REPORT SNO 3696-97

MERLIN model applied to NITREX Gårdsjön

Norwegian Institute for Water Research

Main Office

P.O. Box 173. Kielsås N-0411 Oslo Norway Phone (47) 22 18 51 00 Telefax (47) 22 18 52 00 **Regional Office Sørlandet** Televeien 1 N-4890 Grimstad Norway Phone (47) 37 04 30 33 Telefax (47) 37 04 45 13

Regional Office Østlandet

Rute 866 N-2312 Ottestad Norway Phone (47) 62 57 64 00 Telefax (47) 62 57 66 53

Regional Office Vestlandet Akvaplan-NIVA A/S

Thormøhlensgt 55 N-5008 Bergen Norway Phone (47) 55 32 56 40 Telefax (47) 55 32 88 33

EPOR'

Søndre Tollbugate 3 N-9000 Tromsø Norway Phone (47) 77 68 52 80 Telefax (47) 77 68 05 09

Title MERLIN model applied to NITREX Gårdsjön	Serial No. 3696-97	Date 27 june 1997
	Report No. Sub-No. O-95038	Pages Price 38
Author(s) <i>Kjønaas, O. Janne (NISK)</i> Wright, Richard F.	Topic group acid precipitation	Distribution
Cosby, B.J. (University of Virginia)	Geographical area Sweden	Printed NIVA

Client(s)	Client ref.
Research Council of Norway (NFR) (TVLF)	108044/720

Abstract

A new process-oriented dynamic model, MERLIN, has been tested on a nitrogen-manipulated catchment at Gårdsjön, Sweden, to elucidate the time aspects of nitrogen "saturation". The model is calibrated to the period 1930-90 and the first 4 years of N addition (1991-94), and then compared with data for the 5th and 6th years. The calibrated model is used to predict future trends in N leaching. The model indicates that most of the added N goes to forest floor soil and very little to the plants. This agrees with measured N concentrations in needles. The model calibrated well to the flux of N out of the catchment during the first 4 treatment years, and correctly predicted the 5th year but overestimated the 6th year. In the model, significant leaching occurs as the optimum C/N ratio in forest floor is reduced from the 1990 value of about 35 to about 25. This agrees with the general results from the European NITREX sites, at which significant N leaching occurs at sites with low C/N ratio in the forest floor. The time needed for a system to change from N-limited, indicated by a high C/N, to a N-rich system, with C/N ratio below 25 and increased N leaching, is, however, uncertain, and the processes that govern such a transition are not fully understood. A sensitivity analysis is needed, along with further testing on a variety of forest ecosystems evaluate the utility of the model.

4 keywords, Norwegian	4 keywords, English
1.sur nedbør2.nitrogen3.modell4.skog	 acid precipitation nitrogen model forest

Richard F. W Project manager

ISBN 82-577-3261-3

Biørn Olav Rosseland

Head of research department

MERLIN model applied to NITREX Gårdsjön

O. Janne Kjønaas

Norwegian Forest Research Institute Høyskoleveien 12 1432 Ås

Richard F. Wright

Norwegian Institute for Water Research Box 173 Kjelsås 0411 Oslo

B. Jack Cosby

Department of Environmental Sciences University of Virginia Charlottesville, VA 22903 USA

Preface

This project came about as a result of interest in testing the new MERLIN model with data from NITREX field experiments. The project was supported in 1995 by the NFR Committee "TVLF" (Transport and effects of long-range transported air pollutants). The first application to a NITREX site was Aber, and similar applications of MERLIN to other NITREX sites are in progress, in part with support from the U.S. Department of Energy through contract DE-FG02-92ER30196 with E & S Environmental Chemistry, Inc.

Oslo, May 1997

Richard F. Wright

Contents

1. Summary		5
2. Introduction		6
3. Site description, methods and data source		7
3.1. Site description3.2. Experimental design3.3. Methods and data for the forest G2 NITREX 1990 and 1930	7	7 7
3.3.1. Pools 19903.3.2. Fluxes 19903.3.3. Changes in pools and fluxes from 1930 to 1990		8 8 9
4. Description of MERLIN		10
5. Calibration procedure		13
6. Results and discussion	14	
7. Acknowledgements		20
8. References		20
Appendix A: C and N mass balances used in MERLIN		23

Appendix B: Parameter values for calibration of MERLIN to Gårdsjön G2 NITREX27

1. Summary

Chronic deposition of inorganic nitrogen compounds from the atmosphere to forested ecosystems can lead to changes in ecosystem structure and function. As a result, a forest can move from nitrogen-limited towards a status of nitrogen "saturation", characterised by, among other things, increased leaching of inorganic nitrogen below the rooting zone. To provide information on the time aspects of nitrogen "saturation", a new process-oriented dynamic model, MERLIN, has been tested on a nitrogen manipulated catchment in Gårdsjön, Sweden. The catchment is dominated by naturally generated Norway spruce with Scots pine in drier areas, and the mean age of the forest is 104 years. Since 1991, weekly sprinkling of ammonium nitrate solution at a rate of about 35 kg N ha⁻¹ yr⁻¹ has been performed to simulate increased atmospheric deposition of nitrogen.

MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen) describes C and N cycles, and is comprised of 2 plant and 2 soil compartments (labile (LOM) and refractory (ROM) organic matter). Transfers between compartments occurs by means of processes such as plant uptake, litter production, immobilisation, mineralisation, nitrification and denitrification. Rates of plant uptake and cycling between pools are governed by the C/N ratios of the plant and soil pools.

The model is calibrated through a selected hindcast period and then used to predict future trends. For this model application, the year 1930 was chosen as starting point. At this time N deposition was much lower than present-day and the forest was well-established. A major source of uncertainty in model calibration and prediction is the paucity of good historical information on the specific site and stand history over the hindcast period 1930 to 1990. The reconstructed N cycle for the year 1930 reflects the assumption that the forest is slowly aggrading but is otherwise in a steady-state. The small amounts of N required for wood production and loss of DON in runoff come from a small background deposition of N and "mining" of ROM. Because very little happens with N cycling and fluxes in the forest ecosystem during the hindcast period, the model is poorly constrained. The final calibration therefore made use of the results from the first 4 years of N additions, and was then evaluated with the results from the 5th and 6th years.

The calibrated model indicates that most of the added N goes to LOM and very little goes to the plants. This agrees with measured N concentrations in needles, and other independent measurements including N experiments at other NITREX sites and elsewhere. MERLIN simulated net mineralisation somewhat higher than measured in situ for the year 1990, while the predicted net mineralisation for 1995 was lower than corresponding *in situ* measured values. The model calibrated well to the data for flux of N out of the catchment during the first 4 treatment years 1991-94, and correctly predicted the 5th year, but overestimated the 6th year. In the model, significant leaching occurs as the optimum C/N ratio in LOM is reduced from the 1990 value of about 35 to about 25. This agrees with the general results from the European NITREX sites, at which significant N leaching occurs at sites with low C/N ratio in the forest floor. The time needed for a system to change from N-limited, indicated by a high C/N of LOM, to a N-rich system, with C/N ratio below 25 and increased N leaching, is, however, uncertain, and the processes that govern such a transition are not fully understood. Thus, the ability of the model to predict N saturation in Scandinavian coniferous forests with high C/N ratios is still uncertain. MERLIN is an important contribution to further development of qualitative understanding of the N cycle in forests. A sensitivity analysis is needed, along with further testing on a variety of forest ecosystems evaluate the utility of the model. Additional years of data from Gårdsjön will also greatly aid evaluation of the model.

2. Introduction

Chronic deposition of inorganic nitrogen compounds from the atmosphere to forested ecosystems can lead to changes in ecosystem structure and function and to increased loss of inorganic nitrogen to runoff. Alterations in nitrogen cycling can move the ecosystem from nitrogen-limited towards a status of nitrogen "saturation", in which the availability of ammonium and nitrate is in excess of the total combined plant and microbial nutritional demand (Aber et al. 1989). In addition to changes in critical ecosystem processes which may result in low ratio of gross NO₃ and NH₄ immobilisation to gross mineralisation, low soil C/N ratio, high foliar N concentration and high foliar N/lignin ratio, nitrogen "saturation" is often manifest by high leaching of inorganic nitrogen below the rooting zone both during snow melt and during base flow (Aber, 1992) and increased concentrations of nitrate in surface waters (Stoddard 1994).

Prediction of the amount and number of years of nitrogen deposition a given forest ecosystem can tolerate before nitrogen "saturation" occurs is essential for the determination of critical loads for nitrogen for both forests and surface waters. Models are commonly used to estimate such predications. Empirical models are the simplest. For example, relationships between inputs and outputs of nitrogen to forest ecosystems indicate that forests receiving > 25 kg N ha⁻¹ yr⁻¹ have significant nitrogen outputs, outputs vary for forests receiving inputs 10-25 kg N ha⁻¹ yr⁻¹, and outputs are low when inputs < 10 kg N ha⁻¹ yr⁻¹ (Dise and Wright 1995). But such an empirical relationship does not indicate the time required for an ecosystem to move from a N-limited to a N-saturated state under a given rate of N deposition.

More detailed models such as process-oriented dynamic models are required to provide information on the time aspects of nitrogen saturation. MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen) (Cosby *et al.* 1997) is such a model. MERLIN describes C and N cycles and is comprised of 2 plant and 2 soil compartments (labile and refractory organic matter -- LOM and ROM). Transfer between compartments in the model occurs by means of processes such as plant uptake, litter production, immobilisation, mineralisation, nitrification and denitrification. Rates of plant uptake and cycling between soil pools are assumed governed by the C/N ratios of the plant and soil pools (Cosby *et al.* 1997).

Large-scale, whole ecosystem experiments provide key information for development and testing of predictive models. The NITREX project (Nitrogen saturation experiments) offers such data. NITREX is comprised of 11 experiments at 7 sites in Europe at which nitrogen deposition is experimentally changed to whole ecosystems and the response of vegetation, soils and waters investigated (Wright and van Breemen 1995). One of the NITREX sites is located at Gårdsjön, near Gothenburg, Sweden, at which ambient N deposition of 12 kg N ha⁻¹ yr⁻¹ is increased to about 50 kg N ha⁻¹ yr⁻¹ by weekly additions of NH_4NO_3 (Wright et al. 1995). Intensive investigation of vegetation (Kjønaas et al. in press), soil N processes (Kjønaas et al. in press), soil solution (Stuanes and Kjønaas in press) and runoff (Moldan and Wright in press) during the 2 years prior to and 6 years of treatment provide a comprehensive data set for the application of MERLIN.

Here we describe the calibration of MERLIN to NITREX-Gårdsjön data, and evaluate the potential of the model to predict nitrogen saturation in Scandinavian coniferous forests.

3. Site description, methods and data sources

3.1 Site description

The experimental site at Gårdsjön is located at 135-145 m elevation about 10 km from the Swedish west coast (58 04'N, 12 01'E), 50 km north of Gothenburg. The Gårdsjön region has a humid climate, with 1100 mm mean annual precipitation, 586 mm mean annual runoff, and mean annual temperature of 6.4°C. The area is characterised by an acid lake whose terrestrial catchment is dominated by shallow podsolic soils with inclusions of barren rock and peaty soils. The bedrock consists mainly of granites and granodiorites (Olsson et al. 1985).

The G2 NITREX catchment has an area of 0.52 ha. The forest is mainly a naturally-regenerated, uneven-aged Norway spruce (*Picea abies* L. Karst) and some Scotch pine (*Pinus sylvestris* L.) mainly in dry areas. The mean age was 104 years at breast height in 1991. Ground vegetation is dominated by grasses (*Deschampsia flexuosa* (L.) Tin) and mosses (*Dicranum majus* Sm., *Leucobryum glaucum* (Hedw.) Fries) in the upper catchment, (*Vaccinium myrtillus* L./*Vaccinium vitis-idea* L.) in drier outcrops, mosses (*Sphagnum*, predominantly *Sphagnum girgensohnii* Russ.) in the wetter lower parts, and heather (*Calluna vulgaris* (L.) Hill) among the most exposed ridges (Stuanes et al. 1992, Nygaard et al., 1993).

Soils are predominantly acidic silty and sandy loams, drier in the upper catchment and more peaty in the lower parts. They are classified as Orthic Humic Podzols, Orthic Ferro-Humic Podzols, Gleyed Humo-Ferric Podzols, and, at the shallow outcrops, Typic Folisols (The Canadian system of soil classification, 1978). The C/N ratio ranges between 32-52 in the organic horizon. Soil depth ranges from 0 cm to more than 100 cm with an average of 38 cm (Kjønaas et al. 1992, Stuanes et al. 1992).

The Gårdsjön area receives moderately high deposition of sulphate, nitrate and ammonium; 14-year mean (minimum and maximum) throughfall inputs at the nearby F1 CONTROL catchment for 1979 - 1992 were 25.0 (18.9 to 31.6) kg SO₄-S ha⁻¹ yr⁻¹, 7.3 (4.6 to 11.7) kg NO₃-N ha⁻¹ yr⁻¹ and 4.8 (2.4 to 7.7) kg NH₄-N ha⁻¹ yr⁻¹, respectively.

3.2 Experimental design

Increased atmospheric deposition of nitrogen is simulated by weekly experimental additions of ammonium nitrate solution at a rate of about 35 kg N ha⁻¹ yr⁻¹. NH₄NO₃ is dissolved in de-ionised water and applied by means of 270 ground-level sprinklers installed in a 5x5 m grid over the whole catchment. Additions are done weekly in amounts proportional to the volume of ambient throughfall which occurred the previous week. The additional water comprises about 5% of total throughfall volume. The average ammonium nitrate addition is in 1.4 mm of water and added during 30 minutes. This amount and intensity was chosen such that hydrologic discharge is not affected on an event or an annual basis.

3.3 Methods and data for the forest G2 NITREX 1990 and 1930

The year 1930 was chosen as starting point for this model application. At this time N deposition was much lower than present-day and the forest was well-established.

Values for C and N pools and fluxes for the reference year 1990 were obtained from input-output measurements reported by Moldan et al. (1995), and measurements of tree biomass, litterfall, soil N transformation and soil chemistry reported by Kjønaas et al. (in press).

3.3.1 Pools 1990

Trees:

The total standing biomass was determined using Marklund's biomass functions for pine and spruce separately (Marklund, 1988), with diameter at breast height (dbh) and height of the trees, height to the lowest green branch and site index as input parameters (Kjønaas et al., in press). The various components were divided into a structural "bole" component and an active "crown" component. The active component was calculated as the sum of needles, twigs (1/3 of total branch estimates), and fine roots less than 5 mm. The calculated fine root (< 5 mm) is 3 times the fine root (< 1 mm) biomass reported by Clemmensson-Lindell and Persson (1995). The structural component was calculated as total biomass minus the active component. Total biomass of 1990 was estimated at 155 ton ha⁻¹; 131 and 24 for the active "crown" and structural "bole" pools, respectively. Assuming 50% C in biomass, the C and N pools were 98.6 and 1.58 mol m^{-2} , respectively, for the active pool and 546 and 1.63 mol m^{-2} , respectively, for the structural pool. To estimate tree increment, height and dbh of all trees were measured in 1990 and re-measured in 1994. Foliage was collected once a year in the autumn from the 7th whorl from the top of the tree. The needles from each branch were sorted by age and analysed for total N. Six spruce trees from each of the three vegetation and soil types in G2 were sampled together with six pine trees. There are as yet no data available for estimation of biomass of the ground vegetation; in any case it is small relative to tree biomass, and has been ignored.

Soil:

Soil organic matter consists of material with decomposition times ranging from days to thousands of years. The MERLIN model simplifies the soil organic matter into 2 fractions: a fraction with relatively rapid turnover time (0-10 years) termed "labile organic matter" and a fraction with longer turnover time (10-100 years) "refractory organic matter". Although these types of organic matter are dispersed throughout the soil both vertically and horizontally, in general litter and forest floor consists of more-rapidly decomposed material, whereas organic matter in deep soil layers consists of older material with slower turnover times. For this model run, all the soil organic matter in the forest floor is taken as labile organic matter (LOM), and the organic matter in the mineral horizon is taken as refractory organic matter (ROM). The presence of a smaller horizon of humified organic matter in the forest floor (LOM) and some fine root litter in the mineral horizon (ROM) has thus been ignored. The major fine root distribution is found in the forest floor. The pool of LOM was based on a mean depth of 10.6 cm, a density of 0.1 kg dm⁻³, 89.7% loss on ignition and 1064 mmol N kg⁻¹ soil. The pool of ROM was calculated using a mean depth of 27.4 cm, a density of 1.12 kg dm⁻³, 4% loss on ignition and 126 mmol N kg⁻¹ soil (Kjønaas et al., 1992). This gave C/N ratios for the LOM and ROM pools of 35 and 32, respectively.

3.3.2 Fluxes 1990

Input-output:

Atmospheric inputs are measured by two bulk precipitation collectors and 28 throughfall collectors. Samples for chemical analysis are collected biweekly or monthly and bulked to one sample. Runoff from the G2 NITREX catchment is gauged continuously. Water samples for chemical analysis are collected weekly or biweekly as flow-proportional samples (grab samples prior to November 1991).

The mean deposition for pre-treatment years 1989-90 of nitrogen was 84 mmol N m⁻² yr⁻¹ (sum of wet precipitation and dry deposition). The output in runoff of inorganic nitrogen from the catchment was zero, while the loss of organic nitrogen was 11 mmol m⁻² yr⁻¹ (Moldan et al., 1995).

Litterfall:

Litter is sampled monthly from 23 collectors arranged in five rows near the throughfall samplers. Samples are bulked according to vegetation and soil moisture regime, dried, weighed and sorted (spruce needles, pine needles, cones and "rest"). The samples are analysed quarterly.

Litter flux was taken as the sum of mean total above-ground litterfall for 1990 and 1991 (11.7 mol C $m^{-2} yr^{-1}$; 187 mmol N $m^{-2} yr^{-1}$) (Kjønaas et al., in press) and a fine root biomass down to 30 cm depth of 220 g m^{-2} (Clemmensson-Lindell and Persson, 1995). Assuming a below-ground yearly litter production equal to the fine-root biomass, this gives a total carbon litter flux of 22.8 mol $m^{-2} yr^{-1}$.

Soil nitrogen transformation processes:

A soil-core incubation technique is used to measure the rate and amount of microbiological conversion of organic-N to ammonium (ammonification) and ammonium to nitrate (nitrification). Net N mineralisation is the sum of net ammonification and net nitrification. Rates are compared between 3 plots under different ground vegetation and moisture regimes. The incubations are made *in situ* with ion-exchange resin bags placed at the bottom of soil cores (DiStefano and Gholz, 1986; Kjønaas and Svensson, in prep.). Resin bags are also placed on the surface adjacent to the cores to estimate the relative contribution of incoming nitrogen. Soil cores are collected before each mineralisation study to measure pre-incubation levels of NH_4 and NO_3 . Ten replicates are used at each plot. Incubations are conducted over 2-month intervals during the growing season (May-June, July-August, September-October) and over 6 months during the winter (November-April). Denitrification rates have been measured by Klemedtsson et al. (in press) using a closed chamber technique, with three chambers placed in each of the three soil moisture regimes.

The mean net N mineralisation rate in the upper 13 cm of the soil was 132 mmol $m^{-2} yr^{-1}$ in 1991 (Kjønaas et al., in press). The level corresponds well with a calculated value of net N mineralisation in the catchment based on uptake minus deposition. Net N₂O production was 1 mmol $m^{-2} yr^{-1}$ in the period 1993 through 1994 (Klemedtsson et al., in press), and thus of minor importance for the total N budget.

3.3.3 Changes in pools and fluxes from 1930 to 1990

Very little information is available on the specific site and stand history over the period 1930 to 1990. The area surrounding lake Gårdsjön has supported a low level of grazing and extensive forestry for centuries, with major cutting of some areas in 1904 (Olsson, 1985). The mean age of the trees in the G2 NITREX catchment was roughly 104 years in 1991 (Kjønaas et al., in press), which suggests only a limited harvesting of trees in this catchment. In addition, reliable time trends are generally available only for bole production in forests, while information is generally lacking on development of the active crown compartment, variation in litterfall and the build-up of soil organic matter within a rotation cycle of a forest. The lack of good historical information on the development of a forest ecosystem is a major source of uncertainty in model calibration and hence predictions of future trends.

Total yearly increment of the tree biomass was calculated from differences in biomass of various tree compartments of 1990 and 1994 (Kjønaas et al., in press). The increment in the structural pool was slightly larger than increments given in production forestry yield class tables for *Picea abies* with similar site index, stand density, and age (Braastad, 1975). The comparable yield table was based on planted forests with 3 thinnings and a relatively intensive management. The relatively large increment found in the period from 1990 to 1994 includes four years of N addition. For this MERLIN application the naturally-generated forest at G2 NITREX catchment was assumed to be at nearly steady-state. Thus, the increment of structural wood was set to ½ the level given in the yield table of Braastad (1975).

The increment of the active "crown" pool is expected to be stable or slightly declining from canopy closure and onwards (Albrektson, 1980). The mean stand age in 1930 was 44 years, and the forest was

assumed be close to canopy closure. Despite of the slight increase measured and estimated from Marklund's biomass models for the period 1990-94, the initial modelling of the active tree pool was based on steady-state. With a stable active "crown" pool, the litter production was also assumed constant over time from 1930 to 1990.

As the active plant pool is considered to be in a steady state and the structural plant pool is set to have a steady but slow increase, the organic matter in the forest floor (LOM) and the mineral soil (ROM) is assumed to go through slow changes, with a build up of the forest floor through litterfall and an approximately equal decrease in ROM. The accumulation of organic matter in the LOM compartment was estimated using a model of Berg et al. (1995) for build up of organic matter in various types of coniferous forests, which includes data for above-ground litterfall and maximum decomposition rates of litter. A conservative value of 8% of above ground total litterfall was taken as the net amount of carbon annually accruing to the organic matter in the LOM pool; this amounts to an annual increase in LOM of 0.1% (about 0.95 molC m⁻² yr⁻¹). The N required to build this LOM pool must come from ROM, as deposition inputs alone are insufficient. ROM is thus assumed to decrease in C from 1321 to 1226 mol m⁻² and n from 40.9 to 38.0 mol m⁻², respectively, over the period 1930 to 1990. The N released from ROM moves to accumulating wood and especially the accumulating forest floor, by means of plant uptake followed by litterfall.

4. Description of MERLIN

MERLIN is a simple process-oriented model focused on simulating and predicting concentrations of inorganic nitrogen in soil leachate and runoff in terrestrial ecosystems (Cosby *et al.* 1997). The model links C and N cycles. The ecosystem is simplified to 2 plant compartments (active biomass such as foliage and roots and structural woody biomass) and 2 soil compartments (labile and refractory organic matter) (Figure 1). The C pools and fluxes are set external to the model. N pools and fluxes are then linked to C by C/N ratios in the pools. Transfer between compartments occurs by processes such as plant uptake, litterfall, immobilisation, mineralisation, nitrification and denitrification. There is no feedback between N status and C fluxes; this would be the next step in complexity. The key to MERLIN is that the rates of these processes are assumed to be governed by C/N ratios in the various pools. MERLIN is comprised of (1) a book-keeping procedure in which inputs and outputs of C and N to the ecosystem and between the 4 compartments are tallied, and (2) a series of simultaneously-operating processes that describe the transfer of C and N between the compartments and out of the ecosystem. The model is designed to function at annual time steps.

Figure 1. A schematic representation of the MERLIN model. Closed arrows represent fluxes of inorganic C; open arrows represent fluxes of inorganic N. Paired closed/open arrows represent fluxes of organic material containing both C and N (from Cosby *et al.* 1997.).

The model deals with NO₃, NH₄ and organic N. N inputs are as atmospheric deposition, fertilisers and N fixation. Time series of all inputs of inorganic N must be specified *a priori*. Nitrification, microbially-mediated transformation of NH₄ to NO₃, is represented in the model by a first-order reaction (1). The rate of loss of NH₄ is the product of a rate constant and the concentration of NH₄ at each time step:

$$FN_{nit} = NIT x (NH_4)_{soil} x SPV$$
(1)

where Fn_{nit} is the nitrifrication loss of NH₄ (mmol m⁻² yr⁻¹), (NH₄)_{soil} is the concentration of NH₄ in soil solution (mmol m⁻³), NIT is the nitrification rate constant (y), and SPV is the pore volume per unit area of the soil (m). Adsorption of NH₄ on the soil matrix is modelled as a non-linear capacity-limited process using a Langmuir isotherm approach. N losses from the system are as inorganic in runoff and as gases (N₂O and N₂) from denitrification.

Plant biomass represents the aggregated pool of C and N present in the active portion of the ecosystem. The time series of net productivity is determined from specified time sequences of plant biomass, litter production and long-term storage such as wood production (Figure 1).

Plant growth requires N uptake from the soil as NH_4 and NO_3 . Uptake is modelled as a non-linear Michaelis-Menten process that depends on the soil water concentration of NH_4 or NO_3 (2).

$$FNx_{upt, plt} = K_{mx, Nx, plt} \quad x \quad \frac{(Nx)_{soil}}{(K_{hlf, Nx, plt} + (Nx)_{soil})}$$
(2)

where $FNx_{upt, plt}$ is the uptake flux of inorganic N species by the plant compartment (mmol m⁻² yr⁻¹), (Nx)_{soil} is the concentration of inorganic N species in soil solution (mmol m⁻³), K_{mx, Nx, plt} is the maximum uptake rate (mmol m⁻² yr⁻¹), and K_{hlf, Nx, plt} is the half-saturation constant (the concentration of inorganic N species at which plant uptake proceeds at half the maximum rate; mmol m⁻³). The maximum uptake rate is assumed to be proportional to the net primary productivity of the plants.

Soil organic material is divided into two compartments: labile organic matter (LOM) and refractory organic matter (ROM). Each is an aggregated pool of C and N representing accumulated organic compounds in the ecosystem. These materials provide the energy substrate for soil micro-organisms, which immobilise and mineralise C and N in soils (Figure 1). Microbial immobilisation of inorganic N is modelled as a non-linear Michaelis-Menten process that depends on the concentration of NH_4 or NO_3 . The maximum immobilisation rate is assumed proportional to microbial secondary productivity.

Litter from the plant compartment enters the LOM pool. C and N leave this pool by decomposition (transformation of organic C to CO_2) and decay (degradation of the quality of the organic material). The decay products are passed on to the next compartment (ROM). Decomposition also occurs in ROM. The model requires input information for litter production, size of the carbon pool stored in LOM, and decomposition of LOM at each time step. In addition the size of the carbon pool stored in ROM is required.

These compartments and fluxes are highly aggregated. Conceptually the LOM pool represents that fraction of soil organic matter with relatively short turnover time (0-10 years), whereas ROM represents the fraction of soil organic matter with longer turnover time. The LOM pool may be most readily identified with the forest floor, but organic matter such decaying roots are also LOM and are found in deeper soil layers. LOM provides a soil organic matter compartment that can respond rather quickly to changing external conditions and inputs. The ROM pool, on the other hand, represents the bulk of C and N present in the rest of the soil profile. The long-term storage losses from the ROM represent losses of organic matter through leaching of dissolved organic compounds in drainage waters or peat formation.

Inputs required for MERLIN are temporal sequences of: 1) C fluxes and pools, 2) hydrologic discharge, and 3) external sources of inorganic N. Initial conditions (amounts of C and N) must be specified for each compartment. A number of «constants» (e.g. uptake parameters) are needed to specify the N dynamics of the organic compartments, and characteristics of the soils must be given (depth, porosity, bulk density, anion/cation exchange characteristics).

Outputs from MERLIN include: 1) concentrations and fluxes of NH_4 and NO_3 in soil water and runoff; 2) total N contents of the various compartments; 3) the C/N ratios of the aggregated plant and soil compartments; and 4) estimates of important processes in the N cycle (i.e. uptake, gross and net mineralisation and immobilisation).

5. Calibration procedure

The first step in calibration of MERLIN to a new site involves the compilation of C and N pool and flux data for the site at the present-day (termed reference year) and at one or more points in time in the past. Generally the model is run for 50-100 years starting at a point in time (termed background year) at which the N deposition is low and constant (often the assumed background level). The necessary data are collected in a spreadsheet by which the entire C and N cycles are calculated and checked for internal consistency. For this calibration at Gårdsjön such spreadsheets for the background year 1930 and the reference year 1990 were compiled (Appendix A).

The next step is to define the time sequences of changes of pools and fluxes. For this application the changes assumed were in the LOM pool (by increasing in C 0.95 mol $m^{-2} yr^{-1}$ with C/N ratio of the ambient LOM, Appendix A), the wood pool (by increasing 3.55 mol $m^{-2} yr^{-1}$ with C/N ratio of 336, Appendix A), and the N deposition (increasing from 1930 to 1990 following estimates of A. Semb NILU, pers. comm.). Changes in ROM pool are calculated by MERLIN at each time step to balance the carbon budget.

Calibration of MERLIN then involves adjusting the parameters for the 3 N uptake functions: plants, LOM and ROM. The position of the Michaelis-Menten uptake curve (C/N reference), the steepness of the curve (half-width and C/N optimum) and the height of the curve (reference K2) can be adjusted. For each trial the model is run from starting values in 1930 to 1990 and the suitability of the calibration is subjectively judged with respect to the best fit for:

(1) carbon pools in 1990 agree with observed;

(2) C/N ratios in the pools in 1990 agree with observed;

(3) changes in C/N ratios over the 60-year period are acceptable;

(4) N output (stream) over the 60-year period is acceptable.

A print-out of the parameter values and table of pools and fluxes for the Gårdsjön G2 NITREX calibration is given in Appendix B.

The calibrated model is then used to predict the changes following N additions of the NITREX experiment. Because very little happens with N cycling and fluxes in the forest ecosystem during the hindcast period 1930 to 1990, the model is poorly constrained. There are many possible sets of parameters that will give a satisfactory fit to the measured 1990 data. This is in contrast to the MERLIN calibration at Aber forest in Wales, UK, where the model had to correctly fit the complicated history of the site (former moorland ploughed and planted with a 30-year old vigorously growing forest) (Emmett et al. in press).

At Gårdsjön the final calibration therefore made use of results from the first 4 years of N additions (1991-1994). The measured deposition and hydrologic discharge values were used to drive the model for the years 1989-94 (period of observation). Here the focus is on changes in N concentrations in streamwater, and the additional constraint was provided by the 4-year record of N leaching in response to the N additions (Table 1) (Moldan and Wright in press). The data suggest a slow but accelerating increase in N flux in runoff, and this is obtained by adjusting the parameters of the function for immobilisation in LOM.

The calibrated model is then evaluated with the runoff data for the 5th and 6th years of treatment (1995 and 1996) (F. Moldan, pers. comm.). The year 1995 was unusually dry, and this is reflected in lower deposition (less N added) and lower runoff of N in both the model and measuremnts. The year 6 was hydrologically normal, yet the measured runoff flux of N was only 12 mmol m⁻² yr⁻¹, about the same level as 1994 and 1995. MERLIN predicts a much higher flux than observed.

Table 1. Fluxes of nitrogen species in throughfall (tf) and runoff during the 2-year pre-treatment period April 1989 - March 1991 (denoted 1989 and 1990), and 6 years of treatment April 1991 - March 1997 (1991, 1992, 1993, 1994, 1995, 1996) at catchments F1 CONTROL and G2 NITREX. Data from Moldan and Wright (in press) and F. Moldan (pers. comm.). Units: $mmol_c m^{-2} yr^{-1}$ (1 $mmol_c = 1 meq$; 1 $mmol m^{-2} yr^{-1} = 0.14 \text{ kg ha}^{-1} yr^{-1}$).

			F1 CON	NTROL			G	2 NITRE	X
		NO3		NH4		NO3		NH4	
		in	out	in	out	in	out	in	out
		tf	runoff	tf	runoff	tf	runoff	tf	runoff
pre-treatme	ent								
1	1989	66	1	37	0	63	0	33	0
]	1990	51	0	26	0	42	0	21	0
treatment									
1	1991	56	1	32	0	169	2	151	1
1	1992	51	0	22	1	185	4	159	1
1	1993	36	1	17	2	194	17	184	2
1	1994	51	1	28	1	221	21	197	3
]	1995	41	0	22	1	149	9	134	4
]	1996	57	0	48	0	194	11	185	1

6. Results and discussion

The forest history at Gårdsjön is somewhat uncertain. Part of the forest was possibly cut about 1904 and the present stand has developed with relatively little cutting since (Olsson 1985). The year 1930 was chosen as the start of the calibration as at this time the forest was presumably close to canopy closure, but the large increases in nitrogen deposition had not yet begun. The results of the calibration thus reflect a relatively stable situation from 1930 to the onset of increased N deposition in 1950 (Figure 2a), at which time N concentration of the 3 pools (plants, LOM and ROM) start to change Figure 2b).

As the forest slowly grows and matures during the 60-year period 1930-90, a small amount of N is stored in the boles of the trees (0.6 mol m⁻²) and lost as dissolved organic N (DON) to runoff (0.7 mol m⁻²). The forest floor is assumed to build thus increasing the N stored in LOM by 3.7 mol m⁻². The N required comes in part from N deposition (2.5 mol m⁻²), via immobilisation and release of deposited N in the forest floor, and the remainder is assumed to come from ROM (2.6 mol m⁻²) (Table 2).

Figure 2. Results of MERLIN calibration and prediction for G2 NITREX catchment at Gårdsjön. Panel A. Deposition and runoff. Panel B. C/N ratios in the 3 pools. Panel C. Gross mineralisation and immobilisation in LOM and ROM.

Table 2. Nitrogen pools in 4 key years (1930 prior to increased N deposition, 1990 prior to NITREX treatment, 1995 after 5 years of N additions, and 2030 after 40 years of N additions) and total fluxes between the years as measured (1990) and estimated by MERLIN (1930, 1995 and 2030). Units: mol m^{-2} .

	1930	1990	1995	2030
plants	1.5	1.6	1.6	1.6
LOM	7.6	11.3	12.9	17.8
ROM	50.6	38.0	38.0	37.6
pools	+1.2	+1.6	+4.5	
🖓 wood	+0.6	+0.1	+0.4	
♦ loss DON	+0.7	0	+0.4	
deposition	2.5	1.7	12.9	
♦ runoff	0	0.1	7.4	

This "mining" of ROM to supply the N necessary for growth of the trees and to build forest floor is probably a natural feature of boreal forests (Johnson 1992). A "mining" of ROM during a life cycle was also suggested in a study of N content in the soil profile under Norway spruce at Nordmoen, Norway, of different stand ages (Sogn et al., in prep.). Presumably N is translocated from ROM to LOM via the plants (uptake then litterfall) during the entire aggrading phase of the forest, and then returned to ROM (via LOM) following natural disturbance such as forest fire or windthrow, in addition to the slow transport of dissolved organic N down through the soil profile. In any case most forests retain the N in the system very efficiently, such that in the absence of excess N deposition there is very little N entering the system and very little lost.

The reconstructed N cycle for the year 1930 at Gårdsjön G2 NITREX catchment reflects the assumption that the forest is slowly aggrading but is otherwise at steady-state (Appendix A). The small amounts of N required for wood production (11 mmol $m^{-2} yr^{-1}$) and lost annually as DON in runoff (11 mmol $m^{-2} yr^{-1}$) are compensated by small ("background") deposition of N (13 mmol $m^{-2} yr^{-1}$) and mining of ROM (8 mmol $m^{-2} yr^{-1}$).

Measurements of mineralisation provide another constraint for the calibration of MERLIN. Net mineralisation in LOM in 1990 is estimated at 132 mmol m⁻² yr⁻¹ (Kjønaas et al., in press), somewhat lower than the simulated value of 250 mmol m⁻² yr⁻¹ given by MERLIN (Figure 2). The predicted net mineralisation of 1995 is, however, lower than the values indicated by *in situ* mineralisation studies in 1995 (Kjønaas and Svensson, in prep). The predicted net mineralisation of ROM decreases from 1990 onwards, while the gross mineralisation stays fairly constant (Figure 2). The mechanisms controlling these processes are not clear, and another possibility could be a reduction in gross mineralisation along with a lower N immobilisation than indicated by the model. The result would be a similar reduction in net mineralisation. This process would be in accordance with Berg (1986) who found a decrease in decomposition of old lignin-rich organic substances with increased nitrogen availability.

The calibrated model indicates that most of the changes in N leached are related to changes in N status of LOM. Very little of the added N goes to the plants. This is in accordance with measured N concentration in needles, where no response to N addition was observed between 1990 and 1995 (Kjønaas et al., in press). The steady state from 1990 to 2030 reflects partially an old forest with slow growth, and partially an expected gradually dieback of older trees in the catchment. The understorey

vegetation has not been included in this model run, and a small fraction of the added N probably is taken up by the understorey vegetation. Nevertheless, most of the added N goes to LOM. The ROM pool is relatively large and reacts so slowly that it is not expected to have a significant impact over the short term (1-10 years).

Leaching of dissolved inorganic nitrogen (DIN) started at the onset of N addition in 1991 and increased steadily during the 4 treatment years used for calibration of the model (Figure 3). The simulated leaching of DIN continues this trend. Several factors affect the leaching of DIN. The amount of N applied, the hydrological status of the catchment at the time of addition, and the discharge level, are all factors of importance for the outflux of DIN on a short term basis (Moldan and Wright, in press). In addition, the increased N in runoff does not reflect the ecosystem's nitrogen status, as the forest system has had a limited time to respond to the sudden dramatic nitrogen addition. On a long term basis, it is the change in major processes such as the ratio of gross NH₄ and NO₃ immobilisation to gross mineralisation, and the soil C/N ratio that is expected to determine the leaching level (Aber, 1992).

The calibrated model correctly predicts the measured N flux in runoff in 1995, the 5th year of treatment. That year was unusually dry, with lower N deposition and very low runoff. The following year 1996 was hydrologically normal, and MERLIN predicts a resumption of the trend of increasing N flux in runoff, but the measured flux was only 12 mol N m⁻², about the same level as 1994 and 1995. We have no explanation for the low measured flux in 1996. Additional years of treatment are necessary to determine whether the increasing trend is broken, and to fully evaluate the predictive capabilities of MERLIN.

A difference between predicted and measured N leaching from the G2 NITREX catchment may partially reflect differences between calibrated and observed C/N ratio in the forest floor. The model uses the C/N measured in forest floor as a proxy for the C/N ratio of the actual substrate used by soil microbes. In the MERLIN model, significant leaching occurs as the C/N ratio in LOM is decreased from the 1990 value of about 31 to about 25. This relation between C/N ratio and N leaching agrees with the general results from the European NITREX sites, at which it appears that significant N leaching occurs at sites with low C/N ratios in forest floor (high N status), and little or no N leaching at sites with high C/N ratios in forest floor (low N status) (Gundersen et al., in press) (Figure 4).

Emmett et al. (In press) point out that the MERLIN model may be used for predictive purposes as long as there is no major biological change that would be expected to cause a change in relationships between the uptake by the plants and soil and their C/N ratios. The onset of nitrate leaching from the Gårdsjön NITREX catchment was induced mainly by adjusting the C/N optimum from 30 to below 25 in the calibration. The time needed for a system to change from being N limited, indicated by high C/N in LOM, to a N rich system, with a C/N below 25, is uncertain, and the processes that govern the transition are not fully understood. Both the rate and capacity of nitrogen assimilation as well as the response of the carbon dynamics are inadequately known. An investigation of the N content and C/N ratio under different stand ages of Norway spruce at Nordmoen near Oslo, Norway, showed no changes in the C/N of LOM within a rotation cycle (Sogn et al, in prep). A change in the soil C/N seemed to take place fairly slowly even with large additions of fertiliser N (Sogn et al, in prep). Assuming a constant carbon pool and an annual N input and assimilation of 50 kg N ha⁻¹ yr⁻¹ in the Gårdsjön NITREX catchment, a decrease in the C/N ratio from 35 to 25 will take approximately 60 years (Figure 4). Since the gradual change of the target C/N ratio is uncertain, and this value is needed as a parameter for predictive purposes of nitrate leaching connected to ecosystem changes, the model has a limited ability to predict N "saturation" in Scandinavian coniferous forests with high C/N ratios. A sensitivity analysis is needed, along with further testing on a variety of forest ecosystems evaluate the utility of the model.

The results from MERLIN indicate trends in N pools and fluxes in plants, soil and runoff compatible with independent measurements including other N experiments at NITREX sites and elsewhere. In general these all show that most of the added N goes to LOM, that foliage shows a moderate and

Figure 3. Top panel: Deposition and output fluxes of inorganic N at the catchment G2 NITREX as measured (Moldan and Wright, in press), calibrated (1989-1994), and simulated by MERLIN (1995-2000). Deposition value used in MERLIN for 1996 onwards was post-treatment mean (1991-96). Bottom panel: N flux in runoff measured and modelled for the 6 years of treatment.

Figure 4. N flux out and ratio of output to input of inorganic N at forested sites in Europe in the 1990's (data from the ECOFEE data base of P. Gundersen, pers. comm.) and as predicted by MERLIN for the Gårdsjön NITREX catchment from the year 1990 to the year 2030.

delayed response, and that leachate is a significant path for excess N in N-rich systems receiving high N deposition (Tietema et al. in press). This application of MERLIN corroborates the calibration at Aber forest (Emmett et al., in press) in that both point to the basic lack of sufficient information on C and N cycling in forests and especially the changes in pools and fluxes during cycles of forest growth and harvesting. Traditional forest studies focus on wood production. Litter production, build-up of LOM and changes in ROM over the lifetime of a forest are poorly known. Studies such as the survey of Sitka spruce stands of different ages in Wales (Emmett et al. 1993, Stevens et al. 1994) are urgently required for other major tree species such as Norway spruce and Scots pine.

The model is a useful tool for bookkeeping of nitrogen pools and fluxes, and it is an important contribution to further development of qualitative understanding of the N cycle in forests. As this application to G2 NITREX catchment at Gårdsjön is only the second site at which the model has been used, it is yet pre-mature to make generalisations on the utility and robustness of the model. Future applications scheduled include other NITREX sites (Speuld in the Netherlands, Klosterhede in Denmark), the RAIN/CLIMEX site at Risdalsheia in Norway, and several sites in North America (Smoky Mountain Nation Park, Tennessee, USA, and Bear Brook, Maine, USA). Together these applications should reveal whether only a narrow range of values for key parameters can satisfactorily explain the observed ecosystem effects, and in particular whether the major aspects of ecosystem behaviour following changes in N deposition can be accounted for by changes in mineralisation and immobilisation in LOM.

7. Acknowledgements

We thank F. Moldan and A. Stuanes for professional assistance and K. Nadelhoffer for useful comments. This research was funded principally by the Norwegian Research Council (NFR) (108044/720, TVLF 95-26/95-25) and in part by the Swedish Environmental Protection Board (SNV), the Commission of European Communities (EV5V-CT930264 and EV5V-CT940436), the U.S. Department of Energy through contract DE-FG02-92ER30196 with E & S Environmental Chemistry, Inc., the Norwegian Institute for Forest Research (NISK), and the Norwegian Institute for Water Research (NIVA)

8. References

- Aber, J.D., Nadelhoffer, K.J., Steudler, P. and Melillo, J.M. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378-386.
- Aber, J.D 1992. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Tree, 7: 220-223.
- Albrektson, A., 1980. Total tree production as compared to conventional forestry production. In: Persson, T. (ed.) Structure and Function of Northern Coniferous Forests - An Ecosystem Study, Ecol. Bull. (Stockholm) 32: 315 -327.
- Berg, B., 1986. Nutrient release from litter and humus in coniferous forest soil a mini review. Scand. J. For. Res. 1: 359-369.
- Berg, B., McClaugherty, C., Vizero De Santo A., Johansson, M.-B. and Ekbohm, G., 1995. Decomposition of litter and soil organic matter - Can we distinguish a mechanism for soil organic matter buildup? Scand. J. For. Res. 10: 108- 119.

- Braastad, H., 1975. Yield tables and growth Models for *Picea abies*. Reports of the Norwegian Forest Research Institute, 31.9.
- Canadian system of soil classification, 1978. Canada Soil Survey Committee, Subcommittee on Soil Classification. Can. Dep. Agric. Publ. 1646. Supply and Services, Canada, Ottawa, Ont. 164 pp.
- Clemensson-Lindell, A. and Persson, H. 1995. Fine-root vitality and distribution in three catchment areas at Gårdsjön. Forest Ecol. Manage. 71: 123-132.
- Cosby, B.J., Ferrier, R.C., Jenkins, A., Emmett, B.A., Tietema, A. and Wright, R.F. 1997. Modelling the ecosystem effects of nitrogen deposition at the catchment scale: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN). Hyrdol. Earth System Sci. 1: 137-158.
- Dise, N.B. and Wright, R.F. 1995. Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecol. Manage. 71: 153-162.
- DiStefano, J.Fco. and Gholz, H.L. 1986. A proposed use of ion exchange resins to measure nitrogen mineralisation and nitrification in intact soil cores. Commun. Soil Sci. Plant Anal. 17: 989-998.
- Emmett, B.A., Cosby, B.J., Ferrier, R.C., Jenkins, A., Tietema, A. and Wright, R.F. In press. Modelling the ecosystem effects of nitrogen deposition: Simulation of nitrogen saturation at a Sitka spruce forest, Aber, Wales, UK. Biogeochemistry.
- Emmett, B.A., Reynolds, B., Stevens, P.A., Norris, D.A., Hughes, S., Görres, J. and Lubrecht, I. 1993. Nitrate leaching from afforested Welsh catchments - interactions between stand age and nitrogen deposition. Ambio 22: 386-394.
- Gundersen, P., Emmett, B.A., Kjønaas, O.J., Koopmans, C.J., and Tietema, A. In press. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecol. Manage.
- Johnson, D.W. 1992. Nitrogen retention in forest soils. Jour. Environ. Quality 21:1-12.
- Klemedtsson, L., Kasimir Klemedtsson, Å., Moldan, F., and Weslien, P. In press. Nitrous oxide emission in Swedish forest soils in relation to liming and simulated increased N deposition. Biol. Fert. Soils.
- Kjønaas, O. J., Stuanes, A. O. and Huse, M., 1992. Soils and soil solution. In: Dise, N. B. and Wright, R.F. (eds.) NITREX Gårdsjön. Status report for 1990-91. Norwegian Institute for Water Research, NIVA, Oslo, pp. 23-29.
- Kjønaas, O. J., Stuanes, A. O., and Huse, M., In press. Effects of chronic nitrogen addition on N cycling in a coniferous forest catchment, Gårdsjön, Sweden. Forest Ecol. Manage.
- Kjønaas, O.J. and Svensson, B. In prep. Nitrogen mineralisation and nitrification affected by weekly nitrogen additions to a forested catchment, Gårdsjön, Sweden.
- Marklund, L.G., 1988. Biomass functions for pine, spruce and birch in Sweden. Sveriges Lantbruksuniversitet, Institut for Skogstaxering, 45, 73 pp.
- Moldan, F., Hultberg, H., Nyström, U. and Wright, R.F. 1995. Nitrogen saturation at Gårdsjön, SW Sweden, induced by experimental addition of nitrogen. Forest Ecol. Manage. 71: 89-97.

- Moldan, F. and Wright, R.F. In press. Changes in runoff chemistry after five years of N addition to a forested catchment at Gårdsjön, Sweden. Forest Ecol. Manage.
- Nygaard, P.H., Huse, M. and Stuanes, A.O. 1993. Vegetation. In: R.F. Wright (Editor), NITREX project-Gårdsjön. Status report for 1991-92: the first year of treatment. Norwegian Institute for Water Research, Oslo, p. 33-38.
- Olsson, B. 1985. Land-use history of the Lake Gårdsjön area, SW Sweden. Ecol. Bull.(Stockholm) 37: 35-46.
- Olsson, B., Hallbäcken, L., Johansson, S., Melkerud, P.-A., Nilsson, S.I. and Nilsson, T. 1985. The Lake Gårdsjön area physiographical and biological features. -Ecol. Bull.(Stockholm) 37: 10-28.
- Sogn, T., Stuanes, A.O. and Abrahamsen, G. In prep. N accumulation in soil: Variation due to stand age and N deposition.
- Stevens, P.A., Norris, D.A., Sparks, T,H, and Hodgson, A.L. 1994. The impacts of atmospheric N inputs on throughfall, soil and stream water interactions from different aged forest and moorland catchments in Wales. Water Air Soil Pollut. 73:297-317.
- Stoddard, J.L. 1994. Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. p. 223-284, In: Baker L (ed) Environmental Chemistry of Lakes and Reservoirs. Advances in Chemistry Series, No. 237, American Chemical Society, Washington, DC.
- Stuanes, A.O., Andersson, I., Dise, N., Hultberg, H., Kjønaas, J., Nygaard, P.H. and Nyström, U. 1992. Gårdsjön, Sweden. p. 24-34, In: N.B. Dise and R.F. Wright (eds.), The NITREX project (Nitrogen saturation experiments). Ecosystems Research Report 2, Commission of the European Communities, Brussels.
- Stuanes, A.O. and Kjønaas, O.J., In press. Soil solution effects after four years addition of NH₄NO₃ to a forested catchment at Gårdsjön, Sweden. Forest Ecol. Manage.
- Tietema, A., Emmett, B.A., Gundersen, P., Kjønaas, O.J., and Koopmans, C.J. In press. The fate of ¹⁵N-labelled nitrogen deposition in coniferous forest ecosystems. Forest Ecol. Manage.
- Wright, R.F., Brandrud, T.E., Clemensson-Lindell, A., Hultberg, H., Kjønaas, O.J., Moldan, F., Persson, H. and Stuanes, A.O. 1995. NITREX project: ecosystem response to chronic addition of nitrogen to a spruce-forested catchment at Gårdsjön, Sweden. <u>In</u>: Staaf, H., and Tyler, G. (eds.) Effects of Acid Deposition on the Terrestrial Environment of Sweden, Ecological Bulletins (Copenhagen) 44: 322-334.
- Wright, R.F. and van Breemen, N. 1995. The NITREX project: an introduction. Forest Ecol. Manage. 71: 1-6.

Appendix A. C and N mass balances used in MERLIN

Shown are spreadsheets for 2 key years, 1930 and 1990.

Table 1 shows year 1930, the start of the hindcast period at which time the forest was about 40 yearsold, probably had reached canopy closure, and was in a state of slow aggradation.

Table 2 shows the year 1990, the end of the hindcast period and last year prior to N addition. Now the forest is about 100 years-old and still slowly aggrading.

The C and N cycles are calculated from measured (or estimated) values for several parameters. These are shown in **bold** and include estimates for C and N contents of the 2 plant and 2 soil compartments outlined in bold at the centre, the annual C increment to these pools (left-hand column), and the deposition and leaching (right-hand column). In addition the fractions of total mineralisation occurring in LOM and ROM must be specified. All other values are calculated from these, either from mass-balance considerations or from assumptions about C/N ratios. The column at the left shows the annual incremental change in the pools, the next column gives the fluxes between the pools. The columns to the right of the pools show the sinks and sources. The details of the calculations are given in Table 3.

increment 3.55 0.011 3.6.4 1.0.00 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.000 1.0.0000 1.0.0000 1.0.0000 1.	production 26.35	2000							
3.55 Net primary 0.011 C 336.4 C Plants Litter above 0.000 C	production 26.35	Wood stoc	×		Inorganic N	_			
0.0011 C C C 336.4 Iants C C C C C C C C C C C C C C C C C C C	26.35	U	333					and the second sec	
336.4 336.4 Interview 1000 C C C C 1000 C C C C C C C C C C C		z	0.99		Sinks		Sources		
ants 0 0.000 64.0 C	the set of the set of the set of the	C/N	336.4				20000		
0 0.000 64.0 C		Plants (act	tive pool)	and the second se	Uptake	lon		Denosition	
0.000 Litter above 64.0 C		U	98.6		Z	0 367			~
64.0 C	& below	z	1.54	and a second		1000		0.0	,
	22.80	C/N	64.0		Immobilisati	on LOM		Mineralization %	WO 1 9
Z	0.356				z	0.306		0.75	
OM C/N	64.0	LOM (fore	ist floor)					Groce/Net calc	WO
0.95		0	309	Decompo	sition LOM			2.15	
0.026 Decay LOM		z	8.4	0	21.00				
36.8 C	0.85	C/N	36.8	z	0.571		Net Miners	lisation LOM	
z	0.023			C/N	36.8		z	0.265	
OM	36.8	ROM (refra	actory OM)						
-1.58		o	1321		Immobilisati	on ROM			
-0.049 Export RON	1 (orgC,N)	z	40.9		z	0.02	and the second second second	And it is not an address of the state of the	
32.3 C	0.36	C/N	32.3					Gross/Net calc.	ROM
CN	0.011 32.3			Decompo C	sition ROM 2.07			0.73	1
				z	0.064		Net Minera	lisation ROM	
				C/N	32.3		z	0.088	
ata inputs	and the second se		and the second sec						
calculated from C/N, or assumed same talics: calculated	C/N as source pool				Leaching				

Pool change FII Wood increment C 3.55 NK N 0.011 C				Zm/lom	Year:	1990		ดสเนรา	70 10	
Wood increment Ne C 3.55 Ne N 0.011 C C/N 335.0 C	luxes		Pools							
C 3.55 Ne N 0.011 C	*		Wood sto	сk		Inorganic	z			
N 0.011 C	let primary	/ production	J	546						
C/N 335.0		26.35	z	1.63		Sinks		Sources		
-			C/N	335.0						
delta Plants			Plants (ac	tive pool)		Uptake	lom		Deposition	
0			0	98.6		z	0.376		z	0.084
V 0.000 Lit	itter above	e & below	z	1.58	•					
C/N 62.4 C		22.80	C/N	62.4		Immobilis	ation LOM		Mineralizat	ion % LOM
Z		0.365				z	0.379		0.75	
delta LOM	N/S	62.4	LOM (for	est floor)					Gross/Net	calc.LOM
0.95			U	397	Decompo	osition LOM			2.73	
V 0.027 Dt	Decay LON	V	z	11.3	0	21.00				
C/N 35.1 C		0.85	C/N	35.1	z	0.598		Net Miner	alisation LOI	Σ
2	-	0.024			C/N	35.1		z	0.219	
delta ROM	N/S	35.1	ROM (ref	ractory OM)			1			
-1.58			0	1226	the second s	Immobilis	ation ROM			and the second se
N -0.049 E)	Export ROI	M (orgC,N)	z	38.0		z	-0.01	10	1	
C/N 32.3 C		0.35	C/N	32.3					Gross/Net	calc.ROM
Z	-	0.011			Decompo	Disition ROM			0.88	
Ũ	N/S	32.3			0	2.08				
					z	0.064		Net Miner	alisation RO	Σ
					C/N	32.3		z	0.073	
Bold: data inputs										
Italics:calculated from C/N, or assur	med same	e C/N as source pool				Leaching	2		100 C	-

2	3
2	ň
	-
	_
- 3	õ
1	2
- 8	ສີ
-	m
	ñ

Appendix B. Parameter values for calibration of MERLIN to Gårdsjön G2 NITREX

MERLIN: MODEL OF ECOSYSTEM RETENTION AND LOSS OF INORGANIC NITROGEN
WUUW//////////////////////////////////
//////////////////////////////////////
////////xxx/////////xxx//x//x//xxx///
//////XXXXX/////X//XXXXX//XXXXX///XXXXX////
//////xxxxx//////xxx///////xxx////////
/////XXXXXXX ////XXX XXXX
~≈~≈~≈~≈~≈~×XXXXXXXXX XXXXX
້≈້≈້≈້≈້ XXXXXXXXX ──────────────────────────
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~≈~≈~≈ MERLIN VERSION 3.33 (31 OCT 94)
~x~x

FOUR PROCESSES CONTROL INORGANIC NITROGEN SPECIATION AND EXCHANGE BETWEEN BIOMASS POOLS AND THE SOILS.

UPTAKE: REMOVAL OF NO3 AND NH4 FROM SOIL BY AUTOTROPHS (CAN BE FROM BOTH SOILS) IMMOBILIZATION: REMOVAL OF NO3 AND NH4

- BY HETEROTROPHS (FROM UPPER SOIL ONLY) MINERALIZATION: RELEASE OF NH4 INTO SOIL
- (TO THE UPPER SOIL ONLY) NITRIFICATION: CONVERSION OF NH4 TO NO3 (CAN OCCUR IN BOTH SOILS)

UPTAKE AND IMMOBILIZATION ARE NONLINEAR FUNCTIONS OF SOIL N CONCENTRATION, C/N OF BIOMASS, AND CARBON PRODUCTIVITY MINERALIZATION IS A LINEAR FUNCTION OF DECOMPOSITION AND C/N OF BIOMASS

SEVEN FLUXES CONTROL THE CARBON CONTENT OF THE AGGREGATED BIOMASS POOLS.

- -(NPP) NET PRIMARY PRODUCTION
- (WP) WOOD PRODUCTION
- -(LTR) LITTER PRODUCTION
- (DCY) DECAY OF LABILE ORGANIC MATTER,
- CONVERTED TO REFRACTORY ORGANIC MATTER - (DCMP1 & DCMP2) DECOMPOSITION OF LABILE
- AND REFRACTORY ORGANIC MATTER
- -(EXP) ORGANIC MATTER EXPORT FROM SOIL

CARBON FLUXES (MOL/M2/T) AND/OR POOL SIZES (MOL/M2) MUST BE SPECIFIED. CARBON FLUXES TRANSPORT NITROGEN BY MOVING ORGANIC-N ALONG WITH CARBON IN THE RATIO OF C/N IN THE SOURCE BIOMASS (OR BY USING A SPECIFIED C/N RATIO).





HINDCAST				
EDI IN VERSION 3 33 (31 (	DCT 0()	PUN DATE = 05/27/97	RUN TIME	= 09:44:41
ERLIN VERSION 3.33 (31 C		KOR DATE - 03/21/11		•••••
TCHMENT = Gards-G2, file:	gard-d4.par			
NDCAST SIMULATION PERIOD =	= 60 YEARS MONTHL	Y VARIATION = N S	START YEAR = 1930	END YEAR = 199
TEGRATION TIME STEP = 0	0.0417 YEARS			
	ROUTING OF F	LOW THROUGH THE CATCHMENT	IS:	
Î	F1 = % RUNO	FF NOT CONTACTING TERREST	RIAL AREAS	
		%MM		
F1	ANNUAL AVE	F1 Q1 Q3 Q 0. 0. 464. 464	4 97	
SOIL				
Q1 STREAM				
97				
MEAN ANNUAL DISCHARGE =	0.464 M/YR			
MEAN ANNUAL DISCHARGE =	0.464 M/YR			
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO	0.464 M/YR DN = 1.000 M/YR			
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO	0.464 M/YR DN = 1.000 M/YR	BACKGRO	und year 1930	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION	PRECIP CONC	UND YEAR 1930 DEPOSITION	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO REFEREN PRECIP CONC (MEQ/M3)	0.464 M/YR DN = 1.000 M/YR ICE YEAR 1990 DEPOSITION FACTOR	PRECIP CONC (MEQ/M3)	UND YEAR 1930 DEPOSITION FACTOR	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO REFEREN PRECIP CONC (MEQ/M3) 42.0	0.464 M/YR DN = 1.000 M/YR ICE YEAR 1990 DEPOSITION FACTOR 1.0	PRECIP CONC (MEQ/M3) 6.5	UND YEAR 1930 DEPOSITION FACTOR 1.0	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO REFEREM PRECIP CONC (MEQ/M3) 42.0 42.0	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 42.0 42.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 5 SET FOR Gards-G2, file: g	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO REFEREN PRECIP CONC (MEQ/M3) 42.0 42.0 5 FOLLOWING CONDITIONS ARE CONSTANT	0.464 M/YR DN = 1.000 M/YR ICE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 SET FOR Gards-G2, file: g	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 42.0 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 E SET FOR Gards-G2, file: g 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT SOIL DEPTH (M) POROSITY (FRAC)	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 0.50 0.45	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 42.0 42.0 42.0 5 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 5 SET FOR Gards-G2, file: 9 0.00 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 1.0 0.50 0.45 ) 1200.00	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 42.0 42.0 5 42.0 5 42.0 5 42.0 5 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 5 SET FOR Gards-G2, file: 9 0.00 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT	LUND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 1.0 0.50 0.45 ) 1200.00 0 0.00	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 4 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 5 SET FOR Gards-G2, file: 9 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT SOIL DEPTH (M) POROSITY (FRAC) BULK DENSITY (KG/M3 NH4 MAX CAP (MEQ/KG NH4 HLF SAT (MEQ/KG NG3 MAX CAP (MEQ/KG	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 0.50 0.45 ) 1200.00 ) 0.00 ) 0.00 ) 0.00	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 4 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 6 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 5 SET FOR Gards-G2, file: 9 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 6.5 gard-d4.par CONSTANT SOIL DEPTH (M) POROSITY (FRAC) BULK DENSITY (KG/M3 NH4 MAX CAP (MEQ/M3 NO3 MAF SAT (MEQ/M3 PORE VOLUME (M)	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 1.0 0.50 0.45 ) 1200.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.22	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 42.0 5 42.0 5 42.0 5 42.0 5 42.0 5 42.0 6 5 42.0 6 5 42.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 SET FOR Gards-G2, file: 9 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 1.0 0.50 0.45 ) 1200.00 ) 0.00 ) 0.00 ) 0.00 0.22 600.00	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIPITATIO PRECIPITATIO PRECIPITATIO PRECIPICANC (MEQ/M3) 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0	0.464 M/YR DN = 1.000 M/YR ICE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 5 SET FOR Gards-G2, file: 9 0.00 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT SOIL DEPTH (M) POROSITY (FRAC) BULK DENSITY (KG/M3 NH4 MAX CAP (MEQ/KG NH4 HLF SAT (MEQ/KG NO3 HLF SAT (MEQ/KG)	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 0.50 0.45 ) 1200.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 42.0 5 42.0 5 42.0 5 FOLLOWING CONDITIONS ARE CONSTANT	0.464 M/YR DN = 1.000 M/YR ICE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 1.0 SET FOR Gards-G2, file: 9 0.00 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 0.50 0.45 1200.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.22 600.00	
MEAN ANNUAL DISCHARGE = MEAN ANNUAL PRECIPITATIO PRECIP CONC (MEQ/M3) 4 42.0 5 42.0 5 42.0 6 FOLLOWING CONDITIONS ARE CONSTANT RETENTION TIME (YR) RELATIVE AREA (FRAC) MEAN DEPTH (M) DLOGICAL PARAMETERS FOR NI AUTOTROPHS (PLANT B NH4 UPT, OPTIMUM C/M	0.464 M/YR DN = 1.000 M/YR NCE YEAR 1990 DEPOSITION FACTOR 1.0 1.0 E SET FOR Gards-G2, file: 9 STREAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	BACKGRO PRECIP CONC (MEQ/M3) 6.5 6.5 gard-d4.par CONSTANT	UND YEAR 1930 DEPOSITION FACTOR 1.0 1.0 1.0 0.50 0.45 ) 1200.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 ) 0.00 HETEROTROPHS (REF.	. ORGANIC) 35.000

NH4 UPT,	REFERNC K2	1000.000	NH4 UPI, REFERNC KZ	1000.000	NH4 UPI, REFERND NZ	1000.000
NH4 UPT.	REFERNC C/N	60.000	NH4 UPT, REFERNC C/N	20.000	NH4 UPT, REFERNC C/N	30.000
NH4 UPT.	C/N HFWD K2	0.200	NH4 UPT, C/N HFWD K2	1.700	NH4 UPT, C/N HFWD K2	0.500
NO3 UPT,	OPTIMUM C/N	80.000	NO3 UPT, OPTIMUM C/N	35.000	NO3 UPT, OPTIMUM C/N	35.000
NO3 UPT,	REFERNC K2	1000.000	NO3 UPT, REFERNC K2	1000.000	NO3 UPT, REFERNC K2	1000.000
NO3 UPT,	REFERNC C/N	60.000	NO3 UPT, REFERNC C/N	20.000	NO3 UPT, REFERNC C/N	30.000
NO3 UPT,	C/N HFWD K2	0.200	NO3 UPT, C/N HFWD K2	1.700	NO3 UPT, C/N HFWD K2	0.500

CATCHMENT = Gards-G2, file: gard-d4.par

DATE = 05/27/97 TIME = 09:44:41 ** PAGE 3 **

FACTOR 0.000 0.000

0.000 0.240 0.650 1.000 1.000

C/N RATIOS FOR ORGANIC NITROGEN TRANSFERS

	C/I	RATIOS (ORGANIC	FLUXES)
C/N	FOR	WOOD PRODUCT	335.000
C/N	FOR	LITTER	0.000
C/N	FOR	DECOMP LOM	0.000
C/N	FOR	DECAY LOM	0.000
C/N	FOR	DECOMP ROM	0.000
C/N	FOR	ORGNC EXPORT	0.000

(SETTING THE C/N FOR ANY FLUX = ZERO CAUSES THE PROGRAM TO USE THE C/N OF THE TOTAL SOURCE BIOMASS POOL TO CALCULATE N TRANSFER

		STREAM	SOIL			
	SOUR	CES	SOUR	CES		
	MEQ/M2/YR	MEQ/M2/YR	MEQ/M2/YR	MEQ/M2/YR		
	BACKGROUND	REFERENCE	BACKGROUND	REFERENCE		
NH4	0.0	0.0	0.0	0.0		
NO3	0.0	0.0	0.0	0.0		
		STRFAM		\$011		
	SIN	KS	SINKS			
	MEQ/M2/YR	MEQ/M2/YR	MEQ/M2/YR	MEQ/M2/YR		
	BACKGROUND	REFERENCE	BACKGROUND	REFERENCE		
NH4	0.0	0.0	0.0	0.0		
NO3	0.0	0.0	0.0	0.0		

(NEGATIVE SINK RATES SET SINKS PROPORTIONAL TO EXTERNAL SOURCES)

	STREAM										-SOIL	
		TEMP	DEG	С	TEMP	DEG	С	ROOT	DEP	%	NITRF	RATE
ANNUAL	AVE		12	.0		12	.0		100	.0	100	0.000

INITIAL CONDITIONS FOR CARBON AND NITROGEN POOLS

INIT PINT C (MOL/M2)	08 600	INIT LOW C (MOL/M2)	005 005	INIT POM C (MOL/M2)	1308 000
INIT PLNT N (MOL/M2)	1,500	INIT LOM N (MOL/M2)	7.500	INIT ROM N (MOL/M2)	40.700
INIT PLNT C/N	65.733	INIT LOM C/N	41.288	INIT ROM C/N	32.138
INIT SOIL NH4 MEQ/M3	1.000	INIT SOIL NO3 MEQ/M3	1.000		

	PLANT	BIOMASS	LAB-OM	BIOMASS	WOOD	PRODUCTION	LITTER	PRODUCTION
NNUAL AVE		98.60000		397.00000		3.55000		22.80000

LAB-OM DECOMPOSITION SOIL ORGANIC EXPORT REF-OM DECOMPOSITION ANNUAL AVE 0.35000 21.00000 1.36000

(NEGATIVE DECOMPOSITION RATES SET DECOMPOSITION PROPORTIONAL TO INPUTS TO THE POOL)



CATCHMENT = Gards-G2, fi	le: gard-d4.par	DATE = 05/27/	97 TIME = 09:44	:41 ** PAGE 4 **
HINDCAST LAB-OM BIO	MASS xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx	x	SEQUEN BREAK - 1 -	CE NAME: niva2 YEAR FACTOR 1930 1.000 1930 0.780 1990 1.000
1930 1940 1950	0 1960 1970 1980	0.0		
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST DRY-DEP FACTOR FOR A HINDCAST SOIL SINKS FOR A HINDCAST STREAM SINKS FOR A HINDCAST SOIL SOURCES FOR A	NY IONS NY IONS NY IONS NY IONS		
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST STREAM SOURCES FOR A HINDCAST SOIL TEMP DEG C	NY IONS		
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST STREAM TEMP DEG C HINDCAST DISCHARGE M/YR HINDCAST ROOT DEPTH % SOIL			
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NHA UPT, OPTIMUM C/N HINDCAST NH4 UPT, REFERNC K2	FOR AUTOTROPHS (PLAN FOR AUTOTROPHS (PLAN	T BIOMASS) T BIOMASS)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NH4 UPT, REFERNC C/N HINDCAST NH4 UPT, C/N HFWD K2 HINDCAST NO3 UPT, OPTIMUM C/N HINDCAST NO3 UPT, PEFERNC K2	FOR AUTOTROPHS (PLAN FOR AUTOTROPHS (PLAN FOR AUTOTROPHS (PLAN FOR AUTOTROPHS (PLAN	T BIOMASS) T BIOMASS) T BIOMASS) T BIOMASS)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NO3 UPT, REFERNC C/N HINDCAST NO3 UPT, C/N HFWD K2 HINDCAST NH4 UPT, OPTIMUM C/N	FOR AUTOTROPHS (PLAN FOR AUTOTROPHS (PLAN FOR HETEROTROPHS (LA	T BIOMASS) T BIOMASS) B. ORGANIC)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NH4 UPT, REFERNC KZ HINDCAST NH4 UPT, REFERNC C/N HINDCAST NH4 UPT, C/N HFWD KZ HINDCAST NO3 UPT, OPTIMUM C/N	FOR HETEROTROPHS (LA FOR HETEROTROPHS (LA FOR HETEROTROPHS (LA FOR HETEROTROPHS (LA	B. ORGANIC) B. ORGANIC) B. ORGANIC) B. ORGANIC)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NO3 UPT, REFERNC K2 HINDCAST NO3 UPT, REFERNC C/N HINDCAST NO3 UPT, C/N HFWD K2 HINDCAST NH4 UPT, OPTIMUM C/N	FOR HETEROTROPHS (LA FOR HETEROTROPHS (LA FOR HETEROTROPHS (LA FOR HETEROTROPHS (RE	B. ORGANIC) B. ORGANIC) B. ORGANIC) F. ORGANIC)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NH4 UPT, REFERNC K2 HINDCAST NH4 UPT, REFERNC C/N HINDCAST NH4 UPT, C/N HFWD K2 HINDCAST NO3 UPT, OPTIMUM C/N	FOR HETEROTROPHS (RE FOR HETEROTROPHS (RE FOR HETEROTROPHS (RE FOR HETEROTROPHS (RE	F. ORGANIC) F. ORGANIC) F. ORGANIC) F. ORGANIC)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST NO3 UPT, REFERNC K2 HINDCAST PLANT BIOMASS HINDCAST WOOD PRODUCTION	FOR HETEROTROPHS (RE	F. ORGANIC)	
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	HINDCAST LITTER PRODUCTION HINDCAST SOIL ORGANIC EXPORT HINDCAST LAB-OM DECOMPOSITION HINDCAST REF-OM DECOMPOSITION			
FORECAST				
MERLIN VERSION 3.33 (3	31 OCT 94)	RUN DATE = 05/27/9	97 RUN	TIME = 09:44:41
CATCHMENT = Gards-G2, fil	le: gard-d4.par			
FORECAST SIMULATION PERIO	DD = 50 YEARS MONTHLY	VARIATION = N	START YEAR = 1991	END YEAR = $2040$

CATCHMENT = Gards-G2, fi	le: gard-d4.par	DATE = 05/27/97 TIME	= 09:44:41	** PAGE 5 **
FORECAST WET DEPOSIT rxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x x x	ION USED FOR: NH4 NO3 XXXXXXXXXXXXXXXXXXXXXXXX		SEQUENCE NA BREAK - 1 2 -	ME: nitrex YEAR FACTOR 1991 1.000 1991 5.000 2040 5.000 2040 0.000
x 1990 2000 2010		0.0		
FORECAST LAB-OM BION	4ASS XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		SEQUENCE NAI BREAK - 1 -	ME: same rate as past YEAR FACTOR 1991 1.000 2040 1.180 2040 1.000
1990 2000 2010 THERE ARE NO CHANGES IN F THERE ARE NO CHANGES IN F	>     2020     2030     2040       FORECAST DRY-DEP FACTOR ORECAST SOIL SINKS     FOR ANY IO       FORECAST STREAM     SINKS     FOR ANY IO       FORECAST SOIL     SOURCES     FOR ANY IO       FORECAST SOIL     SOURCES     FOR ANY IO       FORECAST SOIL     SOURCES     FOR ANY IO	NS NS NS		
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	FORECAST SOIL TEMP DEG C FORECAST STREAM TEMP DEG C FORECAST DISCHARGE M/YR FORECAST ROOT DEPTH % SOIL FORECAST NITRIF RATE SOIL			
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	FORECAST NH4 UPT, OPTIMUM C/N FOR AL FORECAST NH4 UPT, REFERNC K2 FOR AL FORECAST NH4 UPT, REFERNC C/N FOR AL FORECAST NH4 UPT, C/N HFWD K2 FOR AL FORECAST NO3 UPT, OPTIMUM C/N FOR AL FORECAST NO3 UPT, REFERNC K2 FOR AL FORECAST NO3 UPT, REFERNC C/N FOR AL FORECAST NO3 UPT, C/N HFWD K2 FOR AL FORECAST NH4 UPT, OPTIMUM C/N FOR HI FORECAST NH4 UPT, REFERNC K2 FOR HI FORECAST NH4 UPT, C/N HFWD K2 FOR HI FORECAST NO3 UPT, REFERNC C/N FOR HI FORECAST NO3 UPT, REFERNC C/N FOR HI FORECAST NO3 UPT, C/N HFWD K2 FOR HI FORECAST NO3 UPT, C/N FOR HI FORECAST NO3 UPT, C/N FOR HI FORECAST NH4 UPT, C/N FOR HI FORECAST NH4 UPT, REFERNC C/N FOR HI	UTOTROPHS (PLANT BIOMASS) UTOTROPHS (LAB. ORGANIC) ETEROTROPHS (LAB. ORGANIC) ETEROTROPHS (LAB. ORGANIC) ETEROTROPHS (LAB. ORGANIC) ETEROTROPHS (LAB. ORGANIC) ETEROTROPHS (REF. ORGANIC) ETEROTROPHS (REF. ORGANIC) ETEROTROPHS (REF. ORGANIC) ETEROTROPHS (REF. ORGANIC)		
THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN THERE ARE NO CHANGES IN	FORECAST NH4 UPT, C/N HFWD KZ FOR HE FORECAST NO3 UPT, OPTIMUM C/N FOR HE FORECAST NO3 UPT, REFERNC K2 FOR HE FORECAST PLANT BIOMASS FORECAST WOOD PRODUCTION	ELERUIROPHS (REF. ORGANIC) ETEROTROPHS (REF. ORGANIC) ETEROTROPHS (REF. ORGANIC)		

CATCH	MENT	= (	Gards-G2	, fi	le: gard-d	4.par
THERE	ARE	NO	CHANGES	IN	FORECAST	LITTER PRODUCTION
THERE	ARE	NO	CHANGES	IN	FORECAST	SOIL ORGANIC EXPORT
THERE	ARE	NO	CHANGES	IN	FORECAST	LAB-OM DECOMPOSITION
THERE	ARE	NO	CHANGES	IN	FORECAST	REF-OM DECOMPOSITION

DATE = 05/27/97 TIME = 09:44:41

UTPUT FOR	: 1930	ANNUAL AVE						
				TOTAL NITRO	GEN (MEQ/M	2) PER	UNIT AKEA OF COMPARIMEN	
	PRECIP	STREAM	SOIL	INORGANIC-N	STREAM	SOIL	ORGAN I C-N	
(MEQ/M3)				TOTAL				
NH4	6.5	0.1	0.1	NH4	0.0	0.0	LAB-OM	7519.8
NO3	6.5	0.0	0.0	NO3	0.0	0.0	REF-OM	40690.6
<b>EN</b> X	13.0	0.1	0.1	ΣNx	0.0	0.0	TOT-OM	48210.4
(% SAT)				AQUEOUS			PLANTS	1481.4
NHA			0.0	NH4	0.0	0.0	TOTBIO	49691.9
NOT			0.0	NO3	0.0	0.0		
THE			0.0	Thy	0.0	0.0		
241			0.0		0.0		C/N RATIOS	
		12 0	12 0	ADSORBED			PLANTS	66.53
		12.0	100.0	NHA		0.0	LAB-OM	41.18
JOI DEP &	~~~		100.0	NOT		0.0	REE-OM	32.14
TIRF RATE /	TK		1000.0	NUS		0.0	KET OH	
ITRF Kup			225.0	ZNX		0.0		
ITRF %dN			5.0					

INPUT/	OUTPUT FL	UXES (ME	Q/M2/YR)	PER UNIT	AREA OF	CATCHMENT		UPTAKE OF NH4	UPTAKE OF N
	WETDEP	DRYDEP	TOTDEP	SOIL	STREAM	NTFLUX	PLANTS Kup	2780.3	*****
NH4	6.50	0.00	6.50	0.06	0.06	-6.44	LAB-OM	1933.2	3181
NO3	6.50	0.00	6.50	0.00	0.00	-6.50	REF-OM	0.8	0
ΣNX	13.00	0.00	13.00	0.07	0.07	-12.93	PLANTS %dN	54.1	94
Q CM/YR	100.00	0.00	100.00	46.40	46.40	-53.60	LAB-OM	40.3	5
							REF-OM	0.0	0

SOURCE/SINK FLUXES (MEQ/M2/YR) PER UNIT AREA OF COMPARTMENT

SOIL NH4	SINKS	SOURCES	NITRIF -31.05	NETASS 24.41	STREAM NH4	SINKS 0.00	SOURCES
NO3	0.00	0.00	31.05	-37.77	NO3	0.00	0.00
ΣNx	0.00	0.00	0.00	-13.36	ΣNX	0.00	0.00

UPTAKE AND MINERALIZATION FLUXES (MEQ/M2/YR) PER UNIT AREA OF SOIL

		LAB-OM	REF-OM	SOIL-OM	PLANTS	TOTAL
NET ASSIM	NH4	284.57	42.21	326.78	-302.37	24.41
	NO3	-5.23	-0.01	-5.24	-32.53	-37.77
	ΣNx	279.34	42.20	321.54	-334.90	-13.36
UPTAKE	NH4	225.27	0.10	225.38	302.37	527.75
	NO3	5.23	0.01	5.24	32.53	37.77
	ΣNx	230.50	0.11	230.61	334.90	565.52
MINERALIZ	NH4	509.84	42.31	552.15	0.00	552.15
	NO3	0.00	0.00	0.00	0.00	0.00
	ΣΝΧ	509.84	42.31	552.15	0.00	552.15

ORGANIC CARBON AND NITROGEN POOLS (MOLES/M2) PER UNIT AREA OF SOIL

	PLANTS	LAB-OM	REF-OM	SOIL-OM	WOOD	LITTER	EXPORT
С	98.600	309.660	1308.091	1617.751	3.6	22.8	0.3
Ň	1.481	7.520	40.691	48.210	0.0	0.3	0.0
C/N	66.557	41.179	32.147	33.556	335.0	66.5	32.1
	Sec. 1						

	WOOD PRD	LITTER	DCMP LOM	DCAY LOM	DCMP ROM	EXPORT	NT PRMPR
С	3.550	22.800	21.000	1.800	1.360	0.350	26.350
N	0.011	0.343	0.510	0.044	0.042	0.011	0.335
C/N	335.000	66.496	41.189	41.189	32.142	32.142	78.679

					•••••			
OUTPUT FOR:	1990	ANNUAL AVE	I.	TOTAL NITRO	GEN (MEQ/M	2) PER UN	IT AREA OF COMPARTMEN	т
(ME0/M3)	PRECIP	STREAM	SOIL	INORGANIC-N TOTAL	STREAM	SOIL	ORGANIC-N	
NH4	21.0	1.0	1.0	NH4	0.0	0.2	LAB-OM	11269.9
NO3	42.0	0.5	0.5	NO3	0.0	0.1	REF-OM	38041.9
ΣNx	63.0	1.5	1.5	2N×	0.0	0.3	TOT-OM	49311.8
(% SAT)				AQUEOUS			PLANTS	1585.8
NH4			0.0	NH4	0.0	0.2	TOTBIO	50897.5
NO3			0.0	NO3	0.0	0.1		
<b>ZN</b> X			0.0	ΣNX	0.0	0.3		
			10.000				C/N RATIOS	
TEMP DEG C		12.0	12.0	ADSORBED			PLANTS	62.19
ROOT DEP %			100.0	NH4		0.0	LAB-OM	35.29
NITRE RATE /	YR		1000.0	NO3		0.0	REF-OM	32.23
NITRF KUD			225.0	ΣN×		0.0		
NITRE %dN			35.1					

PUT/OUTPUT FLUXES (MEQ/M2/YR) PER UNIT AREA OF CATCHMEN
---------------------------------------------------------

NH4 NO3 SNX Q CM/YR	WETDEP 21.00 42.00 63.00 100.00	DRYDEP 0.00 0.00 0.00 0.00	TOTDEP 21.00 42.00 63.00 100.00	SOIL 0.43 0.20 0.63 42.30	STREAM 0.44 0.20 0.64 42.30	NTFLUX -20.56 -41.80 -62.36 -57.70	PLANTS KUP LAB-OM REF-OM PLANTS %CIN LAB-OM	214.2 201.0 0.8 33.4 31.3	335 247 0 57 42
Q CH/TK	100.00	0.00	100.00	42.30	42.50	51.10	REF-OM	0.1	0

UPTAKE OF NH4 UPTAKE OF N

SOURCE/SINK FLUXES (MEG/M2/YR) PER UNIT AREA OF COMPARTMENT

SOIL NH4	SINKS 0.00	SOURCES	NITRIF -230.90	NETASS 210.33	STREAM NH4	SINKS 0.00	SOURCES
NO3	0.00	0.00	230.90	-272.72	NO3	0.00	0.00
ΣNX	0.00	0.00	0.00	-62.39	ΣNX	0.00	0.00

UPTAKE AND MINERALIZATION FLUXES (MEQ/M2/YR) PER UNIT AREA OF SOIL

		LAB-OM	REF-OM	SOIL-OM	PLANTS	TOTAL
NET ASSIM	NH4	388.75	41.33	430.08	-219.76	210.33
	NO3	-115.46	-0.40	-115.86	-156.86	-272.72
	ΣΝΧ	273.29	40.94	314.23	-376.62	-62.39
UPTAKE	NH4	206.26	0.86	207.12	219.76	426.88
	NO3	115.46	0.40	115.86	156.86	272.72
	ΣNX	321.72	1.26	322.98	376.62	699.59
MINERALIZ	NH4	595.01	42.19	637.20	0.00	637.20
	NO3	0.00	0.00	0.00	0.00	0.00
	ΣNX	595.01	42.19	637.20	0.00	637.20

ORGANIC CARBON AND NITROGEN POOLS (MOLES/M2) PER UNIT AREA OF SOIL

	PLANTS	LAB-OM	REF-OM	SOIL-OM	WOOD	LITTER	EXPORT
C	98.600	396.995	1226.177	1623.172	216.6	1390.8	21.4
N	1.586	11.270	38.042	49.312	0.6	21.6	0.7
C/N	62.179	35.226	32.232	32.917	335.0	64.3	32.2
0/1	C	331220	JEILDE	SEIVIT			

	WOOD PRD	LITTER	DCMP LOM	DCAY LOM	DCMP ROM	EXPORT	NT PRMPR
C	3.550	22.800	21.000	0.344	1.360	0.350	26.350
N	0.011	0.367	0.595	0.010	0.042	0.011	0.377
C/N	335.000	62.187	35.294	35.294	32.232	32.232	69.965

CATCHMENT = Ga	ards-G2, : 1995	file: gard	l-d4.par	DATI	E = 05/27/9	97 TI	ME = 09:44:41	** PAGE 9 **	
				TOTAL NITRO	GEN (MEQ/M	2) PER UN	IT AREA OF COMPARTMEN	т	
(MEQ/M3)	PRECIP	STREAM	SOIL	INORGANIC-N Total	STREAM	SOIL	ORGANIC-N		
NH4	134.0	2.7	2.7	NH4	0.0	0.6	LAB-OM	12945.6	
NO3	149.0	32.8	32.7	NO3	0.0	7.4	REF-OM	37927.6	
<b>EN</b> X	283.0	35.5	35.4	ΣN×	0.0	8.0	TOT-OM	50873.2	
(% SAT)				AQUEOUS			PLANTS	1604.2	
NH4	12		0.0	NH4	0.0	0.6	TOTBIO	52477.4	
NO3			0.0	NO3	0.0	7.4			
<b>ENX</b>			0.0	ΣNX	0.0	8.0			
			0.000				C/N RATIOS		
TEMP DEG C		12.0	12.0	ADSORBED			PLANTS	61.49	
POOT DEP %			100.0	NH4		0.0	LAB-OM	31.38	
NITRE RATE /	YR		1000.0	NO3		0.0	REF-OM	32.19	
NITRF Kup			225.0	ΣNX		0.0			
NITRF %dN			71.8						

INPUT/OUTPUT FLUXES (MEQ/M2/YR) PER UNIT AREA OF CATCHMENT

	WETDEP	DRYDEP	TOTDEP	SOIL	STREAM	NTFLUX	PLANTS Kup	38.5	8
NH4	134.00	0.00	134.00	0.65	0.67	-133.33	LAB-OM	49.1	14
NOS	149.00	0.00	149.00	7.95	7.96	-141.04	REF-OM	0.8	0
<b>XNX</b>	283.00	0.00	283.00	8.60	8.63	-274.37	PLANTS %dN	12.3	36
O CH/YP	100.00	0.00	100.00	24.30	24.30	-75.70	LAB-OM	15.6	60
		5100					REF-OM	0.2	2

UPTAKE OF NH4 UPTAKE OF N

SOURCE/SINK FLUXES (MEQ/M2/YR) PER UNIT AREA OF COMPARTMENT

SOIL NH4	SINKS 0.00	SOURCES	NITRIF -606.30	NETASS 472.93	STREAM	SINKS 0.00	SOURCES 0.00
NO3 ENx	0.00	0.00	606.30 0.00	-750.81	NO3 SNX	0.00	0.00

UPTAKE AND MINERALIZATION FLUXES (MEQ/M2/YR) PER UNIT AREA OF SOIL

		LAB-OM	REF-OM	SOIL-OM	PLANTS	TOTAL
NET ASSIM	NH4	536.53	40.16	576.70	-103.77	472.93
	NO3	-458.77	-15.70	-474.47	-276.34	-750.81
	ΣNX	77.76	24.46	102.22	-380.11	-277.89
UPTAKE	NH4	132.09	2.08	134.17	103.77	237.94
OI TAKE	NO3	458.77	15.70	474.47	276.34	750.81
	ΣNX	590.87	17.78	608.64	380.11	988.75
MINERALIZ	NH4	668.62	42.24	710.87	0.00	710.87
	NO3	0.00	0.00	0.00	0.00	0.00
	ΣNx	668.62	42.24	710.87	0.00	710.87

ORGANIC CARBON AND NITROGEN POOLS (MOLES/M2) PER UNIT AREA OF SOIL

	ANIS LAD	-UM REF-UM	SUIL-ON	WUUU	LITTER	EXPURI
C 98	.600 402.	833 1220.789	1623.622	234.3	1504.8	23.1
N 1	.604 12.	946 37.928	50.873	0.7	23.5	0.7
C/N 61	.462 31.	117 32.187	31.915	335.0	64.1	32.2

	WOOD PRD	LITTER	DCMP LOM	DCAY LOM	DCMP ROM	EXPORT	NT PRMPR
C	3.550	22.800	21.000	0.342	1.360	0.350	26.350
N	0.011	0.371	0.669	0.011	0.042	0.011	0.380
C/N	335.000	61.483	31.408	31.408	32.195	32.195	69.323

CATCHMENT = Ga	rds-G2,	file: gard	d-d4.par	DAT	= 05/27/	97 1	IME = 09:44:41	** PAGE 10 **	
OUTPUT FOR:	2030	ANNUAL AVE	I			2) DED 1			
				TOTAL MITRO	JEN (HEW/H	C) FER U	ATT AREA OF COMPARIMEN		
(MEQ/M3)	PRECIP	STREAM	SOIL	INORGANIC-N TOTAL	STREAM	SOIL	ORGANIC-N		
NH4	184.0	4.3	4.3	NH4	0.0	1.0	LAB-OM	17805.6	
NO3	184.0	612.5	612.5	NO3	0.0	137.8	REF-OM	37635.0	
2Nx	368.0	616.8	616.8	ΣNx	0.0	138.8	TOT-OM	55440.6	
(% SAT)				AQUEOUS			PLANTS	1612.2	
NH4			0.0	NH4	0.0	1.0	TOTBIO	57052.8	
NO3			0.0	NO3	0.0	137.8			
ΣNX			0.0	<b>ZN</b> ×	0.0	138.8			
							C/N RATIOS		
TEMP DEG C		12.0	12.0	ADSORBED			PLANTS	61.16	
ROOT DEP %			100.0	NH4		0.0	LAB-OM	25.50	
NITRE PATE /	YP		1000.0	NOT		0.0	PEE-ON	31 18	
NITRF Kup NITRF %dN	I.K.		225.0	2Nx		0.0		51.10	

INPUT/OUTPUT FLUXES (MEQ/M2/YR) PER UNIT AREA OF CATCHMENT

	WETDEP	DRYDEP	TOTDEP	SOIL	STREAM	NTFLUX	PLANTS Kup	14.8	0
NH4	184.00	0.00	184.00	1.98	2.00	-182.00	LAB-OM	5.4	0
NO3	184.00	0.00	184.00	284.18	284.20	100.20	REF-OM	0.2	0
ΣNX	368.00	0.00	368.00	286.16	286.20	-81.80	PLANTS % dN	6.0	27
Q CM/YR	100.00	0.00	100.00	46.40	46.40	-53.60	LAB-OM	2.2	44
							REF-OM	0.1	2

UPTAKE OF NH4 UPTAKE OF N

#### SOURCE/SINK FLUXES (MEQ/M2/YR) PER UNIT AREA OF COMPARTMENT

SOIL	SINKS	SOURCES	NITRIF	NETASS	STREAM	SINKS	SOURCES
NH4	0.00	0.00	-961.74	779.72	NH4	0.00	0.00
NO3	0.00	0.00	961.74	-860.90	NO3	0.00	0.00
ΣNx	0.00	0.00	0.00	-81.18	ΣN×	0.00	0.00

UPTAKE AND MINERALIZATION FLUXES (MEQ/M2/YR) PER UNIT AREA OF SOIL

	LAB-OM	REF-OM	SOIL-OM	PLANTS	TOTAL
NH4	800.30	42.79	843.09	-63.37	779.72
NO3	-511.39	-29.48	-540.87	-320.03	-860.90
ΣNX	288.91	13.31	302.22	-383.40	-81.18
NH4	23.22	0.83	24.05	63.37	87.42
NO3	511.39	29.48	540.87	320.03	860.90
ΣNx	534.61	30.31	564.92	383.40	948.32
NH4	823.52	43.62	867.14	0.00	867.14
NO3	0.00	0.00	0.00	0.00	0.00
ΣΝΧ	823.52	43.62	867.14	0.00	867.14
	NH4 N03 2Nx NH4 N03 2Nx NH4 N03 2Nx	LAB-OM NH4 800.30 NO3 -511.39 DNx 288.91 NH4 23.22 NO3 511.39 DNx 534.61 NH4 823.52 NO3 0.00 DNx 823.52	LAB-OM         REF-OM           NH4         800.30         42.79           NO3         -511.39         -29.48           XNx         288.91         13.31           NH4         23.22         0.83           NO3         511.39         29.48           XNx         534.61         30.31           NH4         823.52         43.62           NO3         0.00         0.00           XNx         823.52         43.62	LAB-OM         REF-OM         SOIL-OM           NH4         800.30         42.79         843.09           N03         -511.39         -29.48         -540.87           SNx         288.91         13.31         302.22           NH4         23.22         0.83         24.05           N03         511.39         29.48         540.87           ZNX         534.61         30.31         564.92           NH4         823.52         43.62         867.14           N03         0.00         0.00         200           SNX         823.52         43.62         867.14	LAB-OM         REF-OM         SOIL-OM         PLANTS           NH4         800.30         42.79         843.09         -63.37           N03         -511.39         -29.48         -540.87         -320.03           SNx         288.91         13.31         302.22         -383.40           NH4         23.22         0.83         24.05         63.37           N03         511.39         29.48         540.87         320.03           SNx         534.61         30.31         564.92         383.40           NH4         823.52         43.62         867.14         0.00           N03         0.00         0.00         0.00         2.00           SNx         823.52         43.62         867.14         0.00

ORGANIC CARBON AND NITROGEN POOLS (MOLES/M2) PER UNIT AREA OF SOIL

	PLANTS	LAB-OM	REF-OM	SOIL-OM	WOOD	LITTER	EXPORT
C	98.600	453.872	1172.903	1626.775	358.6	2302.7	35.4
N	1.612	17.806	37.635	55.441	1.1	36.5	1.1
C/N	61.160	25.490	31.165	29.343	335.0	63.1	32.0

	WOOD PRD	LITTER	DCMP LOM	DCAY LOM	DCMP ROM	EXPORT	NT PRMPR
С	3.550	22.800	21.000	0.342	1.360	0.350	26.350
N	0.011	0.373	0.824	0.013	0.044	0.011	0.383
C/N	335.000	61.160	25.500	25.500	31.179	31.179	68.727



#### Acid Rain Research Reports

- 1/1982 Henriksen, A. 1982. Changes in base cation concentrations due to freshwater acidification. 50 pp. Out of print.
- 2/1982 Henriksen, A. and Andersen, S. 1982. Forsuringssituasjonen i Oslomarkas vann. 45 pp. Out of print.
- 3/1982 Henriksen, A. 1982. Preacidifcation pH-values in Norwegian rivers and lakes. 24 pp. Out of print.
- 4/1983 Wright, R.F. 1983. Predicting acidification of North American lakes. 165 pp.
- 5/1983 Schoen, R., Wright, R.F. and Krieter, M. 1983. Regional survey of freshwater acidification in West Germany (FRG). 15 pp.
- 6/1984 Wright, R.F. 1984. Changes in the chemistry of Lake Hovvatn, Norway, following liming and reacidification. 68 pp.
- 7/1985 Wright, R.F. 1985. RAIN project. Annual report for 1984. 39 pp.
- 8/1985 Lotse, E. and Otabbong, E. 1985. Physiochemical properties of soils at Risdalsheia and Sogndal: RAIN project. 48 pp.
- 9/1986 Wright, R.F. and Gjessing, E. 1986. RAIN project. Annual reportfor 1985. 33 pp.
- 10/1986 Wright, R.F., Gjessing, E., Semb, A. and Sletaune, B. 1986. RAIN project. Data report 1983-85. 62 pp.
- 11/1986 Henriksen, A., Røgeberg, E.J.S., Andersen, S. and Veidel, A. 1986. MOBILLAB-NIVA, a complete station for monitoring water quality. 44 pp.
- 12/1987 Røgeberg, E.J.S. 1987. A coulometric Gran titration method for the determination of strong and weak acids in freshwater. 28 pp.
- 14/1988 Hauhs, M. 1988. Water and ion movement through a minicatchment at Risdalsheia, Norway. RAIN project. 74 pp.
- **15/1988** Gjessing, E., Grande. M. and Røgeberg, E.J.S. 1988. Natural Organic Acids. Their Role in Freshwater Acidification and Aluminium Speciation. 28 pp.
- **16/1988** Wright, R.F. 1988. RAIN project. Annual report for 1987. 77 pp.
- 17/1988 Wathne, B.M and Røgeberg, E.J.S. 1988. Buffering effects of river substrates under acidic conditions. 19 pp.
- 18/1989 Lotse, E.G. 1989. Soil Chemistry 1983-86 at the RAIN Project Catchments. 66 pp.
- 19/1989 Reuss, J.O. 1989. Interpretation of Soil Data from the RAIN Project. 81 pp.
- **20/1990** Skjelkvåle, B.L. and Wright, R.F. 1990. Overview of areas sensitive to acidification: Europe. 20 pp.
- 21/1990 Hindar, A. 1990. Chemistry and fish status of 67 acidified lakes at the coast of Aust-Agder, Southern Norway, in relation to postglacial marine deposits. 47 pp.
- 22/1990 Henriksen, A. Lien, L. and T. Traaen, T.S. 1990. Critical Loads for Surface Waters. Chemical Criteria for Inputs of Strong Acids. 45 pp.
- 23/1990 Wright, R.F. 1990. Reversibility of acidification: soils and surface waters. 39 pp.
- **24/1991** Wright, R.F. RAIN project. Report for the years 1988, 1989 and 1990. 156 pp.
- 25/1991 Wright, R.F., Holmberg, M., Posch, M. and Warfvinge, P. 1991. Dynamic models for predicting soil and water acidification: Application to three catchments in Fenno-Scandia. 40 pp.
- **26/1992** Wohlfeil, I.C. and Müller, D.I. 1992. RAIN-project: Vegetation mapping at Risdalsheia 1991. 42 pp.
- 27/1992 Rosseland, B.O. and Kroglund, F. 1992. Reversibility of

acidification; Fish responses in experiments at Risdalsheia. 50 pp.

- 28/1992 Wathne, B.M., Norton, S.A. and Henriksen, A. 1992. Buffering capacities and effects of river substrates during acidic episodes. 24 pp.
- **29/1992** Henriksen, A., Mill, W.A., Kot, M., Rzychon, D. and Wathne, B.M. 1992. Critical loads of acidity to surface waters: A case study from Polish Tatra Mountains. 34 pp.
- 30/1992 Kroglund, F., Dalziel, T., Rosseland, B.O., Lien, L., Lydersen, E. and Bulger, A. 1992. Restoring Endangered Fish In Stressed Habitats. ReFISH project 1988-1991. 43 pp.
- 31/1992 Rosseland, B.O., Brandrud, T.E., Raddum, G.G. 1992. Effects of Aluminium in Acidified Aquatic Ecosystems. 34 pp.
- 32/1993 Henriksen, A., Forsius, M., Kämäri, J., Posch, M. and Wilander, A. 1993. Exeedance of Critical Loads for Lakes in Finland, Norway and Sweden: Reduction Requirements for Nitrogen and Sulfur Deposition. 46 pp.
- 33/1993 Wathne, B.M., Mill, W.A., Kot, M., Rzychon, D., Henriksen, A., and Tørseth, K. 1993. Critical loads of acidity to lakes in the Polish Tatra Mountains. A study of the yearly variations in the precipitation and water chemistry. 37 pp.
- 34-A/94 Lydersen, E. 1994. Long term monitored catchments in Norway - a hydrologic and chemical evaluation -, 306 pp. + Appendix.
- 34-B/94 Lydersen, E. 1994. Long term monitored catchments in Norway - a hydrologic and chemical evaluation -, Summary Report, 66 pp.
- 35/1994 Wright, R.F. 1994. Modelling long-term hydrochemical response at ENCORE catchments in the UK and Norway. 42 pp.
- 36/1994 Wright, R.F. 1994. RAIN PROJECT. Risdalsheia data report for June 1990 - May 1994. 165 pp.
- 37/1995 Závodský, D., Wathne, B.M., Henriksen, A., Sverdrup, H. et al. 1995. Mapping critical levels/loads for the Slovak Republic. 74 pp.
- 38/1995 Wright, R.F. 1995. NITREX: Phase 2 Final Report 56 pp.
- 39/1995 Wright, R.F. 1995. NIVA contributions to ACID REIGN 95? Conference in Gothenburg, Sweden, 26-30 June 1995. 244 pp.
- 40/1996 Henriksen, A. et al. 1996. Regional Lake Surveys in Finland -Norway - Sweden - Northern Kola - Russian Karelia -Scotland - Wales 1995. 30 pp.
- **41/1996** Norton, S.A., Appleby, P.G., Dauvalter V. and Traaen T. 1996. Trace metal pollution in Eastern Finnmark, Norway and Kola Peninsula, Northwestern Russia as evidenced by studies of lake sediment. 18 pp.
- 42/1996 Wright, R.F. 1996. Nitrex: Phase 3 Final Report. 28 pp.
- 43/1996 Závodský, D., Wathne, B.M., Henriksen, A., Sverdrup, H. et al. 1996. Mapping critical levels/loads for the Slovak Republic. Final Report. 93 pp.
- 44/1997 Lydersen, E., Rzychon, D., Worsztynowicz, A., Tørseth, K. Hanssen, J.E., Mill, W.A., Kot, M., Henriksen, A., Wathne, B.M. 1997. Critical loads of acidity to lakes in the Polish Tatra Mountains- Final Report. 49 pp.
- 45/1997 Henriksen, A., Mannio, J., Wilander, A., Moiseenko, T., Traaen, T.S., Skjelkvåle, B.L.S., Fjeld, E. and Vuorenma, J. 1997. Regional Lake Surveys in The Barents region of Finland - Norway - Sweden and Russian Kola 1995 -Results.
- **46/1997** Kjønaas, O.J., Wright, R.F., and Cosy, B.J. 1997. MERLIN model applied to NITREX Gårdsjön. 38 pp.

O. Janne Kjønaas Norwegian Forest Research Institute Høyskoleveien 12, N-1432 Ås

Richard F. Wright Norwegian Institute for Water Research P.O. Box 173 Kjelsås, N-0411 Oslo

B. Jack Cosby Department of Environmental Sciences University of Virginia Charlottesville, VA 22903, USA

#### Norwegian Institute for Water Research

P.O. Box 173 Kjelsås Telephone: + 47 22 18 51 00 N-0411 Oslo Telefax: + 47 22 18 52 00

By ordering the report, please use serial number 3696-97.

ISBN 82-577-3261-3