected within the deep 

plume with isobaric gas-tight samplers at 1100 m depth on June 21st 2010, the most abundant HCs larger 

than C1-C5 were benzene, toluene, ethylbenzene, and total xylenes (BTEX ≤78 µg/L) and the total 

amount of C1-C5 HCs released to the water column was estimated to equal 1.7 x 1011 g (170,000 tons). 

The plume was preferentially enriched with water-soluble components, indicating that aqueous dissolution 

played a major role in the deep plume formation, whereas the fates of relatively insoluble petroleum 

components were initially controlled by other processes. The distribution of HCs in deep waters within 45 

km of the wellhead was estimated with certified HC data acquired from NOAA and BP to confirm the 

existence of the deep-water plume (at 1200 m depth) (Spier et al., 2013). HC contaminants were dispersed 

over a wider area than previously thought and dissolved benzene was found at potentially toxic 

concentrations outside of the areas previously reported to contain HCs. The authors suggested that an 

increase in less water soluble hydrocarbons in the deep waters most likely was associated with the 

application of dispersants at the leaking wellhead. According to Ryerson et al. (2012), the HCs in the 
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visible oil slicks may have represented only 15% of the total gas and oil released. Although readily-

soluble HCs made up about 25% of the leaking mixture by mass, subsurface chemical data showed that 

these compounds made up about 69% of the deep plume mass. Only about 31% of the deep plume mass 

was initially transported in the form of trapped oil droplets (Ryerson et al., 2012). Petroleum HCs in 

surface waters of the LA continental shelf were studied by Liu et al. (2014). Concentrations of total 

dissolved n-alkanes (C9–C35) were more than one order of magnitude higher in May 2010 than in August 

2010 and May 2011. Further, PAH concentrations in suspended particles were five times higher on 

average in May 2010 than in May 2011. Application of a biomarker ratio of 17α(H),21β(H)-30-norhopane 

over 17α(H),21β(H)-hopane confirmed that suspended particles from at least two stations were 

contaminated by the DWH spill in May 2010, but bulk chemical properties of the seawater, such as 

particulate and dissolved organic carbon (POC and DOC), were not altered by the DWH oil spill when 

compared against their natural variability.  

Of the 7,000 m3 of oil-dispersing agents used during the DWH response, about 40% were added at the 

wellhead on the ocean floor. This unprecedented procedure was controversial as it created an array of new 

unknowns regarding the fate and possible effects of the released oil. The US-EPA has established the 

aquatic life benchmark of DOSS (the main dispersant agent) to be 40 µg/L, meaning that concentrations 

below this reference value are not expected to harm aquatic life. Kujawinski et al. (2011) found DOSS 

sequestered in HC plumes at 1000-1200 m water depth. Based on analyses of water samples obtained up 

to 300 km away from the wellhead, and up to 64 days after dispersant applications ceased, they suggested 

that dilution (and not biodegradation) was the primary process affecting DOSS concentrations in the deep 

plume waters. Gray et al. (2014) measured concentrations of DOSS in seawater samples from various 

depths in NGOM during the spill. Concentrations exceeding 200 µg/L were observed in only one surface 

water sample near the well site where dispersant was being applied continuously. In subsurface samples, 

DOSS did not exceed the 40 µg/L benchmark. How the added Corexit dispersants affected the subsea-to-

surface oil partitioning was investigated by Paris et al. (2012) with a coupled hydrodynamic and stochastic 

buoyant particle-tracking model. They suggested that the main effect of dispersants was to shift the oil 

plume slightly deeper, with only marginal effects on the amount of oil that surfaced. This conclusion was 

challenged by Adams et al. (2013), who stated that the predictions were based on unrealistically small 

droplet sizes for untreated oil. Aman and Paris (2013) responded and agreed that the droplet size was a 

significant unknown variable in the estimate of oil transport.  

About 60% of the dispersants were sprayed at the surface to break up oil slicks and entrain oil into the 

upper part of the water column. The cumulative ocean surface over which dispersant was applied was only 

about 0.06 percent of the cumulative area where detectable surface oiling was observed (305 versus 
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475,000 square-miles/days) (DWH-NRDA, 2015). Chemically-dispersed surface oil will, depending on 

wave turbulence, be diluted to concentrations typically < 100 mg/L in the top 1 m of the water column. In 

less than 24 h, it will be further diluted to concentrations <10 mg/L in the top 10 m of the water column, 

before biodegradation further reduces the oil concentration to < 1 mg/L within weeks (Lee et al., 2013). 

Gong et al. (2014) reviewed the mechanisms by which oil, dispersed oil, and sediment particles interact. 

They emphasized factors controlling the fate, transport and remediation of oil spills, including sediment 

particle size, concentrations of oil and waterborne organic matter, oil properties, and water salinity. Key 

research needs were identified for data to support the evaluation of fate and impacts of oil spills and to 

develop effective remediation strategies, including research on sorption and desorption of oil droplets by 

sediment particles, and how dispersants affect these processes and the formation of aggregates of oil and 

suspended particulate material. The study of White et al. (2014) indicated that the DOSS component of 

dispersants applied to surface slicks and to subsurface oil was considerably more persistent than initially 

thought, when it was associated with weathered oil. They found DOSS in variable quantities in flocculent 

materials and surface sediments from deepwater sites 6 months after the spill and also in oily materials 

washed up on NGOM beaches up to several years after the spill. To assess the effectiveness of surface-

applied dispersants, Bejarano et al. (2013) measured the concentrations of petroleum HCs and components 

of Corexit (dipropylene glycol n-butyl ether, DPnB) in seawater at 1 and 10 m depths at sites with no oil 

slicks, and under oil slicks before and shortly after dispersant application. Ratios of chemically-dispersed 

versus naturally-dispersed samples regarding sums of all PAH (total PAH; TPAH) or sums of all 

petroleum HCs (TPH) provided a quantitative measure of dispersant effectiveness. "Effective" and "very 

effective" applications displayed ratios up to 35 and 64, respectively, at 1 m depth. In two "effective" 

samples, TPHs and TPAHs exceeded acute toxicity benchmarks (0.81 mg/L and 8 µg/L, respectively), 

while none exceeded the chronic value (1,000 µg/L) for DPnB. The paper presented a tiered approach to 

monitoring consisting of Tier I - visual observation, Tier II - in situ fluorometry monitoring at 1 m depth, 

and Tier III - in situ fluorometry monitoring at 1 and 10 m depths with collection of samples for chemical 

analyses. 

Crude oil on the sea surface spreads initially under the influence of gravity and surface tension to form 

slicks with an average thickness of less than 1 mm (and often as low as 0.1 mm) (Lee et al., 2013). 

Subsequently, the slick-thickness will either decrease or increase depending on characteristics of the oil, 

the influence of surface factors (wind, waves, currents, temperature, salinity, etc.) and spill response 

actions. In situ burning, widely used in the DWH response, requires thick slicks (e.g., collected by means 

of oil booms). About 250,000 barrels of floating oil were consumed during 411 separate burn events 

(DWH-NRDA, 2015). Detection of high molecular weight pyrogenic PAHs in sediment trap samples 

suggested that air-borne soot particles re-deposited to the Gulf surface and sank to the sea floor, together 
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with residues of unburned surface oil. Approximately 4% of the combusted material was released into the 

atmosphere as black carbon (Perring et al., 2011), and considerable amounts of polychlorinated dibenzo 

dioxins and furans were formed in these oil burns (Aurell and Gullett, 2010). There are few studies of the 

environmental impacts of the in situ burning, but a small number of studies addressed issues of air quality 

and human health, e.g., Middlebrook et al. (2012) and Jaligama et al. (2015).  

The long range movement of oil slicks during the spill was primarily controlled by surface currents that 

depended on oceanic circulation. The dominant circulation features of NGOM include the Loop Current 

(LC) and clockwise running Loop Current Rings (LCRs) which are large eddies shed by the LCs, and 

numerous smaller cyclonic eddies that tend to form along the LC and LCR frontal boundaries. A study of 

Smith et al. (2014b) used in situ and satellite observation data to model the oceanic circulation pattern 

occurring in the northern and eastern gulf area during April to July 2010. A particularly large LCR was in 

place during this period which acted as a partial physical barrier between the NGOM and further 

downstream areas, such as the coast and shelf of FL. Garcia-Pineda et al. (2013) made use of Synthetic 

Aperture Radar (SAR) images and a Texture Classifier Neural Network Algorithm (TCNNA) for 

estimating oil layer thickness during the DWH spill. TCNNA outputs were used to develop an oil 

emulsion detection algorithm to enhance the contrast of pixels within the oil slick and to identify areas 

with thick, emulsified oil. Based on the good experience from the DWH spill, Caruso et al. (2013) 

suggested that SAR should be used more in direct spill response activities and to optimize available 

response resources. Several studies have used fluorescence excitation-emission matrix spectra and parallel 

factor analysis techniques (EEM-PARAFAC) for detecting oil degradation products in deep-water or 

surface-water samples from NGOM (Bianchi et al., 2014; Mendoza et al., 2013; Zhou et al., 2013a; Zhou 

et al., 2013b). The technique can detect oil derivatives which are transformed into the dissolved organic 

matter (DOM) pool, no longer recognizable as oil or oil derivatives by traditional HC analyses. In areas 

affected by the DWH deep plume, an oil-related fluorescence signature in the DOM pool was measureable 

up to 2 years after the oil spill. Maltrud et al. (2010) used ocean modeling and tracer transport simulations 

to investigate the possible long-term fate of the released oil. They concluded that oil-polluted waters from 

the DWH oil spill would be transported at relatively low (below detectable) concentrations over a 

significant part of the North-West Atlantic Ocean. Boufadel et al. (2014) simulated the transport and 

landfall of DWH oil by using satellite-observation data and NOAA models. In the period after the 

wellhead was capped the disappearance rate of oil from the surface was around 20% per day. The mass of 

oil that reached the shorelines was estimated to be 10,000 to 30,000 tons, with an expected value of 

22,000 tons, or approximately 4% of the total released. 
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Role of HC degrading microbes in oceanic waters 

Biodegradation of oil spills by marine bacteria is a complex and multistep process affected by numerous 

factors related to the oil itself and the environment. Marine bacteria capable of biodegradation of oil and 

gas HCs provided a key ecosystem service following the DWH disaster and >100 research papers have 

addressed this issue; for reviews, see Kimes et al. (2014), Joye et al. (2014) and King et al. (2015). Central 

research questions were: How to characterize the bacterial community response? and Which species were 

most important?  

Dubinsky et al. (2013) demonstrated that multiple hydrocarbon-degrading bacteria operated 

simultaneously throughout the spill, but their relative importance was controlled by changes in 

hydrocarbon supply. For example, Oceanospirillales, later referred to as Oceaniserpentilla, and 

Pseudomonas were dominant in the early phase of the spill when n-alkanes and cycloalkanes levels were 

particularly high. Colwellia, Cycloclasticus, and Pseudoalteromonas increased in dominance later when 

petroleum hydrocarbons decreased and aromatic hydrocarbons increased. These microbial community 

shifts in the deep plume were corroborated by Kleindienst et al. (2015a). Others have suggested that the 

cold water proteobacteria group Colwellia sp. was among the most important, if not the most important, 

indigenous oil-degrading group in deep-water following the spill (Bælum et al., 2012; Mason et al., 2014a; 

Redmond and Valentine, 2012). The study by Mason et al. (2014a) supported the theory suggested by 

Dubinsky et al. (2013), that the dominating non-gaseous, n-alkanes and cycloalkanes in the early phase 

were degraded mainly by Oceanospirillales, whereas the gaseous, simple aromatic HCs dominating in 

later phases were degraded mainly by Colwellia. As well, gamma-proteobacteria closely related to known 

petroleum degraders bloomed in the cold waters of the deep plume, leading to increased HC 

biodegradation rates and a half-life of oil in the range of 1.2-6.1 days (Hazen et al., 2010).  

According to Valentine et al. (2010) volatile HC gases, such as propane and ethane, were key drivers of 

the microbial response and HC respiration in the deep plumes. They suggested that propane and ethane 

trapped in deep waters may have accounted for up to 70% of the observed oxygen consumption in the 

fresh plumes, and that respiration by low-diversity bacterial communities ‘primed’ the HC-degrading 

bacterial populations in aging plumes. Although the gas-rich deep-water plumes were a short-lived 

feature, methane concentrations in the water column remained above background in NGOM waters 

throughout 2010. Microbial methane oxidation in the deep-water plumes peaked with record high rates, 

5,900 nmol/L per day, in May and early June 2010, coincident with a rapid rise in the abundance of 

methane-oxidizing microbes (Crespo-Medina et al., 2014). Subsequently, in late June, the methane 

oxidation rate fell to < 50 nmol/L per day, despite the persistence of methane in the water column, and it 

continued to decline during the rest of the year. The authors suggest the precipitous drop in methane 
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degradation in June was a caused by depletion of essential nutrients limiting the activity of the methane-

oxidizing bacteria.  

Biodegradation processes also included degradation of transformation byproducts and exopolymeric 

substances that were produced by microbes to emulsify HCs and facilitate access to the oil. Ziervogel and 

Arnosti (2014) measured enzymatic hydrolysis of carbohydrates and peptides in water samples obtained 

from within and outside of the deep plume (6 stations 0.9-17.3 km from the well, 900-1240 m depth, May 

30-June 05, 2010). They proposed that exopolymeric substances and other transformation byproducts in 

the deep-water plume may have enhanced heterotrophic bacterial metabolism. A higher peptidase activity 

and enzymatic hydrolysis of carbohydrates inside compared to outside the oil spill plume indicated that 

microbial communities associated with the deep-water plume were primed to degrade a selected range of 

specific high molecular weight substrates. Gutierrez et al. (2013) investigated the role of amphiphilic 

exopolysaccharides produced by indigenous Halomonas bacteria in the fate of the DWH oil. Microbial 

samples were collected from oil-contaminated surface waters during the active spill phase. Halomonas 

exopolysaccharides produced by strain TG39 effectively increased the solubilization of aromatic HCs and 

enhanced their biodegradation, thus contributing to the removal of the oil and to the formation of oil 

aggregates. The data provided unequivocal evidence of the HC-degrading qualities of some of the 

dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete 

understanding of their role in the fate of spilled oil. 

Nutrient shortage is a normal limiting factor for microbial growth. Edwards et al. (2011) suggested that 

microbial growth in oil-contaminated surface waters of the NGOM was limited by a shortage of dissolved 

nutrients, in particular phosphate, because bacterial cell numbers and biomass increased rapidly when 

incubation mixtures were amended with nutrients. Atlas & Hazen (2011) highlighted the benefit of adding 

fertilizers containing nitrogen to stimulate oil biodegradation, especially on shorelines. Similarly, a review 

by Ron and Rosenberg (2014) identified nitrogen and phosphorous as the main rate-limiting factors for oil 

degradation in the sea. They suggested using uric acid as a fertilizer for enhancing oil bioremediation at 

sea because it is the major nitrogen waste product of many animal species, has low solubility in water, and 

adheres to hydrocarbons. Nutrient depletion may also be a proxy for growth of oil-degrading microbes. 

Shiller and Joung (2012) correlated nitrate, phosphate and oxygen depletion in the DWH deep plume. A 

substantial portion of HCs in the deep plume was converted to biomass (0.8 - 2 x 1010 mol C), whereas in 

surface waters the growth of oil degraders was nutrient-limited. This indicates a need to monitor changes 

in nutrients and nutrient recycling in future spills. 

Oxygen depletion and the development of large anoxic dead zones within NGOM due to the microbial 

degradation of hydrocarbons were considered as a possible scenario in the early phase of the DWH spill. 
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Fortunately, this worst-case scenario of total anoxia did not occur although several studies demonstrated 

that HC biodegradation consumed massive amounts of oxygen and caused a persistent oxygen anomaly in 

deep gulf waters, e.g., (Dubinsky et al., 2013; Kessler et al., 2011; Valentine et al., 2010). According to 

Kessler et al. (2011) an estimated 3.0 - 3.9 x 1010 moles of oxygen were respired in deep waters, primarily 

by methanotrophic bacteria during 120 days following the onset of the spill. Most of the released methane 

was removed, but a persistent oxygen anomaly remained along with a residual microbial community 

dominated by methanotrophs. However, Joye et al. (2011) disagreed, stating that there was too much 

uncertainty in the work to support this conclusion.  

Formation of oil-rich aggregates, or flocs, is an important fate of spilled oil, involving complex 

interactions among bacteria, phytoplankton, and zooplankton. The flocculent materials may stay 

suspended within the surface water or precipitate to the seabed as marine oil ‘snow’. Arnosti et al. (2014) 

demonstrated that laboratory-generated oil aggregates were hotspots for a complex microbial petroleum 

degradation activity. An intense formation of aggregates was observed in the upper water column early in 

the DWH spill as the precursors to a massive pulse of oil-derived materials that settled to the sediments 

near the wellhead in the weeks following the accident. This substantial sedimentation of marine snow and 

the subsequent enhanced respiration of organic carbon, caused reducing conditions in the upper sediment 

layers over a large area of NGOM, as indicated by changes in redox sensitive metals (Mn, Re and Cd) 

(Hastings et al., 2014). To characterize the marine snow formation process Passow et al. (2012) conducted 

roller table experiments with plume water. They found that oil-rich marine snow was formed through a 

complex interaction of three mechanisms: (1) production of mucous webs through activities of bacterial 

oil-degraders associated with floating oil; (2) production of oily particulate matter through coagulation of 

oil with suspended matter; and (3) coagulation of phytoplankton with oil droplets incorporated into 

aggregates. Ziervogel et al. (2012) found that microbial activities and dissolved organic matter dynamics 

in oil-contaminated seawater were greatly affected by activities of microbes associated with macroscopic 

oil aggregates. The aggregates mediated transfer of HCs from the surface to the deep sea by two distinct 

mechanisms, (a) a microbially-driven flux of oil-derived DOC from sinking oil aggregates, and (b) a rapid 

sedimentation of the oil aggregates themselves, which were vehicles that transported oily particulate 

matter and oil aggregate-associated microbial communities. A subsequent study by Ziervogel et al. 

(2014b) found only a moderate stimulation of microbial metabolic rates in sediments affected by the oil-

aggregate fallout during DWH, and no consistent increase of microbial activities and secondary biomass 

production. In contrast, Mason et al. (2014b) demonstrated that indigenous bacteria in deep-water 

sediments contributed significantly to degradation of linear alkanes and simple aromatics in the fallout, 

but that PAHs were persistent. 



Environmental effects of the Deepwater Horizon oil spill 

10 

 

Cold seeps that leak oil or gas are common in NGOM, and research studies have shown that seawater 

from areas with much seepage activity has an increased abundance of indigenous oil degrading bacteria, 

e.g., (Hazen et al., 2010; Smith et al., 2014a). Ziervogel et al. (2014a) sampled surface water from the 

Green Canyon area for a roller tank experiment to test whether oil slick residues originating from natural 

oil and gas seeps facilitated the formation of marine snow. Samples with natural background oil 

contamination displayed a temporal shift of microbial cycling of organic matter which possibly affects 

food web interactions and carbon cycling in such areas. Rivers et al. (2013) measured microbial 

community responses in water samples collected at two stations 6-8 km downcurrent of the DWH well in 

late May/early June 2010, both inside and below the deepwater plume. The response was profoundly 

influenced by petroleum contamination, even in samples where the plume signals were non-detectable 

with in situ instrumentation. The authors pointed to the influence of natural seeps in the area to explain the 

observed response, as some of the bloom-forming taxa were present even one month before the DWH 

accident. Hawley et al. (2013) investigated natural oil-degrading bacteria communities present in crude oil 

samples collected from natural seeps in the Santa Barbara Channel offshore Southern California. The 

dominant bacteria were primarily from chemolithoautotrophic bacteria classes, in contrast to the oil 

degrading bacteria blooming in the DWH oil spill plume which were dominated by Oceanospirillales, a 

bacterial order belonging to the Deltaproteobacteria. This difference might be explained by anoxic 

conditions at the SBC oil seep, while the DWH oil plume was oxic. Also Mason et al. (2012) investigated 

the functional role of Oceanospirillales bacteria and other active members of the indigenous microbial 

community in the DWH deep plume, using deep sequencing of bacterial community DNA and RNA, as 

well as single-cell genomics. Genes for motility, chemotaxis and aliphatic HC degradation were 

significantly enriched and expressed in the HC plume samples compared to samples of uncontaminated 

seawater at the same depth. The data indicate a rapid response of Oceanospirillales to aliphatic HCs in the 

deep sea plume in the early phase of the oil spill. 

Oceanic mixing and circulation  processes in NGOM were important cofactors to the microbial oil-

degradation. Valentine et al. (2012) used a new coupled physical-metabolic model to assess the effect of 

physical mixing processes on marine bacterial communities and their capacity for HC degradation and 

oxygen consumption. Biodegradation patterns were well-described by exponential growth of bacteria from 

seed populations naturally present at low abundance. It is likely that oceanic mixing processes played a 

key role in distributing HCs and associated bacterial blooms within the northeast Gulf waters. The oceanic 

mixing processes also accelerated HC degradation through an autoinoculation effect. As a consequence, 

HC-degrading bacteria persisted at a higher abundance in waters that previously had been blooming and 

that later re-circulated to the spill site, feeding successive bacterial blooms, highlighting the effects of 
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mixing and circulation processes on biodegradation of oil during spills and suggesting an important role 

for mixing in the microbial ecology of deep ocean environments. 

How did the application of dispersants modulate the response of oil degrading microbes in deep water and 

surface water? This problem has been studied most frequently with laboratory mesocosms. According to 

Chakraborty et al. (2012) added dispersants were not toxic to indigenous oceanic microbes at the 

concentrations used, and different bacterial species isolated in the aftermath of the spill were able to 

degrade the HCs as well as glycols and DOSS components of the Corexit dispersant. Du and Kessler 

(2012) found that HC consumption rates were positive correlated with the addition of dispersants at the 

wellhead. The peak in HC respiration occurred around mid-July 2010 when dispersant use was most 

intense, indicating that the addition of dispersants at the wellhead contributed to make conditions (small 

oil droplets) that accelerated HC respiration. Also Prince et al. (2013) reported that Corexit dispersants 

accelerated the biodegradation of a lightly weathered Alaska North Slope crude oil, reducing the HC half-

life in the degradation setup from 13.8 to 11 days. Brakstad et al. (2014) found that biodegradation of n-

alkanes was significantly faster in chemically-dispersed MC252 oil than in physically-dispersed oil; no 

such effect was observed for 3- and 4-ring PAHs. They also measured higher cell densities of oil-

degrading bacteria in the chemically-dispersed mixtures. The biodegradability of dispersant (Corexit 

9500) and dispersed oil differed between bacteria cultures isolated from deep/cold water and from warm 

water (Campo et al., 2013). Warm-water bacteria rapidly and completely degraded DOSS, alkanes, and 

aromatics, whereas the cold water culture metabolized the same compounds only after a lag of 28 d and 

with residuals consisting of iso-alkanes, n-C30-35, and 4-ring PAHs. In a microcosm study, Kleindienst et 

al. (2015b) found suppressive effects of dispersants on certain deepwater oil biodegraders (Marinobacter), 

but that study was recently challenged by Lewis (2015) for using dispersant concentrations approximately 

2,500-4,500 times higher than the maximum measured in the plume at the DWH incident.  

Role of sunlight on fate of surface oil 

Photochemical degradation of oil constituents, such as PAHs, in thin surface films exposed to sunlight 

represents an important fate process for marine oil spills. Sunlight irradiation of weathered oil mixtures 

degrades large, aromatic HC molecules and generates oxidized species that are more water soluble than 

the parent compounds. The studies by Ray et al. (2014) and Radović et al. (2014) investigated the 

complex formation of oxygenated transformation products when WAFs of oil are exposed to sunlight. Ray 

& Tarr (2014) further studied the key role of hydroxyl radical production in the oil photodegradation 

process and how the adding of TiO2 photocatalysts can speed up oil degradation. Oil photodegradation and 

its enhancement by TiO2 photocatalysts was also investigated by Brame et al. (2013) who used food-grade 

TiO2 to accelerate HC degradation in the laboratory. Similarly, King et al. (2014) found that PAHs were 
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readily photodegraded whereas larger n-alkanes were generally resistant to photodegradation. Sunlight 

irradiation of oil in surface thin films facilitated biodegradation of weathered mixtures but also increased 

the toxicity of seawater in contact with the oil, as measured by the MicrotoxTM test, presumably due to the 

increased release of toxic, water-soluble photoproducts of the PAH (King et al., 2014). In contrast, DOSS 

was resistant to direct photolysis by normal sunlight alone, but that presence of hydroxyl radicals in 

seawater significantly increased UV based hydrolysis and degradation of DOSS, apparently by 

photosensitization (Batchu et al., 2014; Glover et al., 2014).  

Chemical fingerprinting of DWH oil spill 

Chemical fingerprinting uses the chemical signatures of a crude oil or its degradation products to track the 

origin of a spill. With time, spilled oil is modified by weathering processes such as evaporation, 

dissolution, biodegradation and photo-oxidation, leading to a decreased proportion of labile constituents 

and an increased proportion of recalcitrant substances in the residual oil. Diverse chemical classes that are 

commonly found in petroleum mixtures but that vary considerably in their relative concentrations among 

different oils may be used for fingerprinting; such as hopanoids, tricyclic or tetracyclic steranes, long-

chain alkylbenzenes and alkyltoluenes. Mulabagal et al. (2013) used GC/MS methods for fingerprinting 

hopanes and steranes in weathered tar balls collected from AL’s beaches during June 2010 to 2012. A 

characteristic pattern of hopane and steranes linked all these tar balls to the DWH oil spill. Aeppli et al. 

(2012) and White et al. (2012a)  used comprehensive two-dimensional GC analyses (GC×GC-FID and 

GC×GC-MS) for chemical fingerprinting of various sample materials as these techniques provide 

improved resolution and quantification and therefore better fingerprinting of oil-derived chemical 

signatures. Valentine et al. (2014) studied publicly available data of 17α(H),21β(H)-hopane (i.e., C-30-

hopane), a conservative marker of oil contamination, in sediments collected from more than 500 different 

locations in NGOM. Over a wide area, sediments at great depths were indeed oil-contaminated, and the 

distribution of C-30 hopane was consistent with DWH spill as the source. They described the 

contamination footprint as a massive “bathtub ring” which was formed by oil-rich water in the deep plume 

at 900–1,300 m depth impinging laterally upon the continental slope and by a “fallout plume” of 

suspended oil particles sinking to the seafloor at depths of 1,300–1,700 m.  

Aeppli et al. (2014) analyzed hopanoids, steranes, and triaromatic steroids in oiled seawater and in 

shoreline samples that had been subjected to different degrees of weathering for up to 28 months after the 

spill. Hopanoids with up to 31 carbons, steranes and diasteranes were the most persistent fingerprinting 

markers that revealed the DWH spill as the source. In coastal samples, Hall et al. (2013) characterized the 

oxygenated hydrocarbons (OxHCs) formed during the weathering of Macondo oil. These heavily 

weathered products likely originated from saturated HCs and not from aromatic HCs, and represented an 



Environmental effects of the Deepwater Horizon oil spill 

13 

 

underreported class of persistent oil spill contaminants. Liu et al. (2012) compared the chemical profiles of 

petroleum HCs and elements detected in sediments close to the Macondo wellhead and in samples of oil 

mousse collected from the sea surface and from salt marshes oiled by the DWH spill. The patterns found 

in the different sample matrices were consistent with the projected movement of oil from the accident site 

to coastal salt marshes. Oil deposited in sediments was only lightly to moderately degraded one year after 

the spill. In sediments downstream of the well there was a statistically significant increase in Ni, Cr, and 

Pb concentrations three months after the oil spill, but one year later, concentrations had decreased 

significantly, close to pre-spill conditions (Steffy et al., 2013). The study indicated that differences in Ni 

concentrations and V–Ni ratios were effective means for monitoring contamination from the spill.  

2.2 Contamination and effects of the DWH spill on offshore organisms and ecosystems 

Uptake and effects in oceanic microbiota and plankton 

Oil exposure conditions in the field are often simulated in the laboratory by subjecting test organisms to 

specific concentrations of a water accommodated fraction (WAF) of petroleum mixtures for specific time 

periods. A WAF can be defined as a dispersed and diluted mixture of the oil in seawater without visible 

floating or droplet oil. WAFs can be created by high energy mixing (i.e. high-energy WAFs, HEWAFs, 

physically or mechanically dispersed oil), or by adding oil-dispersing agents to the oil during mixing with 

water (i.e. chemically-enhanced WAFs, CEWAFs, chemically-dispersed oil). The possibility that 

contaminants from the DWH spill could accumulate in marine food webs and seafood led to periodic 

closures of commercial fishing areas, sometimes comprising more than 30% of the total in the NGOM. 

Web-based tools for assessing the economic impacts of the DWH spill on fish resources demonstrated that 

a significant profit loss in NGOM fisheries was caused by the closures (Chakrabarty et al., 2012; Sumaila 

et al., 2012). There was early evidence that oil-derived carbon indeed entered the planktonic sections of 

the marine food web (Graham et al., 2010). Near Mobile Bay, AL, a depletion of the stable carbon isotope 

δ13C in two size classes of plankton coincided with the arrival of surface oil slicks in the area. The stable 

carbon isotope δ13C was depleted in petroleum HCs in comparison to recent photosynthetically-derived 

carbon, a finding corroborated by Chanton et al. (2012). The ratio between δ13C and the unstable isotope 

Δ14C in plankton mixtures and in dissolved inorganic carbon (DIC) of water samples decreased within 100 

km of the spill site and in surface water from coastal and offshore sites. Δ14C was depleted in plankton 

relative to DIC in the region down-current of the spill site, and there was a significant linear correlation 

between Δ14C and δ13C in plankton samples. Both findings were consistent with the hypothesis that carbon 

released from the DWH spill contributed to the offshore planktonic food web, and Chanton et al. inferred 

that the methane component of the spill was an especially important source of petrogenic carbon. 

Petrogenic carbon possibly entered the marine planktonic food web through small particles indicative of 
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methanotrophy (Cherrier et al., 2014), while PAHs from the DWH spill entered the NGOM food web via 

planktonic meso-zooplankton (Mitra et al., 2012). 

Chemical dispersion of surface oil during the spill led to questions of how plankton (bacteria, 

phytoplankton, zooplankton) would respond to dispersed oil in comparison to undispersed oil. Tests with 

three microbial bioassays demonstrated that genotoxic and mutagenic effects of contaminants from the 

DWH oil spill were traceable in seawater and sediments, even far downstream in the NGOM and for at 

least 1.5 years after the blowout (Paul et al., 2013). However, Prince and Parkerton (2014) claimed that 

these conclusions were not supported by objective data, and that the study provided little evidence of 

toxicity gradients or a realistic underlying causality. For an alternative weathered oil, Alaska North Slope 

crude, environmentally-realistic concentrations of CEWAF dispersed with Corexit 9500A were toxic to 

the ammonia-oxidizing bacterium Nitrosomonas europaea, whereas dispersant-alone and WAF-alone 

were not toxic (Radniecki et al., 2013). Ortmann et al. (2012) showed that chemical dispersant or CEWAF 

added to mesocosms increased the biomass of heterotrophic prokaryotes and inhibited ciliates indicating 

that dispersion of DWH oil may have caused a reduction in transfer of carbon by grazers to higher trophic 

levels on the AL shelf. Autotrophs were also sensitive to dispersants. Chemical dispersion of two oils with 

different degrees of weathering (fresh crude and tar mat oil) increased growth inhibition of phytoplankton 

in lab tests (Garr et al., 2014). Judson et al. (2010) compared the toxicity and endocrine effect of eight 

different oil dispersants. Bioassays with mammalian cells in culture showed that most dispersants (6 of 8) 

were of equivalent cytotoxicity (median LC50s about 100 mg/L) whereas two were about 10 times less 

cytotoxic. No androgenicity was found, although two of eight dispersants showed faint signs of 

estrogenicity; neither were Corexit. It should be noted that dispersants during DWH response operations 

were only applied offshore and not in coastal or nearshore operations. 

DWH oil may have also affected phytoplankton at the community level. Hu et al. (2011) combined 

satellite measurements with numerical circulation models and other environmental data to assess 

phytoplankton production. A chlorophyll a anomaly was observed within an area exceeding 11,000 km2 in 

the north-east GOM during August 2010 (3 weeks after well capping), although the estimate is considered 

as uncertain. Gilde and Pinckey (2012) used in situ microcosms exposed to crude oils to demonstrate that 

low oil concentrations could reduce biomass production and alter phytoplankton community composition 

with possible cascading effects. Similarly, three different microcosm experiments demonstrated that 

dispersant significantly increased the toxicity of crude oil to phytoplankton communities (Ozhan and 

Bargu, 2014). Ten-day exposures decreased the abundance of sensitive species and increased the 

abundance of more resistant species, particularly under nutrient-limited conditions, highlighting the 
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possibility that different nutrient regimes play a major role in determining shifts in phytoplankton 

community structure in response to crude oil and dispersant exposure.  

Faksness et al. (2015) prepared WAFs of Macondo source and field-collected oil and tested their toxicity 

to the algae Skeletonema costatum and the herbivorous copepod Acartia tonsa. The source oils contained a 

large fraction of soluble and bioavailable components such as BTEX and naphthalene, whereas these 

components were depleted in surface-collected oils. The acute toxicity expressed as percent lethality (A. 

tonsa) and growth inhibition (S. costatum) in undiluted WAF decreased with an increasing degree of 

weathering, and the copepods were more sensitive to water soluble HC than the algae. Effect assessments 

in marine micro- and meso-zooplankton are particularly important for understanding higher-level 

ecosystem impacts of oil spills. The mini-review of Abbriano et al. (2011) discussed this issue based on a 

few of the earliest studies of effects on plankton after the DWH spill. Carassou et al. (2014) studied 

mesozooplankton data from a long-term plankton survey off the coast of AL, and found evidence of a 

significant but short-term impact of the oil on zooplankton assemblages. While some taxa decreased in 

density, others increased. An increased production of zooplankton in response to oil stimulation of 

microbial activity, or the removal of the top-down control caused by fishing closures, may have initiated a 

cascade of indirect effects. In a series of articles, Almeda and others addressed the effects of DWH WAF 

and CEWAF on different size classes of oceanic zooplankton, including microzooplankton (Almeda et al., 

2014b), mesozooplankton (Almeda et al., 2013b), copepods (Almeda et al., 2014a; Cohen et al., 2014), 

and large gelatinous zooplankton species (Almeda et al., 2013a). Small ciliates and copepods were 

particularly sensitive. For copepods, exposure to crude oil alone reduced egg production rates, fecal pellet 

production rates, and egg hatching, but CEWAF was more toxic than WAF. Studies with larger gelatinous 

zooplankton such as scyphozoans and ctenophores indicated that some of these much larger species were 

sensitive to bioaccumulation and effects (Almeda et al., 2013a). Gelatinous zooplankton may act as 

vehicles for contaminant transfer up the food web to apex predators such as turtles. There is still 

insufficient evidence of the extent to which oil was transferred to the next trophic level, and how 

dispersants influenced the degree of impacts on zooplankton under field conditions. 

By using mesocosm experiments and aerial surveys, Powers et al. (2013) examined the effects of DWH 

oil on Sargassum brown algae communities in the pelagic zone (“pelagic”: neither close to the bottom nor 

near the shore). Floating Sargassum provides a key oceanic habitat and supports a diverse assemblage of 

marine turtles, fish and invertebrates. Following dispersant-only and CEWAF treatments, they observed 

that Sargassum sank from the surface within 24–48 hours of treatment, suggesting that dispersed oil 

affects the Sargassum buoyancy. In contrast, Sargassum exposed to oil-only did not sink for most of the 
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experiment. Aerial surveys in 2010, 2011, and 2012 indicated oil exposure of Sargassum mats, but 

interpretation of these observations was hampered by a lack of pre-spill baseline data.  

Deep sea benthos and corals 

A large fraction of the DWH oil reached the seafloor via a massive sedimentation-pulse of oil aggregates 

(oil snow) that continued until late summer 2010 (Passow et al., 2012; Ziervogel et al., 2014b). This ‘dirty 

blizzard’ posed a risk for benthic fauna. Chanton et al. (2014) used an inverse isotopic approach to 

estimate the amount of oil that actually reached the seabed. Radiocarbon measurements of surface 

sediments in a 2.4 × 1010 m2 deep-water region surrounding the well indicated deposition of 1.6 to 2.6 × 

1010 grams of oil-derived carbon (1.6 to 2.6 g/ m2). This quantity approximated 0.5-9.1% of the released 

petroleum HCs, with a best estimate of 3.0−4.9%, although the authors noted that this estimate was 

probably conservative. Similar estimates using hopane as a tracer were 1.8 to 14.4% of the total oil 

deposited in the seabed (Valentine et al., 2014).  

Impacts of oil snow were investigated in different categories of benthic communities inhabiting soft 

bottom sediments in the vicinity of the DWH well, included meio- and macrofauna (Landers et al., 2014; 

Montagna et al., 2013; Wei et al., 2012), megafauna (Felder et al., 2014; Valentine and Benfield, 2013), 

seaweeds (Felder et al., 2014) and deep-water corals (Fisher et al., 2014a; Fisher et al., 2014b; Hsing et 

al., 2013; Prouty et al., 2014; White et al., 2012a). The sedimentation pulse of organic-rich material 

changed sediment redox conditions, with a subsequent change in profiles of the redox-sensitive metals 

manganese, rhenium and cadmium (Hastings et al., 2014). The density of benthic foraminifera decreased 

at the same depth intervals as changes in reducing conditions, suggesting that changes in redox had 

consequences for biota. Schwing et al. (2015) reported elevated PAH concentrations associated with 

freshly-deposited flocculent material and a large die-off (80-93% density reduction) of benthic 

foraminifera northeast of the wellhead on the continental slope. Persistent reducing conditions (up to 10 

months after the event) in the sediment surface were suggested as a possible cause of the decline.  

Diversity indices of soft sediment fauna are widely used to indicate environmental quality at offshore oil 

fields. Wei et al. (2012) constructed a composite database from six surveys between 1983 and 2003 and 

mapped the distribution of macrofaunal biomass in the deep NGOM. The database included stock 

assessments and biomass predictions from 669 sediment cores obtained from 170 locations and provided 

an important pre-spill baseline. From Sept. to Oct. 2010, Montagna et al. (2013) examined deep-sea 

benthic macro- and meiofauna communities at 68 stations at variable distances from the blowout site and 

found a severe reduction of faunal relative abundance and diversity extending 3 km from the wellhead in 

all directions, covering an area of about 24 km2. Moderate impacts occurred up to 17 km to the southwest 

and 8.5 km to the northeast of the wellhead, comprising an area of 148 km2. The effects were correlated to 
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concentrations of TPH, PAHs, and barium in sediments and distance from the wellhead, but not to the 

distance from natural HC seeps in the area. Given the deep-sea conditions, the authors suggested that 

recovery of the deep-sea soft-bottom habitat and the associated communities may take decades or longer. 

In contrast in 2012, there were no significant correlations between meiofauna densities and sediment 

concentrations of metals and PAH at five more shallow stations at the shelf edge that may have been 

affected by marine snow fallout from the DWH oil spill (Landers et al., 2014). There was also a positive 

microbial response to petroleum enrichment indicated by increased species richness of ciliated protists in 

the nepheloid layer and water column at deepwater sites affected by the spill (Moss et al., 2015). 

Valentine and Benfield (2013) used ROV data to compare benthic communities before and after the DWH 

spill at five study sites within the Mississippi Canyon lease area (an area larger than Mississippi Canyon 

itself). Among the study sites, there were clear differences in the taxonomic composition and abundance 

of benthic megafauna, benthic boundary layer plankton, and fishes. Taxonomic richness and abundances 

were generally lower at the site located to the south, consistent with the reported trajectory of the deep 

plume, which the authors attributed to mortality, emigration, or some unmeasured factor. Similarly, the 

overall lower abundance and diversity at the 500-N site suggested that HC concentrations were 

sufficiently high within 500 m of the well to induce mortality, emigration, or both. The widespread 

presence of carcasses of colonial and pelagic tunicates suggested that the spill affected invertebrate 

assemblages within at least a 2000 m radius of the blowout, and that certain taxa were more resistant; 

while others, e.g., sea pens and glass sponges, were more sensitive.  

Felder et al. (2014) measured the abundance of seaweeds and decapod crustaceans associated with 

rhodoliths on shallow offshore banks in the northwestern GoM after the spill. Six cruises conducted from 

Dec 2010 to Oct 2013 at Ewing and Sackett Banks (55-75 m depth) revealed a decline of seaweeds and a 

reduction of decapod crustacean abundance and diversity. The decline of decapods largely reflected the 

loss of seaweed cover, and a potential cascading effect on direct consumers and animals at higher trophic 

levels. However, the Banks were too shallow and too distant (115-270 km) from the Macondo site to make 

the effects plausible.  

Colonies of deep-water (or cold-water) corals represent key benthic habitats in the deep ocean 

(Demopoulos et al., 2014) and long-living deep-water corals may be used as sentinel species that provide 

a lasting visible record of deleterious impacts that cannot be detected for most deep-living mobile species 

(Fisher et al., 2014a). For example, patchy covering of hydrozoans on dead parts of corals can be used as a 

marker of damaged colonies. The health status of seven known deep-water coral sites within a 25 km 

radius of the Macondo wellhead has been monitored since 2010. Corals at four sites located to the south, 

southwest, southeast, and east of the wellhead showed some degree of injury coincident in time with the 
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DWH spill. Corals initially covered by floc containing DWH oil and dispersant subsequently died or 

sloughed off tissue. Branch loss is still occurring and injured coral branches have been colonized by 

opportunistic hydroids (Fisher et al., 2015; Fisher et al., 2014b; White et al., 2012a, b; White et al., 2014). 

At a site 11 km southwest of the wellhead, corals were covered by a brown flocculent material containing 

hopanoid markers consistent with the DWH oil spill as the source. The corals displayed varying degrees of 

stress, such as tissue loss, sclerite enlargement, excess mucous production and bleached commensal 

ophiuroids (Hsing et al., 2013; White et al., 2012a). At one site located 6 km south of the Macondo 

wellhead, >90% of the corals showed sign of injury (Fisher et al., 2014b). Another coral community, 22 

km southeast of the wellhead at 1,850 to 1,950 m depth was also affected, though to a smaller degree; this 

discovery extended the distance and depth range of the possible impact zone considerably. The possible 

coral impact zone was also expanded by a HC signal in the particulate organic carbon pool of corals at 

nearly all sites within 30 km of the DWH spill site (Prouty et al., 2014). In an experimental setup, DeLeo 

et al. (2015) examined the acute toxicity of oil, WAFs, dispersant, and CEWAFs to three deepwater 

corals, Paramuricea type B3, Callogorgia delta and Leiopathes glaberrim, living at depths between 500 

and 1100 m near the DWH spill site. Treatments including dispersants (dispersant alone and oil-dispersant 

mixture) were significantly more toxic than oil alone.  As deep-water corals are extremely long-lived, the 

death of a colony or a whole coral field represents an irreversible and serious ecological impact. 

Fortunately, most known deep-water coral communities in the NGOM were not apparently injured by the 

spill. 

Pelagic fish 

Following the DWH blowout, there were no documented cases of fish-kills in offshore waters, possibly 

because adult fish could have avoided very contaminated waters, and surface oil was patchy. Many 

fisheries in NGOM were closed intermittently because of the increased potential for oil contamination of 

pelagic seafood species. To complement human sensory panels (e.g., Ylitalo et al. (2012)), seafood safety 

was also monitored by chemical screening (Bencsath et al., 2015; Genualdi et al., 2013; Gratz et al., 

2011). The systematic monitoring in oil affected offshore regions found little evidence for fish seafood 

being significantly contaminated (Ylitalo et al., 2012). In areas less affected by the spill, fishermen-led 

testing of fish fillets (muscle) of seven different reef species demonstrated no notable concentrations of 

PAHs, selected metals, or constituents of dispersant that could be clearly linked to the spill (Fitzgerald and 

Gohlke, 2014). PAHs were detected in just 2 of 92 samples, and the isomer profiles suggested pyrogenic 

rather than petrogenic contamination. While analyzing fish fillets is needed to assess seafood safety, 

hydrocarbon concentrations in muscle (or even liver) are less sensitive markers of oil contamination than 

PAH metabolites in bile of the same fish (Beyer et al., 2010). For example, concentrations up to 470,000 

ng naphthalene equivalents/g bile wet weight were measured in red snapper (Lutjanus campechanus) 
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collected in 2011 along the continental shelf edge north of the Deepwater Horizon site (Murawski et al., 

2014). The array of parent PAHs and alkylated homologs in livers was correlated to the composition of 

DWH oil, but not to other sources of PAH in NGOM. Concentrations of biliary PAH metabolites also 

declined between 2011 and 2012, consistent with a second large survey of biliary PAH metabolites in red 

snapper between 2011 and 2013 (Snyder et al., 2015). The spatial distribution of metabolites suggested the 

DWH spill as a source, with higher concentrations closer to the spill. However, metabolites as chemical 

markers of oil exposure were inconsistent among species surveyed and the metabolites measured. The bile 

of Golden tilefish (Lopholatilus chamaeleonticeps) contained very high concentrations of naphthalene 

metabolites, but spatial and temporal distributions were unrelated to the DWH spill, possibly because 

tilefish consume sediment when feeding. Unlike naphthalenes, the concentrations of BaP metabolites in all 

species tested were not related spatially or temporally to the spill, indicating that chemical markers of 

exposure must be validated before use.  

Concern for oil effects on early life stages of fish arose from laboratory studies of developmental 

cardiotoxicity in response to the Exxon Valdez oil spill (EVOS) (Incardona et al., 2013). Comparisons of 

the toxicity of Alaska North Slope crude oil (ANSCO; EVOS) and MC252 (DWH spill) to early life 

stages of zebrafish (Danio rerio), a well-studied model of oil embryo toxicity, demonstrated that effects of 

MC252 crude oil were consistent with injuries caused by ANSCO. Cardiac and cranio-facial deformities 

and tissue distribution of cytochrome P4501A (CYP1A) induction, an indicator of PAH exposure, were 

largely indistinguishable between MC252 and ANSCO-exposed larvae and generally correlated with the 

PAH composition of each oil. This research linked the established literature on oil toxicity to fish embryos 

to the assessment of natural resource injury for marine species and was subsequently extended to native 

species of NGOM. The cardiotoxicity of Macondo oil to embryos of commercially- and ecologically-

important predatory fish (bluefin tuna Thunnus thynnus; yellowfin tuna T. albacares; amberjack, Seriola, 

spp.) was evident at 1–15 μg/L of TPAH in exposure solutions, irrespective of oil weathering (Incardona 

et al., 2014). The mechanism of cardiotoxicity was established with isolated cardiomyocyte cells from 

juvenile bluefin and yellowfin tuna. In cells exposed to oil, membrane signal transduction was disrupted 

by interference with the regulation of potassium and calcium ions (Brette et al., 2014). Impaired signaling 

and coordination of cardiac contractions may cause arrhythmias and could explain the impaired swimming 

performance of juvenile mahi-mahi (Coryphaena hippurus or common dolphinfish). There was a 4.5-fold 

increase in the prevalence of pericardial and yolk sac edema in larvae exposed briefly (48 h) to low 

concentrations of oil (e.g., 1 µg/L TPAH), and in juveniles that had survived exposure without signs of 

cardiotoxicity, swimming performance was impaired relative to unexposed fish (Mager et al., 2014). In 

mahi-mahi exposed to MC252 oil, cardiotoxicity was also associated with the down-regulation of genes 

related to myofiber structure and contractility, and up-regulation of cyp1a (Edmunds et al., 2015). The 
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acute lethality and sublethal cardiotoxicity of weathered MC252 oil was about 3- to 5-fold greater than 

that of un-weathered oil, likely because the highly toxic 3-ringed PAH were more concentrated in 

weathered oil (Esbaugh et al., 2016). Impaired swimming performance corresponded to a higher routine 

energy demand of chub mackerel (Scomber japonicas) measured by swim tunnel respirometry after a 96 h 

exposure to WAF of weathered MC252 oil (Klinger et al., 2015). Overall, embryo toxicity followed by 

lower swimming ability and aerobic capacity of juveniles suggest a high risk for reduced productivity of 

commercially-important pelagic fish species exposed to DWH oil. However, effects depend entirely on the 

extent of exposure. Satellite imagery of oil distribution and models of the spawning habitats of bluefin 

tuna indicated that some eggs and larvae were present in oil-contaminated waters in the eastern part of 

NGOM (Muhling et al., 2012). The highest densities of larvae were in the western Gulf, so that <10% of 

spawning grounds and <12% of the larvae were exposed to oil-contaminated water. Similarly, the 

distribution of larvae of blackfin tuna (T. atlanticus), blue marlin (Makaira nigricans), mahi-mahi, and 

sailfish (Istiophorus platypterus) in the NGOM overlapped somewhat with the distribution of surface oil. 

While larval abundance in 2010 following the spill appeared lower compared to the preceding three years, 

their distribution and abundance could not be clearly linked to the spill because of the dominant influence 

of other oceanic conditions (Rooker et al., 2013). There is a need for more research on field experiments 

and new sampling strategies to test potential links between exposure of early life stages of fish to oil, 

prevalence of cardiotoxicity, impairment of swimming capacity, and changes in population rates of growth 

and productivity. This and other effect issues in fish are also discussed in the costal fish section.  

2.3 Contamination and effects in nearshore and coastline habitats and organisms 

Fate of stranded oil 

Although only a minor portion of the DWH oil reached the shoreline, the amount was enough to cause 

widespread contamination of coastal habitats and ecosystems, including many salt marshes, wetlands and 

estuaries. Landfall of oil is generally considered an unfavorable situation in comparison to oil remaining at 

sea, because stranding causes a multitude of new environmental impacts and worsens the impacts on 

fisheries, tourism, and other societal sectors. Variable figures exist on the total length of coastline that was 

affected by the DWH oil spill. According to the draft DWH NRDA report, oil stranding affected at least 

2,100 kilometers of coastline in the states of LA, MI, AL, FL, and TX, including beaches (51 percent of 

affected coastline), marshes (45 percent), and other (mostly) manmade shorelines (4 percent) (DWH-

NRDA, 2015). According to Michel et al. (2013), various degrees of oiling were documented on 1773 km 

of shoreline, whereas cleanup activities, managed under the Shoreline Cleanup Assessment Technique 

(SCAT) Program, were authorized on 660 km of shoreline, or 73.3% of oiled beaches and up to 71 km, or 

8.9% of oiled marshes and associated habitats. One year after the spill began, oil remained on 847 km of 
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shoreline; two years later, oil remained on 687 km, though at a much lesser degree. Shorelines 

characterized as heavily oiled decreased from a maximum of 360 km in the most intense oiling phase and 

down to 22.4 km one year later, and to 6.4 km after two years.  

Allan et al. (2012) used passive samplers to monitor PAH levels in shallow water (depth 2-8 m) at four 

beaches: Grand Isle (LA), Gulfport (MS), Gulf Shores (AL) and Gulf Breeze (FL). In comparison to pre-

oiling levels in May 2010 levels of PAHs were significantly increased after the oiling events, but had 

returned to pre-oiling concentrations at all sites by March 2011, although an increase was found in AL in 

summer of 2011, possibly due to residual oil leaking from sediments. Kostka et al. (2011) conducted one 

of the first studies of the in situ response of bacterial communities to oil contamination in Gulf beach 

sands. Similar to the water column, indigenous bacteria were found to be active in degrading the oil. The 

microbial community structure showed a clear change, with oil-degrading strains dominant. Members of 

the Gammaproteobacteria e.g., Alcanivorax and Marinobacter, and Alphaproteobacteria e.g., 

Rhodobacteraceae, were key players in oil degradation. Overholt et al. (2013) isolated 10 proteobacterial 

strains (belonging to Alpha and Gamma proteobacteria) from beaches contaminated with crude oil, and 

identified multiple putative genes belonging to HC degradation pathways. Also the studies of Newton et 

al. (2013), Lamendella et al. (2014) and Engel & Gupta (2014) demonstrated significant shifts towards oil 

degraders in the microbial communities on oiled beach sediments. The coastal sediment bacterial 

community structure response was further characterized in the mesocosm study conducted by Koo et al. 

(2014). Kappell et al. (2014) used mesocosms to study the PAH degradation capacity of bacterial 

communities obtained from heavily oiled and non-oiled beaches. After spiking mesocosms with a mix of 

naphthalene, fluorene and benzo[a]pyrene, there was a rapid depletion of the first two PAHs, while 

benzo[a]pyrene was not degraded by either microbial community. Sammarco et al. (2013) examined the 

distribution and concentrations of TPH and PAH in coastal sediment, seawater, biota, and seafood in 

NGOM during and after the spill and found oil-derived compounds in varying concentrations in all media. 

The paper was criticized by Wilson et al. (2014) concerning selection of stations, sampling and analytical 

methods, data treatment, and the pooling of data. In response, Sammarco et al. (2014) agreed that the 

methods used were not in accordance with a strict scientific method, i.e. controls should have been 

included.  

Weathered oil appeared at several beach locations as aggregated oily materials often referred to as tar mats 

or tar balls, the latter is often referred to as surface residue balls (SRBs). A number of studies have 

characterized the chemical composition of tar balls collected at different locations and time-points after 

the DWH oil spill, e.g., (Dalyander et al., 2014; Elango et al., 2014; Hayworth et al., 2015; Kiruri et al., 

2013; Mulabagal et al., 2013; Singh et al., 2012; Urbano et al., 2013; White et al., 2014; Wise et al., 
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2014b; Yin et al., 2015). On AL beaches, the white sand made the oil very visible and prompted various 

clean-up activities (Hayworth et al., 2011). Cleanup efforts were effective in removing large tar mats, 

whereas buried tar mats and smaller oil fragments were more difficult to find and remove. In Nov 2011, 

there was still remnant oil at these locations primarily in the form of large, discontinuous tar mats a few 

millimeters to several centimeters thick buried under a few centimeters up to nearly a meter of sand. 

Dalyander et al. (2014) used a numerical model to describe the mobility and redistribution patterns of 

SRBs that formed in the surf zone at AL and western FL coasts. The SRBs, that typically were oil-free at 

the surface but with an oily core, moved along the shore, and caused re-oiling of beaches even three years 

after the initial oil stranding, especially in connection with heavy weather conditions when buried SRBs 

were re-exposed. Kiruri et al. (2013) found that tar balls contained persistent asphaltene radical species 

characteristic of crude oil, as well as other radicals that resulted from the weathering process, and were 

similar to semiquinone-type, environmentally-persistent free radicals that also can be found in 

contaminated soils. The most persistent and recalcitrant components of the HC mixture may remain for a 

long time at oil affected beach environments. Gros et al. (2014) studied the weathered HC mixture 

remaining in beach sand at four oil affected shore locations in FL, LA, MI and AL up to 19 months after 

the spill, with a particular attention to groups of >n-C22 saturates. They concluded that susceptibility to 

biodegradation decreased in the order: n-alkanes > methylalkanes and alkylcyclopentanes + alkyl-

cyclohexanes > cyclic and acyclic isoprenoids. Aeppli et al. (2012) studied the formation of recalcitrant oil 

residues in different oiled materials (slicks, sand, rocks) collected over 18 months and found a weathering-

dependent increase of recalcitrant oxyhydrocarbons (average molecular formula (C5H7O)n) ultimately 

comprising >50% of the solvent-extractable HC residues. Urbano & Elango et al. (2014; 2013) studied the 

biogeochemistry and biodegradation of SBRs collected along beaches in LA and found that the position at 

the beach from where aggregates were obtained significantly influenced their composition as well as their 

susceptibility to biodegradation. Supratidal SRBs were smaller and had lower moisture content and 

salinity (<2 ppt), whereas intertidal SRBs were hypersaline, had higher N and sulfate concentrations, and 

contained more crude oil residues and PAHs, dominated by C1- and C2-phenanthrenes, and C2- and C3- 

dibenzothiophenes. Also microbial populations in SRBs varied with position on the beach and changes in 

composition ratios over time in the supratidal SRBs were consistent with a biodegradation process partly 

due to Mycobacterium sp. adapted to these conditions. Tao et al. (2011) reported up to a 100x increase in 

human pathogenic bacteria Vibrio vulnificus in tar balls at oiled areas as compared to water samples from 

the same locations, suggesting that tar balls can act as reservoirs for human pathogens. This was supported 

by Stephens et al. (2013) who also found a significant increase in V. vulnificus density in oil contaminated 

water samples, although an opposite decreasing effect was observed for another potentially pathogenic 
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vibrio type V. parahaemolyticus in the oil affected water samples. A negative correlation between oil and 

V. parahaemolyticus density was also reported by Smith et al. (2012). 

The coast of NGOM is dominated by large salt marshes, such as in Barataria Bay and Terrebonne Bay in 

LA, and a number of studies have assessed how these salt marsh ecosystems coped with the oiling stress, 

e.g., (Khanna et al., 2013; Kokaly et al., 2013; Lin and Mendelssohn, 2012; Mahmoudi et al., 2013; Rozas 

et al., 2014). Studies in marsh sediments collected from multiple sites in LA just before the DWH oil 

arrived in May 2010 and until June 2013 demonstrated that the oiling increased petroleum alkanes and 

PAH levels in marshes in average >600 and >180 times, respectively, in comparison to the pre-spill values 

(Turner et al., 2014a; Turner et al., 2014b), and the recovery trajectory indicates that pre-spill baseline 

levels most likely would be reestablished by the end of 2015. Hatch (2013) measured PAH concentrations 

in sediment cores from marshes with various degrees of oiling. Bay Jimmy (LA) was significantly 

affected, as indicated by TPAH concentrations up to 21,913 ng/g, clearly above the benchmark 

concentration at which adverse biological effects are thought to occur (i.e., 4,022 ng/g). At heavily 

affected locations the oil was quickly mixed into salt marsh sediments, with demonstrable effects on 

foraminifera (see study by Brunner et al. (2013) later). As most of the sampled sites were in a net 

erosional state that was linked to the presence of oil, oil trapped in salt marsh sediments was deemed to 

pose an ongoing threat to marsh stability. 

A study by Beazley et al. (2012) showed how the microbial community of an oiled salt marsh shifted with 

the relative richness and abundance of HC-degrading bacteria phyla, such as proteobacteria, bacteroidetes, 

and actinobacteria, increased in HC-contaminated sediments and decreased again once HCs were below 

detection. Sediment microbes in oiled salt marshes of Barataria Bay were studied by Mahmoudi et al. 

(2013) during the first 18 months following the DWH spill at the same stations as studied by Silliman et 

al. (2012) (see later). Concentrations of alkanes and PAHs at oiled sites decreased significantly over this 

period, in part due to microbial biodegradation. Petroleum-derived carbon was a primary carbon source 

for the microbial communities at oiled sites. Bacterial community structure changed after the intrusion of 

oil, although this change was not as strong as reported previously. The conclusion was that in situ 

biodegradation by indigenous microbial communities contributed to oil degradation and remediation of 

severely-oiled marsh sediments, and that these sediments have a considerable biodegradation potential. 

The effects of oiling on salt marsh erosion were studied by McClenachan and collaborators (2013) who 

found that the heavy oiling significantly weakened the bottom layer of soil, suggesting that the oiled 

marshes have an increased susceptibility of erosion caused by waves and tidal action. The authors 

suggested that there is a threshold oil concentration above which soil parameters change dramatically with 
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a relatively small increase in oil concentration in the soil, and that coastal marshes are not as resilient to 

large disturbances as previously thought.  

Pendergraft et al. (2013) described a novel screening method for measuring PAHs as a proxy for oil in 

marsh sediments, employing a ramped pyrolysis carbon isotope technique, and demonstrated the use of 

the method with surface and subsurface intertidal zone sediments from the Barataria Bay area, LA, 

collected 535 days after the DWH accident. An efficient restoration processes in oil-contaminated salt 

marsh sediments relies on an adequate supply of oxygen but also indigenous anaerobic bacteria (in 

particular sulfate-reducing bacteria) can contribute significantly in oxygen-depleted subsurface marsh 

sediments, as suggested by Boopathy et al. (2012) and Natter et al. (2012). Possible stimulation of 

microbial oil biodegradation at beaches and other oiled coastal habitats was addressed by several studies. 

Horel et al. (2012) demonstrated that the HC biodegradation rates in oiled sandy beach environments can 

be doubled by adding inorganic nutrients. In a subsequent study, Horel et al. (2014b) reported a 

comparable positive effect on oil biodegradation rates in sandy environments by adding small amounts of 

organic matter originating from plant or fish materials. An accelerated HC mineralization rate in oiled 

sandy environments (76% increase) after adding organic fertilizers was also observed by Mortazavi et al. 

(2013).  

Low-trophic ecological effects in coastal communities 

A number of field studies have been performed to study the effects and recovery of oiling in marsh 

vegetation, e.g., (Fleeger et al., 2015; Khanna et al., 2013; McClenachan et al., 2013; Mishra et al., 2012; 

Silliman et al., 2012; Wu et al., 2012; Zengel et al., 2015). In oil-affected salt marshes, onsite response 

activities included the placing of booms adjacent to shorelines to prevent oil from reaching shorelines; 

flushing marsh surfaces with water; cutting and raking marsh vegetation; removing wrack and vegetation; 

raking heavy oil deposits from soil surfaces; and placing loose sorbent materials. According to Zengel et 

al. (2015) heavy oiled marsh areas that were not treated showed negative effects on marsh vegetation, 

intertidal invertebrate communities, and erosion tendency also in 2012, two years after the oiling event. 

However, the same study found that mechanical treatment could cause additional negative effects by 

mixing oil into the marsh soils and further accelerate erosion, suggesting that areas suffering only mild 

oiling were better off without treatment. Fleeger et al. (2015) found the post spill recovery of salt marsh 

benthic microalgae and meiofauna communities was strongly linked to recovery of Spartina alterniflora, 

and they proposed that this marsh plant could be used as a good indicator for the broader recovery of salt 

marsh infaunal benthos. For improved airborne monitoring of oiling and oil vegetation stress in salt 

marshes several field studies demonstrated the use of AVIRIS (Airborne Visible/InfraRed Imaging 

Spectrometer) data collected from low and medium altitudes (Khanna et al., 2013; Kokaly et al., 2013; 
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Peterson et al., 2015). Areas denuded of vegetation by the spill showed varying degrees of re-vegetation in 

the following year, with poorest recovery on the seaward edge of affected marshes. However, the studies 

largely found that affected marshes seemed to recover rather rapidly although some heavily oiled areas 

were characterized by oil-driven plant death, increased erosion and permanent marsh area loss. Several 

mesocosm studies have been conducted to characterize the impact of DWH oiling on different species of 

marsh plants in a controlled manner, e.g., (Anderson and Hess, 2012; Caudle and Maricle, 2014; Horel et 

al., 2014a; Judy, 2013; Judy et al., 2014; Langley et al., 2015; Lin and Mendelssohn, 2012). The studies 

demonstrated variable susceptibility to oil among different marsh species, but noted that negative effects 

typically became significant if the oil managed to penetrate the marsh soil. Several studies found that 

marsh vegetation, and in particular the ability of the marsh plants to maintain their root growth, was a key 

factor for the microbial oil biodegradation process in affected marshes. Thus, fertilization strategies that 

maximize marsh plant root growth will be the most effective at increasing the microbial degradation of oil 

and will have the greatest potential to mitigate the impacts of oil in marsh ecosystems.  

Response measures for reducing the quantity of oiling of marshes, wetland and estuaries included 

construction of barrier sand berms, the restriction or blocking of inlets, and the diversion of freshwater 

from rivers to the coastal marshes and into the ocean, in order to flush away the oil. The study by Martínez 

et al (2011) noted that these measures may have resulted in long-term negative changes to the ecosystems 

that they were intended to protect, including changing hydrological and ecological characteristics of 

estuaries, altering sediment transport along the coastal barrier islands, causing loss of sand resources, and 

adversely impacting benthic and pelagic organisms. 

Data on effects of the DWH oil spill on seagrass communities are largely absent from the research 

literature, although seagrasses are important habitats for many marine species and NGOM has more than 

50 percent of the total U.S. distribution of seagrasses. The seagrass beds within the Chandeleur Islands 

area constitute the largest continuous seagrass bed in NGOM and are particularly valuable. According to 

the DWH oil spill damage assessment report, 109 hectares (1.09 km2) of seagrass beds in the Chandeleur 

Islands area were destroyed during the DWH oil spill.  

Significant shifts in benthic microbial eukaryote communities in response to oiling in coastal sediments 

were reported by Bik et al. (2012). In a study at Dauphin Island and Mobile Bay, AL, they found that 

diverse pre-spill assemblages of Metazoa were replaced by less diverse post-spill communities dominated 

by HC degrading fungal species. A rich assemblage of nematode species in pre-spill sediments was 

replaced by post-spill communities dominated by predatory and scavenger species alongside an abundance 

of juveniles. A study performed by Brunner et al. (2013) focused on sediment foraminifera from oiled 

marshes in Mississippi Sound, Chandeleur Sound, and Barataria Bay and found that the oil caused adverse 
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effects in foraminifera cell membranes, reproduction capability, pseudopodial activity and mortality rate 

(at the most heavily oiled locations); although some positive population effects were observed at some 

lightly oiled sites.  

Shallow-water corals 

Large areas in the NGOM have water depths between 30 and 100 m which are habitat for shallow water 

corals. Shallow water corals can be distinguished from deep-sea corals by their sharp coloration that 

originates from symbiotic and photosynthetic zooxanthellae (unicellular dinoflagellate algae) within the 

coral tissues. Corals are found as nearshore rocky reefs or as larger mesophotic coral ecosystems (MCEs) 

along the edge of the shelf. Highest coral density is found in the FL shelf area, an area that was mildly 

affected by the DWH oil spill. At least four well-known MCEs are documented in the northeastern and 

eastern parts of NGOM; the Flower Garden Banks National Marine Sanctuary off the coast of TX, the 

Pinnacles Trend area off AL, the FL Middle Ground reef system, and the Pulley Ridge reef east of the FL 

Keys (Locker et al., 2010). The reefs in Pinnacles Trend were situated below oil-slicks for several weeks 

and, in addition, dispersants were added to oil slicks in this area. Etnoyer et al. (2015a; 2015b) found 

evidence that the oil spill caused injury to at least four species of gorgonian octocoral sea-fans in the 

Pinnacles Trend area, in the form of eroded polyps, discoloration, bare branches, overgrowth, missing 

branches, and broken branches. By comparing ROV pictures taken of the same colonies before and after 

the spill, a severe decline of coral condition was found; large colonies displaying injuries increased from 

4-9 % before 2003 to 38-50 % in 2011. It is a challenge to conduct controllable exposure effect studies on 

fully grown coral colonies, but Goodbody-Gringley et al. (2013) developed a bioassay using larvae of the 

stony corals Porites astreoides and Montastraea faveolata (currently: Orbicella faveolata), to study the 

effect of DWH oil (crude, weathered and WAF) in combination with the Corexit dispersant (CEWAF), 

and dispersant alone under laboratory conditions. These coral species live in shallow waters and can be 

found off the TX coast as well as in the FL Keys. Settlement and survival of larvae of both species 

decreased significantly with increasing concentrations of crude oil, weathered oil, WAF, CEWAF, and 

dispersant; indicating that oil spills such as DWH had the potential to impact the settlement and survival 

of coral larvae, thereby affecting the resilience and recovery of coral reefs following exposure to oil and 

dispersants.  

Coastal invertebrates 

Studies of the effects of DWH oil (and also oil + dispersants) on different bottom-dwelling invertebrate 

groups living in coastal habitats have to a large extent been based on laboratory experiments and toxicity 

tests, with test results often provided in technical reports, which were not examined for this review. 

Burrowing invertebrates, such as polychaetes and amphipods, are highly abundant in coastal shallow-
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waters and wetlands and are prey for many predators inhabiting the NGOM coastline. Testing of oil 

toxicity to the estuarine burrowing amphipod Leptocheirus plumulosus demonstrated increased toxicity at 

concentrations observed in coastal sediments following the DWH spill (Krasnec et al., 2015). Rozas et al. 

(2014) used field mesocosms containing oiled sediments in northern Barataria Bay to study effects on 

growth rate of juveniles of panaeid brown shrimp (Farfantepenaeus aztecus) and white shrimp 

(Litopenaeus setiferus). Reduction in growth rates was observed at the most severely oiled sites where 

brown shrimp grew at less than half the rate of un-exposed shrimp; correlating to concentrations of PAHs 

in sediments. The same shrimp species were studied by van der Ham and de Mutsert (2014), who found 

that shrimp abundance (and partly also shrimp size) increased within oil affected estuaries. The authors 

suggest exposure to PAHs may have reduced growth rate, resulting in a delayed movement of shrimp to 

offshore habitats and an increase of within-estuary shrimp abundance, or that fishing closures established 

after the spill led to increased shrimp abundance.  

Field studies by Grey et al.(2015) detected no significant effect of oiling on megalopal settlement or body 

weight of blue crab (Callinectes sapidus) one year post spill, but the study was hampered by high 

unexplained variation. An experimental study in blue crab by Alloy et al. (2015) found that survival of 

crab larvae exposed to oil WAF in combination with natural sunlight was influenced by both factors, 

indicating the larvae to be sensitive to photo-induced oil toxicity. The concentration of PAH in the test 

media in that study was comparable to levels reported in the NGOM during the DWH spill. Pie et al 

(2015) performed a 31 d test with juvenile blue crabs exposed to weathered oil in field-collected 

sediments, with the most contaminated sediments having oil-derived TPAH levels of more than 2 million 

ppb (i.e. 2 parts per thousand), but without finding any significant effect of TPAH levels on mortality, 

growth, ecdysis or on a suite of molecular effect biomarkers [including comet assay, Cu-metallothionein 

gene expression, glutathione-S-transferase (GST), and manganese superoxide dismutase (MnSOD)] 

analyzed in the test crab. Unfortunately, the study did not include markers that could confirm any PAH 

uptake, such as analyses of PAH metabolites in crab urine or haemolymph, which could have revealed 

whether sediment bound PAHs to any measurable extent was taken up by the crabs under the test 

conditions used. Several other studies with coastal crustaceans have focused on issues that mostly relate to 

dispersants, e.g., (Anderson et al., 2014; Anderson Lively and McKenzie, 2014; Chase et al., 2013; 

Hemmer et al., 2011; Pie and Mitchelmore, 2015), and because dispersants were not used near the coast 

they fall largely outside the scope of the present review.  

Coastal filter feeders, such as barnacles (Balanus sp.), marsh mussels (Geukensia demissa), coquina clams 

(Donax spp.) and oysters (Crassostrea virginica) were expected to accumulate chemical contaminants at 

locations affected by the DWH oil spill, both by direct uptake and indirectly via diet. Fry & Anderson 
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(2014) used natural radiocarbon tracing to test the hypothesis that bacteria were a source of oil carbon for 

estuarine barnacles and marsh mussels in Barataria Bay estuary during the spill. However, no evidence for 

significant oil carbon uptake was found. Corroborating observations of oysters displaying no significant 

oil carbon uptake in oil affected coastal areas were reported by several other field studies, e.g., Soniat et 

al. (2011), Carmichael et al. (2012b), Xia et al. (2012). Snyder et al. (2014a; 2014b) measured oil spill 

related PAHs in samples of sand and coquina clams from oiled FL Panhandle beaches. They found that 

both types of samples displayed decreasing concentrations post spill, reaching undetectable levels within 

one and two years after oiling, respectively. 

Fish in coastal habitats 

Concerns about the potential effects of the DWH spill on seafood and fish production were greatest in the 

nearshore habitats of NGOM (up to 200 m depth) which support a rich diversity of fish species. Xia et al. 

(2012) monitored PAH levels in seafood (fishes, shrimps, crabs, oysters) from oil affected areas at the MI 

coast from May 2010 to August 2011 and found statistically higher levels of TPAHs in all four types of 

seafood samples during the early part of period (May-Aug 2010) compared to the later months. Although 

PAHs were detected, all tested samples were below public health levels of concern. Within one year of the 

spill, concentrations in all samples were well below public health limits established by NOAA, the FDA, 

and Gulf Coast states (Xia et al., 2012; Ylitalo et al., 2012). Similarly, TPAH concentrations in Gulf 

menhaden (Brevoortia patronus) from coastal LA declined about 2-fold from 2011 (6.0-7.4 µg/g) to 2013 

(3.2-4.1 ng/g) assessed in whole fish samples, while BaP carcinogenic equivalents declined from 75.4 to 

1.7 ng/g (Olson et al., 2016). 

The acute effects on early-stage survival of fish inhabiting seagrass nursery habitat were assessed by 

reference to a five-year data set (2006–2010) of 853 individual trawl samples from 12 stations between MI 

and FL. Within the oil-affected region, there were no shifts in species composition following the spill, and 

immediate losses of 2010 cohorts were not evident, even for 6 of 20 abundant species at moderate to high 

risk of oil exposure (Fodrie and Heck, 2011). For commercial species, higher catch rates following the 

spill were likely due to fisheries closures (Fodrie and Heck, 2011; Schaefer et al., 2016). Similarly, there 

were no significant differences in recruitment of marsh-associated resident and transient nekton in AL salt 

marshes following the DWH spill (Moody et al., 2013). There was also little effect of the spill on 

recruitment of red snapper (Lutjanus campechanus) to multiple artificial reefs in NGOM (Szedlmayer and 

Mudrak, 2014). In 2010 and 2011, there were no year-class failures, and age-0 class abundance was 

determined primarily by the presence of age-1 individuals and concentrations of dissolved oxygen. 

However, the trophic position of snapper captured at natural and artificial reefs increased following the 
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spill, consistent with a dietary shift from zooplankton and reported spill impacts on zooplankton 

populations (Tarnecki and Patterson, 2015). 

According to Murawski et al. (2014), increased bile PAH metabolites in red snapper supported links 

between oil exposure and a higher prevalence of unusual skin lesions in the vicinity of the DWH site. In 

2011, the lesion prevalence was tentatively correlated to PAH exposure markers but not to surface salinity, 

temperature anomalies, or known epizootics. Unusual external lesions on red snapper from NGOM were 

associated with fish pathogens (Photobacterium damselae; Vibrio vulnificus) isolated from affected fish. 

However, RNA gene sequencing demonstrated that both pathogens were part of the normal microbiota of 

healthy red snapper, indicating that pathogens recovered in previous studies were not lesion-forming 

(Arias et al., 2013). The proposed association between the prevalence of lesions and the oil spill assumed 

that oil-exposed fish were immunocompromised and sensitive to opportunistic pathogens. However, 

evidence of immuno-toxicity in fish was mixed. Between oiled and un-oiled sites, there were no obvious 

changes in peripheral blood leukocytes and splenic melano-macrophage centers (SMCs) of alligator gar 

(Atractosteus spatula). In contrast, decreased lymphocyte counts and increased numbers of SMCs were 

evident in Gulf killifish (Fundulus grandis) and sea trout (Cynoscion nebulosus), in parallel with CYP1A 

induction in the trout, suggesting a link to oil exposure (Ali et al., 2014). Although causal links between 

oil exposure and the prevalence of skin lesions could not be proven, neither could the null hypothesis of 

no relationship be accepted. Nevertheless, a 53% decline in prevalence and severity of lesions from 2011 

to 2012, in parallel with an apparent lower exposure to oil, was consistent with a causal hypothesis.  

Lab experiments with fish demonstrated a variety of responses to oil. The acute toxicity of South 

Louisiana crude to juvenile killifish was influenced by weathering, chemical dispersion, and salinity, but 

unrelated to PAH concentrations (Kuhl et al., 2013). After 1 and 4 weeks of weathering in laboratory 

microcosms at 4, 12, and 18 ppt salinity, CEWAF and dispersant remained acutely toxic at 4 ppt salinity, 

in contrast to a loss of toxicity after 16 weeks at higher salinities, suggesting a salinity interaction with 

rates of oil degradation and toxicity. Compared to normal oxic conditions, the survival of larval 

sheepshead minnow (Cyprinodon variegatus) was dramatically reduced by 48 h co-exposures to hypoxia 

and CEWAF of MC252 oil or Corexit® 9500A (Dasgupta et al., 2015); WAF was not lethal under any 

condition. Thus, oil spill impacts may be potentiated in areas in NGOM subject to annual periods of 

oxygen depletion. Adult Gulf killifish exposed to WAFs of crude oil showed evidence of exposure to 

PAHs (CYP1A induction) and of oxidative stress (increased serum antioxidant capacity) (Crowe et al., 

2014). Similarly, oil collected from the collapsed DWH riser pipe caused sublethal responses in larval and 

juvenile spotted seatrout in lab studies. Four-day exposures to high energy WAF (HEWAF), CEWAF, or 

dispersant alone, increased the expression of cyp1a genes, in association with growth depression (Brewton 
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et al., 2013). Larval seatrout were affected most by CEWAF, while juveniles were affected more by 

HEWAF. The results suggest potential impacts on productivity of exposed sea trout, and a need for 

monitoring fish production in oil affected coastal ecosystems.  

Changes in gene expression of Gulf killifish sampled from oiled marshes indicated exposure to oil (e.g., 

up-regulation of cyp1a), toxicity (e.g., gill pathology) and reproductive impairment for more than one year 

after the landfall of oil, despite very low concentrations of hydrocarbons in water and tissues (Dubansky et 

al., 2013; Whitehead et al., 2012). These responses to DWH oil were replicated in laboratory studies of 

adult (Pilcher et al., 2014) and larval killifish (Whitehead et al., 2012), and inland silversides (Menidia 

beryllina) (Adeyemo et al., 2015). Effects on embryos mirrored the toxicity of DWH WAF to zebrafish 

embryos (Incardona et al., 2013), and included changes to gene expression indicative of PAH 

accumulation and potential effects on sex determination, sexual differentiation, and growth regulation. In 

adult killifish, high concentrations of WAF caused transcriptional responses predictive of effects at 

severely-oiled locations, including DNA damage. Low concentrations affected expression of genes 

associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and 

apoptosis (Pilcher et al., 2014). In killifish sampled from oil-contaminated sites between TX and FL, 1070 

genes were down-regulated, while 1251 were up-regulated (Garcia et al., 2012), suggesting a complex 

response to the accumulated hydrocarbons. Similarly, exposure to DWH oil damaged DNA and DNA 

repair systems and impaired the immune system of shovelnose sturgeon, Scaphirhynchus platorynchus, 

which was used as a surrogate for the endangered Gulf sturgeon (Acipenser oxyrinchus desotoi) (DWH-

NRDA, 2015). Overall, gene expression in fish was a robust indicator of oil exposure, potential 

impairment of normal cell function, and DNA damage.  

Residual oil in sediments may impair fish production. Sediments spiked with lab-weathered Louisiana 

crude, and oiled sediments collected from Barataria Bay, LA in December, 2010 caused developmental 

malformations in embryos of zebrafish at sediment TPAH concentrations of 27 mg /kg d.w. (normalized 

to 1% organic carbon), but not at 2 mg/kg (Raimondo et al., 2014). Concentrations above 78 mg/kg caused 

nearly complete embryo mortality, indicating that sediment contamination could reduce recruitment. 

However, the toxicity of spiked sediments stored for 40 days at 4°C decreased by nearly 10-fold, 

suggesting loss of lethal components. Developmental defects typical of DWH oil toxicity (de Soysa et al., 

2012; Incardona et al., 2013) were evident in killifish embryos exposed to sediments collected from oiled 

marshes at Grand Terre, LA. Compared to controls, exposed embryos failed to hatch or were smaller, 

showed signs of decreased vitality, and suffered from pericardial and yolk sac edema; CYP1A induction 

in multiple tissues indicated PAH accumulation (Dubansky et al., 2013). Reference sediments sampled 

from AL marshes and spiked with weathered MC252 were lethal to juvenile southern flounder 
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(Paralichthys lethostigma) during 30-day exposures at TPAH concentrations greater than 10 mg/kg (LC20 

= 36.3 mg/kg) (Brown-Peterson et al., 2015). Growth of survivors and hepatosomatic indices were 

reduced and the prevalence and severity of histopathological changes were increased at EC20s ranging 

from 0.29 to 26.7 mg/kg TPAH in association with activation of cyp1a genes and a shift in commensal 

bacterial populations of the gut. Overall, exposure of fish to oil-contaminated sediments reduced fitness 

and increased the potential for population-level impacts. There have been no field studies of population 

impacts related to sediment contamination (Pearson, 2014), so experimental data remain the strongest 

basis for assessing potential effects (Dubansky et al., 2014). 

2.4 Effects in long-lived marine tetrapod vertebrates 

Birds 

The NGOM region is crucial to many local shorebird populations as well as to many migrating bird 

species breeding in areas far from the Gulf, and shorebirds were the most affected tetrapod vertebrates 

during the DWH spill, showing a steep increase in mortality rates (Antonio et al., 2011). Species like 

laughing gull and brown pelican were seriously affected (Tran et al., 2014). According to estimates by 

Henkel et al. (2012), it is possible that more than one million migratory shorebirds representing 28 species 

were exposed to some degree to DWH oil during their 2010–2011 non-breeding season. Approximately 

8.6% of shorebirds trapped from fall 2010 to spring 2011 showed visible signs of oiling. Exposure to oil 

may affect shorebirds through direct acute mortality as well as indirectly or long term by sub-lethal effects 

on bird health and behaviour. Habitat degradation may affect bird populations in ways that carry over to 

subsequent seasons. In two studies, Haney et al. (2014a; 2014b) used a carcass sampling model and an 

exposure probability model to estimate that the coastal bird kills during DWH could potentially have been 

as high as 600-800 thousand individuals, with the species most affected being laughing gull Leucophaeus 

atricilla (32% of NGOM population killed), royal tern Thalasseus maximus (15%), brown pelican 

Pelecanus occidentalis (12%) and northern gannet Morus bassanus (8%). The study was criticized by 

Sackmann and Becker (2015) who suggested that an underestimating of carcass transport probability to 

shorelines was leading to overestimation of bird deaths by an order of magnitude; a comment which was 

refuted in a response letter from Haney et al. (2015).  

Walter et al. (2014) assessed the demographic trends of brown pelicans in LA before and after the DWH 

spill by banding 1114 individuals on LA barrier islands from 2007 to 2009 and tracking their distribution 

via band re-sighting surveys from 2008 to 2011. The study found little age-variation within the population 

that could readily be assigned to spill-related mortality, which was contrary to expectations. Other coastal 

bird species in NGOM that have been studied after the spill include northern gannet Morus bassanus (high 

oiling rate observed) (Montevecchi et al., 2012), North America loon Gavia immer (low but increased 
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PAH concentrations in blood in 2012 indicate contaminated feed) (Paruk et al., 2014), dunlins Calidris 

alpina (100,000 individuals could have been affected by DWH oil, population also disturbed by beach 

clean-up) (Henkel et al., 2014). A study on the Canadian breeding population level of northern gannets, 

which partly over-winter in the northern Gulf area, found that their abundance and reproductive success 

had declined recently (Franci et al., 2014), but the study could not link this effect to the DWH oil spill or 

to differences in reproductive hormonal status in breeding birds returning from NGOM. It is difficult to 

interpret the significance of these observations without knowing the recovery rates of gannets after 

sublethal exposures to oil. Finch et al. (2011) investigated bird embryo toxicity of weathered DWH oil in 

mallard duck Anas platyrhynchos by painting varying amounts of oil on the surface of eggs, and found 

that the mortality of duck embryos occurred as early as day 7 of development and the median lethal dose 

of weathered crude oil was about 30 mg/egg (or 0.5 mg/g egg). Also the effect of oil dispersant (Wooten 

et al., 2012) and the combined effect of oil and dispersants were investigated in this way (Finch et al., 

2012; Finch et al., 2011; Wooten et al., 2012), partly demonstrating increased toxicity when oil 

dispersants were present.  

Sea turtles 

Increased sea turtle mortality was observed after an initial delay during the DWH oil spill (Antonio et al., 

2011). Five kinds of sea turtles occur in NGOM; the leatherback (Dermochelys coriacea), loggerhead 

(Caretta caretta), green sea turtle (Chelonia mydas), hawksbill (Eretmochelys imbricata), and Kemp's 

ridley (Lepidochelys kempii), the latter is particularly vulnerable as it nests only in the Gulf of Mexico. In 

addition, several brackish water turtle species occur in salt marshes along the gulf coast. Only a handful of 

papers addressing sea turtles have been published after the DWH event, i.e. (Barron, 2012; Drabeck et al., 

2014; Follett et al., 2013; Hart et al., 2014; Lamont et al., 2012). Sea turtles are long lived creatures and 

studies to assess conditions of stress in individuals and populations are both technically and ethically 

challenging. Data from NOAA indicates that sea turtle stranding rates increased significantly (possibly 5x) 

after the DWH oil spill. Population characterization studies, such as the one done by Avens et al. (2012) 

for NGOM green turtles, provide necessary background data for assessing the long term effect of large 

perturbations such as the DWH spill. Foraging areas used by loggerheads in the northern Gulf were 

characterized by Hart et al. (2014) from satellite tracking of 59 tagged loggerhead individuals between 

2010 and 2013. Loggerhead foraging sites were found to overlap with the footprint of the DWH oil spill, 

but also with trawling activities and ongoing oil and gas extraction activities. Of the tracked loggerheads, 

32% took up residence year-round within the foraging habitats of the NGOM, indicating the DWH oil 

spill could have a more far-reaching effect for this turtle species than previously believed. Significant 

declines in reproductive parameters of loggerheads in the NGOM were reported by Lamont et al. (2012), 

and although the study could not establish any direct link to the DWH oil spill, it highlighted the potential 
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risks of oil spills to an already stressed sea turtle population within the NGOM area. Drabeck et al. (2014) 

studied markers of oil exposure in blood plasma from brackish water diamondback terrapin turtles 

(Malaclemys terrapin pileata) in LA salt marshes. Low concentrations of contaminants were found that 

were roughly aligned with the extent of oiling at the sampled sites, but the authors suggest that additional 

background data and further analyses of more appropriate matrices (liver or fat) were needed to assess the 

degree of exposure. 

Marine mammals 

More than 20 species of whales and dolphins and one species of manatee occur in NGOM, and all are 

protected under the USA Marine Mammal Protection Act (MMPA). Six species are listed as endangered 

under the Endangered Species Act (ESA) (Campagna et al., 2011). For sea mammals, increased mortality 

rates were observed after an initial delay, but pre-spill data seem to indicate that the observed growth in 

the mortality rate was not entirely a consequence of the DWH spill (Antonio et al., 2011). For cetaceans, 

Williams et al. (2011) estimated that the carcasses recovery rates may, on average, have been as low as 

2% (range: 0-6.2%) of the actual cetacean deaths, suggesting that mortality after the DWH spill may have 

been severely underestimated. 

An unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in LA 

started in February 2010 and continued and expanded to MI and AL during and after DWH. As the UME 

was ongoing in September 2014, Litz et al. (2014) suggested that the DWH oil spill could have prolonged 

and expanded the UME, although it certainly was initiated by other factors. Carmichael et al. (2012a) 

reported that an unusually high number (186 individuals) of near-term and neonatal bottlenose dolphin 

mortalities occurred in the northern Gulf in 2011, and speculated that increased stress from bacterial 

infections and depleted food resources or other factors could be the cause. Schwacke et al. (2014a) 

reported that live bottlenose dolphins examined during 2011 in Barataria Bay (BB), LA, suffered from 

adrenal disease, lung disease, and poor health conditions that likely were linked to oil exposure from the 

DWH spill. Comparing examination results of BB dolphins with individuals from the unoiled Sarasota 

Bay (SB), FL, showed several uncommon disease conditions in dolphins from BB. One example was 

hypoadrenocorticism, a condition consistent with adrenal toxicity and previously reported for oil-exposed 

laboratory mammals. Compared to SB dolphins, the BB dolphins were estimated to be five times more 

likely to have moderate to severe lung disease, characterized by significant alveolar interstitial syndrome, 

lung masses, and pulmonary consolidation. Of 29 BB dolphins, 48% were given a guarded or worse 

prognosis, and 17% were considered poor or grave, i.e., they were not expected to survive. Disease 

prevalences in BB dolphins were significantly greater and more severe than in SB dolphins, and greater 

than previously reported in other wild dolphin populations. The authors later published a letter (Schwacke 
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et al., 2014b) to correct some minor errors in the paper. Further evidence for a possible link between 

compromised health status in dolphins and the DWH oil spill was provided by Venn-Watson et al. (2015) 

who examined adrenal gland and lung lesions in 46 fresh non-perinatal bottlenose dolphin carcasses 

stranded between June 2010 and Dec 2012 in LA (including 22 from BB), MI and AL, inside the UME 

area. By comparing the necropsy results with similar data from 106 dolphins stranded outside the UME 

area they found that the UME dolphins were more likely to have primary bacterial pneumonia (22% 

compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-

UME dolphins, P = .003). In 70% of UME dolphins that suffered from primary bacterial pneumonia, the 

condition either caused or contributed significantly to death, and the authors suggested that elevated 

exposure to petroleum compounds originating from the DWH spill had contributed to the observed 

decreased health conditions of dolphins within the UME area. Van Dolah et al. (2015) used 

transcriptomics of skin biopsies to assess dolphin health condition in the UME area, but without finding 

any links to possible contamination stress from the DWH spill.  

Sperm whales occur in NGOM in all seasons with about 750 individuals being the mean population 

estimate. Ackleh et al. (2012) observed that the whale density in the area close to the DWH blowout site 

was decreased (by a factor of 2) after the spill in comparison to the pre-spill situation, but the data was 

uncertain. Wise et al. (2014a) used skin biopsies collected from NGOM sperm whales to test the toxicity 

of Corexit 9500 and Corexit 9527 dispersants and found both dispersants to be cytotoxic and genotoxic to 

whale skin fibroblast cells. In another study with sperm whale skin biopsies, Wise et al. (2014b) 

investigated genotoxic metal (chromium and nickel) concentrations which they considered to be a possibly 

understudied aspect of DWH related contamination. They detected metal levels well above expected 

background, but again the data were highly variable and uncertain.  

West Indian manatees (Trichechus manatus latirostris) are rare and threatened animals in NGOM and 

depend on availability of healthy seagrass areas for feeding. In US waters, they are primarily found in the 

coastal areas of FL, but can occasionally be found as far west as TX. By using a Bayesian modelling 

approach, Martin et al. (2014) compared the manatee occupancy rate (the proportion of sites occupied by 

the species) in oil affected and non-oiled areas in NGOM. The method enabled them to estimate the 

number of manatees potentially present in the oil contaminated area. However, according to the DWH 

damage assessment report, no manatees were sighted in oil during the spill although their geographical 

distribution overlaps with the DWH oil footprint.  

A way of describing spatial patterns of injuries and mortality in birds, turtles, and sea mammals during 

DWH was tested by Follett et al. (2013) by using data on animal sightings (live and dead) combined with 

oil contamination information (PAH in seawater and sediments) and hydrographic data. The authors 
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identified a unique pattern of animal deaths during the data collection period, but reliable conclusions 

regarding cause-and-effect relationships could not be established due to paucity of data. M.G. Barron 

(2012) discussed the potential immunotoxicity of the DWH oil to sea turtles; marine mammals; and birds. 

Immunotoxicity in these organisms is not commonly assessed during oil spills, including the DWH oil 

spill, and this was a significant shortfall according to this author. 

3. Overall discussion 

For all disciplines covered by this review, the DHW oil spill, like the EVOS, will be regarded in the future 

as a major “science incubator” due to the amount of money spent on research, the wide array of innovative 

studies, and the new understanding of oil fate, behaviour and effects, as well as methods for assessing 

those issues. But although our knowledge about the effects of major oil spills on marine and coastal 

ecosystems has improved considerably, there are still critical research needs from questions that remain 

unresolved, are newly recognized, or are poorly known.  

Understanding the fate of the oil and gas spilled in connection with the DWH was essential because it 

determined the degree of exposure and subsequent impacts on the affected organisms and ecosystems 

downstream (Figure 3). The fate of the released HCs during DWH was influenced by an array of factors; 

including the great depth, the composition and magnitude of the blowout, the extensive use of dispersants 

(both deep and surface applied), high sea surface temperature, strong solar irradiation, the presence of a 

community of indigenous oil degrading microbes, and the oceanic circulation pattern in deep and surface 

waters during the spill. Several fate studies refer to the assumption that because many natural oil and gas 

seeps exist in the NGOM, it is uniquely well primed for biodegradation of HCs released in spills. 

However, there may not be a solid scientific basis for assuming that the HC biodegradation was any more 

rapid than in oceanic and coastal regions with similar temperature regimes, but without oil seeps. To our 

knowledge, no studies have presented experimental or observational comparisons with "control" 

environments to support the theory. In fact, emerging marine metagenomics support the "everything is 

everywhere" view, suggesting that seed populations of methanogens and other HC degrading microbes 

can multiply quickly from very low dormancy in any seas above shelf areas, as releases of methane from 

sediments or sub-seabed reservoirs are virtually ubiquitous along continental margins. 

Many fate studies addressed the behaviour of the unprecedented deep plume of oil and gas rich water that 

spread with deep-sea currents at 1000-1300 m depth, while its constituents underwent transformation and 

degradation caused by physical and microbial processes. The deep plume stretched out in a predominantly 

southwest direction, possibly as much as 400 km from the Macondo wellhead (DWH-NRDA, 2015). In 

deep benthic habitats, it left a chemical signature characterized by increased levels of persistent petrogenic 
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substances (e.g., hopanes), recalcitrant oil degradation products and patchy depositions of a brown 

flocculent material (oily marine snow) that increased in intensity with proximity to the Macondo wellhead. 

Field studies have demonstrated that oily marine snow also formed in oil-rich surface water and facilitated 

downward transport of oil from the surface to the sea floor. It is likely that the relatively light nature of the 

Macondo crude, the relatively small droplet size in the initial plume, the low oil concentrations in the deep 

plume and the presence of an indigenous community of oil degrading bacteria all were factors that 

contributed to biodegradation of the oil. Chemical constituents of the Corexit mixture were detected at 

concentrations that appeared to be non-toxic to pelagic microbial communities from the deep sea, although 

mixtures of oil and dispersants caused major changes in microbial community structure. The presence of 

dispersants increased the bioavailability of oil and oil HCs, leading to higher exposure and hence 

increased impacts in the short term. However, the degradation of oil also increased when Corexit was 

present. Microbial communities in the deep sea were able to break down the constituents of the Corexit 

dispersant, in line with oil components, although the degradation of the DOSS component of Corexit 

seemed to be slower than for oil components. Where dispersants were applied, there was an increased 

formation of oily flocs in surface water. 

As deep sea coral colonies can live for hundreds and even thousands of years, they are highly vulnerable 

to catastrophic events such as DWH. The assumption that fallout of oily flocs from the spill was 

detrimental to deep sea corals attracted much attention and concern from the research community. 

Although the deposition of oil flocs was patchy, the intensity increased with proximity to the Macondo 

wellhead. At one coral site 6 km south of the wellhead, more than 90% of the assessed coral colonies 

showed sign of injury. As demonstrated by White et al. (2012b), multiple lines of evidence provide a large 

degree of certainty that observed deep water coral damage is directly related to the DWH oil spill. 

Deepwater coral sites that have been identified as possibly affected have been monitored several times 

during and after the DWH spill, and follow-up surveys are expected to continue for years. Surprisingly, 

the shallow water coral reefs received much less attention than the deep water corals with regard to effect 

studies after DWH, although the coral rich area of Pinnacles Trend (AL) suffered both severe oiling and 

possible combined exposure to dispersants that were applied to those oil slicks.  

Marine mammals are generally sensitive to oil spills as they are typical of K-selected species; i.e. large 

size, long-lived species producing few offspring that require long periods of gestation, parental care, 

and/or sexual maturation. The study of pollution stress in marine mammals is extremely challenging as 

both technical and/or ethical constraints prohibit the use of experimental manipulations to investigate 

relationships between exposure, internal dose, and adverse health effect developments. Stranded 

specimens are an important source of information and biological samples, although research suggests that 
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only one in every 50 dead marine mammals in NGOM is ever found (Williams et al., 2011). An increased 

frequency of dolphin strandings in the northern Gulf has been recorded since February 2010 and it is 

apparently still ongoing. Unprecedented deaths and increased strandings have been interpreted as a 

possible indicator of the low overall health and condition of local and regional sea mammal populations. 

Although the dolphin UME (Unusual Mortality Event) started before the DWH accident, recent studies 

have strengthened the evidence for a link between adverse health stress originating from the DWH oil spill 

and the prolonged duration and expansion of this multi-year UME event, although it most certainly is 

caused by a complex of factors. However, NOAA has ruled out morbillivirus and marine biotoxins from 

red tide events as causal agents; two of the most common causes of previous dolphin UMEs in NGOM 

(Litz et al., 2014). It is thought that exposure to oil spills is a combined stress factor that can reduce the 

health condition of dolphins, making them more susceptible to pathogens and to cold-water stunning 

(Schwacke et al., 2014a; Venn-Watson et al., 2015).  

The effects of oil spills on sea turtles have many unknowns. It is a significant problem that sea turtles, if 

killed by oil exposure at sea, are likely to sink. All five kinds of sea turtles that occur in NGOM are listed 

under the ESA as threatened or endangered. Before the DWH disaster, the green sea turtle, Kemp's ridley 

sea turtle and the loggerhead sea turtle were already identified as species needing special attention as a 

result of habitat disturbance and incidental fisheries related mortality. Sea turtles have high mortality rates 

both at the egg stage, as hatchlings and juveniles, and in many areas as adults. They are relatively old 

before they start reproducing. Following the DWH spill, a special rescue operation was mounted to 

transport 25,000 turtle eggs from the Gulf to FLs Atlantic coast (Inkley et al., 2013), a move to lessen the 

risk for sea turtles to perishing from oil contamination of their nests. Quantifying dead stranded sea turtles 

is one of the few methods available for assessing stress on a sea turtle population. Sea turtle strandings 

were at record levels in 2010 and 2011 and continued above normal in 2012 according to the NOAA 

protection program for sea turtles (http://www.sefsc.noaa.gov/species/turtles/). On average, about 240 sea 

turtles are found stranded in the NGOM annually, but between May 2010 and November 2012 more than 

1,700 strandings were recorded. Most turtles stranded have been the endangered Kemp’s ridley sea turtle, 

which nest only in the GoM. There is a need for more research on how oiling affects sea turtles, 

particularly about the types and concentrations of chemicals contained in the air directly above an oil spill, 

because sea turtles (and marine mammals and birds) breathe in close proximity to the seawater-air 

interface. Similarly, the effects of inhaled or aspirated oil on sea turtles and marine mammals are a matter 

of great uncertainty. 

Seabirds are susceptible to increased rates of mortality if they contact oil, and are usually the most 

numerous vertebrates found dead following spills. Enumerating dead seabirds is the archetype for 
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assessing environmental impact of marine oil spills, but assessments using sublethal markers of effects are 

becoming more common. Reported numbers of dead birds related to the DWH spill varied greatly, 

indicating a research need to improve and standardize bird mortality models, such as those described by Li 

et al. (2014) or by (Ogden et al., 2014). Comparison of mortality data to other spills (i.e. EVOS) suggested 

that effects on regional seabird populations during DWH were comparatively lower, a view supported by 

post-spill age-distribution surveys, e.g., in brown pelicans. Two main approaches were used to study 

DWH oil spill effects on birds: field studies of populations, and experimental studies of individuals. In the 

case of field studies, the DWH event highlighted the critical need for pre-spill data on populations of key 

seabird species (such as brown pelican). The lack of pre-spill data for pelicans gave a relatively 

incomplete picture of pelican ecology in NGOM in the period before the DWH spill. The same 

information shortage applies to other species, such as royal tern and black skimmer (Rynchops niger). It is 

notable that studies so far demonstrate that the presence of dispersants enhanced the toxicity of oil to early 

life stages of coastal waterbirds.  

Much of the research on DWH impacts concerned key shoreline habitats, such as salt marshes, wetlands, 

estuaries and beaches, and how the restoration process in different shoreline habitats proceeded in the 

months and years after the spill; several review papers summarize and discuss these issues (Bergeon Burns 

et al., 2014; DeLaune and Wright, 2011; Fodrie et al., 2014; Joye et al., 2014; Lewis et al., 2011; 

McGenity, 2014; Mendelssohn et al., 2012; Pennings et al., 2014; Santos et al., 2011). More than 2100 km 

of shoreline were affected, but the degrees of oiling varied considerably, which also was reflected by the 

large range of contamination concentrations observed in sediments, or other sample matrices, from 

different sites (ranging from background levels to severely contaminated). However, at coastal sites where 

marsh sediments or wetland soils were heavily contaminated, there was not necessarily a corresponding 

degree of hydrocarbon contamination in living organisms (Fry and Anderson, 2014). Similarly, 

invertebrates that inhabited obviously oil-polluted habitats appeared in several cases to cope surprisingly 

well with the oiling (van der Ham and de Mutsert, 2014), although other studies demonstrated reduced 

growth during the peak of contamination (Rozas et al., 2014). Salt marsh vegetation forms the base of 

nearshore food webs, providing both primary production nutrients and key habitats for many organisms. 

Negative effects on marsh plants can therefore initiate a cascade of impacts to organisms at higher trophic 

levels. In the laboratory, oil exposure caused detrimental effects on salt-marsh plants, although field 

studies tended to indicate a high degree of marsh plant resilience to oiling, especially if the oil did not 

penetrate into the sediment. The review of DeLaune and Wright (2011) suggested that marsh vegetation 

will recover naturally under most conditions, at a rate depending on the degree of oiling, the amount of oil 

penetrating the soil profile, and the composition of plant species. 
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An early concern after the onset of the DWH blowout was the potential for harm to fish and fisheries 

(Jackson, 2010; Sumaila et al., 2012). The condition of oceanic red snapper became controversial soon 

after the onset of DWH as popular media reported that local fishermen caught fish with unusual fin lesions 

and skin ulcers. The lesions were suggested to be signals of a compromised immune system caused by 

exposure to toxic contaminants from the oil spill, although no peer-reviewed work on this subject existed 

at that time (Arias et al., 2013). Murawski et al. (2014) were cited frequently in the press for presenting 

“proof” of this exposure-effect link, but what Murawski et al. actually stated was that although they could 

not definitively link the cause (contaminants from the DWH spill) with the effect (increased prevalence of 

skin lesions) with only two years of post-event data, and neither could they reject the null hypothesis that 

lesion frequencies and PAH exposures were not linked. No link was actually proven and no other 

ecotoxicological literature suggests that this link exists. 

Research in response to the DWH spill has made major advances in the understanding of the mechanisms 

of fish embryo toxicity and provided important evidence of the effects of oil toxicity on the fitness of 

surviving juvenile fish. Embryonic exposures to DWH oil caused a suite of developmental defects and 

cardiotoxicity characteristic of PAH toxicity in a variety of fish species. Field studies by Dubansky et al. 

(2013) found that embryos of Gulf killifish showed developmental abnormalities, including heart defects, 

delayed hatching and reduced hatching success after exposure to sediments from locations contaminated 

by the DWH oil spill. These findings mirrored the effects seen by de Soysa et al. (2012) who addressed oil 

toxicity to zebrafish in a laboratory study. Recently, the mechanisms of oil effects on cardiac morphology 

and physiology in fish embryos have been well-studied, not least by Incardona and colleagues in the 

NOAA Northwest Fisheries Science Center, Seattle, WA (Hatlen et al., 2010; Hicken et al., 2011; 

Incardona et al., 2014; Incardona et al., 2011; Incardona et al., 2013; Incardona et al., 2012a; Incardona et 

al., 2012b; Jung et al., 2013; Scott et al., 2011). The developing fish heart is a particularly vulnerable 

target for petrogenic 3- and 5-ringed un-substituted and alkyl-PAHs, which are primary constituents of 

crude and refined oils that are toxic to fish embryos, as shown by effects-driven chemical fractionation 

(Adams et al., 2014; Bornstein et al., 2014; Hodson et al., 2007) and structure-activity studies of 

individual alkyl-PAHs (Lin et al., 2015; Turcotte et al., 2011). Exposures of fish embryos and larvae to 

crude oil or refined oil, or to PAHs typical of oil, during sensitive windows of cardiac development induce 

an abnormal fluid accumulation in the pericardial space (pericardial edema) and inhibit or block potassium 

ion channels in heart muscle cells, causing an increased time for the heart to restart after every beat (Brette 

et al., 2014). These conditions impair the ability of the fish heart to pump blood and can lead to lethal 

heart failure. Cardiotoxicity is especially harmful to fast-swimming top predators such as Atlantic bluefin 

tuna, yellowfin tuna, and mahi-mahi, which are commercially- and ecologically-important fish species in 

the NGOM. Their migration, feeding, growth, survival, and reproduction depend on extremely efficient 
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circulatory systems. Interestingly, the study by Mager et al. (2014) demonstrated a significant reduction of 

swimming performance in mahi-mahi, which had been exposed to DWH oil as juveniles or 

embryos/larvae, suggesting negative implications for predator avoidance and prey capture behaviours and 

long-term survival and growth. Other developmental toxicities of Macondo type oil to fish have been 

demonstrated by Raimondo et al. (2014). The fish effect studies were discussed in the DWH litigation and 

the focus of the debate concerned the extent to which oil HC concentrations that induced these effects 

actually occurred. Further studies of the effect of oil exposure on cardiotoxicity and whole-animal 

performance in fish are expected soon, including studies with heart muscle cells of tuna. This research is 

highly relevant because the DWH oil spill coincided with the main spawning period for Atlantic bluefin 

tuna in NGOM, and this population contributes to high-value tuna fisheries from the Gulf to Nova Scotia, 

Canada. To understand the ecological implications of embryo toxicity, more research is needed to expand 

the array of fitness indicators in juvenile and adult fish, and to develop experimental and field research 

strategies to demonstrate the impacts of oil spills on fish abundance and trophic cascades.  

Impacts of the DWH oil spill on other important seafood resources from the NGOM, such as oysters, 

shrimp and crabs, were less clear, e.g., as shown in several studies of oysters (Carmichael et al., 2012b; 

Moody et al., 2013; Soniat et al., 2011; Xia et al., 2012). In estuaries, mussels and other filter feeders such 

as barnacles, accumulated only minimal amounts of oil (Fry and Anderson, 2014), and bacteria associated 

with oysters were able to degrade the oil (Thomas et al., 2014). Observations of eyeless shrimp and 

clawless crabs were frequently reported in popular media as alarming evidence of impact to Gulf sea life 

caused by the DWH accident. However, to our knowledge, there is no research-based evidence for these 

field observations; or for possible effect mechanisms involved. Field mesocosm experiments with two 

shrimp species within Barataria Bay did find reduced growth of juvenile brown shrimps at heavily oiled 

locations, but not of white shrimp (Rozas et al., 2014). In contrast, shrimp were actually more abundant in 

areas heavily impacted by the DWH oil spill (van der Ham and de Mutsert, 2014). To explain the 

seemingly counterintuitive results, van der Ham and de Mutsert suggest that reduced fishing pressure due 

a closure of the shrimp fishery, or a delayed migration of adult shrimp to offshore spawning grounds (due 

to reduced growth in oil-affected shrimp populations) may have contributed to the observed increased 

abundance. Furthermore, shrimp catch statistics from the oil spill affected areas along the NGOM 

confirmed normal or increased catches compared to catch levels prior to 2010. For crabs, Felder et al. 

(2014) reported signs of declining diversity and abundance at deep waters and suggested an indirect effect 

of the DWH oil spill causing a loss of benthic seaweed cover in the affected areas. In coastal areas, there 

was significant toxicity of oil to two species of crab only at test concentrations greater than observed at 

sites contaminated by the spill (Anderson et al., 2014; Anderson Lively and McKenzie, 2014). In sum, the 
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available studies on NGOM crustaceans indicate a need for more research at the organism level to reveal 

cause-and-effect relationships of oiling stress in this organism group. 

The unprecedented and large scale use of oil dispersants in the DWH response operation received much 

attention from the general public and the research community. More than 100 peer reviewed papers that 

concern some dispersant-relevant issue for DWH are now published. A considerable number of these 

studies addressed dispersant issues in coastal organisms and habitats, but these studies fall beyond the 

scope of the present review, as dispersants were not applied near coastlines during the DWH oil spill 

response. Dispersants were added to the jet of escaping oil at the wellhead as well as to offshore surface 

slicks; the former to generate and stabilize tiny, neutral buoyant oil droplets (<70 micrometer) to minimize 

vertical transport of oil to the surface, the latter to disperse floating oil into smaller oil droplets in the 

water column. From the studies reviewed here, there is an apparent consensus that the source dispersion 

contributed to an increased formation of large, deep, and neutrally-buoyant plumes of oily water that 

spread laterally from the Macondo site at a depth between 1000 and 1300 m in the NGOM (Socolofsky et 

al., 2015). Many studies report that the dispersants modified the spreading, dispersal, weathering, 

biodegradation, and toxicity of the spilled Macondo oil. A central question then is how the dispersant 

strategy influenced the total environmental impact of the DWH spill. As argued recently by Prince (2015), 

the potential environmental costs of adding dispersants to oil-polluted areas were likely outweighed by the 

oil having a shorter residence time, and hence a reduced integrated environmental impact. However, the 

novel source application of dispersants in the DWH response operation has been criticized. Some papers 

argue that the procedure created a deep-water spill with many new unknowns (Peterson et al., 2012), and 

that availability of environmental effects information for oil dispersant agents is limited and knowledge 

concerning individual components of dispersant products are largely proprietary (Berninger et al., 2011). 

It is likely that the way dispersants were used during the DWH response will have implications for future 

oil spill preparedness and oil spill response situations, in particularly for blowout situations at great 

depths. However, the use of dispersants in oil spill response is likely to remain controversial, judging from 

the intense disagreements between those who are in favor and those who are against dispersant use. Based 

on the DWH research studies conducted to date, the science community has not yet reached a general 

consensus about the appropriate role, if any, of dispersants in oil spill response. Hence, decisions on 

dispersant use will be site- and situation-specific, and depend on what marine and coastal ecosystem 

components and ecological resources are to be protected. 

4. Summary and conclusion 

The DWH oil spill incident in 2010 constituted an ecosystem-level injury in the NGOM. The spill resulted 

in an oil slick ultimately covering more than 112,000 km2 on the ocean’s surface. Oceanic currents, winds, 
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and wave action pushed the oil towards the coast, leading to various degrees of oiling along 2,100 km of 

shoreline in five US states, but most in LA, MI and AL. Fate-oriented studies show that oil spread both in 

deep waters (1100-1300 m depth) and at the surface. Only a minor part of the released oil (less than 15%, 

and possibly as little as 4%) made landfall along the coast; this partly due to the great depth of the 

blowout, the extensive use of oil dispersing agents (both at wellhead and surface) and other response 

measures (e.g., in situ burning), the massive bloom of oil degrading microbes, high surface water 

temperature and ocean currents. Effects-oriented studies demonstrated that the oil was toxic to a wide 

range of organisms; including plankton, invertebrates, fish, birds, and sea mammals, causing a wide array 

of adverse effects such as reduced growth, disease, impaired reproduction, impaired physiological health, 

and mortality. Oil concentrations exceeding threshold of toxicity occurred in surface waters, sediments, 

and marsh habitats in many locations, although the extent and degree of oiling varied greatly by time and 

location. The use of oil dispersing agents in offshore waters enhanced the bacterial degradation of oil, but 

also increased the bioavailability (and hence ecotoxicity impact) of the oil in certain offshore habitats. 

Both oil exposure and spill response actions caused injuries to a wide range of habitats, species and 

ecological functions over a vast area; although the situation has improved substantially from 2010 to the 

present. Ecological resources in the NGOM that were particularly impacted by DWH oil include deep 

ocean-bottom habitats and deep-sea corals, salt marsh ecosystems, organisms living at and in shoreline 

sediments and beach sand habitats, nearshore fish, shorebirds, floating Sargassum habitats and nearshore 

seagrass areas, sea turtles, dolphins and other cetaceans. Although there are numerous knowledge gaps 

and research needs still remaining, as highlighted throughout this review, the broad collection of 

environmental research conducted after DWH contributes significantly to our understanding of ecological 

impacts of major marine oil spills, and this learning helps to clarify which measures are needed, both pre-

spill and post-spill, to reduce the environmental effects of such events. 
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Legend to figures: 

Figure 1: The cumulative environmental footprint of the DWH oil spill in NGOM. Most surface slicks 

traveled toward shore, intersecting at least 2,100 kilometers of shoreline; and some slicks followed 

currents to the southeast. A deep-sea plume migrated more than 400 kilometers southwest of the wellhead. 

More than 400 flights dropped chemical dispersant on surface slicks, and more than 400 fires were set to 

burn off surface oil. Map source: DWH-NRDA (2015). 

Figure 2: Fate scenarios for how oil released in a deep blowout situation behaves differently depending on 

application of oil dispersant. In the escaping jet at the wellhead, oil droplets of multiple sizes form and 

droplets above a certain size will rise toward the ocean surface. Adding dispersants stabilizes small oil 

droplets, thereby decreasing vertical oil transport. Illustration courtesy: Jack Cook, Woods Hole 

Oceanographic Institution.  

Figure 3: Biological effects of the DWH oil spill. This conceptual figure illustrates the constellation of 

relationships between oil exposure and toxicological effects in organisms affected by the DWH oil spill. 

All exposure and effect elements shown in this figure are supported by information in the DWH oil spill 

research literature. Illustration adapted and extended from DWH-NRDA (2015). 

  



Environmental effects of the Deepwater Horizon oil spill 

44 

 

 

5. References 

2015. U.S. v. BP et al. (United States of America v. BP Exploration & Production, Inc., et al.). (2015). , Findings of fact 
and conclusions of law: Phase two trial. In re: Oil spill by the oil rig “Deepwater Horizon” in the Gulf of Mexico, on 
April 20, 2010. U.S. District Court for the Eastern District of Louisiana. 

Abbriano, R.M., Carranza, M.M., Hogle, S.L., Levin, R.A., Netburn, A.N., Seto, K.L., Snyder, S.M., Franks, P.J.S., 2011. 
Deepwater Horizon oil spill: A Review of the Planktonic Response. Oceanography 24, 294-301. 

Ackleh, A.S., Ioup, G.E., Ioup, J.W., Ma, B.L., Newcomb, J.J., Pal, N., Sidorovskaia, N.A., Tiemann, C., 2012. Assessing 
the Deepwater Horizon oil spill impact on marine mammal population through acoustics: Endangered sperm 
whales. Journal of the Acoustical Society of America 131, 2306-2314. 

Adams, E.E., Socolofsky, S.A., Boufadel, M., 2013. Comment on “Evolution of the Macondo Well Blowout: 
Simulating the Effects of the Circulation and Synthetic Dispersants on the Subsea Oil Transport”. Environmental 
Science & Technology 47, 11905-11905. 

Adams, J., Bornstein, J.M., Munno, K., Hollebone, B., King, T., Brown, R.S., Hodson, P.V., 2014. Identification of 
compounds in heavy fuel oil that are chronically toxic to rainbow trout embryos by effects-driven chemical 
fractionation. Environmental Toxicology and Chemistry 33, 825-835. 

Adeyemo, O.K., Kroll, K.J., Denslow, N.D., 2015. Developmental abnormalities and differential expression of genes 
induced in oil and dispersant exposed Menidia beryllina embryos. Aquatic Toxicology 168, 60-71. 

Aeppli, C., Carmichael, C.A., Nelson, R.K., Lemkau, K.L., Graham, W.M., Redmond, M.C., Valentine, D.L., Reddy, 
C.M., 2012. Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. 
Environmental Science & Technology 46, 8799−8807. 

Aeppli, C., Nelson, R.K., Radovic, J.R., Carmichael, C.A., Valentine, D.L., Reddy, C.M., 2014. Recalcitrance and 
degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. 
Environmental Science & Technology 48, 6726-6734. 

Ali, A.O., Hohn, C., Allen, P.J., Ford, L., Dail, M.B., Pruett, S., Petrie-Hanson, L., 2014. The effects of oil exposure on 
peripheral blood leukocytes and splenic melano-macrophage centers of Gulf of Mexico fishes. Marine Pollution 
Bulletin 79, 87-93. 

Allan, S.E., Smith, B.W., Anderson, K.A., 2012. Impact of the Deepwater Horizon Oil Spill on Bioavailable Polycyclic 
Aromatic Hydrocarbons in Gulf of Mexico Coastal Waters. Environmental Science & Technology 46, 2033-2039. 

Alloy, M.M., Boube, I., Griffitt, R.J., Oris, J.T., Roberts, A.P., 2015. Photo-induced toxicity of Deepwater Horizon slick 
oil to blue crab (Callinectes sapidus) larvae. Environmental Toxicology and Chemistry 34, 2061-2066. 

Almeda, R., Baca, S., Hyatt, C., Buskey, E.J., 2014a. Ingestion and sublethal effects of physically and chemically 
dispersed crude oil on marine planktonic copepods. Ecotoxicology 23, 988-1003. 

Almeda, R., Hyatt, C., Buskey, E.J., 2014b. Toxicity of dispersant Corexit 9500A and crude oil to marine 
microzooplankton. Ecotoxicology and Environmental Safety 106, 76-85. 

Almeda, R., Wambaugh, Z., Chai, C., Wang, Z.C., Liu, Z.F., Buskey, E.J., 2013a. Effects of crude oil exposure on 
bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous 
zooplankton. Plos One 8, 15 pp. 

Almeda, R., Wambaugh, Z., Wang, Z.C., Hyatt, C., Liu, Z.F., Buskey, E.J., 2013b. Interactions between Zooplankton 
and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons. Plos One 8, 21 pp. 

Aman, Z.M., Paris, C.B., 2013. Response to Comment on “Evolution of the Macondo Well Blowout: Simulating the 
Effects of the Circulation and Synthetic Dispersants on the Subsea Oil Transport”. Environmental Science & 
Technology 47, 11906-11907. 

Anderson, C.J., Hess, T.A., 2012. The effects of oil exposure and weathering on black-needle rush (Juncus 
roemerianus) marshes along the Gulf of Mexico. Marine Pollution Bulletin 64, 2749-2755. 



Environmental effects of the Deepwater Horizon oil spill 

45 

 

Anderson, J.A., Kuhl, A.J., Anderson, A.N., 2014. Toxicity of Oil and Dispersed Oil on Juvenile Mud Crabs, 
Rhithropanopeus harrisii. Bulletin of Environmental Contamination and Toxicology 92, 375-380. 

Anderson Lively, J.A., McKenzie, J., 2014. Toxicity of the Dispersant Corexit 9500 to Early Life Stages of Blue Crab, 
Callinectes sapidus. Bulletin of environmental contamination and toxicology 93, 649-653. 

Antonio, F.J., Mendes, R.S., Thomaz, S.M., 2011. Identifying and modeling patterns of tetrapod vertebrate mortality 
rates in the Gulf of Mexico oil spill. Aquatic Toxicology 105, 177-179. 

Arias, C.R., Koenders, K., Larsen, A.M., 2013. Predominant bacteria associated with red snapper from the northern 
Gulf of Mexico. Journal of Aquatic Animal Health 25, 281-289. 

Arnosti, C., Ziervogel, K., Yang, T., Teske, A., 2014. Oil-derived marine aggregates – hot spots of polysaccharide 
degradation by specialized bacterial communities. Deep Sea Research Part II: Topical Studies in Oceanography, 8 
pp. 

Atlas, R.M., Hazen, T.C., 2011. Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in US History. 
Environmental Science & Technology 45, 6709-6715. 

Aurell, J., Gullett, B.K., 2010. Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns. 
Environmental Science & Technology 44, 9431-9437. 

Avens, L., Goshe, L.R., Harms, C.A., Anderson, E.T., Hall, A.G., Cluse, W.M., Godfrey, M.H., Braun-McNeill, J., Stacy, 
B., Bailey, R., Lamont, M.M., 2012. Population characteristics, age structure, and growth dynamics of neritic 
juvenile green turtles in the northeastern Gulf of Mexico. Marine Ecology Progress Series 458, 213-+. 

Barron, M.G., 2012. Ecological impacts of the Deepwater Horizon oil spill: implications for immunotoxicity. 
Toxicologic Pathology 40, 315-320. 

Batchu, S.R., Ramirez, C.E., Gardinali, P.R., 2014. Stability of dioctyl sulfosuccinate (DOSS) towards hydrolysis and 
photodegradation under simulated solar conditions. Science of the Total Environment 481, 260-265. 

Beazley, M.J., Martinez, R.J., Rajan, S., Powell, J., Piceno, Y.M., Tom, L.M., Andersen, G.L., Hazen, T.C., Van 
Nostrand, J.D., Zhou, J., Mortazavi, B., Sobecky, P.A., 2012. Microbial community analysis of a coastal salt marsh 
affected by the Deepwater Horizon oil spill. Plos One 7, 13 pp. 

Bejarano, A.C., Levine, E., Mearns, A.J., 2013. Effectiveness and potential ecological effects of offshore surface 
dispersant use during the Deepwater Horizon oil spill: a retrospective analysis of monitoring data. Environmental 
Monitoring and Assessment 185, 10281-10295. 

Bencsath, F.A., Benner, R.A., Jr., Abraham, A., Wang, Y., El Said, K.R., Jester, E.L.E., Plakas, S.M., 2015. Screening for 
petrochemical contamination in seafood by headspace solid-phase microextraction gas chromatography-mass 
spectrometry. Analytical and Bioanalytical Chemistry 407, 4079-4090. 

Bergeon Burns, C.M., Olin, J.A., Woltmann, S., Stouffer, P.C., Taylor, S.S., 2014. Effects of oil on terrestrial 
vertebrates: predicting impacts of the Macondo blowout. Bioscience 64, 820-828. 

Berninger, J.P., Williams, E.S., Brooks, B.W., 2011. An initial probabilistic hazard assessment of oil dispersants 
approved by the united states national contingency plan. Environmental Toxicology and Chemistry 30, 1704-1708. 

Beyer, J., Jonsson, G., Porte, C., Krahn, M.M., Ariese, F., 2010. Analytical methods for determining metabolites of 
polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environ. Toxicol. Pharmacol. 30, 224-244. 

Bianchi, T.S., Osburn, C., Shields, M.R., Yvon-Lewis, S., Young, J., Guo, L., Zhou, Z., 2014. Deepwater horizon oil in 
gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool. Environmental science & 
technology 48, 9288-9297. 

Bik, H.M., Halanych, K.M., Sharma, J., Kelley Thomas, W., 2012. Dramatic shifts in benthic microbial eukaryote 
communities following the Deepwater Horizon oil spill. Plos One 7, 6 pp. 

Boopathy, R., Shields, S., Nunna, S., 2012. Biodegradation of crude oil from the BP oil spill in the marsh sediments 
of southeast Louisiana, USA. Applied biochemistry and biotechnology 167, 1560-1568. 

Bornstein, J.M., Adams, J., Hollebone, B., King, T., Hodson, P.V., Brown, R.S., 2014. Effects-driven chemical 
fractionation of heavy fuel oil to isolate compounds toxic to trout embryos. Environmental Toxicology and 
Chemistry 33, 814-824. 



Environmental effects of the Deepwater Horizon oil spill 

46 

 

Boufadel, M.C., Abdollahi-Nasab, A., Geng, X., Galt, J., Torlapati, J., 2014. Simulation of the landfall of the 
deepwater horizon oil on the shorelines of the gulf of Mexico. Environmental science & technology 48, 9496-9505. 

Brakstad, O.G., Daling, P.S., Faksness, L.G., Almas, I.K., Vang, S.H., Syslak, L., Leirvik, F., 2014. Depletion and 
biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-
seawater mesocosm flume basin. Marine Pollution Bulletin 84, 125-134. 

Brame, J., Hong, S., Lee, J., Lee, S.-H., Alvarez, P., 2013. Photocatalytic pre-treatment with food-grade TiO2 
increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in 
the Gulf of Mexico. Chemosphere 90, 2315–2319. 

Brette, F., Machado, B., Cros, C., Incardona, J.P., Scholz, N.L., Block, B.A., 2014. Crude oil impairs cardiac excitation-
contraction coupling in fish. Science 343, 772-776. 

Brewton, R.A., Fulford, R., Griffitt, R.J., 2013. Gene Expression and Growth as Indicators of Effects of the BP 
Deepwater Horizon Oil Spill on Spotted Seatrout (Cynoscion nebulosus). Journal of Toxicology and Environmental 
Health, Part A 76, 1198-1209. 

Brown-Peterson, N.J., Krasnec, M., Takeshita, R., Ryan, C.N., Griffitt, K.J., Lay, C., Mayer, G.D., Bayha, K.M., Hawkins, 
W.E., Lipton, I., Morris, J., Griffitt, R.J., 2015. A multiple endpoint analysis of the effects of chronic exposure to 
sediment contaminated with Deepwater Horizon oil on juvenile Southern flounder and their associated 
microbiomes. Aquatic Toxicology 165, 197-209. 

Brunner, C.A., Yeager, K.M., Hatch, R., Simpson, S., Keim, J., Briggs, K.B., Louchouarn, P., 2013. Effects of Oil from 
the 2010 Macondo Well Blowout on Marsh Foraminifera of Mississippi and Louisiana, USA. Environmental Science 
& Technology 47, 9115-9123. 

Bælum, J., Borglin, S., Chakraborty, R., Fortney, J.L., Lamendella, R., Mason, O.U., Auer, M., Zemla, M., Bill, M., 
Conrad, M.E., Malfatti, S.A., Tringe, S.G., Holman, H.-Y., Hazen, T.C., Jansson, J.K., 2012. Deep-sea bacteria enriched 
by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology 14, 2405-2416. 

Camilli, R., Reddy, C.M., Yoerger, D.R., Van Mooy, B.A.S., Jakuba, M.V., Kinsey, J.C., McIntyre, C.P., Sylva, S.P., 
Maloney, J.V., 2010. Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon. Science 
330, 201-204. 

Campagna, C., Short, F.T., Polidoro, B.A., McManus, R., Collette, B.B., Pilcher, N.J., de Mitcheson, Y.S., Stuart, S.N., 
Carpenter, K.E., 2011. Gulf of Mexico Oil blowout increases risks to globally threatened species. Bioscience 61, 393-
397. 

Campo, P., Venosa, A.D., Suidan, M.T., 2013. Biodegradability of Corexit 9500 and Dispersed South Louisiana Crude 
Oil at 5 and 25 degrees C. Environmental Science & Technology 47, 1960-1967. 

Carassou, L., Hernandwz, F.J., Graham, W.M., 2014. Change and recovery of coastal mesozooplankton community 
structure during the Deepwater Horizon oil spill Environmental Research Letters 9, 12pp. 

Carmichael, R.H., Graham, W.M., Aven, A., Worthy, G., Howden, S., 2012a. Were Multiple Stressors a ‘Perfect 
Storm’ for Northern Gulf of Mexico Bottlenose Dolphins (Tursiops truncatus) in 2011? Plos One 7, 9 pp. 

Carmichael, R.H., Jones, A.L., Patterson, H.K., Walton, W.C., Perez-Huerta, A., Overton, E.B., Dailey, M., Willett, K.L., 
2012b. Assimilation of Oil-Derived Elements by Oysters Due to the Deepwater Horizon Oil Spill. Environmental 
Science & Technology 46, 12787-12795. 

Caruso, M.J., Migliaccio, M., Hargrove, J.T., Garcia-Pineda, O., Graber, H.C., 2013. Oil spills and slicks imaged by 
synthetic aperture radar. Oceanography 26, 112-123. 

Caudle, K.L., Maricle, B.R., 2014. Physiological relationship between oil tolerance and flooding tolerance in marsh 
plants. Environmental and Experimental Botany 107, 7-14. 

Chakrabarty, P., Lam, C., Hardman, J., Aaronson, J., House, P.H., Janies, D.A., 2012. SM: a web-based application for 
visualizing the overlap of distributions and pollution events, with a list of fishes put at risk by the 2010 Gulf of 
Mexico oil spill. Biodiversity and Conservation 21, 1865-1876. 

Chakraborty, R., Borglin, S.E., Dubinsky, E.A., Andersen, G.L., Hazen, T.C., 2012. Microbial response to the MC-252 
oil and Corexit 9500 in the Gulf of Mexico. Frontiers in Microbiology 3, 6 pp. 



Environmental effects of the Deepwater Horizon oil spill 

47 

 

Chanton, J., Zhao, T., Rosenheim, B.E., Joye, S., Bosman, S., Brunner, C., Yeager, K.M., Diercks, A.R., Hollander, D., 
2014. Using Natural Abundance Radiocarbon To Trace the Flux of Petrocarbon to the Seafloor Following the 
Deepwater Horizon Oil Spill. Environmental Science & Technology, 8 pp. 

Chanton, J.P., Cherrier, J., Wilson, R.M., Sarkodee-Adoo, J., Bosman, S., Mickle, A., Graham, W.M., 2012. 
Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of 
Mexico. Environmental Research Letters 7, 4 pp. 

Chase, D.A., Edwards, D.S., Qin, G., Wages, M.R., Willming, M.M., Anderson, T.A., Maul, J.D., 2013. Bioaccumulation 
of petroleum hydrocarbons in fiddler crabs (Uca minax) exposed to weathered MC-252 crude oil alone and in 
mixture with an oil dispersant. Science of the Total Environment 444, 121–127. 

Cherrier, J., Sarkodee-Adoo, J., Guilderson, T.P., Chanton, J.P., 2014. Fossil carbon in particulate organic matter in 
the Gulf of Mexico following the Deepwater Horizon event. Environmental Science & Technology Letters 1, 108-
112. 

Cohen, J.H., McCormick, L.R., Burkhardt, S.M., 2014. Effects of Dispersant and Oil on Survival and Swimming Activity 
in a Marine Copepod. Bulletin of Environmental Contamination and Toxicology 92, 381-387. 

Crespo-Medina, M., Meile, C.D., Hunter, K.S., Diercks, A.R., Asper, V.L., Orphan, V.J., Tavormina, P.L., Nigro, L.M., 
Battles, J.J., Chanton, J.P., Shiller, A.M., Joung, D.J., Amon, R.M.W., Bracco, A., Montoya, J.P., Villareal, T.A., Wood, 
A.M., Joye, S.B., 2014. The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature 
Geoscience 7, 423-427. 

Crowe, K.M., Newton, J.C., Kaltenboeck, B., Johnson, C., 2014. Oxidative stress responses of gulf killifish exposed to 
hydrocarbons from the deepwater horizon oil spill: potential implications for aquatic food resources. 
Environmental Toxicology and Chemistry 33, 370-374. 

Dalyander, P.S., Long, J.W., Plant, N.G., Thompson, D.M., 2014. Assessing mobility and redistribution patterns of 
sand and oil agglomerates in the surf zone. Marine pollution bulletin 80, 200-209. 

Dasgupta, S., Huang, I.J., McElroy, A.E., 2015. Hypoxia Enhances the Toxicity of Corexit EC9500A and Chemically 
Dispersed Southern Louisiana Sweet Crude Oil (MC-242) to Sheepshead Minnow (Cyprinodon variegatus) Larvae. 
Plos One 10, 9 pp. 

de Soysa, T.Y., Ulrich, A., Friedrich, T., Pite, D., Compton, S.L., Ok, D., Bernardos, R.L., Downes, G.B., Hsieh, S., Stein, 
R., Lagdameo, M.C., Halvorsen, K., Kesich, L.R., Barresi, M.J.F., 2012. Macondo crude oil from the Deepwater 
Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. Bmc Biology 10, 24 pp. 

DeLaune, R.D., Wright, A.L., 2011. Projected Impact of Deepwater Horizon Oil Spill on US Gulf Coast Wetlands. Soil 
Sci. Soc. Am. J. 75, 1602-1612. 

DeLeo, D.M., Ruiz-Ramos, D.V., Baums, I.B., Cordes, E.E., 2015. Response of deep-water corals to oil and chemical 
dispersant exposure. Deep Sea Research Part II: Topical Studies in Oceanography, 11 pp. 

Demopoulos, A.W.J., Bourque, J.R., Frometa, J., 2014. Biodiversity and community composition of sediment 
macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico. Deep-Sea Research Part I-
Oceanographic Research Papers 93, 91-103. 

Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Zhou, Z., Guo, L., Shiller, A.M., Joye, S.B., Teske, A.P., Guinasso, 
N., Wade, T.L., Lohrenz, S.E., 2010. Characterization of subsurface polycyclic aromatic hydrocarbons at the 
Deepwater Horizon site. Geophysical Research Letters 37, 6 pp. 

Drabeck, D.H., Chatfield, M.W.H., Richards-Zawacki, C.L., 2014. The status of Louisiana's diamondback terrapin 
(Malaclemys terrapin) populations in the wake of the Deepwater Horizon oil spill: insights from population genetic 
and contaminant analyses. Journal of Herpetology 48, 125-136. 

Du, M., Kessler, J.D., 2012. Assessment of the spatial and temporal variability of bulk hydrocarbon respiration 
following the Deepwater Horizon oil spill. Environmental Science & Technology 46, 10499–10507. 

Dubansky, B., Whitehead, A., Miller, J.T., Rice, C.D., Galvez, F., 2013. Multitissue Molecular, Genomic, and 
Developmental Effects of the Deepwater Horizon Oil Spill on Resident Gulf Killifish (Fundulus grandis). 
Environmental Science & Technology 47, 5074-5082. 



Environmental effects of the Deepwater Horizon oil spill 

48 

 

Dubansky, B., Whitehead, A., Rice, C.D., Galvez, F., 2014. Response to comment on "Multi-tissue molecular, 
genomic, and developmental effects of the Deepwater Horizon oil spill on resident gulf killifish (Fundulus grandis)". 
Environmental Science & Technology 48, 7679-7680. 

Dubinsky, E.A., Conrad, M.E., Chakraborty, R., Bill, M., Borglin, S.E., Hollibaugh, J.T., Mason, O.U., Piceno, Y.M., 
Reid, F.C., Stringfellow, W.T., Tom, L.M., Hazen, T.C., Andersen, G.L., 2013. Succession of hydrocarbon-degrading 
bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Science & 
Technology 47, 10860−10867. 

DWH-NRDA, 2015. Deepwater Horizon Natural Resource Damage Assessment (NRDA) - DRAFT 2015 - section 4. 
Injury to Natural Resources. DWH-NRDA, p. 685 pp. 

Edmunds, R.C., Gill, J.A., Baldwin, D.H., Linbo, T.L., French, B.L., Brown, T.L., Esbaugh, A.J., Mager, E.M., Stieglitz, J., 
Hoenig, R., Benetti, D., Grosell, M., Scholz, N.L., Incardona, J.P., 2015. Corresponding morphological and molecular 
indicators of crude oil toxicity to the developing hearts of mahi mahi. Scientific Reports 5, 18 pp. 

Edwards, B.R., Reddy, C.M., Camilli, R., Carmichael, C.A., Longnecker, K., Van Mooy, B.A.S., 2011. Rapid microbial 
respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico. Environmental 
Research Letters 6, 9 pp. 

Elango, V., Urbano, M., Lemelle, K.R., Pardue, J.H., 2014. Biodegradation of MC252 oil in oil:sand aggregates in a 
coastal headland beach environment. Frontiers in Microbiology 5, 11 pp. 

Engel, A.S., Gupta, A.A., 2014. Regime Shift in Sandy Beach Microbial Communities following Deepwater Horizon Oil 
Spill Remediation Efforts. Plos One 9, 18 pp. 

Esbaugh, A.J., Mager, E.M., Stieglitz, J.D., Hoenig, R., Brown, T.L., French, B.L., Linbo, T.L., Lay, C., Forth, H., Scholz, 
N.L., Incardona, J.P., Morris, J.M., Benetti, D.D., Grosell, M., 2016. The effects of weathering and chemical 
dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. The 
Science of the total environment 543, 644-651. 

Etnoyer, P.J., MacDonald, I.R., Wickes, L.N., Dubick, J.D., Salgado, E., Balthis, L., 2015a. Decline in condition of sea 
fans on mesophotic reefs in the northern Gulf of Mexico before and after Deepwater Horizon oil spill, Gulf of 
Mexico Oil Spill and Ecosystem Science Conference, Houston, TX, USA. 

Etnoyer, P.J., Wickes, L.N., Silva, M., Dubick, J.D., Balthis, L., Salgado, E., MacDonald, I.R., 2015b. Decline in 
condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the 
Deepwater Horizon oil spill. Coral Reefs Published online 20 October 2015. DOI 10.1007/s00338-015-1363-2, 14 pp. 

Faksness, L.-G., Altin, D., Nordtug, T., Daling, P.S., Hansen, B.H., 2015. Chemical comparison and acute toxicity of 
water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill. 
Marine Pollution Bulletin 91, 222-229. 

Felder, D.L., Thoma, B.P., Schmidt, W.E., Sauvage, T., Self-Krayesky, S.L., Chistoserdov, A., Bracken-Grissom, H.D., 
Fredericq, S., 2014. Seaweeds and Decapod Crustaceans on Gulf Deep Banks after the Macondo Oil Spill. Bioscience 
64, 808-819. 

Finch, B.E., Wooten, K.J., Faust, D.R., Smith, P.N., 2012. Embryotoxicity of mixtures of weathered crude oil collected 
from the Gulf of Mexico and Corexit 9500 in mallard ducks (Anas platyrhynchos). Science of the Total Environment 
426, 155-159. 

Finch, B.E., Wooten, K.J., Smith, P.N., 2011. Embryotoxicity of weathered crude oil from the Gulf of Mexico in 
mallard ducks (Anas platyrhynchos). Environmental Toxicology and Chemistry 30, 1885-1891. 

Fisher, C.R., Demopoulos, A.W.J., Cordes, E.E., Baums, I.B., White, H.K., Bourque, J.R., 2014a. Coral communities as 
indicators of ecosystem-level impacts of the Deepwater Horizon spill. Bioscience 64, 796-807. 

Fisher, C.R., Girard, F., Fu, B., 2015. Mechanisms of impact from the Deepwater Horizon oil spill to corals and 
associated communities in the deep Gulf of Mexico, in: Impacts from the Deepwater Horizon Spill on Deep-Sea 
Ecosystems: Detection, Causes, and Effects on the Benthos., Gulf of Mexico Oil Spill and Ecosystem Science 
Conference, Houston, TX, USA. 

Fisher, C.R., Hsing, P.Y., Kaiser, C.L., Yoerger, D.R., Roberts, H.H., Shedd, W.W., Cordes, E.E., Shank, T.M., Berlet, 
S.P., Saunders, M.G., Larcom, E.A., Brooks, J.M., 2014b. Footprint of Deepwater Horizon blowout impact to deep-



Environmental effects of the Deepwater Horizon oil spill 

49 

 

water coral communities. Proceedings of the National Academy of Sciences of the United States of America 111, 
11744-11749. 

Fitzgerald, T.P., Gohlke, J.M., 2014. Contaminant levels in Gulf of Mexico reef fish after the Deepwater Horizon oil 
spill as measured by a fishermen-led testing program. Environmental Science & Technology 48, 1993-2000. 

Fleeger, J.W., Carman, K.R., Riggio, M.R., Mendelssohn, I.A., Lin, Q.X., Hou, A., Deis, D.R., Zengel, S., 2015. Recovery 
of salt marsh benthic microalgae and meiofauna following the Deepwater Horizon oil spill linked to recovery of 
Spartina alterniflora. Marine Ecology Progress Series 536, 39-54. 

Fodrie, F.J., Able, K.W., Galvez, F., Heck, K.L., Jensen, O.P., Lopez-Duarte, P.C., Martin, C.W., Turner, R.E., 
Whitehead, A., 2014. Integrating organismal and population responses of estuarine fishes in Macondo spill 
research. Bioscience 64, 778-788. 

Fodrie, F.J., Heck, K.L., Jr., 2011. Response of Coastal Fishes to the Gulf of Mexico Oil Disaster. PLoS ONE 6, 8 pp. 

Follett, L., Genschel, U., Hofmann, H., 2013. A graphical exploration of the Deepwater Horizon oil spill. 
Computational Statistics DOI 10.1007/s00180-013-0432-7, 12 pp. 

Franci, C.D., Guillemette, M., Pelletier, É., Chastel, O., Bonnefoi, S., Verreault, J., 2014. Endocrine status of a 
migratory bird potentially exposed to the Deepwater Horizon oil spill: A case study of northern gannets breeding on 
Bonaventure Island, Eastern Canada. Science of The Total Environment 473–474, 110-116. 

Fry, B., Anderson, L.C., 2014. Minimal incorporation of Deepwater Horizon oil by estuarine filter feeders. Marine 
Pollution Bulletin 80, 282-287. 

Garcia-Pineda, O., MacDonald, I., Hu, C., Svejkovsky, J., Hess, M., Dukhovskoy, D., S.L., M., 2013. Detection of 
floating oil anomalies from the Deepwater Horizon oil spill with synthetic aperture radar. Oceanography 26, 124-
137. 

Garcia, T.I., Shen, Y.J., Crawford, D., Oleksiak, M.F., Whitehead, A., Walter, R.B., 2012. RNA-Seq reveals complex 
genetic response to deepwater horizon oil release in Fundulus grandis. Bmc Genomics 13, 9 pp. 

Garr, A.L., Laramore, S., Krebs, W., 2014. Toxic effects of oil and dispersant on marine microalgae. Bulletin of 
environmental contamination and toxicology 93, 654-659. 

Genualdi, S., DeJager, L., Begley, T., 2013. Assessments and Improvements in Methods for Monitoring Seafood 
Safety in Response to the Deepwater Horizon Oil Spill. Journal of Agricultural and Food Chemistry 61, 3542-3547. 

Gilde, K., Pinckney, J.L., 2012. Sublethal Effects of Crude Oil on the Community Structure of Estuarine 
Phytoplankton. Estuaries and Coasts 35, 853-861. 

Glover, C.M., Mezyk, S.P., Linden, K.G., Rosario-Ortiz, F.L., 2014. Photochemical degradation of Corexit components 
in ocean water. Chemosphere 111, 596-602. 

Gong, Y., Zhao, X., Cai, Z., O’Reilly, S.E., Hao, X., Zhao, D., 2014. A review of oil, dispersed oil and sediment 
interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Marine 
Pollution Bulletin 79, 16-33. 

Goodbody-Gringley, G., Wetzel, D., Gillon, D., Pulster, E., Miller, A., Ritchie, K., 2013. Toxicity of Deepwater Horizon 
Source Oil and the Chemical Dispersant, Corexit 9500, to Coral Larvae. PLOS ONE 8, 10 pp. 

Graham, W.M., Condon, R.H., Carmichael, R.H., D'Ambra, I., Patterson, H.K., Linn, L.J., Hernandez, F.J., 2010. Oil 
carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill. Environmental Research 
Letters 5, 6 pp. 

Gratz, S.R., Ciolino, L.A., Mohrhaus, A.S., Gamble, B.M., Gracie, J.M., Jackson, D.S., Roetting, J.P., II, McCauley, H.A., 
Heitkemper, D.T., Fricke, F.L., Krol, W.J., Arsenault, T.L., White, J.C., Flottmeyer, M.M., Johnson, Y.S., 2011. 
Screening and Determination of Polycyclic Aromatic Hydrocarbons in Seafoods Using QuEChERS-Based Extraction 
and High-Performance Liquid Chromatography with Fluorescence Detection. Journal of Aoac International 94, 
1601-1616. 

Gray, J.M., Kanagy, L.K., Furlong, E.T., Kanagy, C.J., McCoy, J., W. , Mason, A., Lauenstein, G., 2014. Presence of the 
Corexit component dioctyl sodium sulfosuccinate in Gulf of Mexico waters after the 2010 Deepwater Horizon oil 
spill. Chemosphere 95, 124-130. 



Environmental effects of the Deepwater Horizon oil spill 

50 

 

Grey, E.K., Chiasson, S.C., Williams, H.G., Troeger, V.J., Taylor, C.M., 2015. Evaluation of blue crab, Callinectes 
sapidus, megalopal settlement and condition during the Deepwater Horizon oil spill. Plos One 10, 19 pp. 

Gros, J., Reddy, C.M., Aeppli, C., Nelson, R.K., Carmichael, C.A., Arey, J.S., 2014. Resolving biodegradation patterns 
of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster. 
Environmental Science & Technology 48, 1628-1637. 

Gutierrez, T., Berry, D., Yang, T.T., Mishamandani, S., McKay, L., Teske, A., Aitken, M.D., 2013. Role of Bacterial 
Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill. Plos One 8, 18 pp. 

Hall, G.J., Frysinger, G.S., Aeppli, C., Carmichael, C.A., Gros, J., Lemkau, K.L., Nelson, R.K., Reddy, C.M., 2013. 
Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Marine Pollution 
Bulletin 75, 140-149. 

Haney, J.C., Geiger, H.J., Short, J.W., 2014a. Bird mortality from the Deepwater Horizon oil spill. I. Exposure 
probability in the offshore Gulf of Mexico. Marine Ecology Progress Series 513, 225-237. 

Haney, J.C., Geiger, H.J., Short, J.W., 2014b. Bird mortality from the Deepwater Horizon oil spill. II. Carcass sampling 
and exposure probability in the coastal Gulf of Mexico. Marine Ecology Progress Series 513, 239-252. 

Haney, J.C., Geiger, H.J., Short, J.W., 2015. Bird mortality due to the Deepwater Horizon oil spill: Reply to Sackmann 
& Becker (2015). Marine Ecology Progress Series 534, 279-283. 

Hart, K.M., Lamont, M.M., Sartain, A.R., Fujisaki, I., 2014. Migration, foraging, and residency patterns for northern 
gulf loggerheads: implications of local threats and international movements. Plos One 9, 20 pp. 

Hastings, D.W., Schwing, P.T., Brooks, G.R., Larson, R.A., Morford, J.L., Roeder, T., Quinn, K.A., Bartlett, T., Romero, 
I.C., Hollander, D.J., 2014. Changes in sediment redox conditions following the BP DWH blowout event. Deep Sea 
Research Part II: Topical Studies in Oceanography, 12 pp. 

Hatch, R.S., 2013. Distribution and impacts of petroleum hydrocarbons in Louisiana tidal marsh sediments following 
the Deepwater Horizon oil spill, College of Arts and Sciences. University of Kentucky, p. 195. 

Hatlen, K., Sloan, C.A., Burrows, D.G., Collier, T.K., Scholz, N.L., Incardona, J.P., 2010. Natural sunlight and residual 
fuel oils are an acutely lethal combination for fish embryos. Aquatic Toxicology 99, 56-64. 

Hawley, E.R., Piao, H.L., Scott, N.M., Malfatti, S., Pagani, I., Huntemann, M., Chen, A., del Rio, T.G., Foster, B., 
Copeland, A., Jansson, J., Pati, A., Tringe, S., Gilbert, J.A., Lorenson, T.D., Hess, M., 2013. Metagenomic analysis of 
microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. 
Standards in Genomic Sciences 9, 635-650. 

Hayworth, J.S., Clement, T.P., Valentine, J.F., 2011. Deepwater Horizon oil spill impacts on Alabama beaches. 
Hydrol. Earth Syst. Sci. 15, 3639-3649. 

Hayworth, J.S., Prabakhar Clement, T., John, G.F., Yin, F., 2015. Fate of Deepwater Horizon oil in Alabama’s beach 
system: Understanding physical evolution processes based on observational data. Marine Pollution Bulletin 90, 95-
105. 

Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., Andersen, G.L., Piceno, Y.M., Singh, N., Jansson, J.K., Probst, A., Borglin, 
S.E., Fortney, J.L., Stringfellow, W.T., Bill, M., Conrad, M.E., Tom, L.M., Chavarria, K.L., Alusi, T.R., Lamendella, R., 
Joyner, D.C., Spier, C., Baelum, J., Auer, M., Zemla, M.L., Chakraborty, R., Sonnenthal, E.L., D'Haeseleer, P., Holman, 
H.Y.N., Osman, S., Lu, Z.M., Van Nostrand, J.D., Deng, Y., Zhou, J.Z., Mason, O.U., 2010. Deep-sea oil plume enriches 
indigenous oil-degrading bacteria. Science 330, 204-208. 

Hemmer, M.J., Barron, M.G., Greene, R.M., 2011. Comparative toxicity of eight oil dispersants, Louisiana sweet 
crude oil (lSC), and chemically dispersed lSC to two aquatic test species. Environmental Toxicology and Chemistry 
30, 2244-2252. 

Henkel, J.R., Sigel, B.J., Taylor, C.M., 2012. Large-scale impacts of the Deepwater Horizon oil spill: Can local 
disturbance affect distant ecosystems through migratory shorebirds? Bioscience 62, 676-685. 

Henkel, J.R., Sigel, B.J., Taylor, C.M., 2014. Oiling rates and condition indices of shorebirds on the northern Gulf of 
Mexico following the Deepwater Horizon oil spill. Journal of Field Ornithology 85, 408-420. 



Environmental effects of the Deepwater Horizon oil spill 

51 

 

Hicken, C.E., Linbo, T.L., Baldwin, D.H., Willis, M.L., Myers, M.S., Holland, L., Larsen, M., Stekoll, M.S., Rice, S.D., 
Collier, T.K., Scholz, N.L., Incardona, J.P., 2011. Sublethal exposure to crude oil during embryonic development 
alters cardiac morphology and reduces aerobic capacity in adult fish. Proceedings of the National Academy of 
Sciences of the United States of America 108, 7086-7090. 

Hodson, P., Khan, C., Saravanabhavan, G., Clarke, L., Brown, R., Hollebone, B., Wang, Z., Short, J., Lee, K., King, T., 
2007. Alkyl PAH in crude oil cause chronic toxicity to early life stages of fish, In : Proc 28th Arctic and Marine Oilspill 
Program Tech Seminar, . Env Sci Tech Div, Env Canada, Ottawa, pp. 291-300. 

Horel, A., Bernard, R.J., Mortazavi, B., 2014a. Impact of crude oil exposure on nitrogen cycling in a previously 
impacted Juncus roemerianus salt marsh in the northern Gulf of Mexico. Environmental Science and Pollution 
Research 21, 6982-6993. 

Horel, A., Mortazavi, B., Sobecky, P.A., 2012. Responses of microbial community from northern Gulf of Mexico 
sandy sediments following exposure to deepwater horizon crude oil. Environmental Toxicology and Chemistry 31, 
1004-1011. 

Horel, A., Mortazavi, B., Sobecky, P.A., 2014b. Biostimulation of weathered MC252 crude oil in northern Gulf of 
Mexico sandy sediments. International Biodeterioration & Biodegradation 93, 1-9. 

Hsing, P.Y., Fu, B., Larcom, E.A., Berlet, S.P., Shank, T.M., Govindarajan, A.F., Lukasiewicz, A.J., Dixon, P.M., Fisher, 
C.R., 2013. Evidence of lasting impact of the Deepwater Horizon oil spill on a deep Gulf of Mexico coral community. 
Elementa Sci Anthr. 

Hu, C., Weisberg, R.H., Liu, Y., Zheng, L., Daly, K.L., English, D.C., Zhao, J., Vargo, G.A., 2011. Did the northeastern 
Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophysical Research Letters 38, 5 pp. 

Incardona, J.P., Gardner, L.D., Linbo, T.L., Brown, T.L., Esbaugh, A.J., Mager, E.M., Stieglitz, J.D., French, B.L., 
Labenia, J.S., Laetz, C.A., Tagal, M., Sloan, C.A., Elizur, A., Benetti, D.D., Grosell, M., Block, B.A., Scholz, N.L., 2014. 
Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the 
National Academy of Sciences 111, E1510-E1518. 

Incardona, J.P., Linbo, T.L., Scholz, N.L., 2011. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is 
differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicology and 
Applied Pharmacology 257, 242-249. 

Incardona, J.P., Swarts, T.L., Edmunds, R.C., Linbo, T.L., Aquilina-Beck, A., Sloan, C.A., Gardner, L.D., Block, B.A., 
Scholz, N.L., 2013. Exxon Valdez to Deepwater Horizon: Comparable toxicity of both crude oils to fish early life 
stages. Aquatic Toxicology 142, 303-316. 

Incardona, J.P., Vines, C.A., Anulacion, B.F., Baldwin, D.H., Day, H.L., French, B.L., Labenia, J.S., Linbo, T.L., Myers, 
M.S., Olson, O.P., Sloan, C.A., Sol, S., Griffin, F.J., Menard, K., Morgan, S.G., West, J.E., Collier, T.K., Ylitalo, G.M., 
Cherr, G.N., Scholz, N.L., 2012a. Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 Cosco 
Busan oil spill in San Francisco Bay. Proceedings of the National Academy of Sciences of the United States of 
America 109, E51-E58. 

Incardona, J.P., Vines, C.A., Linbo, T.L., Myers, M.S., Sloan, C.A., Anulacion, B.F., Boyd, D., Collier, T.K., Morgan, S., 
Cherr, G.N., Scholz, N.L., 2012b. Potent phototoxicity of marine bunker oil to translucent herring embryos after 
prolonged weathering. Plos One 7, 13 pp. 

Inkley, D., Gonzalez-Rothi Kronenthal, S., McCormick, L., 2013. Restoring a degraded Gulf of Mexico: Wildlife and 
wetlands three years into the gulf oil disaster. National wildlife federation, p. 15 pp. 

Jackson, D.C., 2010. Addressing the oil spill in the Gulf of Mexico. Fisheries 35, 316-316. 

Jaligama, S., Chen, Z., Saravia, J., Yadav, N., Lomnicki, S.M., Dugas, T.R., Cormier, S.A., 2015. Exposure to Deepwater 
Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune 
Response. Environmental Science & Technology 49, 8769-8776. 

Joye, S.B., Leifer, I., MacDonald, I.R., Chanton, J.P., Meile, C.D., Teske, A.P., Kostka, J.E., Chistoserdova, L., Coffin, R., 
Hollander, D., Kastner, M., Montoya, J.P., Rehder, G., Solomon, E., Treude, T., Villareal, T.A., 2011. Comment on “A 
Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico”. Science 332, 2 pp. 



Environmental effects of the Deepwater Horizon oil spill 

52 

 

Joye, S.B., Teske, A.P., Kostka, J.E., 2014. Microbial dynamics following the Macondo oil well blowout across Gulf of 
Mexico environments. Bioscience 64, 766-777. 

Judson, R.S., Martin, M.T., Reif, D.M., Houck, K.A., Knudsen, T.B., Rotroff, D.M., Xia, M.H., Sakamuru, S., Huang, R.L., 
Shinn, P., Austin, C.P., Kavlock, R.J., Dix, D.J., 2010. Analysis of eight oil spill dispersants using rapid, in vitro tests for 
endocrine and other biological activity. Environmental Science & Technology 44, 5979-5985. 

Judy, C.R., 2013. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of 
Phragmites australis, Department of Environmental Sciences. Louisiana State University and Agriculture and 
Mechanical College, p. 32 pp. 

Judy, C.R., Graham, S.A., Lin, Q., Hou, A., Mendelssohn, I.A., 2014. Impacts of Macondo oil from Deepwater Horizon 
spill on the growth response of the common reed Phragmites australis: A mesocosm study. Marine Pollution 
Bulletin 79, 69-76. 

Jung, J.-H., Hicken, C.E., Boyd, D., Anulacion, B.F., Carls, M.G., Shim, W.J., Incardona, J.P., 2013. Geologically distinct 
crude oils cause a common cardiotoxicity syndrome in developing zebrafish. Chemosphere 91, 1146-1155. 

Kappell, A.D., Wei, Y., Newton, R.J., Van Nostrand, J.D., Zhou, J.Z., McLellan, S.L., Hristova, K.R., 2014. The polycyclic 
aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the 
Deepwater Horizon oil spill. Frontiers in Microbiology 5, 13 pp. 

Kessler, J.D., Valentine, D.L., Redmond, M.C., Du, M., Chan, E.W., Mendes, S.D., Quiroz, E.W., Villanueva, C.J., 
Shusta, S.S., Werra, L.M., Yvon-Lewis, S.A., Weber, T.C., 2011. A persistent oxygen anomaly reveals the fate of 
spilled methane in the deep Gulf of Mexico. Science 331, 312-315. 

Khanna, S., Santos, M.J., Ustin, S.L., Koltunov, A., Kokaly, R.F., Roberts, D.A., 2013. Detection of salt marsh 
vegetation stress and recovery after the Deepwater Horizon oil spill in Barataria Bay, Gulf of Mexico using AVIRIS 
data. PLoS ONE 8, 13 pp. 

Kimes, N.E., Callaghan, A.V., Suflita, J.M., Morris, P.J., 2014. Microbial transformation of the Deepwater Horizon oil 
spill – past, present, and future perspectives. Frontiers in Microbiology 5, 11 pp. 

King, G.M., Kostka, J.E., Hazen, T.C., Sobecky, P.A., 2015. Microbial Responses to the Deepwater Horizon Oil Spill: 
From Coastal Wetlands to the Deep Sea, in: Carlson, C.A., Giovannoni, S.J. (Eds.), Annual Review of Marine Science, 
Vol 7, pp. 377-401. 

King, S.M., Leaf, P.A., Olson, A.C., Ray, P.Z., Tarr, M.A., 2014. Photolytic and photocatalytic degradation of surface 
oil from the Deepwater Horizon spill. Chemosphere 95, 415-422. 

Kiruri, L.W., Dellinger, B., Lomnicki, S., 2013. Tar Balls from Deep Water Horizon Oil Spill: Environmentally Persistent 
Free Radicals (EPFR) Formation During Crude Weathering. Environmental Science & Technology 47, 4220−4226. 

Kleindienst, S., Grim, S., Sogin, M., Bracco, A., Crespo-Medina, M., Joye, S.B., 2015a. Diverse, rare microbial taxa 
responded to the Deepwater Horizon deep-sea hydrocarbon plume. The ISME Journal, 1–16. 

Kleindienst, S., Seidel, M., Ziervogel, K., Grim, S., Loftis, K., Harrison, S., Malkin, S.Y., Perkins, M.J., Field, J., Sogin, 
M.L., Dittmar, T., Passow, U., Medeiros, P.M., Joye, S.B., 2015b. Chemical dispersants can suppress the activity of 
natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences of the United States of 
America 112, 14900-14905. 

Klinger, D.H., Dale, J.J., Machado, B.E., Incardona, J.P., Farwell, C.J., Block, B.A., 2015. Exposure to Deepwater 
Horizon weathered crude oil increases routine metabolic demand in Chub mackerel, Scomber japonicus. Marine 
Pollution Bulletin 98, 259-266. 

Kokaly, R.F., Couvillion, B.R., Holloway, J.M., Roberts, D.A., Ustin, S.L., Peterson, S.H., Khanna, S., Piazza, S.C., 2013. 
Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in 
Barataria Bay marshes. Remote Sens. Environ. 129, 210-230. 

Koo, H., Mojib, N., Thacker, R.W., Bej, A.K., 2014. Comparative analysis of bacterial community-metagenomics in 
coastal Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252). Antonie Van 
Leeuwenhoek 106, 993-1009. 



Environmental effects of the Deepwater Horizon oil spill 

53 

 

Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T.C., 
Huettel, M., 2011. Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach 
Sands Impacted by the Deepwater Horizon Oil Spill. Appl. Environ. Microbiol. 77, 7962-7974. 

Krasnec, M.O., Morris, J.M., Lay, C., 2015. An evaluation of the toxicity of deep sea sediment collected after the 
Deepwater Horizon oil spill on the amphipod Leptocheirus plumulosus, Technical Working Group Report. DWH 
Toxicity NRDA, Boulder, CO, USA. 

Kuhl, A.J., Nyman, J.A., Kaller, M.D., Green, C.C., 2013. Dispersant and salinity effects on weathering and acute 
toxicity of South Louisiana crude oil. Environmental Toxicology and Chemistry 32, 2611-2620. 

Kujawinski, E.B., Soule, M.C.K., Valentine, D.L., Boysen, A.K., Longnecker, K., Redmond, M.C., 2011. Fate of 
Dispersants Associated with the Deepwater Horizon Oil Spill. Environmental Science & Technology 45, 1298-1306. 

Lamendella, R., Strutt, S., Borglin, S., Chakraborty, R., Tas, N., Mason, O.U., Hultman, J., Prestat, E., Hazen, T.C., 
Jansson, J.K., 2014. Assessments of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. 
Frontiers in Microbiology 5, 13 pp. 

Lamont, M.M., Carthy, R.R., Fujisaki, I., 2012. Declining reproductive parameters highlight conservation needs of 
loggerhead turtles (Caretta caretta) in the Northern Gulf of Mexico. Chelonian Conservation and Biology 11, 190-
196. 

Landers, S.C., Nichols, A.C., Barron, N.K., Schimmer, C.A., Tao, R., Yu, K.W., Stewart, P.M., Olafsson, E., 2014. 
Nematode and copepod diversity (2012) from Louisiana near the Deepwater Horizon oil spill. Proceedings of the 
Biological Society of Washington 127, 47-57. 

Langley, J.A., White, H.K., Palanivel, R.U., Shannon, T., III, Chapman, S.K., 2015. Marsh plants mediate the influence 
of nitrogen fertilization on degradation of oil from the Deepwater Horizon spill. Ecosphere 6, 13 pp. 

Lee, K., Nedwed, T., Prince, R.C., Palandro, D., 2013. Lab tests on the biodegradation of chemically dispersed oil 
should consider the rapid dilution that occurs at sea. Marine Pollution Bulletin 73, 314-318. 

Lewis, A., 2015. Comments on the Kleindienst et al paper; “Chemical dispersants can suppress the activity of 
natural oil-degrading microorganisms”. International Spill Response Community, ISCO Newsletter: The Newsletter 
of the International Spill Response Community, pp. 8-11. 

Lewis, M., Pryor, R., Wilking, L., 2011. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A 
review. Environmental Pollution 159, 2328-2346. 

Li, T., Gao, C., Xu, M., Rajaratnam, B., 2014. Detecting the impact area of BP deepwater horizon oil discharge: an 
analysis by time varying coefficient logistic models and boosted trees. Computational Statistics 29, 141-157. 

Lin, H., Morandi, G.D., Brown, R.S., Snieckus, V., Rantanen, T., Jørgensen, K.B., Hodson, P.V., 2015. Quantitative 
structure–activity relationships for chronic toxicity ofalkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese 
medakaembryos (Oryzias latipes), Aquatic Toxicology, pp. 109–118. 

Lin, Q.X., Mendelssohn, I.A., 2012. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure 
and function of coastal salt marshes in the Northern Gulf of Mexico. Environmental Science & Technology 46, 3737-
3743. 

Litz, J.A., Baran, M.A., Bowen-Stevens, S.R., Carmichael, R.H., Colegrove, K.M., Garrison, L.P., Fire, S.E., Fougeres, 
E.M., Hardy, R., Holmes, S., Jones , W., Mase-Guthrie, B.E., Odell, D.K., Rosel, P.E., Saliki, J.T., Shannon, D.K., 
Shippee, S.F., Smith, S.M., Stratton, E.M., Tumlin, M.C., Whitehead, H.R., Worthy, G.A.J., Rowles, T.K., 2014. Review 
of historical unusual mortality events (UMEs) in the Gulf of Mexico (1990-2009): providing context for the multi-
year northern Gulf of Mexico cetacean UME declared in 2010. Diseases of Aquatic Organisms 112, 161-175. 

Liu, Z., Liu, J., Gardner, W.S., Shank, G.C., Ostrom, N.E., 2014. The impact of Deepwater Horizon oil spill on 
petroleum hydrocarbons in surface waters of the northern Gulf of Mexico. Deep Sea Research Part II: Topical 
Studies in Oceanography, 9 pp. 

Liu, Z.F., Liu, J.Q., Zhu, Q.Z., Wu, W., 2012. The weathering of oil after the Deepwater Horizon oil spill: insights from 
the chemical composition of the oil from the sea surface, salt marshes and sediments. Environmental Research 
Letters 7, 15 pp. 



Environmental effects of the Deepwater Horizon oil spill 

54 

 

Locker, S.D., Armstrong, R.A., Battista, T.A., Rooney, J.J., Sherman, C., Zawada, D.G., 2010. Geomorphology of 
mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral 
Reefs 29, 329-345. 

Mager, E.M., Esbaugh, A.J., Stieglitz, J.D., Hoenig, R., Bodinier, C., Incardona, J.P., Scholz, N.L., Benetti, D.D., Grosell, 
M., 2014. Acute embryonic or juvenile exposure to Deepwater Horizon crude oil impairs the swimming 
performance of mahi-mahi (Coryphaena hippurus). Environmental Science & Technology 48, 7053-7061. 

Mahmoudi, N., Porter, T.M., Zimmerman, A.R., Fulthorpe, R.R., Kasozi, G.N., Silliman, B.R., Slater, G.F., 2013. Rapid 
Degradation of Deepwater Horizon Spilled Oil by Indigenous Microbial Communities in Louisiana Saltmarsh 
Sediments. Environmental Science & Technology 47, 13303-13312. 

Maltrud, M., Peacock, S., Visbeck, M., 2010. On the possible long-term fate of oil released in the Deepwater 
Horizon incident, estimated using ensembles of dye release simulations. Environmental Research Letters 5, 7 pp. 

Martin, J., Edwards, H.H., Bled, F., Fonnesbeck, C.J., Dupuis, J.A., Gardner, B., Koslovsky, S.M., Aven, A.M., Ward-
Geiger, L.I., Carmichael, R.H., Fagan, D.E., Ross, M.A., Reinert, T.R., 2014. Estimating Upper Bounds for Occupancy 
and Number of Manatees in Areas Potentially Affected by Oil from the Deepwater Horizon Oil Spill. PLoS ONE 9, 6 
pp. 

Martínez, M.L., Feagin, R.A., Yeager, K.M., Day, J., Costanza, R., Harris, J.A., Hobbs, R.J., López-Portillo, J., Walker, 
I.J., Higgs, E., Moreno-Casasola, P., Sheinbaum, J., Yáñez-Arancibia, A., 2011. Artificial modifications of the coast in 
response to the Deepwater Horizon oil spill: quick solutions or long-term liabilities? Frontiers in Ecology and the 
Environment 10, 44-49. 

Mason, O.U., Han, J., Woyke, T., Jansson, J.K., 2014a. Single-cell genomics reveals features of a Colwellia species 
that was dominant during the Deepwater Horizon oil spill. Frontiers in Microbiology 5, 8 pp. 

Mason, O.U., Hazen, T.C., Borglin, S., Chain, P.S.G., Dubinsky, E.A., Fortney, J.L., Han, J., Holman, H.Y.N., Hultman, J., 
Lamendella, R., Mackelprang, R., Malfatti, S., Tom, L.M., Tringe, S.G., Woyke, T., Zhou, J.H., Rubin, E.M., Jansson, 
J.K., 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater 
Horizon oil spill. Isme Journal 6, 1715-1727. 

Mason, O.U., Scott, N.M., Gonzalez, A., Robbins-Pianka, A., Balum, J., Kimbrel, J., Bouskill, N.J., Prestat, E., Borglin, 
S., Joyner, D.C., Fortney, J.L., Jurelevicius, D., Stringfellow, W.T., Alvarez-Cohen, L., Hazen, T.C., Knight, R., Gilbert, 
J.A., Jansson, J.K., 2014b. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil 
spill. ISME J, 12 pp. 

McClenachan, G., Turner, R.E., Tweel, A.W., 2013. Effects of oil on the rate and trajectory of Louisiana marsh 
shoreline erosion. Environmental Research Letters 8, 8 pp. 

McGenity, T.J., 2014. Hydrocarbon biodegradation in intertidal wetland sediments. Current Opinion in 
Biotechnology 27, 46-54. 

Mendelssohn, I.A., Andersen, G.L., Baltz, D.M., Caffey, R.H., Carman, K.R., Fleeger, J.W., Joye, S.B., Lin, Q.X., Maltby, 
E., Overton, E.B., Rozas, L.P., 2012. Oil impacts on coastal wetlands: implications for the Mississippi river delta 
ecosystem after the Deepwater Horizon oil spill. Bioscience 62, 562-574. 

Mendoza, W.G., Riemer, D.D., Zika, R.G., 2013. Application of fluorescence and PARAFAC to assess vertical 
distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill. Environmental 
Science-Processes & Impacts 15, 1017-1030. 

Michel, J., Owens, E.H., Zengel, S., Graham, A., Nixon, Z., Allard, T., Holton, W., Reimer, P.D., Lamarche, A., White, 
M., Rutherford, N., Childs, C., Mauseth, G., Challenger, G., Taylor, E., 2013. Extent and Degree of Shoreline Oiling: 
Deepwater Horizon Oil Spill, Gulf of Mexico, USA. Plos One 8, 9 pp. 

Middlebrook, A.M., Murphy, D.M., Ahmadov, R., Atlas, E.L., Bahreini, R., Blake, D.R., Brioude, J., de Gouw, J.A., 
Fehsenfeld, F.C., Frost, G.J., Holloway, J.S., Lack, D.A., Langridge, J.M., Lueb, R.A., McKeen, S.A., Meagher, J.F., 
Meinardi, S., Neuman, J.A., Nowak, J.B., Parrish, D.D., Peischl, J., Perring, A.E., Pollack, I.B., Roberts, J.M., Ryerson, 
T.B., Schwarz, J.P., Spackman, J.R., Warneke, C., Ravishankara, A.R., 2012. Air quality implications of the Deepwater 
Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109, 20280-
20285. 



Environmental effects of the Deepwater Horizon oil spill 

55 

 

Mishra, D.R., Cho, H.J., Ghosh, S., Fox, A., Downs, C., Merani, P.B.T., Kirui, P., Jackson, N., Mishra, S., 2012. Post-spill 
state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana Salt 
Marshes. Remote Sens. Environ. 118, 176-185. 

Mitra, S., Kimmel, D.G., Snyder, J., Scalise, K., McGlaughon, B.D., Roman, M.R., Jahn, G.L., Pierson, J.J., Brandt, S.B., 
Montoya, J.P., Rosenbauer, R.J., Lorenson, T.D., Wong, F.L., Campbell, P.L., 2012. Macondo-1 well oil-derived 
polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico. Geophysical Research 
Letters 39, 7 pp. 

Montagna, P.A., Baguley, J.G., Cooksey, C., Hartwell, I., Hyde, L.J., Hyland, J.L., Kalke, R.D., Kracker, L.M., Reuscher, 
M., Rhodes, A.C.E., 2013. Deep-sea benthic footprint of the Deepwater Horizon blowout. Plos One 8, 8 pp. 

Montevecchi, W., Fifield, D., Burke, C., Garthe, S., Hedd, A., Rail, J.F., Robertson, G., 2012. Tracking long-distance 
migration to assess marine pollution impact. Biol. Lett. 8, 218-221. 

Moody, R.M., Cebrian, J., Heck, K.L., 2013. Interannual recruitment dynamics for resident and transient marsh 
species: evidence for a lack of impact by the Macondo oil spill. Plos One 8, 11 pp. 

Mortazavi, B., Horel, A., Beazley, M., Sobecky, P., 2013. Intrinsic rates of petroleum hydrocarbon biodegradation in 
Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates. Journal of Hazardous 
Materials 244– 245, 537– 544. 

Moss, J.A., McCurry, C., Tominack, S., Romero, I.C., Hollander, D., Jeffrey, W.H., Snyder, R.A., 2015. Ciliated protists 
from the nepheloid layer and water column of sites affected by the Deepwater Horizon oil spill in the Northeastern 
Gulf of Mexico. Deep-Sea Research Part I-Oceanographic Research Papers 106, 85-96. 

Muhling, B.A., Roffer, M.A., Lamkin, J.T., Ingram, G.W., Upton, M.A., Gawlikowski, G., Muller-Karger, F., Habtes, S., 
Richards, W.J., 2012. Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon 
surface oil in the northern Gulf of Mexico. Marine Pollution Bulletin 64, 679-687. 

Mulabagal, V., Yin, F., John, G.F., Hayworth, J.S., Clement, T.P., 2013. Chemical fingerprinting of petroleum 
biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Marine Pollution Bulletin 70, 
147-154. 

Murawski, S.A., Hogarth, W.T., Peebles, E.B., Barbeiri, L., 2014. Prevalence of external skin lesions and polycyclic 
aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Transactions of the 
American Fisheries Society 143, 1084-1097. 

Natter, M., Keevan, J., Wang, Y., Keimowitz, A.R., Okeke, B.C., Son, A., Lee, M.K., 2012. Level and degradation of 
Deepwater Horizon spilled oil in coastal marsh sediments and pore-water. Environmental Science & Technology 46, 
5744-5755. 

Newton, R.J., Huse, S.M., Morrison, H.G., Peake, C.S., Sogin, M.L., McLellan S.L., 2013. Shifts in the Microbial 
Community Composition of Gulf Coast Beaches Following Beach Oiling. Plos One 8, 13 pp. 

Ogden, J.C., Baldwin, J.D., Bass, O.L., Browder, J.A., Cook, M.I., Frederick, P.C., Frezza, P.E., Galvez, R.A., Hodgson, 
A.B., Meyer, K.D., Oberhofer, L.D., Paul, A.F., Fletcher, P.J., Davis, S.M., Lorenz, J.J., 2014. Waterbirds as indicators 
of ecosystem health in the coastal marine habitats of Southern Florida: 2. Conceptual ecological models. Ecological 
Indicators 44, 128-147. 

Olson, G.M., Meyer, B.M., Portier, R.J., 2016. Assessment of the toxic potential of polycyclic aromatic hydrocarbons 
(PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater 
Horizon Spill. Chemosphere 145, 322-328. 

Ortmann, A.C., Anders, J., Shelton, N., Gong, L.M., Moss, A.G., Condon, R.H., 2012. Dispersed oil disrupts microbial 
pathways in pelagic food webs. Plos One 7, 9 pp. 

Overholt, W.A., Green, S.J., Marks, K.P., Venkatraman, R., Prakash, O., Kostka, J.E., 2013. Draft Genome Sequences 
for Oil-Degrading Bacterial Strains from Beach Sands Impacted by the Deepwater Horizon Oil Spill. Genome 
Announcements Volume 1 (6), e01015-13, 2 pp. 

Ozhan, K., Bargu, S., 2014. Distinct responses of Gulf of Mexico phytoplankton communities to crude oil and the 
dispersant corexit(A (R)) Ec9500A under different nutrient regimes. Ecotoxicology 23, 370-384. 



Environmental effects of the Deepwater Horizon oil spill 

56 

 

Paris, C.B., Le Henaff, M., Aman, Z.M., Subramaniam, A., Helgers, J., Wang, D.P., Kourafalou, V.H., Srinivasan, A., 
2012. Evolution of the Macondo Well Blowout: Simulating the Effects of the Circulation and Synthetic Dispersants 
on the Subsea Oil Transport. Environmental Science & Technology 46, 13293-13302. 

Paruk, J.D., Long, D., Perkins, C., East, A., Sigel, B.J., Evers, D.C., 2014. Polycyclic Aromatic Hydrocarbons Detected in 
Common Loons (Gavia immer) Wintering off Coastal Louisiana. Waterbirds 37, 85-93. 

Passow, U., Ziervogel, K., Asper, V., Diercks, A., 2012. Marine snow formation in the aftermath of the Deepwater 
Horizon oil spill in the Gulf of Mexico. Environmental Research Letters 7, 12 pp. 

Paul, J.H., Hollander, D., Coble, P., Daly, K.L., Murasko, S., English, D., Basso, J., Delaney, J., McDaniel, L., Kovach, 
C.W., 2013. Toxicity and Mutagenicity of Gulf of Mexico Waters During and After the Deepwater Horizon Oil Spill. 
Environmental Science & Technology 47, 9651-9659. 

Pearson, W.H., 2014. Comment on "multitissue molecular, genomic, and developmental effects of the Deepwater 
Horizon oil spill on resident gulf killifish (Fundulus grandis)". Environmental Science & Technology 48, 7677-7678. 

Pendergraft, M.A., Dincer, Z., Sericano, J.L., Wade, T.L., Kolasinski, J., Rosenheim, B.E., 2013. Linking ramped 
pyrolysis isotope data to oil content through PAH analysis. Environmental Research Letters 8, 044038, 044011 pp. 

Pennings, S.C., McCall, B.D., Hooper-Bui, L., 2014. Effects of oil spills on terrestrial arthropods in coastal wetlands. 
Bioscience 64, 789-795. 

Perring, A.E., Schwarz, J.P., Spackman, J.R., Bahreini, R., de Gouw, J.A., Gao, R.S., Holloway, J.S., Lack, D.A., 
Langridge, J.M., Peischl, J., Middlebrook, A.M., Ryerson, T.B., Warneke, C., Watts, L.A., Fahey, D.W., 2011. 
Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. Geophysical 
Research Letters 38, 5 pp. 

Peterson, C.H., Anderson, S.S., Cherr, G.N., Ambrose, R.F., Anghera, S., Bay, S., Blum, M., Condon, R., Dean, T.A., 
Graham, M., Guzy, M., Hampton, S., Joye, S., Lambrinos, J., Mate, B., Meffert, D., Powers, S.P., Somasundaran, P., 
Spies, R.B., Taylor, C.M., Tjeerdema, R., Adams, E.E., 2012. A Tale of Two Spills: Novel Science and Policy 
Implications of an Emerging New Oil Spill Model. Bioscience 62, 461-469. 

Peterson, S.H., Roberts, D.A., Beland, M., Kokaly, R.F., Ustin, S.L., 2015. Oil detection in the coastal marshes of 
Louisiana using MESMA applied to band subsets of AVIRIS data. Remote Sens. Environ. 159, 222-231. 

Pie, H.V., Mitchelmore, C.L., 2015. Acute toxicity of current and alternative oil spill chemical dispersants to early life 
stage blue crabs (Callinectes sapidus). Chemosphere 128, 14-20. 

Pie, H.V., Schott, E.J., Mitchelmore, C.L., 2015. Investigating physiological, cellular and molecular effects in juvenile 
blue crab, Callinectus sapidus, exposed to field-collected sediments contaminated by oil from the Deepwater 
Horizon Incident. Science of the Total Environment 532, 528-539. 

Pilcher, W., Miles, S., Tang, S., Mayer, G., Whitehead, A., 2014. Genomic and genotoxic responses to controlled 
weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native 
killifish. PLoS ONE 9, 11 pp. 

Powers, S.P., Hernandez, F.J., Condon, R.H., Drymon, M.J., Free, C.M., 2013. Novel Pathways for Injury from 
Offshore Oil Spills: Direct, Sublethal and Indirect Effects of the Deepwater Horizon Oil Spill on Pelagic Sargassum 
Communities. Plos One 8, 7 pp. 

Prince, R.C., 2015. Oil Spill Dispersants: Boon or Bane? Environmental Science & Technology 49, 6376-6384. 

Prince, R.C., McFarlin, K.M., Butler, J.D., Febbo, E.J., Wang, F.C.Y., Nedwed, T.J., 2013. The primary biodegradation 
of dispersed crude oil in the sea. Chemosphere 90, 521-526. 

Prince, R.C., Parkerton, T.F., 2014. Comment on "toxicity and mutagenicity of gulf of Mexico waters during and 
after the deepwater horizon oil spill". Environmental science & technology 48, 3591-3592. 

Prouty, N.G., Fisher, C.R., Demopoulos, A.W.J., Druffel, E.R.M., 2014. Growth rates and ages of deep-sea corals 
impacted by the Deepwater Horizon oil spill. Deep Sea Research Part II: Topical Studies in Oceanography Published 
online 8 November 2014. doi:10.1016/j.dsr2.2014.10.021, 17 pp. 



Environmental effects of the Deepwater Horizon oil spill 

57 

 

Radniecki, T., Schneider, M., Semprini, L., 2013. The influence of Corexit 9500A and weathering on Alaska North 
Slope crude oil toxicity to the ammonia oxidizing bacterium, Nitrosomonas europaea. Marine Pollution Bulletin 68, 
64-70. 

Radović, J.R., Aeppli, C., Nelson, R.K., Jimenez, N., Reddy, C.M., Bayona, J.M., Albaigés, J., 2014. Assessment of 
photochemical processes in marine oil spill fingerprinting. Marine Pollution Bulletin 79, 268-277. 

Raimondo, S., Jackson, C.R., Krzykwa, J., Hemmer, B.L., Awkerman, J.A., Barron, M.G., 2014. Developmental toxicity 
of Louisiana crude oil-spiked sediment to zebrafish. Ecotoxicology and environmental safety 108, 265-272. 

Ray, P.Z., Chen, H., Podgorski, D.C., McKenna, A.M., Tarr, M.A., 2014. Sunlight creates oxygenated species in water-
soluble fractions of Deepwater Horizon oil. Journal of hazardous materials 280, 636-643. 

Ray, P.Z., Tarr, M.A., 2014. Petroleum films exposed to sunlight produce hydroxyl radical. Chemosphere 103, 220-
227. 

Reddy, C.M., Arey, J.S., Seewald, J.S., Sylva, S.P., Lemkau, K.L., Nelson, R.K., Carmichael, C.A., McIntyre, C.P., 
Fenwick, J., Ventura, G.T., Van Mooy, B.A.S., Camilli, R., 2012. Composition and fate of gas and oil released to the 
water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the 
United States of America 109, 20229-20234. 

Redmond, M.C., Valentine, D.L., 2012. Natural gas and temperature structured a microbial community response to 
the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 
109, 20292-20297. 

Rivers, A.R., Sharma, S., Tringe, S.G., Martin, J., Joye, S.B., Moran, M.A., 2013. Transcriptional response of 
bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. Isme Journal 7, 2315–2329. 

Ron, E.Z., Rosenberg, E., 2014. Enhanced bioremediation of oil spills in the sea. Current Opinion in Biotechnology 
27, 191-194. 

Rooker, J.R., Kitchens, L.L., Dance, M.A., Wells, R.J.D., Falterman, B., Cornic, M., 2013. Spatial, Temporal, and 
Habitat-Related Variation in Abundance of Pelagic Fishes in the Gulf of Mexico: Potential Implications of the 
Deepwater Horizon Oil Spill. Plos One 8, 9 pp. 

Rozas, L., Minello, T., Miles, M.S., 2014. Effect of Deepwater Horizon Oil on Growth Rates of Juvenile Penaeid 
Shrimps. Estuaries and Coasts, 1-12. 

Ryerson, T.B., Camilli, R., Kessler, J.D., Kujawinski, E.B., Reddy, C.M., Valentine, D.L., Atlas, E., Blake, D.R., de Gouw, 
J., Meinardi, S., Parrish, D.D., Peischl, J., Seewald, J.S., Warneke, C., 2012. Chemical data quantify Deepwater 
Horizon hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of 
the United States of America 109, 20246-20253. 

Sackmann, B.S., Becker, D.S., 2015. Bird mortality due to the Deepwater Horizon oil spill: Comment on Haney et al. 
(2014a, b). Marine Ecology Progress Series 534, 273-277. 

Sammarco, P.W., Kaltofen, M., Kolian, S., Warby, R.A., Bouldin, J., Subra, W., Porter, S.A., 2014. A response to 
Wilson et al. A critique of the manuscript: ‘‘Distribution and concentrations of petroleum hydrocarbons associated 
with the BP/Deepwater Horizon oil spill, Gulf of Mexico’’. Marine Pollution Bulletin 79, 391-392. 

Sammarco, P.W., Kolian, S.R., Warby, R.A.F., Bouldin, J.L., Subra, W.A., Porter, S.A., 2013. Distribution and 
concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. 
Marine Pollution Bulletin 73, 129-143. 

Santos, H.F., Carmo, F.L., Paes, J.E.S., Rosado, A.S., Peixoto, R.S., 2011. Bioremediation of mangroves impacted by 
petroleum. Water Air and Soil Pollution 216, 329-350. 

Schaefer, J., Frazier, N., Barr, J., 2016. Dynamics of near-coastal fish assemblages following the Deepwater Horizon 
Oil Spill in the Northern Gulf of Mexico. Trans. Amer. Fish. Soc. 145, 108-119. 

Schwacke, L., Smith, C., Townsend, F., Wells, R., Hart, L., Balme, B., Collier, T., De Guise, S., Fry, M., Guillette Jr., L., 
Lamb , S., Lane, S., McFee , W., Place , N., Tumlin, M., Ylitalo, G., Zolman, E., Rowles, T., 2014a. Health of Common 
Bottlenose Dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, Following the Deepwater Horizon Oil Spill. 
Environmental Science & Technology 48, 93-103. 



Environmental effects of the Deepwater Horizon oil spill 

58 

 

Schwacke, L.H., Smith, C.R., Townsend, F.I., Wells, R.S., Hart, L.B., Balmer, B.C., Collier, T.K., De Guise, S., Fry, M.M., 
Guillette, L.J., Jr., Lamb, S.V., Lane, S.M., McFee, W.E., Place, N.J., Tumlin, M.C., Ylitalo, G.M., Zolman, E.S., Rowles, 
T.K., 2014b. Correction to Health of Common Bottlenose Dolphins (Tursiops truncatus) in Barataria Bay, Louisiana 
Following the Deepwater Horizon Oil Spill. Environmental science & technology 48, 10528, 10521 pp. 

Schwing, P.T., Romero, I.C., Brooks, G.R., Hastings, D.W., Larson, R.A., Hollander, D.J., 2015. A decline in benthic 
foraminifera following the Deepwater Horizon event in the northeastern Gulf of Mexico. Plos One 10, 22 pp. 

Scott, J.A., Incardona, J.P., Pelkki, K., Shepardson, S., Hodson, P.V., 2011. AhR2-mediated, CYP1A-independent 
cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquatic Toxicology 101, 165-174. 

Shiller, A.M., Joung, D., 2012. Nutrient depletion as a proxy for microbial growth in Deepwater Horizon subsurface 
oil/gas plumes. Environmental Research Letters 7, 5 pp. 

Silliman, B.R., van de Koppel, J., McCoy, M.W., Diller, J., Kasozi, G.N., Earl, K., Adams, P.N., Zimmerman, A.R., 2012. 
Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proceedings of the 
National Academy of Sciences of the United States of America 109, 11234-11239. 

Singh, G., Pruden, A., Widdowson, M.A., 2012. Influence of Petroleum Deposit Geometry on Local Gradient of 
Electron Acceptors and Microbial Catabolic Potential. Environmental Science & Technology 46, 5782-5788. 

Smith, A.J., Flemings, P.B., Fulton, P.M., 2014a. Hydrocarbon flux from natural deepwater Gulf of Mexico vents. 
Earth and Planetary Science Letters 395, 241-253. 

Smith, C.B., Johnson, C.N., King, G.M., 2012. Assessment of polyaromatic hydrocarbon degradation by potentially 
pathogenic environmental Vibrio parahaemolyticus isolates from coastal Louisiana, USA. Marine Pollution Bulletin 
64, 138-143. 

Smith, R.H., Johns, E.M., Goni, G.J., Trinanes, J., Lumpkin, R., Wood, A.M., Kelble, C.R., Cummings, S.R., Lamkin, J.T., 
Privoznik, S., 2014b. Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil 
spill. Continental Shelf Research 77, 118-131. 

Snyder, R.A., Ederington-Hagy, M., Hileman, F., Moss, J.A., Amick, L., Carruth, R., Head, M., Marks, J., Tominack, S., 
Jeffrey, W.H., 2014a. Polycyclic aromatic hydrocarbon concentrations across the Florida Panhandle continental 
shelf and slope after the BP MC 252 well failure. Marine Pollution Bulletin 89, 201-208. 

Snyder, R.A., Vestal, A., Welch, C., Barnes, G., Pelot, R., Ederington-Hagy, M., Hileman, F., 2014b. PAH 
concentrations in Coquina (Donax spp.) on a sandy beach shoreline impacted by a marine oil spill. Marine Pollution 
Bulletin 83, 87-91. 

Snyder, S.M., Pulster, E.L., Wetzel, D.L., Murawski, S.A., 2015. PAH Exposure in Gulf of Mexico Demersal Fishes, 
Post-Deepwater Horizon. Environmental Science & Technology 49, 8786-8795. 

Socolofsky, S.A., Adams, E.E., Boufadel, M.C., Aman, Z.M., Johansen, O., Konkel, W.J., Lindo, D., Madsen, M.N., 
North, E.W., Paris, C.B., Rasmussen, D., Reed, M., Ronningen, P., Sim, L.H., Uhrenholdt, T., Anderson, K.G., Cooper, 
C., Nedwed, T.J., 2015. Intercomparison of oil spill prediction models for accidental blowout scenarios with and 
without subsea chemical dispersant injection. Marine Pollution Bulletin 96, 110-126. 

Soniat, T.M., King, S.M., Tarr, M.A., Thorne, M.A., 2011. Chemical and Physiological Measures on Oysters 
(Crassostrea virginica) from Oil-Exposed Sites in Louisiana. Journal of Shellfish Research 30, 713-717. 

Spier, C., Stringfellow, W., Hazen, T., Conrad, M., 2013. Distribution of hydrocarbons released during the 2010 
MC252 oil spill in deep offshore waters. Environmental Pollution 173, 224-230. 

Steffy, D., Nichols, A., Morgan, L.J., Gibbs, R., 2013. Evidence that the Deepwater Horizon oil spill caused a change 
in the nickel, chromium, and lead average seasonal concentrations occurring in sea bottom sediment collected 
from the eastern Gulf of Mexico continental shelf between the years 2009 and 2011. Water, Air, & Soil Pollution 
224, 1-11. 

Stephens, E.L., Molina, V., Cole, K.M., Laws, E., Johnson, C.N., 2013. In situ and in vitro impacts of the Deepwater 
Horizon oil spill on Vibrio parahaemolyticus. Marine Pollution Bulletin 75, 90-97. 



Environmental effects of the Deepwater Horizon oil spill 

59 

 

Sumaila, U.R., Cisneros-Montemayor, A.M., Dyck, A., Huang, L., Cheung, W., Jacquet, J., Kleisner, K., Lam, V., 
McCrea-Strub, A., Swartz, W., Watson, R., Zeller, D., Pauly, D., 2012. Impact of the Deepwater Horizon well blowout 
on the economics of US Gulf fisheries. Canadian Journal of Fisheries and Aquatic Sciences 69, 499-510. 

Szedlmayer, S.T., Mudrak, P.A., 2014. Influence of age-1 conspecifics, sediment type, dissolved oxygen, and the 
Deepwater Horizon oil spill on recruitment of age-0 red snapper in the northeast Gulf of Mexico during 2010 and 
2011. North American Journal of Fisheries Management 34, 443-452. 

Tao, Z., Bullard, S., Arias, C., 2011. High numbers of Vibrio vulnificus in tar balls collected from oiled areas of the 
north-central Gulf of Mexico following the 2010 BP Deepwater Horizon oil spill. Ecohealth 8, 507-511. 

Tarnecki, J.H., Patterson, W.F., III, 2015. Changes in Red Snapper Diet and Trophic Ecology Following the Deepwater 
Horizon Oil Spill. Marine and Coastal Fisheries 7, 135-147. 

Thibodeaux, L.J., Valsaraj, K.T., John, V.T., Papadopoulos, K.D., Pratt, L.R., Pesika, N.S., 2011. Marine oil fate: 
knowledge gaps, basic research, and development needs; a perspective based on the Deepwater Horizon spill. 
Environmental Engineering Science 28, 87-93. 

Thomas, J.C., Wafula, D., Chauhan, A., Green, S.J., Gragg, R., Jagoe, C., 2014. A survey of deepwater horizon (DWH) 
oil-degrading bacteria from the Eastern oyster biome and its surrounding environment. Frontiers in Microbiology 5, 
12 pp. 

Tran, T., Yazdanparast, A., Suess, E.A., 2014. Effect of oil spill on birds: a graphical assay of the Deepwater Horizon 
oil spill's impact on birds. Computational Statistics 29, 133-140. 

Turcotte, D., Akhtar, P., Bowerman, M., Kiparissis, Y., Brown, R.S., Hodson, P.V., 2011. Measuring the toxicity of 
alkyl-phenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery. 
Environmental Toxicology and Chemistry 30, 487-495. 

Turner, R.E., Overton, E.B., Meyer, B.M., Miles, M.S., Hooper-Bui, L., 2014a. Changes in the concentration and 
relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes. Marine Pollution 
Bulletin 86, 291-297. 

Turner, R.E., Overton, E.B., Meyer, B.M., Miles, M.S., McClenachan, G., Hooper-Bui, L., Engel, A.S., Swenson, E.M., 
Lee, J.M., Milan, C.S., Gao, H., 2014b. Distribution and recovery trajectory of Macondo (Mississippi Canyon 252) oil 
in Louisiana coastal wetlands. Marine Pollution Bulletin 87, 57-67. 

Urbano, M., Elango, V., Pardue, J.H., 2013. Biogeochemical characterization of MC252 oil:sand aggregates on a 
coastal headland beach. Marine Pollution Bulletin 77, 183-191. 

Valentine, D., Fisher, G., Bagby, S., Nelson, R., Reddy, C., Sylvac, S., Wood, M., 2014. Fallout plume of submerged oil 
from Deepwater Horizon. PNAS PNAS Early Edition, 1-6. 

Valentine, D.L., Kessler, J.D., Redmond, M.C., Mendes, S.D., Heintz, M.B., Farwell, C., Hu, L., Kinnaman, F.S., Yvon-
Lewis, S., Du, M., Chan, E.W., Tigreros, F.G., Villanueva, C.J., 2010. Propane respiration jump-starts microbial 
response to a deep oil spill. Science 330, 208-211. 

Valentine, D.L., Mezic, I., Macesic, S., Crnjaric-Zic, N., Ivic, S., Hogan, P.J., Fonoberov, V.A., Loire, S., 2012. Dynamic 
autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proceedings of the National 
Academy of Sciences of the United States of America 109, 20286-20291. 

Valentine, M.M., Benfield, M.C., 2013. Characterization of epibenthic and demersal megafauna at Mississippi 
Canyon 252 shortly after the Deepwater Horizon Oil Spill. Marine Pollution Bulletin 77, 196-209. 

van der Ham, J.L., de Mutsert, K., 2014. Abundance and Size of Gulf Shrimp in Louisiana's Coastal Estuaries 
following the Deepwater Horizon Oil Spill. PLoS ONE 9, e108884, 108888 pp. 

Van Dolah, F.M., Neely, M.G., McGeorge, L.E., Balmer, B.C., Ylitalo, G.M., Zolman, E.S., Speakman, T., Sinclair, C., 
Kellar, N.M., Rosel, P.E., Mullin, K.D., Schwacke, L.H., 2015. Seasonal Variation in the Skin Transcriptome of 
Common Bottlenose Dolphins (Tursiops truncatus) from the Northern Gulf of Mexico. Plos One 10, 21 pp. 

Venn-Watson, S., Colegrove, K.M., Litz, J., Kinsel, M., Terio, K., Saliki, J., Fire, S., Carmichael, R., Chevis, C., Hatchett, 
W., Pitchford, J., Tumlin, M., Field, C., Smith, S., Ewing, R., Fauquier, D., Lovewell, G., Whitehead, H., Rotstein, D., 



Environmental effects of the Deepwater Horizon oil spill 

60 

 

McFee, W., Fougeres, E., Rowles, T., 2015. Adrenal gland and lung lesions in Gulf of Mexico common bottlenose 
dolphins (Tursiops truncatus) found dead following the Deepwater Horizon oil spill. Plos One 10, 23 pp. 

Walter, S.T., Carloss, M.R., Hess, T.J., Leberg, P.L., 2014. Demographic trends of Brown Pelicans in Louisiana before 
and after the Deepwater Horizon oil spill. Journal of Field Ornithology 85, 421-429. 

Wei, C.L., Rowe, G.T., Escobar-Briones, E., Nunnally, C., Soliman, Y., Ellis, N., 2012. Standing stocks and body size of 
deep-sea macrofauna: Predicting the baseline of 2010 Deepwater Horizon oil spill in the northern Gulf of Mexico. 
Deep-Sea Research Part I-Oceanographic Research Papers 69, 82-99. 

White, H.K., Hsing, P.Y., Cho, W., Shank, T.M., Cordes, E.E., Quattrini, A.M., Nelson, R.K., Camilli, R., Demopoulos, 
A.W.J., German, C.R., Brooks, J.M., Roberts, H.H., Shedd, W., Reddy, C.M., Fisher, C.R., 2012a. Impact of the 
Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National 
Academy of Sciences of the United States of America 109, 20303-20308. 

White, H.K., Hsing, P.Y., Cho, W., Shank, T.M., Cordes, E.E., Quattrini, A.M., Nelson, R.K., Camilli, R., Demopoulos, 
A.W.J., German, C.R., Brooks, J.M., Roberts, H.H., Shedd, W., Reddy, C.M., Fisher, C.R., 2012b. Reply to Boehm and 
Carragher: Multiple lines of evidence link deep-water coral damage to Deepwater Horizon oil spill. Proceedings of 
the National Academy of Sciences of the United States of America 109, E2648-E2648. 

White, H.K., Lyons, S.L., Harrison, S.J., Findley, D.M., Liu, Y., Kujawinski, E.B., 2014. Long-Term Persistence of 
Dispersants following the Deepwater Horizon Oil Spill. Environmental Science & Technology Letters 1, 295-299. 

Whitehead, A., Dubansky, B., Bodinier, C., Garcia, T.I., Miles, S., Pilley, C., Raghunathan, V., Roach, J.L., Walker, N., 
Walter, R.B., Rice, C.D., Galvez, F., 2012. Genomic and physiological footprint of the Deepwater Horizon oil spill on 
resident marsh fishes. Proceedings of the National Academy of Sciences of the United States of America 109, 
20298-20302. 

Williams, R., Gero, S., Bejder, L., Calambokidis, J., Kraus, S.D., Lusseau, D., Read, A.J., Robbins, J., 2011. 
Underestimating the damage: interpreting cetacean carcass recoveries in the context of the Deepwater Horizon/BP 
incident. Conservation Letters 4, 228-233. 

Wilson, M.J., Wickliffe, J.K., Overton, E., 2014. A critique of the manuscript: "Distribution and concentrations of 
petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico". Marine Pollution 
Bulletin 79, 389-390. 

Wise, C.F., Wise, J.T.F., Wise, S.S., Thompson, W.D., Wise, J.P., Jr., Wise, J.P., Sr., 2014a. Chemical dispersants used 
in the Gulf of Mexico oil crisis are cytotoxic and genotoxic to sperm whale skin cells. Aquatic toxicology 152, 335-
340. 

Wise, J.P., Jr., Wise, J.T.F., Wise, C.F., Wise, S.S., Gianios, C., Jr., Xie, H., Thompson, W.D., Perkins, C., Falank, C., 
Wise, J.P., Sr., 2014b. Concentrations of the genotoxic metals, chromium and nickel, in whales, tar balls, oil slicks, 
and released oil from the Gulf of Mexico in the immediate aftermath of the Deepwater Horizon oil crisis: Is 
genotoxic metal exposure part of the Deepwater Horizon legacy? Environmental Science & Technology 48, 2997-
3006. 

Wooten, K.J., Finch, B.E., Smith, P.N., 2012. Embryotoxicity of Corexit 9500 in mallard ducks (Anas platyrhynchos). 
Ecotoxicology 21, 662-666. 

Wu, W., Biber, P.D., Peterson, M.S., Gong, C.F., 2012. Modeling photosynthesis of Spartina alterniflora (smooth 
cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference. Environmental Research Letters 7, 
13 pp. 

Xia, K., Hagood, G., Childers, C., Atkins, J., Rogers, B., Ware, L., Armbrust, K., Jewell, J., Diaz, D., Gatian, N., Folmer, 
H., 2012. Polycyclic aromatic hydrocarbons (PAHs) in Mississippi seafood from areas affected by the Deepwater 
Horizon oil spill. Environmental Science & Technology 46, 5310-5318. 

Yapa, P.D., Wimalaratne, M.R., Dissanayake, A.L., DeGraff, J.A., 2012. How does oil and gas behave when released 
in deepwater? Journal of Hydro-Environment Research 6, 275-285. 

Yin, F., John, G.F., Hayworth, J.S., Clement, T.P., 2015. Long-term monitoring data to describe the fate of polycyclic 
aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama's beaches. Science of The Total 
Environment 508, 46-56. 



Environmental effects of the Deepwater Horizon oil spill 

61 

 

Ylitalo, G.M., Krahn, M.M., Dickhoff, W.W., Stein, J.E., Walker, C.C., Lassitter, C.L., Garrett, E.S., Desfosse, L.L., 
Mitchell, K.M., Noble, B.T., Wilson, S., Beck, N.B., Benner, R.A., Koufopoulos, P.N., Dickey, R.W., 2012. Federal 
seafood safety response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the 
United States of America 109, 20274-20279. 

Zengel, S., Bernik, B.M., Rutherford, N., Nixon, Z., Michel, J., 2015. Heavily oiled salt marsh following the Deepwater 
Horizon oil spill, ecological comparisons of shoreline cleanup treatments and recovery. Plos One 10, 27 pp. 

Zhao, L., Boufadel, M.C., Socolofsky, S.A., Adams, E., King, T., Lee, K., 2014. Evolution of droplets in subsea oil and 
gas blowouts: Development and validation of the numerical model VDROP-J. Marine Pollution Bulletin 83, 58-69. 

Zhou, Z., Guo, L., Shiller, A.M., Lohrenz, S.E., 2013a. Characterization of oil components from the Deepwater 
Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques. Marine Chemistry 148, 10-
21. 

Zhou, Z., Liu, Z., Guo, L., 2013b. Chemical evolution of Macondo crude oil during laboratory degradation as 
characterized by fluorescence EEMs and hydrocarbon composition. Marine Pollution Bulletin 66, 164-175. 

Ziervogel, K., Arnosti, C., 2014. Enhanced protein and carbohydrate hydrolyses in plume-associated deepwaters 
initially sampled during the early stages of the Deepwater Horizon oil spill. Deep Sea Research Part II: Topical 
Studies in Oceanography DeepSea Research Special Issue, 6 pp. 

Ziervogel, K., D'Souza, N., Sweet, J., Yan, B., Passow, U., 2014a. Natural oil slicks fuel surface water microbial 
activities in the northern Gulf of Mexico. Frontiers in Microbiology 5, 10 pp. 

Ziervogel, K., Joye, S.B., Arnosti, C., 2014b. Microbial enzymatic activity and secondary production in sediments 
affected by the sedimentation pulse following the Deepwater Horizon oil spill. Deep Sea Research Part II DeepSea 
Research Special Issue, 8 pp. 

Ziervogel, K., McKay, L., Rhodes, B., Osburn, C.L., Dickson-Brown, J., Arnosti, C., Teske, A., 2012. Microbial activities 
and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill 
site. Plos One 7, 11 pp. 

 

 



Environmental effects of the Deepwater Horizon oil spill 

62 

 

Figure 1    



Environmental effects of the Deepwater Horizon oil spill 

63 

 

Figure 2    



Environmental effects of the Deepwater Horizon oil spill 

64 

 

 

Figure 3     

 


	Forside Akseptert versjon Elsevier
	Beyer et al 2016 - MPB 7791 - accepted ms with corrections done to PROOF



