

Site Information and Investigation Methods

REPORT 1/1992

NIVA - REPORT

Norwegian Institute for Water Research NIVA

Sub-No.: Report No.: 91048 1 Serial No.: Limited distrib.: 2ア11

Main Office P.O. Box 69, Korsvoll N-0808 Oslo 8 Norway Phone (47 2) 23 52 80

Telefax (47 2) 95 21 89

Regional Office, Sørlandet Televeien 1 N-4890 Grimstad Norway Phone (47 41) 43 033

Telefax (47 41) 44 513

Regional Office, Østlandet Rute 866 N-2312 Ottestad Norway Phone (47 65) 76 752 Telefax (47 65) 78 402

Regional Office, Vestiandet N-5035 Bergen - Sandviken Norway Phone (47 5) 95 17 00 Telefax (47 5) 25 78 90

Akvapian-NIVA A/S Søndre Tollbugate 3 N-9000 Tromsø Norway Phone (47 83) 85 280 Telefax (47 83) 80 509

Report Title:	Date:	Printed:
Acidification of Mountain Lakes: Palaeolimnology and Ecology.	20.03.92	NIVA 1992
Site information and investigation methods. Report 1/92.		
,	Acid precipitation	
	Geographical ar	ea:
Author(s):	EUROPA	
	Pages:	Edition:
Bente M. Wathne	98	
	L	

Contractor:	Contractors ref. (or NTNF-No.):
CEC-STEP/NTNF	

Abstract:

The main aims of the project are to improve the understanding of remote mountain lakes ecosystems and determine their use as early response indicatiors of trends in atmospheric pollution. ALPE is a joint project between 7 institutions in 4 countries. The working sites in Norway, UK, France and Italy are described together with the investigation methods for water chemistry, diatoms, sediments, invertebrates and fish. The ALPE-project started 1.04.91 and the working period will be two years.

- 4 keywords, Norwegian
- 1. Forsuring
- 2. Høyfjellssjøer
- 3. Økologi
- 4. Palaeolimnologi

- 4 keywords, English
- 1. Acidification
- 2. Mountain lakes
- 3. Ecology
- 4. Palaeolimnology

Project leader		For the Administration
Berte M. Wathre		Mrn New Rosseland
Bente M. Wathne		Bjørn Olav Rosseland
	ISBN 82-577 -2071-2	

ALPE - ACIDIFICATION OF MOUNTAIN LAKES: PALAEOLIMNOLOGY AND ECOLOGY

The ALPE project has its official start date 1st April 1991, and the working period for the project will be two years. This presentation will therefore be of the agreed programme and of the background material from the investigation areas or sites for the project.

PROJECT AIMS

The main aims of this project are to establish an understanding of the ecosystems of high mountain lakes, and to use a relevant subgroup of these lakes from various regions as early response indicators of increasing or decreasing atmospheric pollution. Additional aims are to:

- establish links between existing lake chemistry databases of remote mountain lakes from EC countries, Austria, Switzerland, and Norway.
- establish contact with countries in Eastern Europe (Czechoslovakia and Poland for the Tatra mountains) aiming at future cooperation in this field
- use biological data to establish guidelines for good monitoring management, and guidance practices.
- identify critical S and N loads and recommend target loads for remote mountain lakes.
- establish baseline conditions for the long-term evaluation of climatic change and its effects.
- develop statistical methods for analysing fish and invertebrate data in relation to environmental data to provide a basis for predicting future biological responses to modelled chemical changes.

GFOGRAPHICAL LOCATION AND SITE DESCRIPTION

The sites chosen for this project are in montain areas in Norway and Scotland, the Alps (Italy, Switzerland, Austria, France) and the

Pyrenees (France). They are all remote and not affected by local pollution sources. For some of these lakes there exist data from earlier investigation projects. These earlier investigations and their results are valuable information to take into the project, and have been used for selection of sites and project planning. Some of the lakes have never been investigated before, and little information have been available in the planning period. The sites are shown on the map in Figure 2 at page 15, and a summary of the programme and the water chemistry of the lakes is given in Table 10 and 11.

Norway

In Norway two lakes are chosen as major sites, Stavsvatn and Øvre Neådalsvatn. Both lakes are situated above the timberline, and snow covers the cathments generally from October/November until May/June. Øvre Neådalsvatn, in the Todalen area in north west Norway, lies at an altitude of 728 m and is a lake in an unpolluted sensitive area. This lake will serve as a reference lake for the whole study. The catchment around Øvre Neådalsvatn is steep morene, dominated by bare rock. Near this main site the Norwegian Institute for Air Research (NILU) also has an atmospheric deposition sampling station running. This station has been in operation from 1979 (The Norwegian State Pollution Control Authrity, 1990). Øvre Neådalsvatn was part of the SNSF project (1972 - 1980), (Overrein et al. 1981)

The other main site, Stavsvatn, lies at an altitude of 1053 m, and is situated in the southern part of Norway. Stavsvatn is an acidified lake, and was part of the "Thousand Lake Survey" (The Norwegian State Pollution Control Authority, 1988). Around Stavsvatn the catchment is dominated by bare granitic bedrock and grassland.

In addition to the two main sites an even more affected and acidified lake is also chosen, Lille Hovvatn in the southernmost part of Norway. Lille Hovvatn and the neighbouring lake Store Hovvatn have been followed in several studies through the last 10 years (Wright, 1984 and 1985, Raddum et al. 1986, Barlaup et al. 1989). Lille Hovvatn is also close to the mountain area (south east direction) used for comparison of chemical characteristics between mountain lakes in Norway and Italy (Wathne et al. 1990). The catchment for Lille Hovvatn is of granitic bedrock with thin to nonexisting, poorly developed podzolic and mor soils. This lake lies at an altitude of 600 m, just below the timberline. Open forest of spruce (Picea abies), pine (Pinus sylvestris), and birch (Betula verrucosa) are interspersed with peaty areas. This lake will be sampled for biology and chemistry. Chemistry and site information for the Norwegian lakes are shown in Table 1.

Table 1. Water chemistry and site information for Norwegian lakes.

	T			
		Øvre	Stavs-	Lille
		Neådalsvatn	vatn	Hovvatn
H.a.s.1.	(m)	728	1053	600
рН		6.05	5.63-5.85	4.22-4.78
Cond	(mS/m)	0.6	1.00-1.33	2.30-5.16
Ca	(mg/1)	0.51	0.78-1.10	0.03-0.64
Mg	11	0.13	0.11-0.14	0.01-0.24
Na	11	0.71	0.34-0.68	0.66-1.61
К	11	0.17	0.03-0.08	0.02-0.19
C1	11	0.4	0.4-1.0	0.6-3.3
Sulph.	11	0.9	2.0-2.4	0.9-4.4
ESO ₄	(µeq/l)		40.5-48.2	18.7-91.6
NO ₃ N	(µg/1)	10	47-71	130-360
RAL	11	25* *	101-135	144-302
ILAL	11		15-37	10-63
LAL	11		86-100	106-259
NH₄ N	11		18-25	95-180
Tot N	11		123	320-620
F	11		248-300	
TOC	(mg C/l)		0.92-1.91	0.95-4.4
ALK-E	(µeq HCO ₃ -/1)		5.3-9.8	_
Map nr.		1420.1	1514.2	1312.2
Lake are	a (Hectare)	50	40	20
Watershe	d area (km²)	16	2.43	0.8
Watershe	d geology	morene	granite	granite
Runoff (1/s km ²)	50	31	35
Bottom a	rea			
de	pth < 5 m	6/10		7/10
de	pth 5-10 m	3/10		2/10
de	pth > 10 m	1/10		1/10
1	•	· ·		,

^{**} as total Al.

The sites are marked on the map in Figure 1, also showing isolines for weighted yearly pH in precipitation in Norway from 1980 to 1984 (The Norwegian State Pollution Control Authority, 1986) also illustrates that there is a gradient of decreasing acid loadings going from Lille Hovvatn in the southernmost part of the country to Øvre Neådalsvatn in the norht west.

Figure 1. Isolines for weighted yearly pH in precipitation in Norway from 1980 to 1984.

Earlier measurements for the Norwegian sites are listed in Table 2.

Table 2. Earlier investigations at the Norwegian sites. (Reference to reports are given in the text).

	Chemistry	Invertebr.	Fish	Diatomees	Coring
Ø. Neådalsvatn Stavsvatn Lille Hovvatn	1978 1986-90 1982-	1978 1990 1982-	1978 *	*	*

^{* =} Data are present from the neighbouring lake Store Hovvatn.

The geographical data for Lille Hovvatn are not based on accurate measurements, but anticipated from map material. The runoff value for Øvre Neådalsvatn is taken from the mean value for the Western part of the country.

United Kingdom

In Scotland one lake in the Cairngorms, Lochnagar, is chosen as a major site, and two lakes in the nearby region, Sandy Loch and Loch Nan Eun, will be sampled after a reduced programme.

Lochnagar lies at an altitude of 785 m in the center of the granitic massif which comprises much of Balmoral Forest in Aberdeenshire. The geology is composed of biotite granite overlain in places by blanket peat. The loch is pear-shaped and lies below a north-east facing steep backwall which rises to the summit of the same name. Snow generally occupies the catchment to a varying extent between November and May, and a significant snow field accumulates in the winter periode. The loch is acid with clear water and palaeolimnological studies (Patrick et al. 1989) have shown that the loch acidified in the mid-nineteenth century. Site characteristics and water chemistry (Juggins et al. 1989) are shown in Table 3 and 4. More details are given in Appendix A.

Both Sandy Loch and Loch Nan Eun have granitic catchments, but at this stage we do not have the same detailed information about these lakes. More information will be gathered during the ALPE - project. The water chemistry for Sandy Loch and Loch Nan Eun is shown in Table 4.

Table 3. Site characteristics for the Scottish main site.

	Lochnagar.	
Altitude m a.s.l.	785	
Max. depth m	24	
Mean depth m	8.4	
Volume m ³	820×10^3	
Lake area ha	9.8	
Catchment		
geology	granite	
soils	peat	
vegetation	moreland 100%	
area	91.9 (excl. lake)	
Catchment/lake	9.37	
Net relief	370	
Mean ann. rainfall	c. 1400 mm (1988)	
Wet deposited acidity	0.48 kg H+/ha yr (1988)	
Wet deposited non-marine		
Sulphate	7.33 kg S/ha yr (1988)	

For Lochnagar both epilithic diatoms and benthic macroinvertebrates have been investigated. Epilithic diatoms are dominated by acidophilous species, notably <u>Achnanhes marginulata</u> and <u>Tabellaria flocculosa</u>. The species-poor macrophyte flora largely comprises submerged liverworts (eg. <u>Scapania undulata</u>) and <u>Sphagnum auriculatum</u> which extend to 6 m depth. The only non-bryophyte taxa, Isoetes lacustris and Juncus bulbosus var. fluitans are sporadic in their distribution.

Benthic macroinvertebrates are characterised by detritivorous stoneflies, predatory stoneflies and the acid-tolerant mayfly Leptophlebia vespertina, in low numbers. Trout were reported in the loch in 1940 (Hardie 1940), but a thorough gill net survey of the fishery status in 1983 yielded only 13 trout, all mature specimens (Morrison pers. comm.). However electrofishing in the outflow stream in October 1989 revealed a good population of trout.

Table 4. Water chemistry for the Scottish	sh lakes.
---	-----------

	Lochnagar	Nan Eun	Sandy Loch
pH	5.35	4.96	6.32
Cond. 200 µS/cm	20	22	2
Alk µeq/l	0.0	0	28
Ca mg/l	0.58	0.59	0.88
Mg "	0.40	0.32	0.32
Na "	2.08	1.89	2.37
K "	<0.75	0.22	0.31
Ba "	0.02		
Sr "	0.01		
SO ₄ "	2.83	2.99	3.31
TOTN "	<0.05		
PO ₄ "	<0.005		
C1 "	3.13	2.65	2.56
Br "	<0.01		
F "	0.02		
Sol mon-Al µg/l	21.25		
Sol NL-mon-Al "	13.75		
Slo L-mon-Al "	7.50	128	
Si mg/l	1.03	1.1	0.9
DOC "	0.93	0.4	1.4
Excess SO ₄ "	2.38	2.5	1.8

The Italian Alps

In the Alpine areas where earlier programmes have given sufficient data (Italy, Switzerland, Austria) two major site lakes are chosen. One lake, Paione Superiore, in the western Alpes (Italy), and one lake, Lago Lungo, in the eastern Alps, in South Tirol (Italy). Close to Paione Superiore, another lake, Paione Inferiore will be investigated with a reduced programme.

The Paione lakes are situated in the Bognanco Vally, a lateral of the Ossola vally, in the Pennine Alps. The geology of the watershed is described as clear banded orthogneisses and grey gneisses with potassium feldspar and epidote; trace of limb of marbles, calcareous schists and paragneisses. Paione Superiore lies at an altitude of 2269 m and Paione Inferiore at an altitude of 2002 m. Both lakes have been investigated earlier through scientific programmes (Mosello \underline{et} \underline{al} . 1980,1981,1985,1986,1988), and samples for water chemistry have

The land is mainly constituted by rocks which however are to a great extent covered by a thin layer of vegetation. Investigations and sampling have been made once a year in 1984, 86, 87 88, 89, 90 (Thaler et al. 1990), and the work is described in more detail in Appendix C. The main chemical parametres of Lago Lungo are shown in Table 7.

Phytoplankton and zooplankton were also sampled in 1984 and 1988. A fish population study was carried out in 1985 (Steiner 1985). This investigation showed that the fish population was constituted by three species: Salvelinus alpinus, Salmo trutta and Salvelinus fontinalis. The only species which showed natural reproduction was Salvelinus alpinus. On the basis of the study the lake was totally fished out, and following this, the only introduced species was Salvelinus alpinus. From 1985 - 89 fishing in the lake was forbidden. An athmospheric deposition sampling station is situated in the nearby region in South Tyrol.

Table 7. Main chemical parametres of Lago Lungo (1984-90 5 samplings).

	Lago Lungo		
pH Cond. 20°C ANC SO ₄ NO ₃ Ca Mg Tot P	5.99-6.83 12-19 µS/cm 20-37 µeq/l 52-66 µeq/l 13-17 µeq/l 59-84 µeq/l 7-18 µeq/l	2.8-3.2 mg/l 175-241 µg/l 1.16-1.69 mg/l 0.09-0.22 mg/l 5 µg/l	
Transparency (Ca + Mg)/(SO ₄ + NO ₃) Estmated acid. value	5-6 m 1.23 51-55 μeq/l		

The French Alps

In the French part of the Alps the programme will cover a reduced programme for two lakes in Brianconnais in the area of Massif des Ecrins (Parc National des Ecrins), Lac Rond and Combeynod. Rond is an acid lake situated in the Valleé of Clareé at the altitude of 2446 m. The geology in the watershed is schist, and the lake has sand sediments.

been taken regularely since 1979. The main morphometric characteristics of Lakes Paione are shown in Table 5, and the chemical characteristics in Table 6. More details are given in Appendix B.

Table 5. Main morphometric characteristics of Italian Alpine lakes.

		Paione Inferiore	Paione Superiore	Lago Lungo
Altitude Longitude Latitude Lake surface Watershed area	m a.s.l. East North km ²	2002 8 ⁰ 11'23" 46 ⁰ 10'1" 0.014	2269 8 ⁰ 11'27" 46 ⁰ 10'26" 0.014	2384 11 ⁰ 5'0" 46 ⁰ 43'36" 0.2005
(lake included)	km ²	1.14	0.55	2.07
Max. depth	m	13.5	11.7	45
Mean depth	m	7.35	5.12	

Table 6. Chemical characteristics of Lakes Paione.

	Paione Inferiore	Paione Superiore
рН	6.50	5.32
Tot. alk µeq/l	25	0
$SO_4 mg/1$	2.98	3.79
C1 "	0.11	0.21
NH ₄ "	0	0.06
Ca "	1.8	1.3
Mg "	0.19	0.19
Na "	0.39	0.30
K "	0.39	0.31
NO ₃ μg/l	406	392
RAL "	28	28
Cond. µS/cm	13.4	12.5
Reac Si mg Si/l	0.6-0.9	0.3-0.6
Total P μg P/l	<10	<10

The other main site, Lago Lungo, is situated in the eastern Alpes in South Tyrol, in the Natural Park of Tessa at 2384 m altitude. The main morphometric parametres of the lake and its watershed are shown in Table 5. Gneiss and paragneiss are composing 80% of the watershed.

The land is mainly constituted by rocks which however are to a great extent covered by a thin layer of vegetation. Investgations and sampling have been made once a year in 1984, 86, 87 88, 89, 90 (Thaler et al.1990), and the work is described in more detail in Appendix C. The main chemical parametres of Lago Lungo are shown in Table 7.

Phytoplankton and zooplankton were also sampled in 1984 and 1988. A fish population study was carried out in 1985 (Steiner 1985). This investigation showed that the fish population was constituted by three species: Salvelinus alpinus, Salmo trutta and Salvelinus fontinalis. The only species which showed natural reproduction was Salvelinus alpinus. On the basis of the study the lake was totally fished out, and following this, the only introduced species was Salvelinus alpinus. From 1985 - 89 fishing in the lake was forbidden. An athmospheric deposition sampling station is situated in the nearby region in South Tyrol.

Table 7. Main chemical parametres of Lago Lungo (1984-90 5 samplings).

	Lago Lungo		
pH Cond. 20°C ANC SO ₄ NO ₃ Ca Mg Tot P	5.99-6.83 12-19 µS/cm 20-37 µeq/l 52-66 µeq/l 13-17 µeq/l 59-84 µeq/l 7-18 µeq/l	2.8-3.2 mg/l 175-241 µg/l 1.16-1.69 mg/l 0.09-0.22 mg/l 5 µg/l	
Transparency (Ca + Mg)/(SO ₄ + NO ₃) Estmated acid. value	5-6 m 1.23 51-55 μeq/l		

The French Alps

In the French part of the Alps the programme will cover a reduced programme for two lakes in Brianconnais in the area of Massif des Ecrins (Parc National des Ecrins), Lac Rond and Combeynod. Rond is an acid lake situated in the Valleé of Clareé at the altitude of 2446 m. The geology in the watershed is schist, and the lake has sand sediments.

The altitude for Combeynod is 2550 m and the geology in the watershed is granite. Sediments are coarse, and it can lose a lot of water in summer by evaporation.

These lakes are frozen from November to end of June. Surface temperature rises from 7°C in July to 13°C in August. There are probably no fish in the lakes, but benthic fauna and zooplancton data are available. Some measurements of pH and conductivity are made, and the results are shown in Table 8.

Table 8. pH and conductivity from the French Alpine lakes.

	Rond	Combeynod
ph	6.6-7.3	6.8-7.6
Cond. μS/cm	60*	50

^{*} Sometimes higher than 60 μ S/cm.

Also in the French Pyrenees sufficient data for the lakes were lacking, and an initial baseline survey of sites and water chemistry was required. This survey was made during the summer 1990. One lake, Aubé, has been chosen as a major site for a full study. The lake is situated at 2240 m a.s.l. and the catchment is granitic bedrock. Lake area are anticipated close to 1 ha. Water chemistry is shown in Table 9, and more information is given in Appendix D.

Table 9. Water chemistry for Aubé in the French Pyrenees.

	Aubé
pH Cond. µS/cm NH ₄ mg/l Na " K " Mg " Ca " Cl " NO ₃ " SO ₄ "	6.09 8.21 <0.018 0.37 0.12 0.10 0.72 0.32 0.62 1.44

An overview over the sites and the measuring programme is given on page 15.

INVESTIGATION PROGRAMME

The six major sites will be investigated through an extensive programme covering water chemistry, fish, invertebrates and diatomees. The detailed programme is shown below:

- water chemistry
- fish, invertebrate and diatom communities using harmonised techniques
- sediment cores and statistical analysis to assess the degree of athmospheric contamination and the acidification status using diatoms, chironomid head capsules and carbonaceous particle analysis.
- a special study on comparisons between invertebrate and fish communities in Norway and the Alps.

Water chemistry programme

Water chemistry from earlier sampling have been one of the criteria for selecting the remote mountain lakes for this project. Sampling and analyzing for water chemistry will also be needed in the monitoring programme of the lakes. More details for the water chemistry programme are given in Appendix E.

Methods

The samples will be taken from the outlet of the lake at the same time as the samples for benthic invertebrates are collected. The samples will be analyzed by standard procedures for analysis of low ionic strength waters. The analytical program will include the following components: pH, conductivity, calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chloride (Cl), sulphate (SO $_4$), nitrate (NO $_3$), fluoride (F), alkalinity, total organic carbon (TOC), reactive aluminium (RAL) and non-labile aluminium (ILAL).

The analytical work will be done at national laboratories in cooperation with the chemical centres in Italy and Norway. Due to earlier cooperative work, intercalibration data exist for Scotland and Norway and Italy and Norway. The Norwegian laboratory (NIVA) will do the Al-speciation in the samples from the Alps.

Results

The analytical results will be gathered and processed in databases in Italy and Norway. These countries will also report the results.

Fish status programme

In Norway information from different regional surveys of water chemistry and fish status forms the basis for selecting the remote mountain lakes for this project. The fish status programme is described in more detail in Appendix F.

Methods

Information on fish status will be sampled using the interview method and test fishing. The interview method has been used in several regional studies in Norway with good results. Yearly test fishing in autumn will be performed by standardized gillnet series covering the fish sizes from 10 to 50 cm in length. Electrofishing in spawning areas will be performed. Standard procedures for determining size, sex, age, maturation, etc. will be used. The test fishing and invertebrate studies will be coordinated.

The same program on fish will be followed in the other European sites. Field assistance will be given in the Italian Alps and the Pyrenees.

The analytical work will be done at national laboratories in cooperation with NIVA.

Diatom programme

Epilithic diatoms will be sampled from each study site. A standard method will be used which involves the amalgamation of scrapes from stones in the littoral zone. The samples will be examined in the laboratory using high magnification light microscopy, and the composition of each sample will be determined from a count of 500 valves. Multivariate statistical analysis will be used to compare diatom samples between sites. All sampling and analytical work will be performed by the PRU.

Sediment programme

At six sites (2 in Norway, 1 in Scotland, 1 in the Pyrenees and 2 in the Alps) short sediment cores will be taken using a Kajak or Mackereth sampler. Cores will be sectioned in the field into 0.5 cm slices. In the laboratory, the dry weight, wet density and loss-onignition values of each slice will be determined. Sub-samples will be sent to the University of Liverpool for 210Pb dating, University of Bergen for analysis of chironomid head capsules. At University College London samples will be prepared for diatom analysis (light microscopy), and for carbonaceous particle analysis (light and scanning electron microscopy and EDS) using standard techniques. The carbonaceous particle analysis will be used to show the degree of contamination at each site by fossil fuel burning and the diatom analysis will be used to reconstruct the pH history of each lake. The diatom results will also be used by Professor Birks at the University of Bergen to reconstruct other chemical variables using analogue matching and other statistical techniques.

PRU/ENSIS will be responsible for sediment sampling at all sites.

Invertebrate programme

Invertebrates will be sampled at the same time as data on water chemistry and fish are collected. Samples will be taken from the profundal zone using a "Kajak sampler" and from the lake littoral and outlet stream using "kick samples". The samples will later be sorted and the different animals identified to species/groups. The fauna will be ranged according to tolerance, which will make it possible to apply the data in model work.

The sorting and identification will be done by taxonomic specialists in the participating countries in cooperation with University of Bergen, Dept. of Animal Ecology (UIB-ZM). Chironomids will be identified by UIB-ZM. The data from the different participating countries will be generated and processed in the database in Norway, and the results will be treated with statistical help from Professor John Birks, University of Bergen, Botanical Institute.

More details for the invertebrate programme are given in Appendix G.

SITE OVERVIEW AND SAMPLING PROGRAMME

In Table 10, an overview over the sites and the sampling programme is given. Also marked in Table 10 is which sites have a precipitation station in the watershed.

Table 10. Site overview and sampling programme for ALPE.

	Precip.	Chemistry	Inverteb.	Fish	Diatom.	Coring
UK						
Lochnagar	Х	Х	Х	Х	Х	X
Sandy Loch	Х	Х			Х	
Loch Nan Eun	Х	Х			Х	
Italy						
Paione Superiore	Χ1	Х	Х	X	Х	Х
Paione Inferiore	X1	Х	Х	Х	Х	
Lago Lungo		X	Х	Х	Х	Х
Norway						
Øvre Neådalsvatn	Х	χ	χ	χ	χ	Х
Stavsvatn	(X)	Х	Х	Χ	Χ	X
Lille Hovvatn	(X)	X	Х		Х	
French Alps						
Rond	(X)	Χ	Х		Х	?
a	(X)	X	X	Х	Х	
French Pyrenees						
Aubé	Х	Х	X	Х	Х	Х

 X^1 = Only winter values

Table 11 on page 16 gives a summary of the water chemistry of the lakes.

⁽X)= Precipitation station fairly close, but not in the watershed

H.a.s.l. (m) 128 1053 600 765 2416 2550 2202 2384 2091 2091 2001 2002 2002 2003 20		Ø. Neå- dalsvatn	Stavs- vatn	Lille Hovvatn	Loch- nagar	Lac Rond	Combey- nod	Paione Super.	Paione Infer.	Lago Lungo	Ètang d'Aubé	Loch Nan Eun	Sandy Loch
(µs/cm) 6.03 4.44 5.41 7.0 7.2 5.32 6.50 5.96-6.83 6.09 4.96 6.0 (mg/1) 6.01 11.1 3.0 22.7 6.0 50 12.5 13.4 12-18 6.09 4.96 6.0 "" 6.0 11.1 0.7 2.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.2 0.29 0.30 0.39 0.60-0.2 0.0 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3	H.a.s.l.(m)	728	1053	009	785	2416	2550	2269	2002	2384	2091		
(mg/1) 0.50 11.1 30 22.7 60 50 12.5 13.4 18-19 8-21 22 (mg/1) 0.51 0.51 0.50 0.54 0.73 0.79 0.72 0.79 0.72 0.75<	Hd .	6,05	5.70	4.47	5.41	7.0	7.2	5.32	6.50	5.99-6.83	6.09	4.96	6.32
	Cond (µS/cm)	0.9	T.	30	22.7	09	20	12.5	13.4	12-19	8.21	22	20
		0.51	06.0	0.41	0.7			1.3	1.8	1.16-1.69	0.72	0.59	0.88
		0.13	0.12	0.07	4.0			0.19	0.19	0.09-0.22	0.10	0.32	0.32
1		0.71	0.47	0.78	2.4			0.30	0.39		0.37	1.89	2.37
1.0 0.4 0.60 1.02 3.2 3.2 0.21 0.11 0.11 0.32 2.65 2.65 3.4 0.60 1.02 3.1 3.2 3.2 3.2 4.06 1.75-241 1.40 2.99 3.4 3.6 3.1 3.2 3.2 4.06 1.75-241 1.40 3.78 3.2 3.2 3.3 1.4 3.2 3.	=	0.17	90.0	0.05	<0.75			0.31	0.39		0.12	0.22	0.31
1,		0.4	09.0	1.02	3.2			0.21	0.11		0.32	2.65	2.56
High		0.9	2.2	1.86	3.1			3.79	2.98	2.8-3.2	1.44	2.99	3.31
1.0		01	56	160				392	406	175-241	140	378	168
1		25**	119	220	21			28	28			128	
1			25	33	1.4								
1			94	187	æ					WO	, 100 de		
123 426 <50			22	96				09	0		>14		
3-/1)			123	426	<50						140		
3-/1)	=		274										
3-/1) 7.6 - 9.8 - 0 20-30 11 11 re) 50 40 20 9.8 - 9.8 - 0.136 0.140 20.05 8.60 8.60 km²) 16 2.43 0.8 0.919 20.136 0.55 1.14 2.07 0.8 9.8 y morene granite granite granite granite granite granite granite 50 31 35 24 11.5 13.5 45 45 45	TOC/DOC (mg C/1)		1.46	2.88						ocurrent and	gravi mandas	0.4	1.4
re) 50 40 20 9.8 0.136 0.140 20.05 8.60 8.60 7.140 2.07 0.8 8.60 9.8 9.8 9.91 9.55 1.14 2.07 0.8 9.8 9.8 9.8 9.91 9.91 9.91 9.91 9.91			7.6	1				0	20-30	una reporte species de la constante de la cons	-		
km²) 16 2.43 0.8 0.919 chist granite	Lake area (Hectare)	50	40	20	9.8			0.136	0.140	20.05	8.60		
y morene granite granite schist granite gneiss morene granite granite 50 31 35 24 11.5 13.5 45 45	Watershed area (km ²)	16	2.43		0.919			0.55	1.14	2.07	8.0		
50 31 35 24 11.5 13.5 45	Watershed geology	morene	granite		granite	schist	granite	gneiss	gneiss	morene	granite	granite	granite
24 11.5 13.5 45	Runoff (1/s km ²)	20	31	32									
	Max. depth (m)			Take Market and San Jan Jan Jan Jan Jan Jan Jan Jan Jan J	24			11.5	13.5	45	45		

Table 11. A summary of the chemical and morphometric characteristics of the lakes in the different sites in the ALPE - project.

Figure 2. Location of the ALPE sites: (1) Øvre Neådalsvatn, (2) Stavsvatn, (3) Lille Hovatn, (4) Lochnagar, Sandy Loch and Loch Nan Eun, (5) Paione Lakes, (6) Lago Lungo (7) Rond and Combeynod, (8) Aubé.

PARTICIPATING INSTITUTIONS AND ORGANIZATION

Seven institutions from four countries are now directly participating in the project. These institutions are:

- University College of London UK
Dep. of Geography, Paleoecology Research Unit

- Consiglio Nazionale delle Ricerche Italy Istituto Italiano di Idrobiologia

Norwegian Institute for Water Reseach Norway

- University of Bergen, Museum of Zoology Norway
Dep. of animal ecology

- Provincia Autonoma di Bolzano Italy Laboratorio Biologico Privinciale

- Centre National de la Recherche Scientifique France Lab. de Neurobiologie et Physiologie Comparee.

- Universite de Savoie, Esigeo France Laboratoire Biologie Appliquee CI.E

Some of the directly participating institutions collaborates with other institutions on special objectives, but are still the main responsible participant in the project for their area.

Before starting the practical work of the project, all participants will meet in Pallanza at CNR III the 14th of March 1991 to go through the details of the work. Background data for the remote mountain lakes will then be presented.

The project is funded through the the ECE STEP - programme and the working periode is two years. United Kingdom has taken the administrative responsibility, while the scientific coordinating country for the project will be Norway. Together with the responible persons for each of four subject areas the project coordinators are forming a steering committee for the project, as shown in the following text. This steering committee will be responsible also for quality assurance and necessary intercalibrations between the participants. In each region/country there will be a contact person for each subject area. This is shown in Table 12.

PROGRAMME COORDINATION

Administrative Programme Center: United Kingdom/Rick Battarbee and

Simon Patrick

Scientific Programme Center :

Norway/ Merete Johannessen and

Bente M. Wathne

Subject area

Coordinated by

- Lake sediments and diatoms

United Kingdom/Rick Battarbee

- Fish

Norway/Bjørn Rosseland

- Invertebrates

Norway/Gunnar Raddum

- Water Chemistry

Italy and Norway/

Rosario Mosello and Bente M. Wathne

Table 12. Contact persons for each subject area in each country.

Area	Country	Diatoms and lake sedi- ments	Fish	Invertebrates	Water chemistry
Norwegian Mountains	Norway	John Birks	Bjørn Rosseland	Gunnar Raddum	Bente M. Wathne
Cairngorms, Scotland	United Kingdom	Rick Battarbee	Brian Morrison	Alan Hildrew	Ron Harriman
The Alps	Italy	A. Lami	G. Giussani	M. Manca	R. Mosello
	Switzerland	M. Simona	B. Polli	B. Polli	A.Barbîeri
	Austria	R. Schmidt			R. Psenner
	France	G. Blake		G. Blake	Masclet
The Pyrenees	France	Jean-Ch. Massabuau	Charles Roqueplo	Jean-Ch. Massabuau	Anne Probst

REFERENCES

Norway

Barlaup, B.T., Åtland, Å., Raddum, G. and Kleiven, E. 1989. Improved growth in stunted brown trout (Salmon trutta 1.) after reliming of lake Hovvatn, Southern Norway. Water, Air and Soil Poll. <u>47</u>: 139-151.

Overrein, L.N., Seip, H.M., and Tollan, A. 1981. Acid precipitation - effects on forest and fish. Final report of the SNSF-project 1972-1980. SNSF-project, NISK, 1432-Ås, FR 19/80: 175 pp.

Raddum, G.G., Brettum, P., Matzow, D., Nilssen, J.P., Skov, A., Sveälv, T., and Wright, R.F., 1986. Liming the Acid Lake Hovvatn, Norway: A Whole Ecosystem Study. Water, Air and Soil Pollution 31: 721-763.

The Norwegian State Pollution Cotrol Authority, 1986. Tilførsler og virkninger av langtransporterte luftforurensninger. Status 1985 og utviklingstendenser. Statlig program for forurensningsovervåking. Rapport 255/86.

The Norwegian State Pollution Control Authority, 1988. 1000 Lake Survey 1986 Norway. The National Environmental Monitoring Programme. Report 283/87.

The Norwegian State Pollution Control Authrity 1990. Statlig program for forurensingsovervåking. Overvåking av langtransportert forurenset luft og nedbør. Årsrapport 1989. Rapport 375/89.

Wathne, B.M., Mosello, R., Henriksen, A. and Marchetto, A. 1990. Comparison of the chemical characteristics of mountain lakes in Norway and Italy. Proceedings from "Acidification Processes in Remote Mountain Lakes", Pallanza 1989. CEC/UN Air Pollution Research Report, Brussels.

Wright, R.F., 1985. Chemistry of Lake Hovvatn, Norway, Following Liming and Reacidification. Can. J. Fish. Aquat. Sci. 42: 1103-1113.

Wrigtht, R.F.,1984. Changes in the chemistry of Lake Hovvatn, Norway, following liming and reacidification. Acid Rain Research Report 6/84. NIVA.

United Kingdom

Hardie, R.P., 1940. Ferox and Char in the lochs of Scotland. Oliver and Boyd, London.

Patrick, S.T., Flower, R.J., Appleby, P.G., Oldfield, F., Rippy, B., Stevenson, A.C., Darly, J. and Battarbee, R.W., 1989. Paleaoecological evaluation of the recent acidification of Lochnagar, Scotland. Palaeoecology Research Unit, University College London, Research Paper 34.

Juggins, S., Watson, D., Waters, D., Patrick, S.T. and Jenkins, A., 1989. The United Kingdom Acid Waters Monitoring Network: Introduction and data report for 1988-1989. ENSIS, London.

Patrick, S.T., Juggins, S., Waters, D. and Jenkins, A., 1991. The United Kingdom Acid Waters Monitoring Network: Site descriptions and methodology report. ENSIS, London.

Italian Alps Paione Lakes

Carta Geologica d'Italia. Novarese, V. e A. Stella, 1913. Scala 1:100 000. Foglio n. 15: Domodossola. Serv. Geol. d'It., Roma.

Guissani, G., de Bernardi, R., Mosello, R., Origgi, I. and Ruffoni, T., 1986. Indagine limnologica sui laghi alpini d'alta quota. Documenta Ist. Ital.Idrobiol., 9: 415pp.

Ferri, A., 1982. Il Lembo del Verosso e i suoi rappori con le Unnita' Pennidiche superiori. Tesi di Lauresa, Universit degli Studi di Milano, Dipartimento di Scienze delle Terra. Inedita.

Mosello, R., 1986. Efects of acid deposition on subalpine and Alpine lakes in NW Italy, Mem. Ist. Ital. Idrobiol., 44:117-146.

Mosello, R., Calderoni, D., Ruggiu, D., Pugnetti, A., Sulis, B., Tartari, G.A., Panzani Guida, P., 1986. Effects of acid precipitation on lake ecosystems in north-westrn Italy. Final Report CEE-CNR ENV.878.I (S):68 pp.

Mosello, R., Tartari, G.A., Ferri, A., 1985. Chemical characteristics of eight high altitude lakes in the Bognanco Vally (Pennine Alps, Italy). I.H.P. Workshop on "Hydrological and hydrogeochemical mechanisms and model approaches to the acidification of ecological

systems". Uppsala, Sweden, September 15-16, 1984: 229-237.

Mosello, R., 1981. Chemical characteristics of fifty Italian Alpine lakes (Pennine-Lepotine Alps), with emphasis on the acidification problem. Mem. Ist. Ital. Idrobiol., 39: 99-118.

Mosello, R.,1980. Appunti di limnologia ossolana. II: I Laghi di Paione (Val Bognanco). Oscellana, 10: 209-216.

Mosello, R., Marchetto, A., Tartari, G.A., Guzzi, L., 1988. Acidificazione ed acidificabilit delle acque lacustri italiane. Documenta Ist. Ital. Idrobiol., 15: 1-155.

Pirocchi, L., 1949. Signification biogéographique de la distribution de quelques espéces de Diaptomides. Verh. int. Ver. Limnol., 10: 364-370.

Ravera, O., Tonolli, V., 1956. Body size and number of eggs in diaptomids, as related to water renewal in mountain lakes.Limnol. Ocenogr., 1: 118-122.

Rossi, P., 1982. Il Lembo del Verosso e i suoi rapporti con le IUnit Pennidiche inferiori. Tesi di Laurea, Universit degli Studi Milano, Diprtimento di Scienze delle Terra. Inedita.

Rossi, P., 1984. Tesi di rilevamneto. Univ. Milano, Milano (non publicata).

Tonolli, V., 1949. Ciclo biologico, isolamento e differenziamento stagionale in popolazioni naturali di un Copepode abitatore di acque alpine (Arctodiaptomus bacillifer Koelb). Mem. Ist. Ital. Idrobiol., 5: 95-144.

Tonolli, V., 1947. Differenziamento microgeografico in popolazioni planctiche d'alta montagna. Mem. Ist. Ital. Idrobiol., 3-4: 271-305.

Tonolli, V., 1947. Gli alti laghi della Val Bognanco. Parte I. Mem. Ist. Ital. Idrobiol., 3-4: 185-269.

Tonolli, V., 1949. Isolement et stabilité en des populations de Diaptomides d'haute montagne. Verh. int Ver. Limnol. 10: 496-503.

Tonolli, V., 1949. Gli alti laghi della Val Bognanco. Parte II. Mem. Ist. Ital. Idrobiol., 5: 39-93.

Tonolli, V., 1954. Stabilit e produttivit del limnobio alpino. Mem. Ist. Ital. Idrobiol., 8: 29-70.

Italian Alps Lago Lungo

Bendetta, G.,1987. Alterazioni ambientali dovute all'inquinamento atmosferico. Annali Lab. Biol. Prov. Aut. Bozano, 4.

Bendetta, G., 1989. Schadstoffeintrag durch Niederschläge in Südtirol. Proc. 14th Int. Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. IUFRO P2.05, Birmensdorf 1989, 387-389.

Henriksen, A., 1980. Acidification of freshwaters - a large scale titration. In: D. Drabløs & A. Tollan (eds.), Ecol. Impact of Acid Precip. (SNSF-project, NISK, Ås, Norway) 383pp.

Henriksen, A., 1984. Changes in base cation concentrations due to freshwaters acidification. Verh. Internat. Verein. Limnol., 22:692-698.

Henriksen A., Lien L. and Traaen, T., 1990. Critical Loads for Surface waters - chemical criteria for inputs of strong acids. Acid Rain Research Report 22/1990, NIVA.

Leutelt-Kipke, S., 1936. Hydrographische und hydrochemische Beobachtungen an Südtiroler Hochgebirgseen. Arch. f. Hydrob. 30:594-595.

Steiner, V., 1985. Langsee (Spronser Seen). Erhebungen von Grunlagendaten für die fischereiliche Bewirtschaftung. Autonome Provinz Bozen.

Thaler, B., Tait, D., Bendetta, G., Unterholzner, C., Schmidt, R., 1990. Effects of acidification on alpine lakes in the province of Bolzano (South Tyrol, Italy). EC Contract Third annual report.

APPENDIX A

UK - Site information for Lochnagar

Lochnagar

Grid Reference NO 252859

Loch

Lochnagar (Figure 6, Table 8) lies at an altitude of 785 m in the centre of the granitic massif which comprises much of Balmoral Forest in Aberdeenshire. Lochnagar is a corrie loch and lies below a north-east facing steep backwall which rises to the summit of the same name. The loch is pear-shaped and occupies an area of 9.8 ha. No distinguishable inflow feeds the loch and drainage is primarily from small seepage channels. The loch drains to the north-east through a series of small pools to the Lochnagar Burn which feeds the Gelder Burn, a south-bank tributary of the River Dee. Snow generally occupies the catchment to a varying extent between November and May and a significant snow field accumulates in the main winter period. Snow-melt therefore comprises a major input to the loch. Unlike other sites in the Network Lochnagar regularly freezes each winter. Partial ice cover may last from November to June in many years, with a complete ice cover between January and April.

The bathymetric map (Figure 7) shows that the loch floor slopes quite sharply to a deep basin. The deepest point (24 m) is offset from the centre of the loch towards the backwall. The loch is deep for its area with a mean depth of 8.4 m.

The loch is acid (mean pH 5.41) and alkalinity (mean 0.1 mg l^{-1}) and calcium levels (mean 0.7 mg l^{-1}) are both low (Table 9). Despite the existence of some localised peat erosion in the catchment the loch water is very clear. Palaeolimnological studies (Patrick *et al.* 1989a) have shown that the loch acidified in the midnineteenth century and that prior to acidification loch water pH was about 5.7.

Epilithic diatoms are dominated by acidophilous species, notably *Achnanthes marginulata* and *Tabellaria flocculosa*. The species-poor macrophyte flora largely comprises submerged liverworts (eg. *Scapania undulata*) and *Sphagnum auriculatum* which extend to 6 m depth. The only non-bryophyte taxa, *Isoetes lacustris* and *Juncus bulbosus* var. *fluitans* are sporadic in their distribution.

Benthic macroinvertebrates are characterised by detritivorous stoneflies, predatory stoneflies and the acid-tolerant mayfly *Leptophlebia vespertina*, in low numbers. The loch is remote and relatively inaccessible. Consequently very little is known of its fishery history. Trout were reported in the loch in 1940 (Hardie 1940), but a thorough gill net survey of the fishery status in 1983 yielded only 13 trout, all mature specimens (Morrison pers. comm.). However, electrofishing of the outflow stream in October 1989 revealed a good population of trout with a density of combined reaches of 0.644 ± 0.016 m⁻² and ages of up to five years.

Catchment

The loch drains a precipitous catchment of 91.9 ha which reaches a maximum altitude of 1155 m at the summit of Lochnagar to the west of the loch (Figure 6). The geology is composed of biotite granite overlain in places by blanket peat. The catchment is

dominated by bare rock, both on the steep backwall and the extensive fields of large boulders and coarse screes that have developed between the corrie ridge and the loch.

The loch and its catchment receive an annual rainfall of c. 1400 mm (1988) and lie in an area with wet deposited acidity of 0.48 kg H⁺ ha⁻¹ yr⁻¹ and wet deposited non-marine sulphate of 7.33 kg S ha⁻¹ yr⁻¹ (Table 8).

The catchment is unafforested and the sparse vegetation is dominated by a community of stunted *Calluna* and *Vaccinium*, interspersed in places with *Scirpus*. Lichens and mosses are abundant on the boulders and screes that characterise the catchment. Of the localised areas of peat in the catchment, certain areas, notably along the eastern shore, are severely eroded. Pine stumps are revealed in peat exposures adjacent to the outflow and further down the Lochnagar Burn.

This area represents some of the most harsh environmental conditions to be found in the British Isles. At over 700 m the catchment lies above the limit of summer sheep grazing in the region and there is no evidence for, nor rational expectation of, any land-use change or active land-management within the catchment. Red deer range across the catchment when food is available, but stalking in the area, once popular (Clark 1981), is now rare and strictly controlled. The catchment comprises part of a nature reserve administered by the Scottish Wildlife Trust.

Table 8 Lochnagar: Site characteristics

Lake altitude	785 m
Maximum depth	24 m
Mean depth	8.4 m
Volume	0.82 x 10 ⁻⁶ m ³
Lake area	9.8 ha
Catalana at mada m	
Catchment geology	granite
Catchment soils	peat
Catchment vegetation	moorland - 100%
Catchment area	91.9 ha (excluding
	lake)
Catchment:lake ratio	9.37
Net relief	370 m
Mean annual rainfall	c. 1400 mm (1988)
Wet deposited acidity	0.48 kg H+ ha-1 yr-1
	(1988)
Wet deposited non-marine sulphate	7.33 kg S ha-1 yr-1
	(1988)

Table 9 Lochnagar: Water chemistry (1988-1989) (Juggins *et al.* 1989)

Determinand		Mean	Max	Min
Temperature	°C	3.4	9.5	0.3
рН		5.41	5.52	5.30
H+	μeq l ⁻¹	4.0	5.0	3.0
Alkalinity (CaCC) _a) mg l ⁻¹	0.1	0.2	0.0
Conductivity	μS cm ⁻¹	22.7	35.0	15.0
Ca	mg l ⁻¹	0.7	1.0	0.5
Mg	mg l ⁻¹	0.4	0.7	0.3
Na	mg l ⁻¹	2.4	4.0	1.6
K	mg l ⁻¹	<0.75	<0.75	<0.75
Ва	mg l ⁻¹	0.02	0.03	0.02
Sr	mg l ⁻¹	0.01	0.01	0.01
SO₄	mg l ⁻¹	3.1	4.1	2.5
TON	mg l ⁻¹	0.2	0.31	0.11
PO₄	mg l ⁻¹	<0.005	0.01	<0.005
CI	mg l ⁻¹	3.2	5.9	1.8
Br	mg l ⁻¹	<0.01	<0.01	<0.01
F	mg l-1	0.01	0.02	<0.01
Sol mon Al	μg l ⁻¹	38.0	48.0	25.0
Sol NL mon Al	μg l ⁻¹	17.0	35.0	<5.0
Sol L mon Al	μg l ⁻¹	21.0	39.0	11.0
Cu	mg l ⁻¹	<0.02	<0.02	<0.02
Zn	mg l ⁻¹	0.01	0.03	<0.02
Fe	mg l ⁻¹	<0.015	<0.015	<0.015
Mn	mg l ⁻¹	0.01	0.01	0.01
Si	mg l-1	1.2	1.5	1.0
В	mg l ⁻¹	<0.05	<0.05	<0.05
DOC	mg l ⁻¹	1.1	2.1	0.4
Excess SO ₄	mg l ⁻¹	2.8	3.7	2.2

APPENDIX B

Italy - Site information for Paione Lakes

C.N.R. Istituto Italiano di Idrobiologia, Pallanza

LAKES PAIONE

OSSOLA VALLEY, LEPONTINE ALPS

NW ITALY

Tab. 1 - Main morphometric characteristics of Lakes Paione.

		Paione inferiore	Paione Superiore
Altitude	m a.s.l.	2002	2269
Longitude	East	3011'23"	8°11'27"
Latitude	North	46°10'1"	46°10'26"
Lake surface	km ²	0.014	0.014
Watershed area (lake included) km ²	1.14	0.55
Max. depth	m	13.5	11.7
Mean depth	m	7.35	5.12
Lake volume	106 m3	103	69

Tab. 2 - Chemical characteristics of Lakes Paione.

		Paione Inferiore	Paione Superiore
pH		5.4	5.4
Total alkalinity	µед 1-1	25	0
Sulphate	. "	50	50
Nitrate	**	29	28
Chloride	77	5	6
Ammonium	11	0	1
Calcium	:1	34	58
Magnesium	11	16	13
Sodium	:1	13	12
Potassium	**	9	8
Anions	**	119	94
Cations	17	123	97
Conductivity	µS cm ^{−1}	12.5	11.5
Reactive silica	mg Si 1-1	0.6-0.9	0.3-0.5
Total phosphorus	ug P 1-1	< 10	< 10

^{*} H* included (4 µeq 1-1)

Lake: PAIONE SUPERIORE

List of chemical analyses

06/11/79 10/02/79 10/09/81 05/26/82 07/26/83 09/29/83 10/23/85 07/30/86 10/24/90	06/10/82 08/14/84	,,	07/01/82 08/07/85	06/13/81 09/22/82 09/25/85 10/17/89
--	----------------------	----	----------------------	--

Lake: PAIONE INFERIORE

List of chemical analyses

06/11/79 04/22/82 06/01/83 06/26/84 10/25/84 06/17/86 11/02/88	10/02/79 05/26/82 06/29/83 06/26/84 06/13/85 07/07/86 10/17/89	08/18/80 06/10/82 06/29/83 06/26/84 06/27/85 07/30/86 10/24/90	08/24/80 06/10/82 07/26/83 07/19/84 08/07/85 10/14/86	06/13/81 09/22/82 09/29/83 08/14/84 09/25/85 06/09/87	10/09/81 05/04/83 05/31/84 10/10/84 10/23/85 09/23/87
--	--	--	--	--	--

pH Lake Paione Superiore

Alkalinity (µeq/l) Lake Paione Inferiore

SELECTED REFERENCES ON LAKES PAIONE.

- Carta Geologica d'Italia. Novarese, V. e A. Stella. 1913. Scala 1:100000. Foglio n. 15: Domodossola. Serv. Geol. d'It., Roma.
- Giussani, G., R. de Bernardi, R. Mosello, I. Origgi e T. Ruffoni. 1986. Indagine limnologica sui laghi alpini d'alta quota. Documenta Ist. Ital. Idrobiol., 9: 415 pp.
- Ferri, A. 1982. Il Lembo del Verosso e i suoi rapporti con le Unità Pennidiche superiori. Tesi di Laurea, Universit degli Studi di Milano, Dipartimento di Scienze della Terra. Inedita.
- Ministero dei lavori pubblici. Servizio idrografico. 1959. Precipitazioni medie mensili ed annue e numero dei giorni piovosi per il trentennio 1921-1950. Bacino del Po. Pubbl. M.L.P. n. 24, Serv. Idrogr., fasc. XII c), Roma.
- Mosello, R. 1986. Effects of acid deposition on subalpine and Alpine lakes in NW Italy. Mem. Ist. Ital. Idrobiol., 44: 117-146.
- Mosello, R., A. Calderoni, D. Ruggiu, A. Pugnetti, B. Sulis, G.A. Tartari, P. Panzani Guida. 1986. Effects of acid precipitation on lake ecosystems in north-western Italy. Final Report CEE-CNR ENV.878.I (S): 68 pp.
- Mosello, R., G.A. Tartari and A. Ferri. 1985. Chemical characteristics of eight high altitude lakes in the Bognanco Valley (Pennine Alps, Italy). I.H.P. Workshop on "Hydrological and hydrogeochemical mechanisms and model approaches o the acidification of ecological systems". Uppsala, Sweden, September 15-16, 1984: 229-237.
- Mosello, R. 1981. Chemical characteristics of fifty Italian Alpine lakes (Pennine-Lepontine Alps), with emphasis on the acidification problem. Mem. Ist. Ital. Idrobiol., 39: 99-118.
- Mosello, R. 1980. Appunti di limnologia ossolana. II: I Laghi di Paione (Val Bognanco). Oscellana, 10: 209-216.
- Mosello, R., A. Marchetto, G.A. Tartarí e L. Guzzi. 1988. Acidificazione ed acidificabilit delle acque lacustri italiane. Documenta Ist. Ital. Idrobiol., 15: 1-155.
- Pirocchi, L. 1949. Signification biogéographique de la distribution de quelques espéces de Diaptomides. Verh. int. Ver. Limnol., 10: 364-370.

- Ravera, O. and V. Tonolli. 1956. Body size and number of eggs in diaptomids, as related to water renewal in mountain lakes. Limnol. Oceanogr., 1: 118-122.
- Rossi, P. 1982. Il Lembo del Verosso e i suoi rapporti con le Unit Pennidiche inferiori. Tesi di Laurea, Universit degli Studi di Milano, Dipartimento di Scienze della Terra. Inedita.
- Rossi, P. 1984. Tesi di rilevamento. Univ. di Milano, Milano (non pubblicata).
- Tonolli, V. 1949. Ciclo biologico, isolamento e differenziamento stagionale in popolazioni naturali di un Copepode abitatore di acque alpine (Arctodiaptomus bacillifer Koelb). Mem. Ist. Ital. Idrobiol., 5: 95-144.
- Tonolli, V. 1947. Differenziamento microgeografico in popolazioni planctiche d'alta montagna. Mem. Ist. Ital. Idrobiol., 3-4: 271-305.
- Tonolli, V. 1947. Gli alti laghi della Val Bognanco. Parte I. Mem. Ist. Ital. Idrobiol., 3-4: 185-269.
- Tonolli, V. 1949. Isolement et stabilité en des populations de Diaptomides d'haute montagne. Verh. int. Ver. Limnol., 10: 496-503.
- Tonolli, V. 1949. Gli alti laghi della Val Bognanco. Parte II. Mem. Ist. Ital. Idrobiol., 5: 39-93.
- Tonolli, V. 1954. Stabilit e produttivit del limnobio alpino. Mem. Ist. Ital. Idrobiol., 8: 29-70.

Batimetric map and ipsografic curve of lake Paione Inferiore

Batimetric map and ipsographic curve of Lake Paione Superiore

APPENDIX C

Italy - Site information for Lago Lungo

LIMNOLOGICAL CHARACTERISTICS OF LAKE LUNGO

(Tessa Group - South Tyrol - Italy)

B. Thaler, D. Tait G. Bendetta, C. Unterholzner

Laboratorio Biologico Provincia Autonoma di Bolzano Via Sottomonte, 2 I-39055 Laives (Bolzano)

Biologisches Labor Autonome Provinz Bozen Unterbergstraße, 2 I-39055 Leifers (Bozen)

1. Study area

The Lake Lungo (Langsee) lies in the Natural Park of Tessa (Province of Bolzano) at 2384 m altitude at coordinates 46°43'36" northern latitude, and ll°05'00" eastern longitude in the international system (Fig.1). The main morphometric parameters of the lake and its watershed are shown in tab. I and the bathimetric map is shown in fig. 4.

A lithological map of the watershed is shown in fig. 2. 80% of the watershed is composed by gneiss and paragneiss. Other two lakes are present within the watershed and make up 12% of its surface. A land cover map of the watershed is shown in fig. 3. The land is mainly constituted by rocks which however are to a great extent covered by a thin layer of vegetation.

Fig. 1: Geographic location of Lake Lungo (Tessa).

Fig. 2: Lake Lungo (Texel). Lithological map.

Fig. 3: Lake Lungo (Texel). Land cover map.

Table I

253 Ch. rec.: Records Lake: LAGO LUNGO - LANGSEE Comune : TIROLO EST : 11° 5 ' 0'' Lake area ha : 20,05 Volume m3X1000 : 2583 Basin area kmq.:2,070 Tributaries : 2 Outlets : 1 Geology : MOERAENENRESTE IM AUSRINNBEREI Lithological groups: paragneiss, gneiss granitoidi Lithological class : 1 Vegetal cover. of the bacin: rocks, prairie Macrophytes:

Notes: Oulet toward Lago Verde. Bathimetric map 1985

TEXEL GROUP

46 4045 30 2p 19 511111 m 35 33 EINBINN 30.35 GRUPPO DEL TESSA 25 Q-₹-₽-LAGO LUNGO 35 30 20 10 0 m ₽-₹5--28 -48 -48 -48 200m 15 20 30 40 3 **Ω** -<u>Ω</u>-₽-A1 - 2 A2 81-4-82 05 12345 ار

Fig. 4: LANGSEE TEXELGRUPPE

2. MATERIALS AND METHODS

Water samples have been taken five times. In July 1984 during snowmelt, once a year in 1986, 87, 88, 89, 90 during the period Summer-late Autumn usually between 10.00 A.M. and 2.00 P.M. Temperature, pH, conductivity and dissolved oxygen were measured in the field by means of a combined instrument (Hydropolytester ZüLLIG HPT - 77) and major ions, oxygen, algal nutrients and chlorophyll a) were determined. Biological samples for quantitative determinations were taken twice (1984 and 1988).

Water samples for chemical analyses were taken using a 5 liter SCHINDLER sampler made entirely of Plexiglas and stored in 1 liter polyethylene bottles. For the analyses of the dissolved components water samples were filtered a few hours after sampling using a MILLIPORE filtering unit $(0.45 \ \mu)$.

According to the analytical methods listed the following chemical parameters have been measured:

Alkalinity

by GRAN titration with HCl 0,02 N

рН

determined in the laboratory on METTLER DL40 or METROHM E603 using combined glass-reference

electrode. Since 1989 an INGOLD combined electrode for poorly ionized media has been used. Standard buffers for pH 7.00 and pH 4.00 were used to calibrate the electrodes and checks with HCl 0.000l M were made. Reading after 10-15 min. in unstirred samples.

Conductivity

with instrument WTW LF 39 at room temperature corrected for 20°C;

Sulphate

until 1987 turbidimetric according to METODI ANALITICI PER LE ACQUE, CNR Roma (1972) since 1988 with flow injection using a FIASTAR 5023 analyzer; since 1990 with ionic chromatograph DIONEX 2000/i;

Chloride

automatic titration with AgNO3 0,01N (Memotitrator METTLER DL 40) after addition of a known amount; since 1990 with ionic chromatograph DIONEX 2000/i;

Nitrate nitrogen	sodium salycylate method according to MULLER & WIDEMANN (1955); since 1990 with ionic chromatograph DIONEX 2000/i;
Ammonia nitrogen	according to WAGNER (1969);
Total and dissolved iron	according to GANTHALER (1977);
Total (TP), dissolved (TDP) and reactive phosphorus (MRP) were determined according to VOGLER (1965);
Dissolved reactive silica (DRSi)	according to GOLTERMANN (1971);
Ca, Mg, K, Na	atomic absorption spectrophoto- metry (PERKIN-ELMER 370), for Ca e Mg after addition of HCl e La

Trasparency was measured with a 30 cm Secchi disk. Samples for phytoplankton, zooplankton and chlorophyll analyses were taken with SCHINDLER sampler. Phytoplankton samples were preserved with LUGOL solution, zooplankton samples with 90% ethanol. Chlorophyll was determined after extraction in 90% acetone and evaluation of the spectrophotometric readings according to GOLTERMANN (1969).

3. Atmospheric depositions

The bulk deposition of sulfate ranges in South Tyrol from 9.6 kg/ha.yr to 30.6 kg/ha.yr with a mean value of 20 kg/ha.yr.

Tab. II: Average bulk values in precipitation in South Tyrol measured at Ritten (1780 m).

Ritten		S04 μeq/l	NO3 µeq/l	NH4 µeq/l	Cl µeq/l	S04/C1
('85-88)	Bulk	42.7	26.1	35.2	7.9	5.4
1988	Bulk	50.0	26.8	39.7	8.5	5.9
1990	Bulk	43.7	30.7	59.3	12.1	4.9
1990	Wet	41.8	27.1	57.1	6.5	8.8

The bulk deposition of nitrate ranges from 9.3 kg/ha.yr to 23.9 kg/ha.yr with a mean value of 15 kg/ha.yr. On equivalent

basis nitrate levels are between 64 and 70% of sulfate levels. Tab. II shows the average bulk values in precipitation in South Tyrol measured at Ritten, a site located at 1780 m altitude and tab. III the corresponding deposition valued of sulphate and nitrate.

Tab. III: Bulk deposition values of sulphate and nitrate (Kg/ha y). For 1990 also wet values.

	ng site (1780 m)	S04 kg/ha.y	NO3 kg/ha.y
Bulk	1985	22.5	16.4
Bulk	1986	17.7	17.3
Bulk	1987	21.0	16.8
Bulk	1988	22.5	15.9
Bulk	1990	22.2	19.9
Wet	1990	19.8	16.4

4. RESULTS

4.1 Chemical characteristics of Lake Lungo (Tessa).

Among the 67 high altitude lakes sampled in South Tyrol 29% have alkalinity lower than 50 μ eq/l and low ionic concentrations (<=20 μ S 20°C). Fig. 5 shows the frequency distribution of calcium, magnesium and sulphate of the lakes showing low buffering capacity. The values measured for Lake Lungo are marked in the figure by an arrow. Although lakes with lower calcium content exist in the study area they have been discharged because shallow or free from fish population. The lowest SO4 value measured in South Tyrol is 35 μ eq/l and only three lakes show a sulphate concentration lower than the value of 43 μ eq/l measured in precipitation. The main chemical parameters measured for Lake Lungo are listed in tab. IV. The pH autumnal values ranged during the 1986-1990 period between 6.56 and 6.83 while the value measured during snowmelt was

Tab. IV: Main chemical parameters of Lake Lungo (Langsee) (1984-90 5 samplings).

Pri	J.J.		0.0	55	
Conduc	ctivity		12	- 19 μS/cm 2	0 °C
ANC	20		37	μeq/l	
S04	52	***	66	μeq/l	2.8 - 3.2 mg/l
NO3	13		17	μeq/l	175 - 241 μg/l
Ca	59	_	84	μeq/l	1.16 - 1.69 mg/
Mg	7	_	18	μeq/l	0.09 - 0.22 mg/l
TP	and the second s				5 μg/l
Trans	parency			5 - 6 m	
	-			03) = 1.23	
Estima	ated ac	id	if i	cation value:	$51 - 55 \mu eq/1$

5.99. Alkalinity ranged in the same period between 30 and 37. LEUTELT-KIPKE found in September 1936 a pH value of 8.4 and an alkalinity of 270 µeq/l.

4.2 Phytoplankton

pH 5.99 - 6.83

According to the two biological samplings the phytoplankton biovolume of Lake Lungo ranges between 1.0 to 1.7 mm³/l and the number of species between 11 and 18. The phytoplankton spectrum is dominated by surprisingly high fractions of Zygnemaphyceae (63%-92%) (Cosmarium), but also Dinophyceae are important (Peridinium).

4.3 Zooplankton

The composition of zooplankton was sparse and abundancies low. The total number of species amounted to 6 in 1984 and to

Fig.5: Frequency distribution of calcium, magnesium and sulphate in the lakes of South Tyrol with low buffering capacity.

3 in 1988; the number of species of rotifers was 4 and 2 respectively with abundancies of 44180 ind./m³ and 28840 ind./m³. The found species were <u>Keratella hiemalis</u>, <u>Polyarthra sp.</u>, <u>K. cochlearis</u>, <u>Filinia sp.</u>. No Cladocers were found in both samplings. The abundancies of copepods were sparse, some Calanoids were found only in 1988 just in young stages (85 ind./m³) and the only Cyclopid was <u>Cyclops abyssorum tatricus</u> with abundancies of 5460 ind./m³. STEINER (1985) found 5 g Crustaceans in 1000 m³.

4.4 Fish Population

A research was carried out in 1985 (STEINER 1985). The objectives were to study population structures, reproduction, and growth. According to the study the fish population was constituted by three species: Salvelinus alpinus, Salmo trutta and Salvelinus fontinalis. The only species which showed a natural reproduction was Salvelinus alpinus. Mean condition factor and total length of each species are shown in tab. V.

Tab. V: Lake Lungo. Fish population status (1985).

	KF	TL	
Salvelinus alpinus	0.87	14-31	
Salmo trutta	1.0	22-51	
Salvelinus fontinalis	0.9		

On the basis of the study recomendations the lake was totally fished out and following this, the only introduced species was Salvelinus alpinus. The introduced quantities are

Tab. VI:Langsee. Fish introductions. From 1985 Salvelinus alpinus is the only introducted species.

1985	30	kg	(9-10 cm)
1986	0	kg	
1987	10	kg	(9-10 cm)
1988	10	kg	(9-10 cm)
1989	10	kg	(9-10 cm)
1990	20	kg	(10-15 cm)

listed in tab. VI. From 1985 - 1989 fishing in the lake was forbidden.

According to the stomach fillings the nourishment of the fishes is mainly composed by Diptera (Tipulidae, adults).

REFERENCES:

- BENDETTA, G. (1987): Alterazioni ambientali dovute all'inquinamento atmosferico. Annali Lab. Biol. Prov. Aut. Bolzano, 4.
- BENDETTA, G.: Schadstoffeintrag durch Niederschläge in Südtirol. Proc. 14th Int. Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. IUFRO P2.05, Birmensdorf 1989, p. 387-389.
- HENRIKSEN, A. (1980): Acidification of freshwaters a large scale titration. In: D. Drabløs & A. Tollan (eds.), Ecol. Impact of Acid Precip. (SNSF-project, NISK, 1432 Aa, Norway) 383 pp.
- HENRIKSEN, A. (1984): Changes in base cation concentrations due to freshwaters acidification. Verh. Internat. Verein. Limnol., 22:692-698.
- HENRIKSEN, A., LIEN, L. and TRAAEN, T. (1990): Critical Loads for surface waters- chemical criteria for inputs of strong acids. - NIVA Report 22.
- LEUTELT-KIPKE, S. (1936): Hydrographische und hydrochemische Beobachtungen an Südtiroler Hochgebirgseen. -Arch. f. Hydrob. 30:594-595.
- STEINER, V. (1985): Langsee (Spronser Seen). Erhebung von Grundlagendaten für die fischereiliche Bewirtschaftung. Autome Provinz Bozen.
- THALER B., TAIT D., BENDETTA G., UNTERHOLZNER C., SCHMIDT R. (1990): Effects of acidification on alpine lakes in the Province of Bolzano (South Tyrol, Italy). EC Contract Third annual report.

APPENDIX D

France - Site information for the French Alps

State of studies of the remote lakes in the Alps of the STEP program

Selected region: Brianconnais (Parc National des Ecrins)

reasons:

remote region far from air source

pollutions

Presence of Air data collection station (Casset)

Number of studied lakes in 1990 (summer): 15

Lacs	Altitud	l'ouris m	Cattle	Depth	Geol	Area	Chemis
Clarée							
Rouge	2585	1	0	8	Calc., So4	0,28	Ca,
Béraudes	2504	2	10	3,04	Calc.	2,9	Ca-
	2387	13	11		Schist	3,6	Fe,Ca
Long Rond	2416	12	†i	?	Schist	1,8	Fe
mare	2380	3	1				
Guisane						L	
Comboynod	2550	2	0	16,4	Granit	3.3	0
Blanc	2650	1	2		Dolomic s	1,6	Ca, Mg
Ponsonnière	2565	3	3	2,1	Schist	0,6	Fc
Grand Lac	2282	3	3	14	Dolom	4,6	Ca, Mg
	2202	1.	ř				
Romanche	2270	3	3+	3,8	Dolom	0,7	Mg
Lériè	2378			15	Schistes		Ca
Orceyrette	1930	1	3	را	1 Seminores	1 11.	<u> </u>

Lacs	Ila
Clarée	<u> </u>
Rouge	7,8-8,2
Béraudes	7.9-8,2
Long	6,8-7.4
Rond	6,6-7,3
mare	6,2-6.5
Guisane	
Combeynod	6,8 7,6
Blanc	7,8-8
Ponsonnière	7,8-8,2
Grand Lac	7,8-8,5
Romanche	
Lerić	7-7.5
Orceyrotte	7,3

Temperatures of the lakes:

The lakes are frozen from November to end of June. The temperature of the surface rises from 7°C in July to 13°C in August. Temperature of deep strates are often the same or sometimes lower.

Sclected areas and lakes for the study:

The choice has been made to retain the less visited by tourist and the less alcalin geologic environement situation.

Sediments caracteristics:

Study of the lakes of Vallée de la Clarée:

48 sp. (50% Dipteres):

exemple of repartition of benthic fauna for 4 lakes of Vallec of Claree: 6 (Pisidium) Molluscs

Oligoch. Planaria Hydracariens 1 Trichopter 2 Megalopter. 1 Coleopter. 8 25 Dipter.

Zooplancton:

2 to 6 sp. of Cladocera: D. Hyalina, Acroperus harpae, Alona affinis...
1 to 5 sp of Ostracodes: C. ovum...
2 to 3 sp. of Copepodes: C. strenuus, Artodiaptomus

Fishes:

No fishes in the selected lakes (but we are not really sure for the moment)

(in Lakes Serpent, which is neared the selected lakes, we can find:

Salvennus aipinus Salvelinus fontinalis Salmo trutta Salmo gairdneri Phoxinus phoxinus)

Conclusion

So we have selected the Lake Rond in the Vallée of Clarée and the lake of Combeynod in the Vallée of Guisane:

The lake Rond, situated in the Vallée of Clarée has sand sediments. It is quite easy to get to (so in summer, it can be visited by tourists!). It is one of the lower pH of the lakes of this Vallée but its conductivity is sometime higher than $60\mu\text{S/cm}$.

The lake of Combeynod (Vallée de la Guisane) is more a real remote lake but can lose a lot of water in summer by evaporation; its sediments are coarse and it is difficult to get invertebrates larvae. (conductivity: $50\mu\text{Scm}^{-1}$;).

These lakes are now covered with ice, they will be visited in july.

APPENDIX E

Water chemistry programme

WATER CHEMISTRY PROGRAMME

Bente M. Wathnel and Rosario Mosello²

¹ Norwegian Institute for Water Research P.O. box 69, Korsvoll, 0808 Oslo 8 Norway

²CNR - Istituto Italiano di Idrobiologia Largo V. Tonolli 50-52 I - 28048 Verbania Pallanza (No) Italy

ALPE - ACIDIFICATION OF MOUNTAIN LAKES: PALEOLIMNOLOGY AND ECOLOGY

WATER CHEMISTRY PROGRAMME;

Background

The six major sites chosen for the ALPE project will be investigated through an extensive programme covering water chemistry, fish, invertebrates and diatomees. The detailed programme is shown below:

- water chemistry
- fish, invertebrate and diatom communities using harmonised techniques
- sediment cores and statistical analysis to assess the degree of athmospheric contamination and the acidification status using diatoms, chironomid head capsules and carbonaceous particle analysis.
- a special study on comparisons between invertebrate and fish communities in Norway and the Alps.

According to the programme for the ALPE project, Italy and Norway together are responsible for the water chemistry part. The responsible persons are Dr. Rosario Mosello at the CNR Istituto Italiano di Idrobiologia and Bente M. Wathne at NIVA, cooperating as coordinators for this area. In the following some details for the chemistry programme are described. The chemistry programme will be discussed at the first ALPE project meeting in Pallanza 14th of March 1991.

Documentation of the sampling site

Documentation of the sampling site will be needed for interpretation of the chemistry data as for all the other samples and information gathered. Caracteristics for the lake and the watershed must be included as necessary information in the data base for the whole project. It is sugested that site documentation shall be given according to the Programme Manual for the ECE programme "International Co-opreative programme on Assessment and Monitoring of Acidification of Rivers and Lakes" (NIVA, 1987).

Lake sampling

The samples will be taken as surface grab samples from the outlet of the lake, and one sample shall be taken at the same time as the samples for benthic invertebrates are collected. We will prefer that more than one sample for water chemistry is taken each year (but we demand only one). Variability in lake properties has an annual cycle. The prefered sampling times are normally in the spring and the autumn when homogenous mixing takes place. For this project we have already chosen the periode August - September as preferred sampling time (Informal project meeting in Glasgow, September 19th, 1990).

Prevention of sample contaminaiton or sample changes while storage may be critical in obtaining accurate measurements for these water samples of very low total ionic strength. All containers used for sample collection or storage must be free of any important quantity of the determinands in relation to the lowest concentration to be measured. The containers must also be of a material that will neither absorb nor release measurable quantities of the determinand.

Analytical methods

The samples will be analyzed by standard procedures for analysis of low ionic strength waters. The analytical program will include the following components: pH, conductivity, calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chloride (Cl), sulphate (SO_4), nitrate (NO_3), ammonia (NH_4),(also total nitrogen, Tot N, when possible), fluoride (F), alkalinity, total organic carbon (TOC), reactive aluminium (RAL) and non-labile aluminium (ILAL).

The analytical work will be done at national laboratories in cooperation with the chemical centres in Italy and Norway. The Norwegian laboratory (NIVA) will do the Al-speciation in the samples from the Alps. Al-speciation is done on unfiltered samples by a photometric method (pyrocatechol violet) (Røgeberg and Henriksen, 1985).

Data handling and quality assurence

Due to earlier cooperative work, intercalibration data exist for Scotland and Norway (Wright and Henriksen, SNSF IR 72/80). Within the ECE project "International Co-operative Programme on Assessment and Monitoring of Acidification of Rivers and Lakes" now running, there have so far been four intercalibration exercises. Three of them with both CNR-III (Italy) and NIVA (Norway) as participants. These

intercalibration exercises are covering all components in the analytical programme for the ALPE project, and will be arranged also in the future. CNR - III arrange in addition yearly intercalibrations, and we sugest that all participating laboratories attend at least one of these intercalibrating exercises every year. The ECE programme has its own manual for chemical and biological monitoring (NIVA, 1987) describing sampling and analytical methods both for chemistry and biology. This manual is sugested as basis also for ALPE. In table 1 information about the major analytical methods used in Italy and Norway are shown.

The analytical results will be gathered and processed in databases in Italy and Norway. Data control shall be performed by the national laboratories analyzing the water samples. But the responsible laboratories in Italy and Norway will also do data quality controle based on:

- 1. looking for outliers
- 2. looking for continuity in time series (where they exist)
- 3. ionic balance

Italy and Norway will report the results.

REFERENCES

Convention on Long-Range Transnoundary Air Pollution. International Co-operative Porgramme on Assessment and Monitoring of Acidification of Rivers and Lakes. Manual for Chemical and Biological Monitoring. Prepared by the Porgramme Center, Norwegian Institute for Water Research. Oslo, 30 March 1987.

Røgeberg, E.J.S. and Henriksen, A..An Automatic Method for Fractionation and Determination of Aluminum Species in Fresh-Waters. Vatten <u>41</u> 1985 (48-53).

Wright, F.W. and Henriksen, A..Regional survey of lakes and streams in southwestern Scotland, April 1979. SNSF IR 72/80. Oslo, June 1980.

Table 1. Major analytical methods used in Italy and Norway.

	Italy	Norway
pH, electrometry	х	x
Conductivity, electrometry	×	х
Alkalinity, electrometric	×	x
Gran.t.tration		
Nitrate, ion chromatography	×	
photom., autoanal.	-	x
Ammonia, photom., autoanal.		×
Total nitrogen, photom., autoa.		x
Chloride, ion chrom.	×	x
photom., autoanal.		
Sulfate, ion chrom.	×	×
autoanal.		
Calcium, FAAS	x	x
ICP-OES		
Magnesium, FAAS	x	x
ICP-OES		
Sodium, FAAS	×	x
ICP-OES		
Atomic emission spectr		Latin Assessment of the Control of t
Potassium FAAS	×	×
ICP-OES		
Fluoride, ion selec. electr.		x
Aluminium GFAAS	x	x
Aluminium speciation		x
Total/Dissolved organic carbon		
Na ₂ S ₂ O ₈ /UV oxidation		x

APPENDIX F

Fish status programme

ALPE - ACIDIFICATION OF MOUNTAIN LAKES: PALEOLIMNOLOGY AND ECOLOGY.

ROS 13/3-91

FISH POPULATIONS - INVESTIGATION PROGRAMME

b y

Bjørn Olav Rosseland

Norwegian Institute for Water Research, P.O. Box 69, N- 0808 Oslo 8, Norway.

INTRODUCTION

Since 1976, Norwegian studies have used a standard investigation programme to describe the fish population status/changes in acidified lakes. Two methods have been used:

- 1) Interview-method, information given by local lake-owners etc. having first hand information of fish population status.
- 2) Test fishing-method, using standard gill net series and sampling procedures to describe fish population size, age composition, growth pattern, food organisms etc.

In the ALPE program, both methods should be used.

PROGRAMME

Interview - method.

The interview-method has been used in several regional surveys in Norway since the mid 1970s (Sevaldrud et al. 1980, Sevaldrud and Muniz 1980, Sevaldrud and Skogheim 1986, Henriksen et al. 1988, 1989). By standardized questionnaires, informations are collected from local lake owners, fishery advisors, fishing unions etc. having first hand information about the status and changes in status in each lake. Based on these data and the result from water samples taken in connection to

the interviews, follow-up investigations in a 5 - 10 year cycle will enable important trend-analyses.

The questionnaires used in the Norwegian investigations are shown in Appendix 1. Based on a large number of testfishing results (Rosseland et al. 1980), the use of interviews have proven to be a reliable source as for fish population status and changes.

Test fishing.

Gillnet series

In 1976, a gillnet series containing eight individual bottom gillnets of different mesh sizes was constructed (Rosseland et al. 1979). Based on the individual catch efficiency of each mesh size (Jensen 1972), the series was design to give a best theoretically uniform catchability of brown trout (Condition-factor = 1) over a range of fish lengths from 10 to 45 cm (Fig. 1). The mesh size (knot to knot) and nylon monofilament thread thickness is given in Table 1. Each individual gillnet is 26 m long, 1.5 m deep, and have a dark red colour.

Figure 1. The catch-probability (G) of the eight individual gillnets and the series (SNSF-series) as a function of fish length in cm. (After: Rosseland et al. 1979).

In 1980, an alternative series was designed. The same eight mesh sizes were used in 4 m lengths and put into one single gillnet of 32 m length. Three different combinations of mesh-size as a function of location from the shore were used, giving a new series of three gillnets having a total catchability of 0.46 compared to the "old" series. Today, both series are used in the national monitoring programs. Lundgrens Fiskredskapsfabrik AB, Stocholm, Sweden, has manufactured the gillnets.

Table 1. The standardized gillnet series, containing 8 gillnets of given mesh size and thread thickness. (After: Rosseland et al. 1979). The gillnets are produced by Lundgrens Fiskredskapsfabrik AB, Stocholm, Sweden.

Mesh size mm.	10	12.5	16.5	22	25	30	38	46
Thread thickness mm.	.15	.15	.15	.15	.15	.15	.15	.17

Gillnet-setting.

The gillnets are set perpendicular to the shore, avoiding steep-slope shore to bottom areas. Gillnets in the "old" series are set at random as for mesh size, whereas the "new" series always will have all eight mesh sizes represented at a certain point.

Time of testfishing.

In Norway, the period between August 15 to October 15 have been selected for testfishing, because of:

- 1) The recruits from brooks or other spawning areas have entered the lake. In brooks, the fry has reach a catchable size for electro fishing,
- 2) Dark nights and lower water temperatures ensures a higher swimming activity and hence a higher catch pr. effort.

- 3) The period represents the end of the growing season, giving data for the last summers growth and a better probability for catching the youngest recruits to the lake.
- 4) The period represents the time of the year where the different year-classes are most uniformed distributed. Testfishing in t his period gives thus the best year-class representation in the catches.
- 5) The gonadal development will clearly separate sex and status for the coming spawning season.
- 6) The spawners are still in the lake, and have not yet started migration to running waters.

If all or most of these factors are identical in all areas, the period 15/8 - 15/10 should be chosen as a sampling period for fish within the ALPE-project.

Analytical program

Each fish should be given a specific number which will follow all subsamples to be analyzed. Due to exchange of data, country codes should be used as prefix.

For each individual fish, the following parametres should be noted: lake, date, gillnet type, mesh size, species, length, weight, sex, gonadal maturation, flesh colour, stomach fullness, stomach content, scale samples (salmonids) or opercular bone samples (perch) and otolith samples. Data from the different analyses should be filled into the schemes in Appendix 2. All schemes should be sent to NIVA for processing and presentation. The different parametres should be taken as follows:

- Length, in mm, measured from tip of snout to lower tip of tail.
- Weight, in gram.
- Gonadal development, from stage I VII
 - I II juveniles
 - III V recruit spawners

VI spawning

VII/.. postspawners

- Flesh colour, white, pink or red.
- Stomach fullness, classified from 0 4.
- Stomach content, conserved in 70% alcohol and classified in main invertebrate groups.
- Age determination by:
 - Scales (salmonids), taken from the area between the sideline organ and dorsal and pectorial fin.
 - Otoliths (all species), using the "burning technique" described by Christensen (1964).
 - Opercular bone, removal of skin, drying and age determined as describes by Le Cren (1947).
 - !!!! If age differ when determined by otolith and scales or opercular bone, otolith age is considered as the true age.
- Growth, determined by:
 - Length at catch as a function of true age.
 - Back calculation of growth, using the methods of Dahl (1910) and Lee (1920).

Data

All data should be filled into schemes as shown in Appendix 2, and sent to NIVA for computation. Special data programs will give tables as shown in Appendix 3, which can be used directly for figure generation.

LITERATURE

- Christensen, J.M. 1964. Burning of otoliths, a technique for age determination of Soles and other fish. J. Cons. perm. int. Explor. Mer. 29, 73-81.
- Dahl, K. 1910. Alder og vekst av hos laks og ørret belyst ved studiet av deres skjæl. (Age and growth of Atlantic salmon and brown trout by use of scales). Landbruksdepartementet Centraltrykkeriet, Kristiania. (In Norwegian).
- Le Cren, E.D. 1947. The determination of age and growth of the perch, Perca fluviatilis, from the opercular bone. J. Anim, Ecol. 16, 188-204.
- Lee, R.M. 1920. A review of the methods of age and growth determination in fishes by means of scales. Fishery Invest. Lond. ser. II 4 (2), 1-32.
- Henriksen, A., Lien, L., Rosseland, B.O., Traaen, T., Sevaldrud, I., Raddum, G., & Fjellheim, A. 1988. 1000 Lake Survey 1986 Norway. Fish status. The Norwegian State Pollution Control Authority, Report 314/88, 36 pp. + appendix.
- Henriksen, A., Lien, L., Rosseland, B.O., Traaen, T. & Sevaldrud, I. 1989. Lake acidification in Norway: Present and predicted fish status. Ambio 17 (6), 314-321.
- Jensen, K.W. 1972. On the dynamic o an exploited population of brown trout (Salmo trutta, L). Rep. Inst. Freshw. Res. Drottningholm 52, 74-84.
- Rosseland, B.O., Balstad, P., Mohn, E., Muniz, I.P., Sevaldrud, I. & Svalastog, D.. 1979. Bestandsundersøkelser DATAFISK-SNSF-77. Presentasjon av utvalgskriterier, innsamlingsmetodikk og anvendelse av programmet ved SNSF-prosjektets prøvefiske i perioden 1976-79. (Fish population studies, DATAFISH-SNSF-77. Presentation of criteria for lake selection, data collection and use of data program in the SNSF-projects test fishing program in the period 1976-79. SNSF-project, Technical Report TN 45/79, 63 pp. + appendix. (In Norwegian).

- Rosseland, B.O., Sevaldrud, I., Svalastog, D. & Muniz, I.P. 1980. Studies of freshwater fish populations effects of acidification on reproduction, population structure, growth and food selection. In: Drabløs, D. & Tollan A. (eds.) Ecological Impact of Acid Precipitation, p. 336-337, SNSF-project, NISK, 1432 Aas-NLH, Norway.
- Sevaldrud, I. & Muniz, I.P. 1980. Sure vatn og innlandsfiske i Norge. Resultater fra intervjuundersøkelsene 1974-1979. (Acid waters and inland fisheries in Norway. Results from interviews 1974-1979). SNSF-project IR 77/80, 92 pp + tab. (In Norwegian).
- Sevaldrud, I., Muniz, I.P. & Klavenes, S. 1980. Loss of fish populations in southern Norway. Dynamics and magnitude of the problem. In: Drabløs, D. & Tollan, A. (eds.) Ecological Impact of Acid Precipitation, p. 350-351, SNSF-project, NISK, 1432 Aas-NLH, Norway.
- Sevaldrud, I. & Skogheim, O.K. 1986. Changes in fish populations in southernmost Norway during the last decade. Water, Air, and Soil Pollut. 30, 381-386.

APPENDIX F 1

I'm the one that got away. The stress was killing me! pH news describes a negative trend in my river.

F: After 1980

1000 LAKE SURVEY **QUESTIONNAIRE FOR THE DETERMINATION OF FISH STATUS** County: Municipality: Lake: Elevation above sea level: meters Answer given by: Adress: Date: DETAILS OF CONDITIONS FOR FISH Does the lake contain fish? If no - has it contained fish earlier? NB! If the lake contain/has contained fish, complete the rest of the questionnaire. Write any additional comments under the heading "Comments" on the last page, or on a separate sheet, NB! 1 SPECIES OF FISH Any other species? 5 What species are/were present in the lake? 2 POPULATIONS Comments: What is the population density of this/these species at present? 2.1 Present density a) Sparcely populated b) Well/over populated c) Barren 2.2 Changes in populations Comments: a) Increased b) Unchanged c) Diminished d) Lost How did these changes occur? - when did they occur (within 10 years)? - are there variations between the species? 2.3 Changes according to time and species Time code: A: Before 1940 B: 1940 - 1950 C: 1950 - 1960 a) Increased populations D: 1960 - 1970 b) Decline in populations E: 1970 - 1980

c) Loss of populations

a) Increased b) Unchanged c) Decreased		2	3	4 5	
d) Unknown	Н	\Box			
4 FISH MANAGEMENT Has there been any fish management	such	as stoc	king, lir	ning,?etc.?	Comments:
4.1 Fish stocking					
What species? When?					
Quantity? Result?					
When, how and with what result?					
5 EARLIER DATA		Yes	No	Do not kno	Comments: w
Has there been test fishing in the lake If so, by whom and when?					
6 RESPONDENTS OWN AND OTHE	ER CC	MMEN	TS:		

APPENDIX F 2

PRØVEFISKE I FERSKVANN (Bruk av EDB-programmet DATAFISK-SNSF-77)

Utfylling av skjemaene.

- 1. Skriv tydelig og bruk bare store bokstaver til tekst.
 Bokstaven "O" skrives "O", mens tallet "null" skrives "O".
- 2. De fleste opplysningene (unntatt på Skjema 1 og 7) fylles ut som tallkoder. Det må bare nyttes koder som er angitt på kodelister utarbeidet for de enkelte skjemaer. Mangler opplysninger, lar en tilsvarende felter på skjemaene stå blanke.
- 3. I felter som fylles ut med <u>tall</u> (koder, mål, areal, etc.), skrives tallene så langt til høyre i feltene som plassen tillater.

 Eks.: Vekt 263 g (kol.29-33 på Skjema 5) skrives <u>1 12.6.31</u>

SKJEMA nr	لِيَا
VASSDRAG nr	1/,3.01
ELV/VANN nr. og navn	[12,6 S,A,U,L,A,N,D,S,V,N]
FYLKE	[V:E,S,T,A,6,D.E,R]
KOMMUNE	[F,A,R,S,U,N,D, ,]
KARTBLAD	1,3,1,1,2
KARTREFERANSE, utløpsosen (UTM-syst.).	[6,8,9,5,3,5]
HØYDE over havet	<u></u>
VANNAREAL, naturlig	L: 1 1 5 ha
REGULERINGSHØYDE, total	<u> </u>
AREAL, HRV	L : : : O ha
AREAL, LRV	<u>[</u>
NEDSLAGSFELT	1, , , , <u>, 4</u> km²
AVLØP, gjennomsnittlig	<u>l, m³</u> /sek.
VANNTYPE	<u>3</u> 78
Næringsrik =1 Myrvann =4 Mid.næringsrik =2 Brevann =5 Næringsfattig =3	
AVSTAND til bilvei	L,0 km

r					
ļ				3	
			Omserningsgrand Lainor (Presentes) Anner Siverse (Marches) Losesings (Marches) Losesings (Marches) Losesings (Marches) Losesings (Loes) Losesings (Lose) Losesings (Lo	-	
Dato 8.10927		l	rotes marce) sharms (.nocervi) salsnesul (smel) tamebna (murrand2) eso resis "enrord" resis "enrord"		
		_	Tella Mennord		5
9		Ξ [(munsand2\ eso	ıñ,	
<u> </u>		ਲੋਂ [Ancemat (Lemma)		
		<u> </u>	<u> </u>		
17-1		= {	HOUSE OME FOR PRESENCE		
		Ξ	(Salansi) seriamser	12/	$\stackrel{\hookrightarrow}{\rightleftharpoons}$
3		≡	(Sefacomit escretains) (Sefect series (1900-1905) (Sefect series (1900-1905) (Sefect series s	\rightarrow	323
<u> </u>		VAIHVEGETASJOH	(setimgand) monial moliatesevis menna menna menna menna menna menna menna menna mena me		Ť
1		>	elatreta matagao elatreta matagao bargagatataemo (setimgana) romai	3	$\overline{\sim}$
1 h	1		Omsethinssin	Ť	13
5.	- [Organisk materiale Omsetningsgræd	15	3
&; 	_	Ĭ	retraid ebneved	ì	त्र
3: 1	ج	ě	nieta		رې.
8, E	ات	Type	Sand / Grus		7
<u>ula</u> Navn	o.	=-[!	13422231
'3₁ ≥ 1	=		uunciøŢĘ	3	(ب)
Vann/Elv nr. [126] Saulaudsyn	Hennesk Bunnforhold	påvirk Area	DAMA JULE TO THE STAND THE		
ر - ا	ڃ	3	<u> </u>	,	
<u>_0</u>	13	-51	TVESTED CAR SEE	7	<u> </u>
12	8	출			-
1 4		7	TUISTOUT		442
ا مليا	10	og l	GENAGGETE	53	5
ı.			Næringsfattig myr	- 7,1	
-			KELTESTULIEK		
Ţv			retalitzguH	S.	
<u> </u>	ပ		ryngmark Friedrich		
ın,	2.5	ou	Snauf 3ell		
/aı	Nerområde	Vegetasjon	Boxisēxīa (dīfe(F		
	ē	ra.	RONE LOUSE	1/6	
!	9	şe i	BONZUTUT		-
ł,	_) e	Granace		-
l		>	202276.		$\stackrel{\sim}{=}$
ا ایپ			Jyrae Jean Jyrae Jean Jyrae Jean Jyrae Jean Jyrae Jean Jan Jyrae Jean Jyrae Jean Jyrae Jean Jyrae Jean Jyrae J		433/
<u>arsund</u> Navn			Waringslattie myr		
) E			TAL STIESTIES		
2 <i>r5U</i> Navn			Teletation	·	
1215			TynemenyT	-	\sim
H-			Boxas LidraE BoxasxrapidL19jF Flejiusna		``
		E E	SCHESTOTOTOTE	3.5	
0		Ä	20%2: •£dasE	<u>-</u>	
0'8'		3.5	3048121 3		
1, 2		Vegetasjon	ਤੁਹਸ਼ਤੀਪਸ਼ ਹੈ ਤੁਹਸ਼ਤੀ ਤੁਹਸਤੀ ਤੁਹਸਤੀ ਤੁਹਸਤੀ ਤੁਹਸਤੀ ਤੁਹਸਤੀ ਤੁਹਿਤ		332414
72		e B	Løvskog		7
•		>	Name 1951 9E		3
Ξ			Grant of Joshark Enets Amfibolitat Gaboro, Jacrit Tyldrot, Glaskiter Kalknoldig Morene Smelrev, sysetring Smelrev, sysetring Jans 1991 Gabra 1991 Gabra 1992 Dettemark Letters Server 1992 Gaboro	57	1
5	[=	-5	TEVE EXPER		7
ra	Nedslagsfelt	งเรดเ	Vannavsatt Smeltev, avsetning		-
БG	Ğ5	101	<u> </u>	3.5	1-
Ś	la.	<u> </u>	NOMENE I		-
Ϋ́	[3]	ءا	reitas to contex		-
	0	=	atracturation	7.	+
Ci)-	Z	l L	221700114		1
<u>:</u>		Bergrunn	STOUS NACE SET TO THE STORE		1
Ë		Be	Relies Avartaitt, sandstein Granittiils nork gneis		
Skjema nr. 2 Vassdrag nr. [397763	81	~
еш					=
Σ			Areal		=
ಭ			[2327	-	J -
	1			_	1

Λ,	II AT A	8	-	
z 7 5	inostaput ist	78	-	1
≅ , _	Tat is detailed st	7	3	
~.			-	
23 	<u> </u>		-	
+00		~	-	
< >	taino (etátresiza		=	4 4
= 0C	ezinenenen	89	3	
ΞΞΞ	913718		┼──	
\$.T.E	grob / ret grob / ret grap enatie			
<u> </u>	Saop / desc ette; / esm			
2 (1 c	ette; / esm	-5	_	1
	u.re		=	
-]
<u> </u>	enstîtsuro anstîtari			-
Z = '	erstisēttisē'		_	1
5	<u> </u>	~~		1
	1645TTN16146			
. E	gafabasaciebastese as.			1
3 	18200(640)	5,5		
147				
		<u> </u>		
<u></u>	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		-	
se:	<u>garapasacispasage</u>	2	-	
<u> </u>	onekomst estandsforandring			
-27	,, sa	(5		
. S.	e de la			
: e :	sesignasiorandring	3		
<u> </u>	28,000,000		\sim	
727	<u> इ.स.</u>	3.5	3.8	
<u>5</u>	20437782023		_	
I W	<u>animbnamotabnacaet</u> ma	:		
3 5 <u>5</u>	<u> </u>	- , _	رم	
	254076403		1	
147	2.47;	~	ند	
: TY	retra 11atra	7	لم	
		<u>~~:</u>		
/~		i	8	-
(5/ :==	saringsevne Salor	_	77	
		=		
Ξđ		1	75	
~			51	<
	esurçes.		4	
		7	\dashv	
	qybechil	78	=	
:::	. ann semperatur	2		
	44. T***** A	1	7	
	praterra):	İ	-	
. e _{./} .		, <u>-</u> 1	i	

	_	8
		☐ # Turbidites.
		22 Farse
		tanagnamnes 2 ← C
		T/34 QE 3 C
	11.1,	T/34 bc 3
	TUNCHETA L.L.	1/34 ES 23 11/34 ES 25 11/34 E
	3-	E/9# #0 % €
•		T/34 TH 100
		17/3# 3# 27/2 10/9/6
	•	17/3 a sc 17/1/2 ←
		1/9m X 88
٠		1/3: #1; J
		T/9= T0 -
11.811	1	7/27 :: - Eo:: B
711116	VANHKARIT	1/S # 10S # 1
		redbråd-ac 1 F\Oac am 1
		Tedabash LateT = C
		mo/84 tregérach 6

ı		-		1		·				earmargaess.	,		,			*	,	-
1			-	=		-	-	=	_	-		=	=	-	_	-		-
1			-	RIGISI BIREMI ISIMSIFI	=	_	=	-	_	-	_	-	_	-	-	-	_	1
i				SIN	_		7	_	-	-	_	_	_	_	-	_	_	-
5			5 .	-	_	_	=	_	_	_	_		_	_	_	-	_	
77				₹.	=		=	_	_	_	_	-	_	-	_	_	_	-
US (C			3	R.E	-	=	-		-	-	-	_	-		-		-	-
S N			e .	R	-	-	-	-	-		_	-	-	-	-	-	-	
7			5 0	5,5,		-	-		_	-	=	_	=	_	_	_	_	_
رَ (رَ			Provefisket utfort av	2					1.1.1.1.1.1.1	_			-	_	_		_	_
<u>a</u> i			<u> </u>						-	_		-		_				-
\sim		ا ء ا	et penni	_	;	-	-	=		_		_	_	-	_	****	_	
VANN/ELV MR. SALL SALLIAGE PAUL		e dskap	ad ^ ± 5	-		-	-	-					-			_		
2 18		(e)	stoznal .	-			-		-	-	-		-	-	_	_	_	
₹			- ivpe		-	7		-,	_	_	_		_		_		-	_
ELV			reimO T	:		-					!	:						
ZZ			llotnA \nim 2	-		7	-	-			-					-		_
₹ >			1911110		i :	-		+	-		_						÷	
ı		5	lipin∧		- 1		.1	1	1	:			i	<u></u>		1	-	
İ		Hyne	آ 0ساما	351	-	-1	-	-	-	-	-	-		-	-		-	-
1		و او	ll b i n A	1/2		i	:	:										
1		e =	John G	17.	-	4		-:		-	-	-		_	-	-	-:	
i		9 6	Omio: IletaA	7	-	-	-	+	-		-		-				-	
1		dard	lloinA Omfer			,	!	!	ì				1	-			:	***********
Navn	Ξ.	illegg til standard serie <u>eller</u> mensatning når st. serie ikke	. 0 <u>س</u> تو د	2,5	-	7		-	-	_	-	-	7	_	_	4		_
Z Z	Garn	= i	lipinA			1		!									:	
105		legg nset	, m, mO	1 2.9	-		-	-		-	-		-	_	-	-	_	
Farsond		Tillegg til standard serie <u>eller</u> garnsammensatning når st. serie ikke benyttes	IlainA		7	\exists	-	-	-				<u>_</u>			; -;		
a_{i}		11150	lloinA ioìmO 3	-									-		-			
1		ga	٥ سنود	125	-		-		_	-	-	-	7	-		-	-	-
			llotnA		i	-		-	:				i		1		i	
1.30			101mO	13631	-		4		-		-			-:	-:	-	-	-
<u>=</u>			eqyinip0	3	-	4	-:	-	-	-	-	-	***	_			-	
VASSDRAG NR.		Standard	IlbinA	i i	_	4	-		-		-	-	-		_	-	-	-
;DRA		Stan	saytanbo i		-	-	-	- 1	-	-		_		_'			-	-
VA S	p		PulA :			-	-	+	-		-		:	-	-	_: :		-
-		PI	odioiis≝V :		ì	1	-	1	-		-;	-	-	-		-;		-
ž		0	jγ,	77.	-	1	-		1	-		-	-	-:	-;	-	:	_
SKJEMA NR.		D a 10		0.0	1	_	4	+	-	-	į	-	-	-	-	-:	-	-
SKJE	'		Deg.		+	4	+	+		-1-	-	7	-	-	-	-	-	-

VANNJEIV NR. [126] Saulandsvarin DATO [12] ORTAL
NOVN Fangst-sted Fild Annet og ubest. & Snegler og must. Z Linsekreps Mageinnhold & Skjoldkreps S & Martio 4 insekter : vann 3. Fisk 2 Flomdrift L. Overflateins. Skjell, otolitter mx Parasitter SKIEMA NR. 5 VASSDRAG HR. [LASID] - FATSUN & # Kjettfarge muibet2 Aekt : 3 7 2 \sim 1 7 Redskap ldentifikasjon 1 - A

272		,	080		1	:	-		-	-	-	-	······································		j	-	!	-	-		-			
12.31		Merknader	-	1 1	-	-	-	-	4		1	11	-	1	7-7-7		1	-1-1	-	-	-	-	•	
7		Mert	ـ ح	1-1	1	-		-	-	-	-			1-1	1	-	-	1	-	-	=	-	•	
01	* 1	IKan	ZSKiel						~	i	~	3	\sim	~ ≥	i	~3!	\sim	3	ر ې			~	Ş	
- 2 a ulander land DATO [1-1			1.1	1	1	11	-	-	-	1 1	+	٦	-	1	-	-	-	-	•	
Maca.			-		1	-	1		-			-		-	1		-	1	-	-	-	-		
			2 -	-	. 1	1	1	1		-	-	1	-	1	1	<u>;</u>		-			-			
	one -		٥ .		-			1	-	-	1	-	-		1			-	-	-	-	-	-	
	Avstand fra skjellsentrum til vintersone			-		<u>-</u>	-	1	1			-		-	1	1	<u>-</u>		-		-	-		
) III v			-					1		_	-					-			-			-	
·	ntrun		36. 7	-	-	-	-		-		1		:	-			-	-	-	-	-		-	
	jellse		°	-	1		-	1	1	-	-	-	-	-			-	-	-	-		_		
`	fra sk		50,	-	-	-	1		-	-	.11	1	1	-	4	1 1	-	-	-	-	-	7		
/	land		₹ .	-		-	1.92	11		1 -1	-	-	-	_	4 4	216	220	216	-	1 1	1-1-1	-		
		Avs		ر د	(,8,5	691		1.59	7-7:	7	-		-	-	18,6	-	1,8,1	1901	167	-	-	1.9.7	-	
			~ .	14.5	7,8		9.0	-	-	1	-		-	1,2,6		23	92	115		1/6/	6,5,	-	_	
				6.9			54		-	<u>-</u>	-			16.3		198	60	16,19	<u> </u>	185	78/	1	•	
and and and and and and and	sn	lradi I	2k]e	-	-	-	-	-	-	_	-		-	-	-					-		1		
!			, , , , <u>, , , , , , , , , , , , , , , </u>			-	1								-	-			-	-	-			
<u> </u>			10 Day -		-		:	: 		-	1		:			-				:		: 		
2	<u> </u>		ilo+0 ⁸	3	-	5.	=	5	달	=	$\frac{1}{2}$	=	=	3	<u>ر</u> ک	=	>=	=	5.	-	3	1-2	=	
ׅׅׅׅׅׅׅׅ֝֝֟֝֝֡֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֜֜֓֓֓֓֡֡֡֜֝֓֡֓֜֡֓֓֡֡֡֡֡֡֡֡	A		Z 2 K! 6	<u></u>	3	3	5	3	3	ري	3	3	3	ك	G	5	=	5	<u>~</u> 2	~	3	٠, ح	~	
		Ù	Kjeni	7	رح	-	_	3	رع					٢	<u>~</u>	=	_	_	رح	رم		ત્રુ		
VASSURAG NK.	աս	ı i ə b	Sue 7	2,12	2,00	220	13.36	225	3,0,5	205	1,2,2,0	3,0,5	205	302	215	2557	12,35	2,35	2,2,0	2,1,0	0.1.2	0'6'		
.	,,_1.		3.		, 91	-			7	ā	71-	3	-	-	91	91	- 3	- d:	- 2	. 0	- 0	-		
2 -	nois	***************************************	tnabl 🧟	}	-	7	~	-	<u>-</u>	-	2	~	<u>-</u>	<u>-</u>	2	7	<u>-</u>	-		_	<u>-</u> د		_	
SKJEMA NR. I		ח ני	reder <u>e</u>	6.45	16,46		8'19	6,79	650	150	165°	<u> </u>	156)	<u> </u>	150	1657		659	1919			00	0.0	
Kir			11 A =	5	,57	3	3	اتح	7	3	7	15	3	5	12	7	5	1	\mathcal{L}	R	3	3,	رۍ	

,	ssdrag nr.	•				
Vann/Elv nr. ,2,	Saul	audsva navn	run	Dato 12	0,9 7,7	
Art nr 5 Løp	enr. 6,4,	9	Fyllingsgra	$\frac{4}{19}$		
Dyregruppe	Antall	F %	Volum verdi	Volum	Volum 1	2
Copepoda		<u>_</u>		-		20
Cladocera	30	19	1/4	7,5	13.57	1.4
Gastropoda						27
Bivalvia						
Cligochaeta						28
Ephemeroptera 1.		a transfer de la constante de				
- 11 - im.						12
Plecoptera 1.						,
- 11 - im.						36
Trichoptera 1.	22	14	1	22	39,82	4.0
- n - p.						40
- n - im.						
Chironomidae 1.	2	1	1/5	0.4	0.72	١ , ٢
- n - p.	98	1 64	1/4	24.5	44,34	4.4
- 11 - <u>i</u> m.						48 -
Simulidae l.		A Administration of the Control of t	ļ			1
- n - D.						52_1
- 11						
Corixidae						50
Coleoptera						1
Skjoldkreps						60
Gammarus						
Asellus						64
Fish						
Annet Diverse	2	1	0,42	0.85	1.54	63 1 1
					İ	

Wolum %: 1 - Tall med desimaler 2 - Tall opphoyd, blank = 0, 00 = 100%

APPENDIX F 3

VEDLEGG 3 UTSKRIFT AV RESULTATENE FRA DATAFISK-SNSF-77

SNSF - PROSJEKTET PRØVEFISKE I FERSKVANN

VASSDRAG NR:	130
ELV/VANN NR. OG NAVN	26 SAULANDSVN.
FYLKE	VESTAGDER
KOMMUNE	FARSUND
KARTBLAD:	1311.2
KARTREFERANSE. UTLØPSOSEN (UTM-SYST.):	689535
HØYDE OVER HAVET	90 M
VANNAREAL. NATURLIG	15 HA
REGULERINGSHØYDE. TOTAL	ОМ
AREAL. HRV	О НА
AREAL. IRV	О НА
NEDSLAGSFELT	4 KVAD.KM
AVLØP. GJENNOMSNITTLIG	INGEN OPPLYSN.
VANNTYPE	NÆRINGSFATTIG
AVSTAND TIL BILVEI	O KM

PRØVEFISKE I SAULANDSVN. I FARSUND VASSDRAG Nr. 130. VANN/ELV NR. 26

DATO: 11.9.77

NEDSLAGSFELT/GEOLOGI

AREAL : 4 KVAD.KM RELIEFF : MARKERT

MORENE : FULL DOMINANS SMELTEV. AVSETNING : UBETYDELIG

BART FJELL : ALM. FOREKOMMENDE

NEDSLAGSFELT/VEGETASJON

DYRKET MARK : SPREDT BEITEMARK : SPREDT

LØVSKOG : ALM. FOREKOMMENDE

GRANSKOG : UBETYDELIG FURUSKOG : UBETYDELIG

LYNGMARK : ALM. FOREKOMMENDE

NÆRINGSFATTIG MYR : UBETYDELIG

VEGETASJON/NÆROMRÅDE

DYRKET MARK : SPREDT BEITEMARK : SPREDT

LØVSKOG : FULL DOMINANS NÆRINGSFATTIG MYR : UBETYDELIG

MENNESKELIG PÅVIRKNING

GRUVEDRIFT : INGEN PÅVIRKNING INDUSTRI : INGEN PÅVIRKNING JORDBRUK : MODERAT PÅVIRKNING

BUNNAREAL

GRUNNERE ENN 5M : 5/10 5M - 15M : 4/10 DYPERE ENN 15M : 1/10

BUNNFORHOLD

BLØTBUNN : SPREDT : UBETYDELIG

SAND/GRUS : ALM. FOREKOMMENDE STEIN : ALM. FOREKOMMENDE LEVENDE PLANTER : ALM. FOREKOMMENDE

ORGANISK MATERIALE : SPREDT OMSETNINGSGRAD : NORMAL

VANNVEGETASJON

TAKRØR (PHRAGMITES) : SPREDT NØKKEROSE (NYMPHAEA) : SPREDT

BOTNEGRAS (LOBELIA) : ALM. FOREKOMMENDE

BRASMEGRAS (ISOETES) : SPREDT "GRØNNE" ALGER : UBETYDELIG

PRØVEFISKE I SAULANDSVN. I FARSUND VASSDRAG NR. 130. VANN/ELV NR. 26

DATO: 11.9.77

FYSISK/KJEMISKE FORHOLD

VANNFØRING :	•	NORMAL	
VANNSTAND		MIDDELS	
		11 METER	
VANNFARGE :	•	BLÅLIG GRØNN	
PH.	•	5.21	
LEDNINGSEVNE :	:	48.0	MICROMHO/CM
LED. EVNE KORR:	•	45.6	MICROMHO/CM
TOTAL HARDHET:		4.3	MG CAO/LITER
CA-HARDHET :	•	2.1	MG CAO/LITER
304	:	6.5	MG/LITER
NO3 - N	:	100	MICROGRAM/LITER
CL :	:	8.6	MG/LITER
NA :	:	5.30	MG/LITER
K	:	0.44	MG/LITER
CA :	•	1.47	MG/LITER
MG	•	0.96	MG/LITER
AI.	:	100	MICROGRAM/LITER
CU:	:	11.5	MICROGRAM/LITER
21:		45.0	MICROGRAM/LITER
CD :	:	0.30	MICROGRAM/LITER
PB :	•	3:.0	MICROGRAM/LITER
PERMANGAMAT :	•	* . 4	MG O/LITER
FARGE :	•	:6	GRADER H

FISK

AUTALL ARTER TOTALT: 2

HOVED-ARTER	FOREKOMST	GYTEMULIGHET	BESTANDSFORANDRING	NÅR
ORRET ÅL	OVERBEFOLKET GOD	MEGET GOD	UFORANDRET	

EIEMDOMSFORHOLD

PRIVAT

BESKATHING

TYPE: HUSHOLDMINGSFISKE - FULL DOMINANS
REDSKAP: GARN - FULL DOMINANS
DOMINERENDE MASKEVIDDE: 24 OMFAR (26 MM)

FISKEINTENSITET: LITEN

PRØVEFISKE I SAULANDSVN I FARSUND

VASSDRAG NR. 130. VANNZELV NR. 26

* * FANGSIFORHOLD OG FANGSIINNSAIS * *

DATO : 11. 9.77

VÆRFORHOLD: KLARTZLETTSKYET OVERSKYET

VIND : STILLE

ANTALL STANDARD GARNSERIER (HVER SERIE 8 GARN): INGEN

ANDRE GARN: 1X53 OMFAR 1X50 OMFAR 1X38 OMFAR

1X29 OMFAR 1X25 OMFAR 1X21 OMFAR

IX17 OMFAR IX14 OMFAR

GARNTYPE :BUNNGARN, MONOFILAMENT, 1.5 M DYP PRØVEFISKET ER UTFØRT AV: ROSS BREM SNSF

PRØVEFISKE I SAULANDSVN. I FARSUND KOMMUNE (VASSDRAG NR. 130. VANN/ELV NR. 26)

DATO: 13.9.77 - 12.9.77 FANGSTFORDELING PÅ MASKEVIDDE

ANT/SERIE	GR./SERIE	57.0	4272.0
**	- : :	••-	••
••	14	0.0	0.0
	17	0.9	530.0
	21	0.9	501.0
-	25	11.0	1017.0
	29	17.0	892.0 1254.0 1017.0 501.0
	38	14.0	892.0
-	50	3.0	78.0
-	63	0.0	0.0
ANTALL GARN	OMFAR	ANTALL/GARN	GRAM/GARN
	ART		ØRRET

FARSUND KOMMUNE (VASSDRAG NR. 130. VANN/ET, NR. 26) PRØVEFISKE I SAULANDSVN. I

RESULTATER AV PRØVEFISKET

DATO	ART	HANNER	HUNNER	FANGST HUNNER UBESTEMT TOTALT	TOTALT	SAMLET VEKT	GJ.SN.
12.9.77	ØRRET	28	29	0	57	4272	74
T ALT	ØRRET	28	29	0	57	4272	7.4

PRØVEFISKE I SAUJANDSVN. 1 FARSUND KOMMUNE

PROVEFISKE I SAULANDSVN. I FARSUND KOMMUHE (VASSDRAG NR. 130. VANN/BLV NR. 26)

DATO: 13.9.77 - 12.9.77

ART: ORRET

100000000000000000000000000000000000000	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/0	//	1 7	V TORIN	I di A 3) %	CYPEPISK	THE DEL		K.I O'T'T	KJOTTPARGE	4.							
nemins (m)	AILLAID	ę	MIN MAIN GORDAGE	NVII		-	=	GYTERE	. <u>.</u>	==	H 1.R		PARAS	PARASIPPER		DEFORTTERM	TER	HSRKET	
(MIA)			LANION					NVII	HIUN			3003	R 5.19B	R 14YB	S.IIYB	TYPE/AUTATIL 3	1.11 55	TYPE/ANTALL	7.3
100												:	(c	(70	0	0 / 0	5
101-130		8.1	1.18	0	-	0.0	0.0	С	0	-	0	0	0	0)	0 /0	0.0	0 /0	2 1
131-160	V	7.0	1.01	٨	-	1.99	0.0	0.	С	4	0 (0	С	0	0	0 /0	0.0	0 /0	 0.0
001-191	. 4	28.1	1.02	ε	æ	87.5	37.5	-		15 1	0	0	0	0	0	0 /0	0.0	0 /0	0.0
101-220	, 2	54.4	0.93	13	5	46.2	72.2	۲	2	28	3	0	О	0	0	0 /0	0.0	0 /0	0.0
221-250	. 7.		0.83		-	100.0 100.0	100.0	.2	0	₹	0	0	0	0	0	0 /0	0.0	0 /0	0.0
080-136																			
0.00																			
281-310																			
311-340																			
341-370																			
37:-400																			
401-430																			
431-460																			
46.																			
Abb		100.1	0.96 28		29	67.9 58.6	58.6		3	52	6 ()	0	0	С	0	0	0.0	0	0.0
								The second contract of the second			The second leading to the second leading to					The second secon			

PRAVEFISKE I SAULANDSVN I FARSUND KOMAUNE (VASSINRAG NR. 130, VANNZELV NR. 26)

FANGSTDAGGG 12. 7.77

ART: viRdzi

**************************************	AMIALI	*	LENGDE OJ.OM.	S FAMDARD A VVI K	VEKST SISTE HELS AR	-	2	TILBAKEBEREGNET LENGDE VED AR: 3 4 5 6 7 8 9 10 11	ANI 12 STA	ANFALL FISK MED STAGNERT VEKST
+	-	6.0	133	0.0	5/	63				C
2+ -	° =	0.0	0 181	0.0	40	99	141			С
_= *	m <u>c</u>	43.2	761 197	7.61	1	99	133	6/1		1
44	1.3	65.3	205	11.9	7 -	64	/ ==	1 /9 205		4
1 + 5 = 1	- ^	20.0	707 0	14.9	7					~
+/										

+6										
÷ : :										
÷ =										
* 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2 - * 2										
AII. I	i	25 100.6 37 100.1	206	12.0		65	132	179 205		23
# TERKHADER:	***	ALLI	E Le tople	K I MA. UNI	ALLE L'EJODER I MA, UNDER ANTALL ERI	GRUPPE		FISK MED FORSKJELLIG ALDER PÅ SKJELL OG OTOLITT, FISK MED SAMMENFALLENDE ALDER PÅ SKJELL OG OTOLITT, VEKST OG TILBAKEBEREGNET LENODE KUN FOR JENNE KAFEGORI.	TOLITT. 3 O TOLITT. ENNE KAFEG	ORI.

PRØVEFISKE I SAULANDSVN. I FARSUND KOMMUNE (VASSDRAG NR. 130 VANN/ELV NR. 26) *** MAGEINNHOLD - BESTEMT I LABORATORIUM ***

ART :	ØRRET	
ANT. MAGER UNDERSØKT:	4.2	
FYLLINGS GRAD: TYPE ANTALL	0 1 2 0 9 2	3 4 14 14
PROSENT	0 21 4	33 33
MAGEINNHOLD	VOLUM	FREKVENS
DYREGRUPPE	PROSENT	PROSENT
COPEPODA	7.0	16.6
GLADOCERA	19.3	59.5
PLECOPTERA 1.	0.1	2.3
TRICHOPTERA 1.	8.0	23.8
CHIRONOMIDAE 1.	5.6	54.7
CHIRONOMIDAE P.	42.3	73.8
COLEOPTERA	9.0	7.1
ANNET	16.8	50.0

APPENDIX G

Invertebrate programme

INVERTEBRATE SAMPLING PROGRAMME

Arne Fjellheim and Gunnar G. Raddum Department of Animal Ecology, Museum of Zoology, University of Bergen. N-5007 Bergen, Norway.

General

Benthic invertebrate sampling should take place at the same time as water chemistry and fish are collected. Samples must be taken from the lake profundal, lake littoral and outlet stream. The samples should preferably be collected in a net with mesh size $250 \mu m$. All samples should be conserved in ethanol; alcohol concentration of the sample being approximately 70%.

Lake profundal sampling

The samples should be taken at the deepest part of the lake. If diatom coring is taken from the same locality, benthic invertebrate sampling should take place near this site. Six parallel quantitative samples should be collected using a Kajak sampler (Kajak 1971) or modified versions of this sampler.

Lake littoral sampling

The lake littoral should be sampled qualitatively using the "kick method" (Frost et al. 1971). If the littoral is heterogeneous, for example stones and macrophytes, samples should be taken from different habitats.

Outlet stream sampling

Qualitative "kick samples" should be taken from two sites: one at the outlet of the lake and one 200 - 300 m downstreams of the lake.

If possible we also recommend to place a partly submerged drift sampler at the outlet during the sampling period. The purpose is to collect hatching insects and exuvia which can be helpful in the taxonomic work.

Sorting and identification

Each participating institution is responsible for the sorting and identification of the collected material. University of Bergen, Dept. of Animal Ecology can, if wanted, assist in the determination of the chironomids.

Taxonomic lists and site data should be sent to University of Bergen, Dept. of Animal Ecology, preferably in ASCII files. Ecological data on the acid-tolerance of different animal taxa are also welcomed. All data will be generated and processed in a database in Bergen.

Literature

Frost, S., Huni, A. & Kershaw, W.E. 1971. Evaluation of a kicking technique for sampling stream bottom fauna. - Can. J. Zool. 49: 167-173.

Kajak, Z. 1971. Benthos of standing water. In: Edmondson, W.T. and Winberg, G.G. (eds.) A manual on methods for the assessment of secondary productivity in fresh waters. IBP Handbook no. 17. pp 25-65. Blackwell Scientific Publications, Oxford.

P.O.Box 69, Korsvoll N-0808 Oslo, Norway ISBN-82-577-2071-2