Nordsjøplanen. Marine resipienter

Inndeling i resipientområder, tilførsler, retensjon, mål for vannkvalitet og behov for reduksjon av tilførsler.
NIVÅ - RAPPORT
Norsk institutt for vannforskning

Hovedkontor
Postboks 60, Korsvoll
0808 Oslo 8
Telefon (47 2) 23 52 80
Telefax (47 2) 29 41 89

Sørlandsavdelingen
Televeien 1
4680 Grimstad
Telefon (47 41) 43 033
Telefax (47 41) 44 513

Østlandsavdelingen
Røte 866
2312 Ottestad
Telefon (47 65) 76 752
Telefax (47 65) 78 402

Vestlandsavdelingen
Breiviken 6
5035 Bergen - Sandviken
Telefon (47 5) 95 17 00
Telefax (47 5) 25 78 90

Rapportens tittel:
NORDSØPLANEN. MARINE RESPIENTER. Inndeling i resipientområder, tilførsler, mål for vannkvalitet og behov for reduksjon av tilførsler.

Forfatter (er):
Kjell Baalsrud
Lars Golmen
Jarle Molvær
Brage Rygg

Dato:
30. august 1991

Faggruppe:
Marin eutrofi

Geografisk område:
Sørøst-Norge

Antall sider:
51

Oppdragsgiver:
Statens forurensningstilsyn, SFT

Oppdrag. ref. (evt. NTNF-nr.):

Ekstrakt:
Kyststrekningen Svenskegrensen-Lindesnes er delt inn i 9 relativt ensartete kystsoneområder. Langs kyststrekningen er videre 48 fjordområder valgt ut. Ut fra tilførsler av vann og forurensninger, hydrografiske forhold og vannutskifting er midlere koncentrasjonsklikninger for nitrogen og fosfor i de enkelte områdene beregnet. Det er oppsatt grenseverdier for kvalitetsklasser for sjøvannet og beregnet antatt nødvendig reduksjon for å nå visse kvalitetsmål.

4 emneord, norske
1. Marin eutrofi
2. Resipientinndeling
3. Kvalitetskriterier
4. Næringssalttilførsler

4 emneord, engelske
1.
2.
3.
4.
NORDSJØPLANEN
MARINE RESIPIENTER

Inndeling i resipientområder, tilførsler, mål for vannkvalitet og behov for reduksjon av tilførsler

Oslo, 31. august 1991

Prosjektleder:

Hans Olav Ibrekk
Kjell Baalsrud
Lars Golmen
Jarle Molvær
Brage Rygg
FORORD

Norsk institutt for vannforskning (NIVA) fikk sommeren/høsten 1990 i oppdrag av Miljøverndepartementet (MD) og Statens forurensningstilsyn (SFT) å utrede nærmere det faglige grunnlag for arbeidet med Nordsjø-deklarasjonen. Norge har forpliktet seg til å redusere de norske utslippene av næringssalter med i størrelsesorden 50% på strekningen fra Svenskegrensen til Lindesnes innen 1995, med 1985 som basisår.

Prosjektet har hatt som mål å komme med forslag til hvilke utslippsreduksjoner fra norske kilder som er nødvendig for å bedre vannkvaliteten til et akseptabelt nivå ut fra nasjonale mål. Oppgaven har vært faglig utfordrende. Resultatene gis med generelt forbehold, og resultatene bør revideres når kunnskapsgrunnlaget bedres.

NIVAs hovedprosjektleder for arbeidet med Nordsjøplanen har vært Hans Olav Ibrekk. Følgende NIVA-medarbeidere har deltatt i arbeidet: Kjell Baalsrud, Lars Golmen, Jarle Molvær og Brage Rygg. I tillegg har også andre bidratt med synspunkter.

Hans Olav Ibrekk
INNHOLD

<table>
<thead>
<tr>
<th>Kapittel</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INNLEDNING</td>
<td>4</td>
</tr>
<tr>
<td>2. OMTALE AV BAKGRUNNSMATERIALET</td>
<td>5</td>
</tr>
<tr>
<td>3. INNDELING I RESPIENTOMRÅDER</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Inndeling av skjærgårds- og kyststrømsonen</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Inndeling av avstengte områder</td>
<td>9</td>
</tr>
<tr>
<td>4. TILSTANDSBESKRIVELSE</td>
<td>12</td>
</tr>
<tr>
<td>4.1 De fri vannmasser</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Strandsonen</td>
<td>14</td>
</tr>
<tr>
<td>4.3 Bløtbunn</td>
<td>15</td>
</tr>
<tr>
<td>5. TILFØRSEL AV NITROGEN OG FOSFOR</td>
<td>23</td>
</tr>
<tr>
<td>6. DE FYSISKE FORHOLD, FORTYNNING OG OPPHOLDSTIDER</td>
<td>26</td>
</tr>
<tr>
<td>6.1 Kyststrømmens hydrografi</td>
<td>26</td>
</tr>
<tr>
<td>6.2 Stoffutveksling og blanding med tilstøtende vannmasser</td>
<td>29</td>
</tr>
<tr>
<td>6.3 Fjorder og avstengte områder</td>
<td>30</td>
</tr>
<tr>
<td>7. FASTSETTELSE AV KVALITETSKLASSER FOR RESPIENT-</td>
<td>36</td>
</tr>
<tr>
<td>OMRÅDENE</td>
<td></td>
</tr>
<tr>
<td>7.1 Kriterier og modeller</td>
<td>36</td>
</tr>
<tr>
<td>7.2 Kystsonen</td>
<td>37</td>
</tr>
<tr>
<td>7.3 Nærømrådene</td>
<td>39</td>
</tr>
<tr>
<td>8. NØDVENDIGE N OG P REDUKSJONER</td>
<td>40</td>
</tr>
<tr>
<td>8.1 Kystsonen</td>
<td>40</td>
</tr>
<tr>
<td>8.2 Nærømrådene</td>
<td>43</td>
</tr>
<tr>
<td>8.3 Vurderinger</td>
<td>45</td>
</tr>
<tr>
<td>9. REFERANSEN</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Den aktuelle kyststrekning med tilhørende nedbørfelt og byer ved kysten. Kyststrekningen delt i 9 soner.</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>48 utvalgte nærområder på den aktuelle kyststrekningen.</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Plott av artsmangfold (H) mot østlig lengdegrad for 500 observasjoner fra 320 bløtbunnfaunastasjoner i Sør-Norge</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Utbredelse av to hovedgrupper av bløtbunnfaunasamfunn langs kysten av Sør-Norge. Faunaen vest for Farsund inneholder til dels andre arter og er mer artsrik enn faunaen øst for Farsund.</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Plott av artsmangfold (H) mot østlig lengdegrad på 15 utaskjærers stasjoner på dyp 100-460 m.</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>Artsmangfold på de 21 kystovervåkingsstasjonene 1990. H-verdien er lik antall segmenter på søylene.</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>Individtetthet pr. 0.4 m² på de 21 kystovervåkingsstasjonene. Hvert segment på søylene representerer 100 individer.</td>
</tr>
<tr>
<td>Fig. 6.1</td>
<td>Skisse som viser trekk ved en tetthetsdrevet, geofysisk kyststrøm</td>
</tr>
<tr>
<td>Fig. 6.2</td>
<td>Kyststrømmen med ulike kommunikasjonslinjer til vannmasser og områder den påvirker eller påvirkes av.</td>
</tr>
<tr>
<td>Fig. 6.3</td>
<td>Innlagringsberegninger for utslipp av kommunalt avløpsvann ved Farsund.</td>
</tr>
<tr>
<td>Fig. 7.1</td>
<td>Prinsippskisse av dose-responssammenheng.</td>
</tr>
<tr>
<td>Fig. 8.1</td>
<td>Prinsippskisse for fortyning av forurensningstillførsler fra fjord til kyststrøm.</td>
</tr>
</tbody>
</table>
Tabell 3.1 Beskrivelse av 9 soner langs Skagerrakkyisten.

Tabell 3.2 9 kystoner med 48 utvalgte nærområder.

Tabell 6.1 Topografiske data for 48 utvalgte fjorder, og anslått dyp og oppholdstid for overflatelaget. Tilhørende nedbørfelt og midlere avrenning.

Tabell 8.1 Konsentrasjonsøkninger av antropogent nitrogen og fosfor i de enkelte sonene ved to antatte alternative overføringer mellom sonene.

Tabell 8.2 Utslipp til 48 nærområder. Beregnet konsentrasjonsøkning av dagens utslipp. Beregnet behov for utslippsreduksjoner (t/År) for å nå alternative kvalitetsmål.

Tabell 8.3 Tilførsler av antropogent nitrogen og fosfor til nærområder i hver sone, sammenlignet med tilførslene til hele sonen.

Tabell 8.4 Gjenværende utslipp i hver sone etter at utslippsreduksjoner (tabell 8.2) er gjennomført.
1. INNLEDNING

Miljøverndepartementet og Statens forurensningstilsyn, SFT, gjennomfører en tiltaksanalyse for Nordsjøen, der målet er å vurdere omfanget av tiltak for å oppfylle Nordsjødeklarasjonen.

Som ledd i denne planen skal det foretas en vurdering av behovet for tiltak mot utslipp av næringssaltene nitrogen og fosfor langs kyststrekningen Svenskegrensen - Lindesnes.

SFT henvendte seg høsten 1990 til NIVA for å få belyst behovet for tiltak ut fra nasjonale mål for vannforekomstene i det aktuelle kystområdet med tilhørende nedbørfelt.

Arbeidet skal bestå i:

1. å innelede kyststrekningen Svenskegrensen - Lindesnes med innenforliggende nedbørfelt i resipientområder,
2. å utarbeide sammenheng mellom fosfor- og nitrogenreduksjoner og vannkvaliteten i de enkelte resipientområdene,
3. å utarbeide overslag over nødvendige fosfor- og nitrogenreduksjoner i de aktuelle resipientområdene for å nå ulike mål-nivåer.

Utredningene er forutsatt å bygge på eksistrende data for utslipp og forholdene i kystsonen. Det har vært nødvendig med en grundig vurdering av selve kystsonen med henblikk på å lokalisere steder hvor de nasjonale mål ikke er tilfredsstilt eller er i faresonen. Det har videre vært nødvendig ved hjelp av sjøkart, landkart, vassdragsregister og andre opplysninger å få et inntrykk av topografi en i kystsonen og tilrenningen av ferskvann.

Langs kysten måler den aktuelle strekningen ca. 300 km. Selve kystlinjen er betydelig lengre. I følge Statistisk Årbok er fastlandets kystlinje på Skagerrakkysten ca 2000 km og øyenes kystlinje ca. 3000 km. Det er valgt ut 48 mer eller mindre avstengte nærområder i tillegg til den sammenhengende åpne kystsonen. For mange lokaliteter er grunnlagsopplysningene sparsomme eller de mangler. For å sikre at opplysningene er gode, har materialet vært på en kort høring hos de respektive miljøvernvalider. I flere tilfeller hadde det vært ønskelig med befaringer og direkte målinger i felten.
2. OMTALE AV BAKGRUNNSMATERIALET

Utslippsverdiene for nitrogen og fosfor er basert på beregninger. De data som lagt til grunn, er fremkommet gjennom bruk av en EDB-basert beregningsmodell som NIVA har utviklet (Tjomsland, 1991) etter oppdrag fra SFT.

Dagens tilstand i fjord- og kystområdene er beskrevet i en rekke rapporter over de siste par ti-år. Alle tilgjengelige rapporter fra kystavsnittet er samlet inn og utgjør en viktig del av datagrunnlaget. En sammenstilling ble gjort som en landsomfattende vurdering av eutrofisituasjonen i norske kystfarvann (Erga m.fl.,1990). Det er i tillegg trukket på egen lokalkunnskap og informasjon fra de enkelte miljøvernavdelingene og fra SFT.

De fleste store utsipp foregår på dypt vann, tildels gjenom diffusor. Avløpsvannet vil da bli innlagret på et visst dyp, mer eller mindre i sprangsjiktet. Innlagringen vil noen steder være godt under det dypet hvor alger kan vokse, andre steder mindre dypt hvor lyset slipper til og utsippet dermed vil bidra til økt algevekst.

For mange byers vedkommende ligger utsippstedet så åpent til at det innlagrede vannet vil bli utvekslet ved horisontale strømmer og ikke komme til overflaten på det lokale sted eller i nærliggende avgrensete sjøområder.
3. INNDELING I RESIPIENTOMRÅDER

Den aktuelle kyststrekning er lang og komplisert. For å kunne gjennomføre en tallmessig vurdering av behovet for utslippsreduksjoner har det vært ønskelig å dele opp kystavsnittet i soner og områder som hver for seg kan behandles som enheter med konstante indre forhold. Denne forenklingen av resipientbildet har vært nødvendig for å kunne foreta en likeverdig og oversiktlig behandling av problemene. Det bør tas i betraktning ved tolkning av resultatene.

Inndelingen av kyststrekningen Svenskegrensen - Lindesnes i resipientområder har primært tatt utgangspunkt i topografiske og hydrografiske forhold.

Bestemmende faktorer har vært:

1. Tilførsel av ferskvann
2. Kyststrømmen
3. Graden av avstengthet (fjorder og trange farvann)

Det har vært rimelig å avgrense vurderingene til områdene innenfor Grunnlinjen (den offisielle linje trukket mellom faste ytterpunkter i skjærgården og fastlandet) eller like utenfor den. Det vi vanligvis oppfatter som den norske kyststrømmen, strekker seg fra Grunnlinjen og kanskje 40 km ut i havet. I kyststrømmen og utenfor den er det store vannmasser og lite oversiktlige strømningsforhold. Kyststrømmen vil også påvirke strømningsmønstrene og oppholdstidene for vannet i det åpne skjærgårdsområdet og de ytre områdene av de større fjordene.

I de mer lukkede og avstengte fjordene vil vannets oppholdstid, bevegelse og lagdeling stort sett være bestemt av de lokale forholdene. Det er funnet hensiktsmessig å benytte to slags inndelinger:

a. En sammenhengende inndeling av den åpne kyststrekningen (åpen skjærgård og kyststrøm) i soner.
b. En punktvis utvelging av resipientmessig viktige nærområder.

3.1. Inndeling av skjærgårds- og kyststrømsonen

Den 300 km lange kystlinjen fra Svenskegrensen til Lindesnes er delt inn i 9 områder, hovedsakelig bestemt av utløpene av de større vassdragene. Se fig 3.1. Det tilhørende nedbørfeltet representerer en stor del av NORGE: Ca. 100 000 km² med ca. 2,2 mill. innbyggere.
Figur 3.1 Den aktuelle kyststrekning med tilhørende nedbørfelt og byer ved kysten. Kyststrekningen delt i 9 soner.
Nedenfor er gitt en oversikt over de 9 sonene med angivelse av beliggenhet og viktige forurensningskilder som byer ved kysten og hovedvassdrag.

Tabell 3.1 Beskrivelse av 9 soner langs Skagerrakkysten

<table>
<thead>
<tr>
<th>Sone 1, Svenskegrensen - Missingen</th>
<th>Fylke: Søndre Østfold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Halden, Sarpsborg, Fredrikstad</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Glomma, Haldenvassdraget</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 2, Missingen - Fulehuk, med hele Oslofjorden innenfor</th>
<th>Fylker: Østfold, Akershus, Oslo, Buskerud, Vestfold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Moss, Oslo, Drammen, Holmestrand, Horten, Tønsberg</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Drammensvassdraget</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 3, Fulehuk - Nevunghavn</th>
<th>Fylke: Søndre Vestfold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Sandefjord, Larvik, Stavern</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Numedalslågen, Aulielva, Farris</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 4, Nevunghavn - Melby</th>
<th>Fylke: Vestfold, Telemark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Porsgrunn, Skien, Brevik, Langesund</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Skiensvassdraget</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 5, Melby - Jærnestangen</th>
<th>Fylke: Telemark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Kragerø</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Kragerøvassdraget</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 6, Jærnestangen - Fløsta</th>
<th>Fylke: Aust-Agder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Risør, Tvedestrand</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Gjerstadelva, Storelva</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 7, Fløsta - Homborsund</th>
<th>Fylke: Aust-Agder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Arendal, Grimstad</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Nidelva</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 8, Homborsund - Svensheia</th>
<th>Fylker: Aust-Agder, Vest-Agder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Lillesand, Kristiansand</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Tovdalselva, Otra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sone 9, Svensheia - Lindees</th>
<th>Fylke: Vest-Agder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystbyer: Mandal</td>
<td></td>
</tr>
<tr>
<td>Vassdrag: Søgneelva, Mandalselva, Audna</td>
<td></td>
</tr>
</tbody>
</table>

Oslofjorden er en viktig del av det aktuelle kystområdet. Omtrent

I samsvar med inndelingen og vurderingene i Hovedrapporten for Ytre Oslofjord er den delt i de tre sonene:

- Sone 1 Søndre Østfold
- Sone 2 Oslofjorden til Missingen-Pulehuk
- Sone 3 Søndre Vestfold

3.2. Inndeling av avstengte områder

På hele den 300 km lange kyststrekningen finnes det en rekke mer eller mindre avstengte sjøvannsområder. Særlig ømfintlige for påvirkning er terskelfjordene. I flere av disse er vannfornyelsen så begrenset at bunnvannet fra naturens side kan ha sterkt redusert oksygeninnhold, eller og og store røtt. Eksempler på det er Hellefjorden, Søndeledspollen, Tvedestrandsfjorden, Tysingsfjord og Sniksfjord (Strøm, 1936).

Innenfor hvert av de 9 kystsoneområdene er det plukket ut avstengte sjøvannsområder hvor det kan ventes at lokale forurensningseffekter har oppstått eller kan komme. Det ble funnet 120 sjøområder som var så avgrenset, dels med tersker, at det kunne ventes spesiell ømfintlighet overfor forurensninger. Så ble antallet redusert, idet områder med sjøflate mindre enn 0,5 km² ble utelatt. Noen få fjorder som enten var meget lite belastet eller som var så avsondart at de falt utenfor den praktiske rammen, ble også tatt bort.

Det endelige antallet vurderte fjorder er 48.

Det betyr at en rekke små buker og poller ikke er kommet med. Mange av disse fortjener oppmerksomhet i forurensningssammenheng. Felles for dem alle er imidlertid at de ikke tåler tilførsler. Der hvor ikke utløp av vassdrag søker for hyppig vannfornyelse, bør slike små og avstengte sjøresipenter skjermes mot enhver tilførsel av forurensninger.

Utvalget av avstengte områder er gjort i samråd med SFT.

En oversikt er gitt i figur 3.2 og tabell 3.2
Figur 3.2 48 utvalgte nærområder på den aktuelle kyststrekningen.
Tabell 3.2 9 kystoner med 48 utvalgte nærområder.

<table>
<thead>
<tr>
<th>SONE</th>
<th>NAVN</th>
<th>KOMMUNE</th>
<th>FYLKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Iddefjorden</td>
<td>Halden</td>
<td>Østfold</td>
</tr>
<tr>
<td></td>
<td>Hvalerbassenget</td>
<td></td>
<td>Østfold</td>
</tr>
<tr>
<td>2</td>
<td>l. Oslobjord</td>
<td>Flere</td>
<td>Flere</td>
</tr>
<tr>
<td></td>
<td>Drammensfjorden</td>
<td>Flere</td>
<td>Buskerud</td>
</tr>
<tr>
<td>3</td>
<td>Tønsbergfjorden</td>
<td>Tønsberg</td>
<td>Vestfold</td>
</tr>
<tr>
<td></td>
<td>Mefjorden</td>
<td>Sandefjord</td>
<td>Vestfold</td>
</tr>
<tr>
<td></td>
<td>Sandefjordsfjorden</td>
<td>Sandefjord</td>
<td>Vestfold</td>
</tr>
<tr>
<td></td>
<td>Viksfjorden</td>
<td>Larvik</td>
<td>Vestfold</td>
</tr>
<tr>
<td></td>
<td>Larviksfjorden</td>
<td>Larvik</td>
<td>Vestfold</td>
</tr>
<tr>
<td></td>
<td>Naervfjorden</td>
<td>Larvik</td>
<td>Vestfold</td>
</tr>
<tr>
<td>4</td>
<td>Langangsfjorden</td>
<td>Porsgrunn</td>
<td>Telemark</td>
</tr>
<tr>
<td></td>
<td>Eidanger-/Langesfj.</td>
<td>Porsgrunn</td>
<td>Telemark</td>
</tr>
<tr>
<td></td>
<td>Friejorden</td>
<td>Flere</td>
<td>Telemark</td>
</tr>
<tr>
<td>5</td>
<td>Trosbyfjorden</td>
<td>Bamble</td>
<td>Telemark</td>
</tr>
<tr>
<td></td>
<td>Fossingfjorden</td>
<td>Kragerø</td>
<td>Telemark</td>
</tr>
<tr>
<td></td>
<td>Hellefjorden</td>
<td>Kragerø</td>
<td>Telemark</td>
</tr>
<tr>
<td></td>
<td>Kilsfjorden</td>
<td>Kragerø</td>
<td>Telemark</td>
</tr>
<tr>
<td>6</td>
<td>Søndeled fjorden</td>
<td>Risør</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Sør fjorden</td>
<td>Risør</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Sandnesfjorden</td>
<td>Risør</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Tvedestrandsfjorden</td>
<td>Tvedestrand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Øksøyfjorden</td>
<td>Tvedestrand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Eikelandstfj.</td>
<td>Moland</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td>7</td>
<td>Tromsøysund</td>
<td>Flere</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Arendal havn</td>
<td>Arendal</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Utnebassenget</td>
<td>Hisøy</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Grosfjorden</td>
<td>Grimstad</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Vikkilen</td>
<td>Grimstad</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td>8</td>
<td>Kaldvelfjorden</td>
<td>Lillesand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Tingsakerfjorden</td>
<td>Lillesand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Steindalsfjorden</td>
<td>Lillesand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Isefjærnfjorden</td>
<td>Lillesand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Kvåsefjorden</td>
<td>Lillesand</td>
<td>Aust-Agder</td>
</tr>
<tr>
<td></td>
<td>Korsvikfjorden</td>
<td>Kristiansand</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Ålefjærnfjorden</td>
<td>Kristiansand</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Topdalsfjorden</td>
<td>Kristiansand</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Vesterhavn</td>
<td>Kristiansand</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Kristiansandsfjorden</td>
<td>Kristiansand</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td>9</td>
<td>Høleljorden</td>
<td>Søgne</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Trøsfjord, ytre</td>
<td>Søgne</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Trøsfjord, indre</td>
<td>Søgne</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Harkmarksfjorden</td>
<td>Mandal</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Mannefjorden</td>
<td>Mandal</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Sniksfjorden</td>
<td>Lindesnes</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Syrdalsfjorden</td>
<td>Lindesnes</td>
<td>Vest-Agder</td>
</tr>
<tr>
<td></td>
<td>Kjerkevågen</td>
<td>Lindesnes</td>
<td>Vest-Agder</td>
</tr>
</tbody>
</table>
4. TILSTANDBESKRIVELSE

4.1. De fri vannmasser

Det er en utbredt oppfatning at Skagerrak er et produktivt havområde, og at det foregår en betydelig sedimentering av alger og annet biologisk materiale i området mellom Danmark, Sverige og Norge. Dette skyldes antagelig for en stor del at Østre Skagerrak er et "upwellings"-område hvor en direkte undersjøisk havstrøm fra Atlantehavet blander seg med overflatevannet. Tilskudd av forurensninger via Kattegat-strømmen fra Østersjøen og Jyllandstrømmen fra Tyskebukt bidrar til økt produksjon av alger, uten at det ennå kan sies med hvor meget.

Når man følger kyststrømmen fra Oslofjorden og rundt det sydlige Norge, vil brakkvanns-karakteren avta (saltholdigheten øke). Enkle overslag viser at samtidig vil forurensningsgraden minke, og i praksis være vanskelig å måle.

Giftige alger har i de senere år tiltrukket seg stor oppmerksomhet. Mange observasjoner tyder på at de forekommer oftere, i større mengder og over en større del av året enn tidligere. Det er fremsatt hypoteser om at tilførsler av näringsalter har vært en medvirkende faktor til dette. Dels kan det tenkes at en høyning av næringssaltinndøyet i seg selv har hatt betydning, dels at en forskyvning av forholdet mellom nitrogen og fosfor har vært viktig. Selv om disse hypoteser er ubesvart, bør muligheten for at de er riktige ikke forkastes. Det vises her til egne rapporter om disse forhold, Thaulow m.fl., 1990, Erga m.fl., 1990.

Det foreligger en betydelig mengde oseanografiske data fra fjorder og skjærgårdsområder i det aktuelle kystområdet. Det er usikkert om det materialet som foreligger, er av en slik karakter og kvalitet at en fremstilling med sikte på å vise endringer med tiden og endringer langs kysten er mulig. Følgende parametre har spesiell interesse:

Dypvannets saltinnhold i avstengte områder gir indikasjon på hvor bunnvannet stammer fra. Saltholdigheten i bunnvannet er alltid minst enn 35 promille som det er vanlig å bruke som grense for å
skille atlantisk dypvann fra ferskvannspåvirket overflatevann. Dybden på terskelen og eventuelt flere terskler på rad vil bestemme egenskapene til nytt bunnvann. Det er en generell konklusjon at fornyelsen av bunnvannet skjer ved utveksling med mellomdypt vann i kystvannet utenfor.

I terskelfjordene pendler bunnvannets saltholdighet stort sett mellom 30 og 35 promille, men lavere verdier kan forekomme.

Oksygeninnhold i dypvannet. I perioder hvor avstengt bunnvann får ligge i ro, vil det skje en reduksjon av oksygenkonsentrasjonen som følge av de biologiske nedbrytningsprosesser i bunnvannet og sedimentene. Oksygenforholdene vil til enhver tid være bestemt av tiden siden siste fornyelse, graden av avstengthet og belastningen med sedimentert organisk stoff, som ledd i naturlige prosesser eller som følge av forurensninger.

I terskelfjordene kan det ofte påvises oksygensvinn og en rekke av dem har kortere eller lengre perioder med anoksiske forhold. Noen synes å ha et permanent dyplag med røttent (anoksisk) vann. Målinger kan vise det spesifikke oksygenforbruket i forskjellige dyp, gir godt holdepunkt for å vurdere den belastningen med sedimenteringe organisk stoff som dypvannet blir utsatt for.

I de fleste fjordbassengene vil oksygenforholdene vise betydelige tidsvariasjoner. Påvisning av eventuelle trender er derfor svært vanskkelig uten lange og relativt tette tidsserier. Slike tidsserier er mangelvare for Sørlandskysten. Data som Statens Biologiske Stasjon Flødevigen har fra tidsrommet 1922 - 90 fra Topdalsfjorden ved Kristiansand (upublisert) og Kilsfjorden ved Kragerø (Bøhle et al., 1989) kan imidlertid tyde på en viss forvring av oksygenforholdene i disse to fjordene. Men sikkerhet for dette får man ikke uten en nærmere analyse av datamaterialet.

Innhold av næringssalter. Nitrogen og fosfor forekommer i mange former. En full beskrivelse av mengdene av de enkelte formene krever mange analyser, som det er sjelden man finner det hensiktmessig å utføre. I denne utredningen er det viktig å kjenne potensialet for algevekst, enten algene allerede foreligger eller de kan ventes å komme. Oppmerksomheten er derfor konsentrert om totalinnholdet av nitrogen og fosfor, kalt Tot-N og Tot-P. Analysen vil da omfatte uorganiske, løste former og næringssalter bundet i organismer eller på annen måte i organisk stoff.

Innholdet av total nitrogen og total fosfor på et sted kan variere betydelig. Viktige årsaker til dette vil være

* tilførsel av næringsrikt sjøvann (f.eks. oppstrømning av dypvann).
* tilførsel av ferskvann, med lavt innhold av fosfor og relativt høyt innhold av nitrogen.
* tilførsler fra land.
biologisk produksjon som fører til at organisk bundet næringsalter fjernes fra overflatelaget av synkende plankton.

På samme måte som for oksygen betyr dette at påvisning av trender er vanskelig. I fjordene er det hittil bare påvist klare overkonsentrasjoner pga. antropogene utslipp i områder med relativt stor belastning, som Indre Oslofjord og Grenlandsfjordene. I disse fjordene har også utslippsbegrensende tiltak ført til markert lavere næringssaltkonsentrasjoner i vannmassene. Videre er det påvist betydelige konsentrasjonsøkninger omkring innlagringsdypet for dyputslipp, f.eks. innerst i Larviksfjorden (Hasle m.fl., 1990). Det er sannsynlig at samling av utslipp, rensetiltak og etablering av dyputslipp de senere år har gitt lavere næringssaltkonsentrasjoner i en rekke lokale fjordområder, men dette er hittil ikke dokumentert gjennom etterundersøkelser.

Innholdet av totalt nitrogen varierer betydelig. I det øvre vannlag ligger det ofte mellom 200 og 300 mg N/m³. Noen få verdier ligger under og en god del over. Det siste må skyldes forurensninger og er til dels eldre tall. Det er foreslått at vann med under 250 mg N er i kvalitetsklasse 1 (Rygg, 1989).

Innholdet av totalt fosfor variere også betydelig og ligger oftest mellom 10 og 20 mg P/m³. Det er foreslått at vann med under 12 mg P er i kvalitetsklasse 1 (Rygg, 1989).

4.2. Strandsonen

Det foreligger en rekke undersøkelser og data om flora og fauna i strandsonen på hard bunn. De viktigste trekk er kommentert av Erga m.fl., 1990. Materialet er ikke uten videre egnet til en sammenstilling hvor det er mulig å se utviklingen over tid eller se geografiske forskjeller. De lokale forhold, graden av eksponering mot strøm og bølger, undersøkelsesopplegg og systematikk varierer slik at det ikke har vært mulig innen de gitte rammer å foreta en faglig forsvarlig analyse av det foreliggende materiale.

4.3. Bløtbunn

Bløtbunnfauna som indikator på tilstand og forurensningsgrad

Undersøkelser av marin bløtbunnfauna er særlig godt egnet til å fastslå hvordan miljøforholdene er på sedimentbunn i de dypere vannlag. Økt sedimentering av organisk materiale og eventuell oksygenmangel, endrer faunaens artssammensetning og artsmangfold.

Bløtbunnfaunaudersøkelser utføres både i åpne kystområder, i fjorder og i estuarområder, men hovedsakelig på bunnområder dypere enn der hvor primærføringen foregår. Faunaen ernærer seg av de organiske partikler som synker ned.

Overbelastning med organisk materiale fører til at opportunistiske arter øker sine individantall og blir dominerende
i samfunnet, mens ømfintlige arter slås ut. Artsmangfoldet blir lavere.

Den vanligst brukte indeks for artsmangfold er Shannon-Wiener's diversitetsindeks (H) (Shannon og Weaver, 1963). Indekssens laveste verdi er 0 (bare en art til stede). Bare i sjeldne tilfeller er artsmangfoldet høyere enn 6. Aschan og Skullerud (1990) brukte følgende klassifisering av indeksverdiene:

0-2: Svært lavt artsmangfold
2-3: Lavt
3-4: Moderat
> 4: Høyt

Bløtbumna stasjoner i Sør-Norge

Det er gjort en sammenstilling av artsmangfoldverdiene for 320 stasjoner på strekningen Svensekrensen til Sotra ved Bergen. Noen av stasjonene er prøvetatt ved flere tidspunkter, slik at det totale materialet omfatter 500 observasjoner. I Fig. 4.1 er H-verdiene plottet mot østlig lengdegrad og regresjonen beregnet. Selv om variasjonene er store, også innenfor korte kystavsnitt, øker H-verdiene signifikant fra øst mot vest. Dette er særlig tydelig for maksimumsverdiene (den øvre konturen av punktskøyen). De lave verdiene representerer stasjoner i fjordbassenger eller nær elvemunninger. Mange av dem er påvirket av lokale forurensninger.

Det er to hovedgrupper av bløtbumnastasjonsamfunn langs kysten av Sør-Norge. Fig. 4.2 viser resultatet av en likhetsanalyse basert på materiale fra 21 stasjoner innsamlte i 1990 innenfor kystovervåkingsprogrammet (Rygg, 1991). Analysen viser at faunaen vest for Farsund inneholder til dels andre arter og er mer artsrik enn faunaen øst for Farsund.

Utaksjørs stasjoner i kystovervåkingsprogrammet

På grunn av lokale utsilp og lokale sørtrekk i de naturgitte forhold kan det være vanskelig å sammenligne innaksjørs stasjoner fra forskjellige kystavsnitt med hverandre (ikke alle stasjonene er representativt for kystavsnitt de ligger i). Det er derfor gjort en egen analyse av de 15 utaksjørs dype stasjoner fra kystovervåkingsprogrammet. Disse stasjonene er representativt for tilstanden i større områder. Ulikheter blant disse stasjonene antas å gjenspeile reelle regionale grader. I Fig. 4.3 er stasjonenes artsmangfold (H) plottet mot østlig lengdegrad. Tallene i stasjonskodene angir dyp. Stasjonenes plassering er vist i Fig. 4.2.
Figur 4.1 Plott av artsmangfold (H) mot østlig lengdegrad for 500 observasjoner fra 320 bløtbunnfaunastasjoner i Sør-Norge.
Figur 4.2 Utbredelse av to hovedgrupper av bløtbunnfaunasamfunn langs kysten av Sør-Norge. Faunaen vest for Farsund inneholder til dels andre arter og er mer artsrik enn faunaen øst for Farsund.
Figur 4.3 Plott av artsmangfold (H) mot østlig lengdegrad på 15 utaskjærs stasjoner på dyp 100-460 m.

Den samme tendensen, økende artsmangfold vestover, viser seg her. De tre dypstasjonene i østre Skagerrak (A360, A460 og B350) utmerker seg ved spesielt lavt artsmangfold. Resultatene er også illustrert i det "3-dimensjonale" kartet i Fig. 4.4.

Det lave artsmangfoldet på A360 og B350 skyldes tallmessig dominans av opportunisticke børstemarker. Også de totale individantall og biomasseverdiene var høye, særlig på stasjon B350 utenfor Arendal (Fig. 4.5) (Rygg, 1991).
Figur 4.5 Individetthet pr. 0.4 m² på de 21 kystovervåkings-
stasjonene. Hvert segment på søylene representerer
100 individer.
Faunaens tilstand i østre Skagerrak, særlig på de ytre (dype) stasjonene, tyder på at næringstilgangen er større her, noe som må skyldes en større sedimentasjon av organiske partikler. Dette kan være forårsaket av større primærproduksjon og av hydrografiske forhold som medfører større sedimentasjonsrate.

I flere fjorder og poller på Sørlandet er det oksygenmangel i dypvannet som følge av naturbetinget dårlig vannutskiftning.

Diskusjon

Det er en gradient i form av økende artsmangfold fra øst mot vest. Høyt artsmangfold indikerer en bedre miljøtilstand enn lavt artsmangfold. Øst-vest gradienten i artsmangfold kan delvis skyldes mindre organisk belastning og sedimentering i vestlige områder, men også zoogeografiske faktorer (større rekrutteringsmuligheter for atlantiske arter) kan bidra til det økte artsmangfoldet vestover.

Blant de utaskjærs stasjonene i østre Skagerrak er artsmangfoldet lavest på de ytre (dype) stasjonene. Disse stasjonene bærer også preg av en betydelig sedimentering av organiske partikler. Individantall og biomasse er forhøyet, særlig på 350 m dyp utenfor Arendal.

Det er større behov for å forbedre tilstanden i de østlige og dype deler av Skagerrak enn i de grunne og/eller vestlige områder, dersom det settes samme krav til miljøkvalitet over hele området. For mange av de innaskjærs stasjonene er tilstanden betinget av lokale forhold uavhengig av den generelle øst-vest gradienten.
5. TILFØRSEL AV NITROGEN OG FOSFOR

NIVA har etter oppdrag fra SFT laget et eget dataprogram for en teoretisk beregning av forurensningstilførslerne (Tjomsland, 1991). Tilførslene er beregnet for et stort antall statistikksoner, som tildels ligger langs kysten. Somene langs kysten er nesten alltid betydelig større enn de lokalområdene som er valgt. Det har derfor vært nødvendig å foreta en skjønnsmessig fordeling innen kystsonene for å anslå tilførslene av ferskvann og næringssalter til de enkelte avstengte områdene.

Mange av utslippene er så nye at vi ikke kan vente at resistente har klart å reagere på de nye forholdene. Det tar en viss tid før strandsonene og dypbunnen er vent tilbake til mer naturlige tilstander etter at belastningen er borte. Det kan derfor flere steder være et misforhold mellom dagens utslippsituasjon og de resistente tidstyper som er rapportert. Disse forholdene er ikke med i vurderingene her, idet det forutsettes at det er likevekt mellom tilførsler og resistente tidstyper.

I vassdragsdelen av Tiltaksanalysen (Ibrekk m.fl., 1991) er det innført retensjonssregninger. Også i sjøen og kystvannet skjer det retensjon og annet tap av næringsalter. Dels er det partikler som synker til bunns uten at næringssaltere blir tilbakeført til vannet, dels skjer det et denitrifikasjon som i lukkede og belastede fjordsystemer kan anslås til 20 - 50%. Det er antatt at denitrifikasjonen hovedsakelig skjer i sedimentfasen og at den stimuleres av tilførsel av organisk stoff (Erga m.fl., 1990).

Det er valgt å se bort fra retensjon og denitrifikasjon i sjøvannet. Det betyr at nitrogen og fosfor er behandlet som konservative stoffer som uten tap transporteres videre og fordeler seg i de vannmassene som denne utredningen omhandler.

Tabell 5.1 viser de anslåtte tilførslene av nitrogen og fosfor til de 48 utvalgte nærområdene. I egne kolonner er angitt det antropogene bidraget, det vil si tilførsler fra befolkning, industri og landbruk.
Tabell 5.1 Total-tilførsel og antropogenbetinget tilførsel av nitrogen (N-antr.) og fosfor (P-antr.) til 48 utvalgte nærområder. Tall for 1990, dels 1991.
Antatt dyp og oppholdstid for overflatelaget.

<table>
<thead>
<tr>
<th>NAVN</th>
<th>FOSFOR</th>
<th>NITROGEN</th>
<th>FOSFOR ANTROP.</th>
<th>NITROGEN ANTROP.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tonn/år</td>
<td>tonn/år</td>
<td>tonn/år</td>
<td>tonn/år</td>
</tr>
<tr>
<td>Iddef jorden</td>
<td>35</td>
<td>1295</td>
<td>22.0</td>
<td>635</td>
</tr>
<tr>
<td>Hvalerbassenget</td>
<td>450</td>
<td>14445</td>
<td>284</td>
<td>9245</td>
</tr>
<tr>
<td>I. Oslof jord</td>
<td>123</td>
<td>4023</td>
<td>103</td>
<td>3651</td>
</tr>
<tr>
<td>Drammens f jord</td>
<td>151</td>
<td>4745</td>
<td>108.0</td>
<td>2705</td>
</tr>
<tr>
<td>Tønsbergf jord</td>
<td>42</td>
<td>833</td>
<td>39.0</td>
<td>707</td>
</tr>
<tr>
<td>Mef jorden</td>
<td>0.5</td>
<td>4</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>Sandef jordsf jord</td>
<td>30.8</td>
<td>281</td>
<td>4.0</td>
<td>172</td>
</tr>
<tr>
<td>Viksf jorden</td>
<td>9</td>
<td>50</td>
<td>8.0</td>
<td>47</td>
</tr>
<tr>
<td>Larviksf jorden</td>
<td>56</td>
<td>1577</td>
<td>41.0</td>
<td>789</td>
</tr>
<tr>
<td>Nøverf jorden</td>
<td>0.6</td>
<td>15</td>
<td>0.4</td>
<td>10</td>
</tr>
<tr>
<td>Langangsf jorden</td>
<td>0.8</td>
<td>19</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>Eidanger-/Langesf j.</td>
<td>4.6</td>
<td>90</td>
<td>3.5</td>
<td>60</td>
</tr>
<tr>
<td>Frier f jorden</td>
<td>115</td>
<td>5150</td>
<td>74.0</td>
<td>3230</td>
</tr>
<tr>
<td>Trospyf jorden</td>
<td>0.3</td>
<td>9</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>Fossingf jorden</td>
<td>0.4</td>
<td>10</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>Hellef jorden</td>
<td>0.7</td>
<td>12</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Kilsf jorden</td>
<td>6.5</td>
<td>304</td>
<td>2.9</td>
<td>52</td>
</tr>
<tr>
<td>Beref jorden</td>
<td>6</td>
<td>35</td>
<td>0.35</td>
<td>30</td>
</tr>
<tr>
<td>Søndeled f jorden</td>
<td>3.3</td>
<td>195</td>
<td>2.0</td>
<td>43</td>
</tr>
<tr>
<td>Sør f jorden</td>
<td>0.6</td>
<td>25</td>
<td>0.4</td>
<td>17</td>
</tr>
<tr>
<td>Sandnesf jorden</td>
<td>4</td>
<td>144</td>
<td>2.0</td>
<td>34</td>
</tr>
<tr>
<td>Tvedestrandsf jorden</td>
<td>1</td>
<td>11.5</td>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>Oksøsf jorden</td>
<td>1</td>
<td>22</td>
<td>0.6</td>
<td>13</td>
</tr>
<tr>
<td>Ekelandsf j.</td>
<td>0.9</td>
<td>22</td>
<td>0.6</td>
<td>13</td>
</tr>
<tr>
<td>Tromøysund</td>
<td>3.9</td>
<td>61</td>
<td>3.5</td>
<td>36</td>
</tr>
<tr>
<td>Arendal havn</td>
<td>18.7</td>
<td>510</td>
<td>8.9</td>
<td>142</td>
</tr>
<tr>
<td>Hølen</td>
<td>6.4</td>
<td>405</td>
<td>2.9</td>
<td>49</td>
</tr>
<tr>
<td>Utnebassenget</td>
<td>27</td>
<td>1120</td>
<td>18.0</td>
<td>157</td>
</tr>
<tr>
<td>Grosf jorden</td>
<td>8</td>
<td>32</td>
<td>7.8</td>
<td>26</td>
</tr>
<tr>
<td>Vikkilen</td>
<td>0.2</td>
<td>4</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Kaldvellf jorden</td>
<td>1.5</td>
<td>60</td>
<td>1.2</td>
<td>35</td>
</tr>
<tr>
<td>Tingsakerf jorden</td>
<td>5</td>
<td>25</td>
<td>3.8</td>
<td>15</td>
</tr>
<tr>
<td>Steindalsf jorden</td>
<td>0.5</td>
<td>10</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>Isef jærf jorden</td>
<td>1</td>
<td>20</td>
<td>0.8</td>
<td>16</td>
</tr>
<tr>
<td>Kvåsef jorden</td>
<td>0.8</td>
<td>15</td>
<td>0.7</td>
<td>12</td>
</tr>
<tr>
<td>Korsvikf jorden</td>
<td>0.4</td>
<td>40</td>
<td>0.3</td>
<td>28</td>
</tr>
<tr>
<td>Aref jærf jorden</td>
<td>0.7</td>
<td>14</td>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>Topdalsf jorden</td>
<td>16</td>
<td>733</td>
<td>6.0</td>
<td>86</td>
</tr>
<tr>
<td>Vesterhavn</td>
<td>6.4</td>
<td>131</td>
<td>5.5</td>
<td>120</td>
</tr>
<tr>
<td>Kristiansandsf jorden</td>
<td>41</td>
<td>1610</td>
<td>27.0</td>
<td>402</td>
</tr>
<tr>
<td>Høllef jorden</td>
<td>10.8</td>
<td>158</td>
<td>9.6</td>
<td>84</td>
</tr>
<tr>
<td>Trysf jord, indre</td>
<td>0.4</td>
<td>3</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>Trysf jord, ytre</td>
<td>0.4</td>
<td>7</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>Harkmarksf jorden</td>
<td>0.6</td>
<td>18</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>Mannerf jorden</td>
<td>15</td>
<td>820</td>
<td>2.5</td>
<td>66</td>
</tr>
<tr>
<td>Sniks f jorden</td>
<td>5.2</td>
<td>213</td>
<td>3.1</td>
<td>58</td>
</tr>
<tr>
<td>Syrdalsf jorden</td>
<td>0.1</td>
<td>10</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Kjerkevågen</td>
<td>0.2</td>
<td>3</td>
<td>0.2</td>
<td>2</td>
</tr>
</tbody>
</table>
6. DE FYSISKE FORHOLD, FORTYNNING OG OPPHOLDSTIDER

I foreliggende rapport inngår betraktninger om utskiftingsmekanismer kyst-fjord, og om kystvannets bidrag til stoffbudsjettet i resipientene. Kystvannet kan være både "kilde" og "sluk" i næringssalttransporten mellom fjord (resipient) og kyst. Problemstillingen krever kunnskap om en rekke prosesser og egenskaper.

I dette kapitlet omtales først Kyststrømmen, og dens sannsynlige betydning som stofftransportør og som "trigger" for vannutskifting i fjorder og kystfarvann.

SKAGERRAK defineres som en del av Nordsjøen. Nordsjøen refereres vanligvis med et totalt areal på 575,000 km², og totalt volum 47,000 km³ (Gerlach, 1988). Av dette utgjør Skagerrak om lag 31,000 km² (område østenfor linje Lindesnes-Hanstholm) og 6,000 km³. Skagerrak utgjør således bare om lag 5% av Nordsjøens areal, og 13% av volumet (forholdsmessig større volumandel pga. de dype områdene i Skagerrak).

6.1. Kyststrømmens hydrografi

Kyststrømmen er en fortsettelse av den Baltiske Strøm, som har sitt opphav i Østersjøen. Derfra kommer ca. 500 km³ ferskvann pr. år, tilsvarende ca. 16000 m³/s (Mork m. fl. 1976). Jyllandstrømmens ferskvannsbidrag er ukjent. Den svenske vestkysten bidrar med tilførsler av størrelsesorden 40 km³ ferskvann/år (1280 m³/s). Norske bidrag på kystlinjen t.o.m. Vest-Agder er av størrelsesorden 67 km³/år, tilsv. 2100 m³/s.

Kyststrømmens T-S (temperatur-saltholdighet) karakteristikk defineres gjerne ut fra tilstøtende vannmassers karakteristikker. Langs Vestlandskysten skiller det gjerne mellom Atlanterhavsvann (S > 35.0), Kyststrømsvann (S < 34.0), samt et mellomliggende blandingsvann ("Trench Water"). På Skagerrakkysten har Kyststrømmen lavere salinitet (rundt 25 o/oo i overflaten). Det er hensiktsmessig å nyansere noe mellom vinter og sommersituasjon. Også for temperatur må det defineres ulike sommer- og vinter-regimer for de to sistnevnte vannmasser. Generelt er Kyststrømmen på Skagerrakkysten smalere og har lavere salinitet og lavere
temperatur (om vinteren) enn på Vestlandskysten.

Grensene mellom vannmassene i Kyststrømmen og tilstøtende vannmasser observeres som karakteristiske gradientsoner. I praksis er dette et sprangsjikt, med karakteristisk forskjellige vannmasser over og under. Den horisontale grensen kystvann til havvann kalles gjerne et frontområde (fig. 6.1). Dette området karakteriseres av tydelige horisontale gradierter i salinitet, te tethet og eventuelt temperatur. Strømmen kan være sterkest i dette området ("jet-sone", indikert med større sirkler i fig. 6.1).

Kyststrømmen kan betraktes som et statistisk fenome n, som opptrer markert størstedelen av tiden. Strømmen påvirkes naturligvis av meteorologiske drivkrefter, av endringer i tilrenning fra land og av endringer i storstilt sirkulasjon i tilstøtende havvann (Mork, 1981).

Øvre lag (0-20 meter) er mest vindpåvirket. Dette laget har derfor størst variasjon i strøm/hydrografi (jamfør Rodhe, 1987). I hvor stor grad dette røkker ved det almennelige bildet av Kyststrømmen som en relatert stabil transportør av lav-salint vann langs Sørlandskysten er uklart.

Upwellingsepisodeer eller andre episoder som nevnt ovenfor medfører ofte tydelige endringer i T-S karakteristika for vann utenfor fjordterskler. Dette kan påskynde utskifting i terskelbasseng på Sørlandskysten (Stene, 1989). For transport av stoff (fra fjord til kyst) som erakkumulert over tid i fjordenes dypvann, kan slike episoder spille en viktig rolle, selv om de bare forekommer sporadisk.

Kyststrømmens laterale utstrekning varierer over året. Den er smalest om vinteren, med en bredde av størrelsesorden 50 km utenfor Vestlandet (Sætre, 1978). Dybden av strømmen kan der være 80-100 meter. Om sommeren breier strømmen seg lenger utover fra kysten (100 km), og blir sterkere stratifisert. Dybden er mindre enn om vinteren (20-40 meter).

kan transportestimater basert på "budsjett-metoder" og hydrografiske snitt gi for store verdier.

Vanntransporten i Kyststrømmen utenfor Langesund ble beregnet av Aure (1978) til ca. 0.4×10^6 m3/s (i juni 1974) og $0.35 - 0.4 \times 10^6$ m3/s (november 1974), på grunnlag av strømmålinger. Utenfor Bergen er transporten om vinteren blitt anslått til $0.3 - 0.5 \times 10^6$ m3/s (mars 1974), (Buckley og Gammelsrød, 1979), og ca. 1×10^6 m3/s (middel for perioden 30/1 - 31/3 1979), (Hackett, 1982). Nyere målinger med ADCP vestenfor Bergen indikerer en transport i øvre 100 meter på 0.9 mill m3/s (1986, Golmen og Mork, 1988)

Figur 6.1 Skisse som viser trekk ved en tetthetsdrevet, geofysisk kyststrøm.
I august 1988 ble det målt strøm med ADCP (Acoustic Doppler Current Profiler) utenfor Telemarkskysten (Dahl, 1990). Transportanslaget lød på 0,7.10^6 m³/s. Rodhe (1987) anslo transporten til 0,5.10^6 m³/s, hvorav 0,35.10^6 m³/s utgjorde transport i "fotosynthesesonen". ADCP-målinger fra mai-juni 1990 på snittet Kristiansand-Hanstholm indikerte en transport på fra 0,4 til over 1 mill m³/s over en 2-3 ukers periode (E. Svendsen, H.I., pers. komm.). Dette relativt store tallet inkluderer også transport sørvestover av dypereliggende vann, med T-S karakteristikk som grenser opp til Atlanterhavsavannets, og som derfor faller utenfor vanlig definisjon av Kyststrømavannet. En slik stabil dypereiggende strøm (i alle fall ned til 200 meters dyp) framgår også av andre målinger, bl.a. målinger i perioden 1975-1977 (Rodhe, 1987). I dypbassenget i Skagerrak er det en syklonsk (geostrofisk) sirkulasjon av permanent karakter.

Det vil være store tidsvariasjoner for transporten. SKAGEX målingene fra 1990 viser dette. I perioden 31/1 - 31/3 1979 varierte nettotransporten mellom 3*10^6 m³/s nordgående og 0,5*10^6 m³/s sørøgående. 0,4*10^6 m³/s for transporten av typisk Kyststrømsvann på Skagerrakken synes imidlertid å være et rimelig utgangspunkt for vår foreløpige betraktninger. Det kan være aktuelt å skille mellom transport i den lysparvirkede sonen (eufotisk sonen) og dypere nede. Om en regner at denne sonen strekker seg ned til 20 meter, vil transporten i denne sonen bli omtrent halvparten av det ovenfornevnte tallet, dvs. ca. 0,2.10^6 m³/s.

6.2. Stoffutveksling og blanding med tilstøtende vannmasser

Kyststrømmen utveksler næringsalter med tilstøtende vannmasser. Fig. 6.2 illustrerer ulike kommunikasjonslinjer mellom Kyststrømmen og tilstøtende vannmasser. Denne utvekslingen foregår ved turbulent og konvektiv blanding. Sannsynligvis er det strømskjær som forårsaker den største innblandingene.

Transport på tvers av kysten kan skyldes vinddrevet strøm i øvre lag. Tverskomponenten er av størrelsesorden 0-5 cm/s (stor tidsvariasjon) (Rodhe 1987).

Midlere stofftransport mellom Kyststrømmen og dypereliggende vann er sannsynligvis mindre enn horisontal utveksling. Dette på grunn av størstilte hvirvler i frontområdet, og aktiv tverrsirkulasjon der.
Figur 6.2 Kyststrømmen med ulike kommunikasjonslinjer til vannmasser og områder den påvirker eller påvirkes av.

6.3. Fjorder og avstengte områder

Grunnlaget for beregning av konsentrasjonsøkning som følge av antropogene utslipp til fjordene på den norske Skagerrakkysten må bygge på en konkret oppfatning av lagdeling og vannutskifting.

Tidevann, vind og ferskvannstilløp er de viktigste ytre påvirkninger samtidig som de topografiske forhold er helt avgjørende.

Det er små tidevanns- og andre vannstandsvekslinger i hele det aktuelle kystområdet. Midlere tidevann er omlag 25 cm for hele strekningen. Vannstanden forøvrig vil være bestemt av vind og lufttrykk som virker over store områder og har regionale effekter.

Den lokale vindeffekt kan være stor og kan forårsake utskifting av overflatelaget i løpet av kort tid. Vind vil dessuten forårsake en omrøring av de øvre vannlag slik at lagdelingen blir mindre utpreget.

Det skjer også vannutveksling som følge av tetthetsforskjeller i vannet innenfor og utenfor en fjord, spesielt når det er
forskjell over terskeldypet.

Det er en meget variert topografi langs Skagerrakkysten. Hvert lokalområde har sin topografiske form og sin form for vannutveksling. Mange små sjøområder kan derfor bli sterkt påvirket av inngrep som kanalisering, gjenfylling, veibygging, moloer m.m. som kan endre vannsirkulasjonsforholdene. Endret vannutveksling kan endre sårbarheten betydelig, til det verre eller til det bedre.

Generelt om stoffbudsjetter.

Et gitt fjord- eller kystområde tilføres næringsalter fra en rekkekilder. Et komplett stoffbudsjett vil oftestmate inneholde minst seks bidrag:

* kommunalt avløpsvann * avrenning fra utmark
* industri * bidrag gjennom vannutskiftning
* jordbruk * med nærliggende vannmasser
* nedbør

Man har erfaring for at desto lenger man kommer ut mot kysten, desto større blir bidraget fra vannutskiftningen.

De foregående kapitler har redegjort for beregningene av tilførsler av fosfor og nitrogen fra land til de enkelte fjordområdene og til resipientområdene. I det etterfølgende vil vi beregne de gjennomsnittlige konsentrasjonsøkningene som den antropogene andelen vil bidra til for overflatelaget i den enkelte vannforekomsten.

Vi forsøker dermed ikke å oppstille komplette stoffbudsjetter, som også må inneholde bidragene fra den advektive vannutvekslingen (oftest horisontal) og de turbulente blandingsprosessene (horisontal og vertikal).

Metodikk.

Denne type stoffbudsjetter (fortyanningsbudsjetter) krever tre hovedtyper av opplysninger:

* Karakteristisk antropogen belastning av næringsalter for denne vannmassen.

I det etterfølgende skal vi redegjøre for hvordan disse
størrelsen er bestemt.

Areal

Arealen er bestemt ut fra det enkelte fjordområdets topografi. Mange fjorder har en eller flere innsnevninger eller terskler som naturlig utgjør en avgrensning.

I andre tilfeller, for åpne fjorden som f.eks. Kristiansandsfjorden, må bestemmelsen bli langt mer skjønnsmessig. Vi har da brukt en helhetsvurdering der også beliggenhet av utslipp og hydrofysiske forhold er trukket mer inn. Det er viktig å definere en vannmasse som er mest mulig homogen mht. hydrofysikk og belastning.

Dyp

Ved bestemmelse av karakteristisk dyp for vannmassen må man ta hensyn til fire faktorer:

* hydrofysiske forhold: lagdeling, horisontal og vertikal strømprofil
* topografi: i første rekke terskeldyp, med innvirkning på vannutskiftning.
* dyp for algevekst.
* hvilke dyp næringsalttilførselen skjer: budsjettet skal gi midlere konsentrationsøkning, og det gjelder derfor å vurderе betydningen av f.eks. overflateutslipp vs. dypvannutslipp med innlagring. I det siste tilfellel kan det være at utslippet i det hele tatt ikke kommer med hvis dypet velges lite nok.

Som utgangspunkt har vi valgt en vannmasse på 0 - 15 m, som omfatter det vannlaget der algeveksten vanligvis er sterkest. Der hvor stor ferskvannstilførsel gir et stort nitrogentilskudd/store overflateutslipp av nitrogen (eks. Hvalerbassenget, Drammensfjorden og Grenlandsfjordene) er dypet 0 - 5 m valgt for nitrogenbelastningen, men 0 - 15 er beholdt for fosforbelastningen.

Mange dypvannsutsipp av kommunal Kloakk har vanlig innlagringsdyp større enn 15 m. Som fig. 6.3 viser vil imidlertid innlagringsdypet variere mye med tiden. Dertil kommer effekten av vertikale blandingsprosesser som virker etter at skyen av avløpsvann har begynt å bre seg horisontalt i fjord- eller kystvannet. Vi regner med at næringssaltene i avløpsvannet fra dyputslippene i varierende omfang vil innblandes i vannmassen ned til ca. 15 m dyp. Som et høyt anslag har vi antatt at hele utslippet etterhvert innblandes i denne vannmassens nedre del.
Figur 6.3 Innlagringsberegninger for utslipp av kommunalt avløpsvann ved Farsund (etter Oug m.fl., 1991).

Oppholdstid

Ved siden av bestemmelsen av vannmassen, er oppholdstiden en nøkkelsevrelse. Bare unntaksvis er den bestemt gjennom målinger, og resultatet er at man i stor grad må bruke mer generelle beregningsmetoder og/eller kvalifisert skjønn.

For omkring halvparten av fjordområdene er gjennomsnittlig oppholdstid for vannmassen over terskeldyp beregnet ved bruk av en såkalte terskelfjordmodellen (Aure og Stigebrandt, 1990). Denne modellen er imidlertid ikke direkte tilpasset fjorder på Sørlandskysten, og kan tenkes å gi litt for stor vannutføring. Dette er etter skjønn korrigert for. Likedan har vi korrigert der hvor f.eks. stor ferskvannstilførsel gjør at oppholdstiden for brakkvannslaget vil være klart mindre enn gjennomsnittet for hele vannmassen over terskeldyp.

For de andre fjordene har vi i utgangspunktet brukt skjønn, ved først å anslå en typisk kort og en relativ lang oppholdstid. Deretter er gjennomsnittet beregnet for bruk i budsjettet. Som en kontroll ble samme overslag først gjort for alle fjordområdene - også de som forannevnte modell etterpå ble anvendt på. Overensstemmelsen mellom gjennomsnittsverdien og den modellberegnete oppholdstiden var gjennomgående god.

Antropogen belastning av næringsalter.

Beregningsmetodikken er redegjort for ovenfor. Det skal bare tilføyes at i tilfeller med dyputslipp, regner vi at den vannmassen vi har definert, inkluderer dette. Imidlertid er det
klart at i mange tilfeller vil innlagringen skje dypere enn 10-20 m, og at våre beregninger dermed kan overestimere belastningen innenfor det området som vi har definert.

Tabell 6.1 gjengir topografiske størrelser for de aktuelle fjordene, samt størrelsen på de tilhørende nedbørfelt og deres midlere avrenning.
<table>
<thead>
<tr>
<th>SONE</th>
<th>NAVN</th>
<th>STØRSTE DYP</th>
<th>TERSKELDYP</th>
<th>AREAL</th>
<th>NEDBØRSFELT</th>
<th>FERSKV ANNSET</th>
<th>TILFØRSEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>m</td>
<td>km²</td>
<td>km²</td>
<td>m³/s</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Iddefjorden</td>
<td>46</td>
<td>9.5</td>
<td>21</td>
<td>2500</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hvallerbassenget</td>
<td></td>
<td>90</td>
<td></td>
<td>43109</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I. Oslofjord</td>
<td>160</td>
<td>20</td>
<td>192</td>
<td>1300</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drammens fjorden</td>
<td>120</td>
<td>10</td>
<td>45</td>
<td>17533</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tonsbergfjorden</td>
<td>55</td>
<td>45</td>
<td>11.3</td>
<td>420</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mej f. jorden</td>
<td>21</td>
<td>9</td>
<td>1.5</td>
<td>18</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandefjordsf jorden</td>
<td>32</td>
<td></td>
<td>5</td>
<td>35</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viksfjorden</td>
<td>5</td>
<td></td>
<td>5</td>
<td>19</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larviksfjorden</td>
<td>124</td>
<td>91</td>
<td>12</td>
<td>6100</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Næverfjorden</td>
<td>17</td>
<td></td>
<td>2</td>
<td>15</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Langangsfjorden</td>
<td>40</td>
<td>19</td>
<td>1.2</td>
<td>35</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eidanger-Langesfj.</td>
<td>129</td>
<td>55</td>
<td>15.3</td>
<td>40</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frierfjorden</td>
<td>98</td>
<td>23</td>
<td>19.9</td>
<td>11076</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Trosbyfjorden</td>
<td>22</td>
<td>10</td>
<td>1.5</td>
<td>18</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fossingfjorden</td>
<td>94</td>
<td>19</td>
<td>4</td>
<td>78</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hellefjorden</td>
<td>75</td>
<td>24.5</td>
<td>2.7</td>
<td>34.8</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kelsfjorden</td>
<td>106</td>
<td>15</td>
<td>1.5</td>
<td>1273</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berøsfjorden</td>
<td>66</td>
<td></td>
<td>6</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Søndeledsfjorden</td>
<td>188</td>
<td>30</td>
<td>10</td>
<td>480</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sørjorden</td>
<td>77</td>
<td>21</td>
<td>6</td>
<td>36</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandnesfjorden</td>
<td>64</td>
<td>24</td>
<td>4.5</td>
<td>523</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tvedestrandsfjorden</td>
<td>85</td>
<td>15</td>
<td>1.8</td>
<td>19</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oksøjfjorden</td>
<td>85</td>
<td>11</td>
<td>2.8</td>
<td>43</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eiklandsf. fj.</td>
<td>40</td>
<td>10</td>
<td>1.8</td>
<td>43</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tromøysund</td>
<td>49</td>
<td>25</td>
<td>3.5</td>
<td>70</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arendal havn</td>
<td>56</td>
<td>25</td>
<td>1.3</td>
<td>1340</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helten</td>
<td>75</td>
<td></td>
<td>0.5</td>
<td>1340</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utnebassenget</td>
<td>3</td>
<td></td>
<td>4031</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grostjorden</td>
<td>64</td>
<td>19</td>
<td>4</td>
<td>12</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vikkilen</td>
<td>40</td>
<td>40</td>
<td>1.4</td>
<td>6</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kaldvallsfjorden</td>
<td>29</td>
<td>5</td>
<td>2.6</td>
<td>100</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tingsakerfjorden</td>
<td>75</td>
<td>32</td>
<td>2</td>
<td>35</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steindalsfjorden</td>
<td>45</td>
<td>15</td>
<td>1.5</td>
<td>24</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isefjordfjorden</td>
<td>22</td>
<td>3</td>
<td>1.3</td>
<td>14</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kåløsfjorden</td>
<td>55</td>
<td>3</td>
<td>1.2</td>
<td>13</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korsviksfjorden</td>
<td>74</td>
<td>60</td>
<td>3</td>
<td>5</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ålelfjordfjorden</td>
<td>65</td>
<td>25</td>
<td>3.8</td>
<td>20</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topdalsfjorden</td>
<td>80</td>
<td>40</td>
<td>8.7</td>
<td>1890</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vesterhavn</td>
<td>42</td>
<td></td>
<td>3</td>
<td>25</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kristiansandsfjorden</td>
<td>40</td>
<td></td>
<td>7</td>
<td>5630</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Høllefjorden</td>
<td>55</td>
<td>36</td>
<td>6.3</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trysfjord, indre</td>
<td>85</td>
<td>5</td>
<td>1.7</td>
<td>38</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trysfjord, ytre</td>
<td>85</td>
<td>10</td>
<td>0.8</td>
<td>11</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harkmarksfjorden</td>
<td>14</td>
<td>2</td>
<td>1.4</td>
<td>49</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mannefjorden</td>
<td>4</td>
<td></td>
<td>1835</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snifsfjorden</td>
<td>35</td>
<td>3</td>
<td>1.5</td>
<td>455</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syrdalsfjorden</td>
<td>40</td>
<td>3</td>
<td>26</td>
<td></td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kjerkevågen</td>
<td>15</td>
<td>1</td>
<td>2.5</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
7. FASTSETTELSE AV KVALITETSKLASSER FOR RESIPIENTOMRÅDENE

Det er ikke fastsatt nasjonale mål for kystsonen Svenskegrensen-Lindesnes. Det er imidlertid rimelig å anta at det bør være et høyt krav til miljøets renhet og at virkninger av forurensninger må forekomme i minst mulig grad.

Den aktuelle kyststrekningen er særlig kjent som et av de viktigste og mest besøkte rekreasjonsområdene i Norge (Baalsrud og Lystad, 1986). Det er et stort antall fritidshus og en betydelig trafikk med fritidsbåter langs denne kysten. En stor del av skjærgården er blitt båndlagt for å sikre friluftslivet best mulige når på lang sikt.

Det er videre en rekke større og mindre tettsteder ved sjøen. Sørlandskystens renhet er av stor betydning for den lokale befolkning.

Fisket har alltid vært en viktig næringsvei for kystbefolkningen. Mye av fisket har foregått i selve skjærgården, blant annet hummerfisket.

7.1. Kriterier og modeller

Biologiske forhold i de fri vannmasser, på strendene og på bunnen vil ofte være godt egnet til å vurdere situasjonen og utviklingen i det enkelte område. Oksygenforholdene i dypvannet gir også ofte et godt uttrykk for tilstanden. Vurdering av situasjonen forutsetter imidlertid målinger og lokal-kunnskap som bare i få tilfeller er tilstede.

I områder som Oslofjorden med sidefjorder, Grenlandsfjordene, Kristiansandsfjorden og noen andre steder, er arbeidet med å formulere klare mål ut fra de observerte tilstandene tildels kommet langt. For kysten som helhet har det vært nødvendig å velge en annen måte for å vurdere forurensningsbelastningen ved tilførsel av nitrogen og fosfor.

Det er valgt å anslå den merbelastning i form av konsentrasjonsøkning som tilførslene medfører. Dels er totalbelastningen fra vassdrag og befolkning tatt med, dels er
den antropogene (menneskeskapte) andelen angitt. Det er bare den antropogene delen som det foreligger muligheter for å redusere i større eller mindre grad

Det er valgt å forenkle oppgaven ved å se på hvilke konsentrasjonsøkninger som tilførslene fører til i lokalresipientene. Beregningene for dette er forklart nedenfor.

Vurderingene av tallene er bestemt av de grenseverdier som kan brukes for å beskrive graden av påvirkning. Såvel nitrogen som fosfor er nødvendig for planktonveksten. Ofte er den ene mangelvare i forhold til den andre og da vil tilskudd av den gi øket vekst, mens tilskudd av den andre vil ha liten betydning. Bruk av vi foreløpig vet om "begrensende næringssalt" ville komplisere regnestykkene vesentlig og kunne i verste fall føre galt avstått. Det er derfor valgt å vurdere hvert næringssalt for seg som om det var vekstbestemmende.

Det finnes ingen vedtatte grenseverdier mellom de fire klasser som det er vanlig å dele inn resipienttilstanden i (Uperørt, Moderat påvirket, Tydelig påvirket, Sterkt påvirket). Arbeidet med å utvikle et sett grenseverdier er tatt opp av SFT, og et første utkast utarbeidet av NIVA har vært på høring (Rygg, 1989).

7.2. Kystsonen

Forholdene i kystsonen er preget av kyststrømmen og må vurderes ut fra de prosessene som foregår der. Forenklet er kyststrømmen å betrakte som et stort estuarområde hvor tilført ferskvann og brakkvann stadig blander seg med vann fra siden eller dyptere nede, og som øker mektigheten av strømmen. Som i tidligere utredninger (Thaulow m.fl., 1990, Baalsrud og Magnusson, 1990), er dypereliggende atlantisk preget vann antatt å være en viktig kilde til fortynning av ferskvannet.

Vi kjenner ikke detaljene i forwynningsprosessen, og har ikke nøyaktig informasjon om fortynningssvannets egenskaper og innhold av næringssalter. Det foreligger en rekke analyser av Skagerrakvannet i forskjellige dyp og til forskjellige årstider. Som utgangspunkt for vurderingene i den åpne kystsonen har vi satt totalnitrogen og totalfosfor til hhv. 150 og 15 mg/m³. Dette er i underkant av de midlere forhold og gir en viss sikkerhet mot å undervurdere den relative betydning av de antropogene tilførslene.

Det er stor usikkerhet omkring hvilket trofinivå som er vanlig i Skagerrak og i kyststrømmen. Ikke minst er det reist spørsmål om hvilken "import" av næringssalter og planktonalger som skjer fra sørosten gjennom kyststrømmen. Som antydte på fig. 7.1, kan effekten av en gitt belastningsøkning variere med utgangskonsentrasjonen. Dette tilslør forstået ved vurderinger av kyststrømmen. Vi har antatt at for å sikre oppvirkede forhold bør midlere konsentrasjonsøkning ikke overstige 10%.
Følgende grenseverdier (mg/m³) er brukt for konsentrasjonsøkning i kystsonen:

<table>
<thead>
<tr>
<th>Næringssalt</th>
<th>Lite påvirket</th>
<th>Moderat påvirket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>0 - 15</td>
<td>15 - 30</td>
</tr>
<tr>
<td>Fosfor</td>
<td>0 - 1.5</td>
<td>1.5 - 3</td>
</tr>
</tbody>
</table>

Figur 7.1 Prinsippskisse av dose - responsammenheng.
7.3. Nærømrådene

Grenseverdier for overflatelaget i nærømrådene tar utgangspunkt i et stort antall analyser av forskjellige kvalitetsparametre. Det gjelder analyser som beskriver vannet i fjordene og skjærgården. Verdiene for nitrogen og fosfor fordeler seg over et stort område. Det er antatt at storparten av verdiene i den lave delen av skalaen representerer relativt rent vann, det vil si vann som er lite påvirket av de lokale forhold. Det er tatt utgangspunkt i slike bakgrunnsnivåer, og kvalitetsklassene forøvrig gjenspeiler fordelingen av samtlige verdier (Rygg, 1989).

I nedenstående tabeller er det differansen mellom klassene som er gjengitt og som viser betydningen av de tilsvarende konsentrationsøkninger.

Disse grenseverdier (mg/m³) er foreslått for klassifisering av vannkvalitet:

<table>
<thead>
<tr>
<th>Næringssalt</th>
<th>Lite påvirket</th>
<th>Moderat påvirket</th>
<th>Tydelige påvirket</th>
<th>Sterkt påvirket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>0 - 50</td>
<td>50 - 130</td>
<td>130 - 300</td>
<td>over300</td>
</tr>
<tr>
<td>Fosfor</td>
<td>0 - 2</td>
<td>2 - 6</td>
<td>6 - 19</td>
<td>over 19</td>
</tr>
</tbody>
</table>

Det kan være tvil om det er riktig å bruke de samme grenseverdiene ved beregning av utslippsbegrensninger. I likhet med det som er gjort i vassdragsselen av Nordsjøplanen, har vi funnet det forsvært å legge grenseverdiene noe inn i hvert klassifiseringområde.

Følgende grenseverdier (mg/m³) for konsentrationsøkning er brukt for beregningene av behovet for utslippsbegrensninger i kap.8:

<table>
<thead>
<tr>
<th>Næringssalt</th>
<th>Lite påvirket</th>
<th>Moderat påvirket</th>
<th>Tydelig påvirket</th>
<th>Sterkt påvirket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>0 - 35</td>
<td>35 - 100</td>
<td>100 - 220</td>
<td>over 220</td>
</tr>
<tr>
<td>Fosfor</td>
<td>0 - 1,5</td>
<td>1,5 - 4,5</td>
<td>4,5 - 15</td>
<td>over 15</td>
</tr>
</tbody>
</table>

8.1. Kystsonen

Vi har beregnet den gjennomsnittlige konsentrasjonsøkningen som årsutslippet av nitrogen og fosfor vil gi i de definerte vannmassene.

Beregningen er basert på at forurensningene vil bli ført ut i det åpne kystfarvannet uten tap. Dette har gitt en teoretisk maksimumsverdi for de enkelte konsentrasjonsøkningsene. I virkeligheten vil det være tap av næringsalter i fjordene og i skjærgården. Under videretransporten i selve kyststrømmen vil det være ytterligere tap.

Beregningene bygger på at tilførslene fra land i første omgang blander seg inn i en mindre del av kyststrømmen, det vil si den delen som danner overgang mellom fjordene og de andre nærområdene og selve kyststrømmens hovedvannmasser. I virkeligheten vil det være en kontinuerlig fortyning av tilførslene med tilsvarende konsentrasjonsminskning, slik fig. 8.1 antyder.

I følge kap. 6.1-2 har kyststrømmen en typisk volumtransport på 400 000 m³/s, hvorav halvparten går i de øvre 20 m. Vi har brukt som utgangspunkt at innblandingen i første omgang skjer i en vannmasse som er 20 m dyp, strekker seg 10 km ut og har en hastighet på 0.25 m/s. Det gir en vanntransport på 50 000 m³/s. Nitrogenet kommer i stor grad gjennom vassdragene eller som utslipp til fjordenes overflatelag (jfr. Grenlandsfjordene). Dette betyr en tilførsel til en grunnere del av kystvannet. For nitrogen har vi derfor valgt å beregne konsentrasjonsøkningen for de øverste 10 meter av vannmassen. Ut fra våre forutsetninger vil midlere volumtransport der utgjøre 1/2 av volumtransporten i 0 - 20 m dyp (25 000 m³/s).

Fra Grenlandsfjordene og sørvest-over finner vi det rimelig å anta at tilførsler av nitrogen i hovedsak innblandes og transporterer i en avstand på ca. 5 km fra kysten (12 500 m³/s).

En viss andel av næringssaltene som tilføres kystvannet innen en sone, vil bli transportert videre inn i neste sone. Resten vil enten sedimentere ut med synkende plankton eller bli ført videre inn i vannmasser som er under eller utenfor den delen av kyststrømmen som det har vært aktuelt å vurdere. I området Ytre Oslofjord - Grenlandsfjordene antar vi at en betydelig videreføring finner sted. Men deretter antar vi at kystens karakter og kyststrømmens mektighet fører til at videreføringen blir av mindre betydning.

Vi har valgt å vurdere to alternativer:

1. 50% overføring mellom sonene t.o.m. Kragerøfjorden. Deretter 25% overføring.
Skjematisk skisse av dose - respons

Figur 8.1 Prinsipiell skisse for fortynningen av forurensnings-
tilførsler fra fjord til kyststrøm.
Tabell 8.1 Konsentrasjonsøkningerer av antropogent nitrogen og fosfor i de enkeltste sonene ved to antatte alternative overføringer mellom sonene.
A. 50% overføring mellom sonene t.o.m. Kragerøfjorden (sone 5), deretter 25% overføring.
B. 100% overføring mellom sonene t.o.m. Grenland (sone 4), 50% overføring til Kragerøfjorden og deretter 25%.

A

<table>
<thead>
<tr>
<th>Område</th>
<th>Pa tonn/år</th>
<th>Del-Pa mg/m³</th>
<th>Na tonn/år</th>
<th>Del-Na mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td>307</td>
<td>0.2</td>
<td>9880</td>
<td>13</td>
</tr>
<tr>
<td>Oslofjord</td>
<td>299</td>
<td>0.3</td>
<td>7780</td>
<td>16</td>
</tr>
<tr>
<td>Søndre Vestfold</td>
<td>136</td>
<td>0.2</td>
<td>2099</td>
<td>11</td>
</tr>
<tr>
<td>Grenland</td>
<td>82</td>
<td>0.2</td>
<td>3381</td>
<td>14</td>
</tr>
<tr>
<td>Kragerøfjordene</td>
<td>8</td>
<td>0.0</td>
<td>138</td>
<td>7</td>
</tr>
<tr>
<td>Risør-Moland</td>
<td>13</td>
<td>0.0</td>
<td>182</td>
<td>2</td>
</tr>
<tr>
<td>Mol.-Lillesand</td>
<td>37</td>
<td>0.0</td>
<td>420</td>
<td>2</td>
</tr>
<tr>
<td>Kristiansandsfj.</td>
<td>43</td>
<td>0.0</td>
<td>664</td>
<td>2</td>
</tr>
<tr>
<td>Søgne-Mandal</td>
<td>33</td>
<td>0.0</td>
<td>346</td>
<td>1</td>
</tr>
<tr>
<td>Totalt</td>
<td>958</td>
<td>24890</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Område</th>
<th>Pa tonn/år</th>
<th>Del-Pa mg/m³</th>
<th>Na tonn/år</th>
<th>Del-Na mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td>307</td>
<td>0.2</td>
<td>9880</td>
<td>13</td>
</tr>
<tr>
<td>Oslofjord</td>
<td>299</td>
<td>0.4</td>
<td>7780</td>
<td>22</td>
</tr>
<tr>
<td>Søndre Vestfold</td>
<td>136</td>
<td>0.5</td>
<td>2099</td>
<td>25</td>
</tr>
<tr>
<td>Grenland</td>
<td>82</td>
<td>0.4</td>
<td>3381</td>
<td>34</td>
</tr>
<tr>
<td>Kragerøfjordene</td>
<td>8</td>
<td>0.2</td>
<td>138</td>
<td>17</td>
</tr>
<tr>
<td>Risør-Moland</td>
<td>13</td>
<td>0.1</td>
<td>182</td>
<td>5</td>
</tr>
<tr>
<td>Mol.-Lillesand</td>
<td>37</td>
<td>0.0</td>
<td>420</td>
<td>2</td>
</tr>
<tr>
<td>Kristiansandsfj.</td>
<td>43</td>
<td>0.0</td>
<td>664</td>
<td>2</td>
</tr>
<tr>
<td>Søgne-Mandal</td>
<td>33</td>
<td>0.0</td>
<td>346</td>
<td>1</td>
</tr>
<tr>
<td>Totalt</td>
<td>958</td>
<td>24890</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.. 100% overføring mellom sonene t.o.m. Grenland. 50% overføring til Kragerøfjorden og deretter 25%.

I tabell 8.1 er vist de tilsvarende konsentrasjonsøkningene.

Tallene representerer middelverdier både i tid og rom, slik at det vil være perioder med høyere eller lavere verdier. Alt i alt mener vi tallene gir et rimelig godt bilde av de gjennomsnittlige, relative forhold og antagelig også kan gi et noe lundere riktig bilde av de absolutte verdier. Det er rimelig god overensstemmelse med resultatene i Ytre Oslofjord-undersøkelsen (Baalsrud og Magnusson, 1990).

Ved 25-50% overføring mellom sonene vil de beregnede konsentrasjonsøkningene på strekningen Svenskegrensen - Jomfruland i gjennomsnitt ligge omkring 15 mg N/l. Ved 25-100% overføring mellom sonene kommer også kystvannet utenfor Kragerøfjordene ut med en gjennomsnittlig konsentrasjonsøkning over 15 mg N/l. Det må tilføyes at dette i alt vesentlig skyldes overføring fra Grenlandsområdet.

For fosfor blir det ingen konsentrasjonsøkning over 0,5 mg P/l.

Tallene representerer middelverdier både i tid og rom, slik at det til en hver tid kan være store variasjoner omkring middeltallene. Det er imidlertid rimelig god overensstemmelse med resultater fra undersøkelserne i Ytre Oslofjord (Baalsrud og Magnuson, 1990). For nitrogen er kanskje den vesentligste usikkerheten knyttet til dypet av den vannmassen konsentrasjonsøkningen er beregnet for. Man kan argumentere for at dypet i en såpass avgrenset sone langs land burde vært satt til 5 m i stedet for 10 m. Det ville i så fall betydd en dobrin av konsentrasjonsøkningene i tabell 8.1.

8.2. Nærormrådene

Det er nærmere forklart i kapitlene foran hvordan konsentrasjonsøkningene er beregnet. Forholdene i de enkelte nærormrådene kan variere sterkt, spesielt kan det fra år til annet forekomme lengre perioder om sommeren med varmt vær, lite vind og liten vannføring i vassdragene. Da kan det utvikle seg forhold i det øverste vannlaget og langs strendene som atskillig seg sterkt fra det som oppfattes som vanlig. Under slike forhold kan effekten av forurensningsstilførsler også bli forsterket. Det kan imidlertid være vanskelig å skille ut den tilleggs effekt som tilførslene gir, det vil si å skille naturvariasjonen fra det som skyldes menneskelig påvirkning.

Det er helst i områder hvor det foreligger observasjoner og utslippsdata for lengre tidsrom at det kan være mulig å tolke de
enkelte fenomenene.

Resultatene er vist i tabell 8.2. Den viser at for de fleste nærområder nedover kysten er de direkte tilførslerne fra land for små til å gi markert effekt lokalt. Dette skyldes enten liten belastning eller at utslippet er ledet ut på dypt vann og innlagret, slik at konsentrationsøkningen blir liten i den vannmassen vi betrakter. Dette forutsetter at de "naturlige" tilførslerne brukt i beregningene er de samme som før den menneskelige innflytelse begynte å gjøre seg gjeldende som tilførsel av vannforurensninger. Dvs. at vi som utgangspunkt beﬁnner oss på samme sted på en tenkt dose-respons kurve (fig. 7.1). For soner der konsentrasjonen i kystvannet har økt, er det usikkert om denne forutsetningen holder helt. Ser man bort fra det utstrømmende brakkvannsfløyet i fjordområder med stor ferskvannstilførsel, vil vannutskiftningen i skjærgården og de fleste fjorder være så stor at vannkvaliteten ned til terskeldyp i hovedsalv bestemmes av vannkvaliteten i kystvannet. Det er delvis dette beregningene i tabell 8.2 viser. En økning av næringssaltkonsentrasjon og produksjon i kystsonevannet vil derfor påvirke forholdene i den indre skjærgården og fjordene innenfor. Graden av påvirkning (dosen) og responsen for den enkelte fjord har vi ikke grunnlag for å bedømme, men som tabell 8.1 viser, vil påvirkningen være størst ned til Kragerøområdet. Påvirkningen fra kystvannet på fjordene vil også være størst for vannforekomster som ligger nærmest kysten. Dette er altså også et forhold som bør tas i betraktning under vurdering av rensebehov.

Tabell 8.3 viser at tilførslene til de utvalgte nærområdene svarer for hhv. 83 og 67% av de samlede tilførsler av nitrogen og fosfor på hele strekningen.

For det aller meste av kyststrekningen synes det opplagt at høyeste vannkvalitetsklasse må være målet. Selv om overslag skulle vise at man ligger godt innenfor de marginer som denne klassen gir, bør alle nærområder under enhver omstendighet skjermes mest mulig mot utslipp. For noen få områder som idag er sterkt belastet, er det muligens realistisk å nøyse seg med nest beste klasse. Dette er avgjørelse som må tas av de respektive myndigheter. Vi har satt Frierfjorden og Glommas utløpsområde i klasse 2 mht. nitrogen, fordi disse er sterkt belastet, uten at tilsvarende effekter på eutrofisiden har gjort seg gjeldende. Den hurtige gjennomstrømmingen som preger disse to fjordene, er medvirkende til det.

I tabell 8.4 er stilt sammen hvilke restutslipp kystvannet vil motta etter ovenstående valg av kvalitetsklasser.

Nærområdene i sone 5, Kragerøfjordene, har beskjedne problemer ut
fra de lokale utslippene. Hellefjorden og Kilsfjorden har avstengte bunnvannmasser som er ømfintlige selv under naturlige
forhold og bør beskyttes best mulig. Under tidligere
undersøkelser da utslippene til Frirefjorden var langt større enn
idag, ble det observert forhøyede nitrogenverdier i
Kragerøfjordene. Dette skyldtes transport fra Grenlandsfjordene.
Idag er utslippene til Grenlandsfjordene sterkt redusert, og det
er usikkert om noen større påvirkning eksisterer lenger.

I sonene 6 - 9 er de større tettstedene kommet langt i å samle
avløpsvannet og lede det på dypt vann. I Kristiansand er
foreløpig bare en del av avløpet ført til det endelige
dypvannsutslippet. Disse utslippene ligger stort sett slik at
det er en hurtig utveksling med utenforliggende vannmasser. I
 disse sonene er det viktig å få høy tilknyttingsgrad, slik at det
ikke skjer ukontrollerte utslipp i enkelte lokalområder.

Inntil for få år var forurensningssituasjonen en helt
annen. Dels ble avløpsvann fra bebyggelsen sluppet ut i
overflaten av vassdrag og fjorder, dels ble forurensning fra
treforedling og annen industri sluppet ut i store mengder. Som
resultat av dette finnes det avleiringer på bunnen mange steder
som fremdeles påvirkar vannkvaliteten, spesielt av bunnvannet.

8.3. Vurderinger

Det naturvitenskapelige grunnlag for å trekke klare konklusjoner
om sammenhengen mellom lokale forurensningstillførsler,
påvirkningen fra tilstøtende områder og havstrømmer og de
biologiske forhold langs Skagerrakkysten er ennå svakt.
Karakteren av bakgrunnsmaterialet og forenklingene i vurderingene
gjør at de presenterte resultater bør betraktes som en første
tilnærming for det aktuelle kystområdet.

Blant de viktige forenklinger som er gjort, må fremheves at
nitrogen og fosfor er behandlet uavhengig av hverandre. Det vil
si at for hver av dem har vi antatt at det er et vektbegrensende
næringssalt. Algenes gjennomsnittlige behov for nitrogen og
fosfor svarer til vektoverholdt ca. 7:1. Algene kan endre sitt
opptak noe etter de ytre betingelser. Hvis forholdet blir over
10:1 eller under 5:1 regner vi at henholdsvis fosfor eller
nitrogen blir det vektbegrensende stoffet.

En hovedkonklusjon ut fra disse vurderinger blir at om
utslippsreduksjoner foretas ut fra hensynet til de utvalgte
nærøringer, vil samtidig Norges tilskudd til kyststrømmen bli
tilfredsstillende lave.
Konklusjonene i denne vurderingen betyr ikke at det er unødvendig med rensetiltak mange steder. Skagerrakkysten er så variert og brukerinteressenes krav til rent miljø så høye, at utslipp av forurenset avløpsvann under enhver omstendighet bør skje etter omhyggelige vurderinger.

De enkleste aktuelle rensetiltak er mekanisk rensing og kjemisk rensing. Selv om mekanisk rensing kan være tilfredsstillende enkelte steder langs norskekysten, er forholdene langs den aktuelle strekning Svenskegrensen – Lindesnes slik at en mer avansert rensing er ønskelig. Et minimumskrav for å fjerne næringsalter, bakterier, partikler og miljøgifter bør derfor være at det anlegges kjemisk rensing ved alle større utslipp.

I vurderingene er hvert nærområde behandlet som en homogen vannmasse. Det er bare forsvarelig hvis utslippene er anordnet slik at det skjer en hurtig forynning av avløpsvannet i hovedvannmassene. I tillegg til anordningen av utslippet er det derfor spesielt viktig at det ikke skjer ukontrollerte lokalutslipp. De vil både hygienisk og eutrofimesseg kunne være til stor ulempe på utslippsstedet.

Foreløpige anbefalinger kan være retningsgivende:

1. **Det bør ikke tillates utslipp i trange farvann, poller eller avstengte fjorder.**

2. **Alt avløpsvann bør samles til steder hvor utslippet kan skje på dypt vann med god vannutveksling.**

3. **Generelt bør mekanisk-kjemisk rensing være et minimumstiltak. Det er et bredspektrum rensetiltak som foruten å redusere næringssaltutslippene effektivt, også bidrar til å bedre de hygieniske forhold samt redusere utslippene av tungmetaller.**
Tabell 8.2 Utslipp til 48 nærområder. Beregnet konsentrasjons-
økning av dagens utslipp. Beregnet behov for ut-
slippsreduksjoner (t/år) for å nå alternative kva-
litetsmål.

<table>
<thead>
<tr>
<th>NAVN</th>
<th>del-Pa</th>
<th>del-Na</th>
<th>Pa-1.5-red</th>
<th>Pa-4.5-red</th>
<th>Na-35-red</th>
<th>Na-100-red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/m³</td>
<td>mg/m³</td>
<td>tonn/år</td>
<td>tonn/år</td>
<td>tonn/år</td>
<td>tonn/år</td>
</tr>
<tr>
<td>Iddef jorden</td>
<td>5.2</td>
<td>149</td>
<td>16</td>
<td>3</td>
<td>486</td>
<td>209</td>
</tr>
<tr>
<td>Hvalerbassenget</td>
<td>12.1</td>
<td>394</td>
<td>249</td>
<td>178</td>
<td>8424</td>
<td>6899</td>
</tr>
<tr>
<td>I. Oslof jord</td>
<td>2.4</td>
<td>87</td>
<td>40</td>
<td>0</td>
<td>2179</td>
<td>0</td>
</tr>
<tr>
<td>Drammens fjorden</td>
<td>7.9</td>
<td>198</td>
<td>87</td>
<td>46</td>
<td>2226</td>
<td>1336</td>
</tr>
<tr>
<td>Tønsberg fjorden</td>
<td>4.7</td>
<td>86</td>
<td>27</td>
<td>2</td>
<td>418</td>
<td>0</td>
</tr>
<tr>
<td>Mef jorden</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sanedef jordsf jorden</td>
<td>1.0</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Viksfjorden</td>
<td>3.5</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Larviksfjorden</td>
<td>3.7</td>
<td>72</td>
<td>25</td>
<td>0</td>
<td>406</td>
<td>0</td>
</tr>
<tr>
<td>Næverfjorden</td>
<td>0.2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Langangs fjorden</td>
<td>0.6</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eidanger-Langes f j.</td>
<td>0.6</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frierf jorden</td>
<td>7.6</td>
<td>334</td>
<td>59</td>
<td>30</td>
<td>2891</td>
<td>2262</td>
</tr>
<tr>
<td>Trysufjorden</td>
<td>0.3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fossingfjorden</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hellefjorden</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kilsfjorden</td>
<td>0.4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Berøfjorden</td>
<td>0.1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Søndeledsfjorden</td>
<td>0.4</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sørnfjorden</td>
<td>0.2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sandnesfjorden</td>
<td>0.8</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tvedestrandsfjorden</td>
<td>0.8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oksøysfjorden</td>
<td>0.5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eikelandsfjorden</td>
<td>0.6</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tromøysund</td>
<td>1.4</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arendal havn</td>
<td>3.8</td>
<td>120</td>
<td>5</td>
<td>0</td>
<td>201</td>
<td>47</td>
</tr>
<tr>
<td>Hølen</td>
<td>3.2</td>
<td>107</td>
<td>2</td>
<td>0</td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td>Utnebassenget</td>
<td>2.5</td>
<td>22</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grosfjorden</td>
<td>2.5</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vikilen</td>
<td>0.2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaldvelfjorden</td>
<td>1.0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tingsakerfjorden</td>
<td>2.1</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steindalsfjorden</td>
<td>0.3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Isef jørfjorden</td>
<td>3.0</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Kvåsefjorden</td>
<td>1.6</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Korsviksfjorden</td>
<td>0.1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alef jørfjorden</td>
<td>0.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Topdalsfjorden</td>
<td>0.8</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vesterhavn</td>
<td>1.3</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kristiansandsf jorden</td>
<td>3.5</td>
<td>52</td>
<td>16</td>
<td>0</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>Høleffjorden</td>
<td>1.4</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trøysfjord, indre</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trøysfjord, ytre</td>
<td>0.8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harkmarksfjorden</td>
<td>0.4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mannsfjorden</td>
<td>0.2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sniksfjorden</td>
<td>6.8</td>
<td>127</td>
<td>2</td>
<td>1</td>
<td>42</td>
<td>12</td>
</tr>
<tr>
<td>Syrdalsfjorden</td>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kjerkevågen</td>
<td>0.2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

47
Tabell 8.3 Tilførsler av antropogent nitrogen og fosfor til nærområder i hver sone, sammenlignet med tilførslenes til hele sonen.

<table>
<thead>
<tr>
<th>Sone</th>
<th>Totalt På Tonn/År</th>
<th>Nærområde Tonn/År</th>
<th>Nærområde %</th>
<th>Totalt Na Tonn/År</th>
<th>Nærområde Tonn/År</th>
<th>Nærområde %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>307</td>
<td>306</td>
<td>100</td>
<td>9880</td>
<td>9880</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>299</td>
<td>211</td>
<td>71</td>
<td>7780</td>
<td>6356</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>136</td>
<td>93</td>
<td>68</td>
<td>2099</td>
<td>1728</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>78</td>
<td>95</td>
<td>3381</td>
<td>3300</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>4</td>
<td>53</td>
<td>138</td>
<td>90</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>6</td>
<td>49</td>
<td>182</td>
<td>128</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>32</td>
<td>86</td>
<td>420</td>
<td>325</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>34</td>
<td>79</td>
<td>664</td>
<td>511</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>16</td>
<td>49</td>
<td>346</td>
<td>217</td>
<td>63</td>
</tr>
<tr>
<td>Sum</td>
<td>958</td>
<td>781</td>
<td>81</td>
<td>24890</td>
<td>22535</td>
<td>91</td>
</tr>
</tbody>
</table>

Tabell 8.4 Gjenværende utslipp i hver sone etter at utslippsreduksjoner (tabell 8.2) er gjennomført.

<table>
<thead>
<tr>
<th>Sone</th>
<th>Pa-tonn/År</th>
<th>Pa-red tonn/År</th>
<th>Pa-rest tonn/År</th>
<th>Na-tonn/År</th>
<th>Na-red tonn/År</th>
<th>Na-rest tonn/År</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>307</td>
<td>265</td>
<td>42</td>
<td>9880</td>
<td>7385</td>
<td>2495</td>
</tr>
<tr>
<td>2</td>
<td>299</td>
<td>127</td>
<td>172</td>
<td>7780</td>
<td>4405</td>
<td>3375</td>
</tr>
<tr>
<td>3</td>
<td>136</td>
<td>52</td>
<td>84</td>
<td>2099</td>
<td>859</td>
<td>1240</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>59</td>
<td>23</td>
<td>3381</td>
<td>2262</td>
<td>1119</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>138</td>
<td>0</td>
<td>138</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>182</td>
<td>0</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>24</td>
<td>13</td>
<td>420</td>
<td>267</td>
<td>153</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>17</td>
<td>26</td>
<td>664</td>
<td>141</td>
<td>523</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>2</td>
<td>31</td>
<td>346</td>
<td>42</td>
<td>304</td>
</tr>
<tr>
<td>Sum</td>
<td>958</td>
<td>546</td>
<td>412</td>
<td>24890</td>
<td>15361</td>
<td>9529</td>
</tr>
</tbody>
</table>
9. Referanser

Hackett, B., 1982: Currents and Hydrography off western Norway during NORSEX-79. FOH rapport nr. 3/82.

