Overvåking av
Iisdalsvann og Bjoreio,
Eidsfjord kommune 1999
NIVÅ - RAPPORT
Norsk institutt for vannforskning

NIVÅ

Hovedkontor
Postboks 173, Kjelsås
0411 Oslo
Telefon (47) 22 18 51 00
Teletxt (47) 22 18 52 00

Sørlandsavdelingen
Televien 1
4690 Grimstad
Telefon (47) 37 29 50 55
Teletxt (47) 37 04 45 13

Østlandsavdelingen
Rute 866
2312 Ottestad
Telefon (47) 62 57 64 00
Teletxt (47) 62 57 66 53

Vestlandsavdelingen
Thornhøgen 55
5008 Bergen
Telefon (47) 55 30 22 50
Teletxt (47) 55 32 88 33

Akveplan-NIVÅ A/S
Søre Toftbügata 3
9000 Tromsø
Telefon (47) 77 68 52 80
Teletxt (47) 77 68 05 09

Rapportens titel:
Overvåkning av Isdalsvann og Bjoreio Eidfjord kommune 1999.

Dato:
NIVÅ

Trykket:
Jan. 2000

Faggruppe:
Vassdrag

Geografisk område:
Hordaland

Antall sider: 32

Oppdragsgiver:
Eidfjord kommune

Oppdragsg ref.: Prosjektleder
Karl Jan Aanes

Forskningsleder
Dag Berge

Forskningsjef
Nils Roar Sæthun

4 emneord, norske
1. Eidfjord kommune, Hordaland.
2. Isdalsvann og Bjoreio nedstrøms Garden
3. Resipientundersøkelser
4. Eutrofiering

4 emneord, engelske
1. Eidfjord kommune, Hordaland.
2. Lake Isdalsvann and River Bjoreio
3. Recipient study
4. Eutrophication

ISBN: 82-577-3799-2
O - 93134

OVERVÅKING

AV

ISDALSVANN OG BJOREIO

EIDFJORD KOMMUNE

1999

Oslo, 15. januar 2000

Saksbehandler: Karl Jan Aanes
NIVA, Oslo.
Forord.

Ved undersøkelsen i 1999 ble de fysisk - kjemiske og sanitærbakteriologiske analysene utført av Næringsmiddeltilsynet for Indre Hardanger, Odda. Analyser av vannets klorofyllinnhold i Isdalsvann og analyser av næringssalter og alkalinitet er utført ved NIVA, Oslo.

Koodinator og ansvarlig for prøvetaking og innhenting av fysisk - kjemiske, bakterielle, klorofyll og plantenitkonerprove (som arkiveres) har vært miljøvernleiar Gunnar Elnan, Eidfjord kommune.

NIVA's sakbehandler for overvåkings-undersøkelsene i Isdalsvann og Bjøreia er cand. real Karl Jan Aanes. Sistnevnte har bearbeidet og vurdert materialet samt skrevet rapporten.

Oslo, 15 januar 2000.

Karl Jan Aanes.
INNHOLDSFORTEGNELSE

1. SAMMENDRAG OG KONKLUSJON 4
2. INNLEDNING 6
3. UNDERSØKELSEN I 1999. 9
 Prøvetakingssted 9
 Innsamlingsmetode 9
 Prøvetakingsfrekvens 9
4. RESULTATER 1999 10
 4.1 Vannføringsmålinger 10
 4.2 Fysisk-Kjemiske analyseresultater 11
 Surhetsgrad - pH og Konduktivitet 11
 Turbiditet - Farge - KOF og Total Hårdhet 14
 Næringssalter: Fosfor og nitrogen 14
 Siktetyp og Visuell vannfarge 16
 Temperatur 16
 Oksygen 17

Biologiske undersøkelser 19
 Sanitær bakteriologiske prøver 19
 Klorofyll og Planteplankton 20

5. LITTERATUR REFERANSLER 21

6. VEDLEGG 22
 Tabell 7 A. Temperaturregistreringer i Isdalsvann, 1993 til 1996. 25
 Tabell 7 B. Temperaturregistreringer i Isdalsvann, 1988 til 1989. 25
 Tabell 8. SFT's skjema for klassifisering av tilstand. 26
 Tabell 9. Dagligvannføring i Bjoreio ved stasjonen: Vøringsfossen vist månedsvi i 1999. 27
1. SAMLENDRAG OG KONKLUSJON

Resultatene fra 1999 gir følgende bilde av vannkvaliteten på disse to lokalitetene:

Sanitær-bakteriologiske forhold: I perioden 1993 til 1995 viste målingene i Bjoreio at den maksimale årlige konsentrasjonen av termostabile koliforme bakterier (TKB) var mellom 5 og 10 pr. 100 ml vannprøve. I 1999 ble det i perioden fra mai til september bare ved en enkelt prøvetaking registrert TKB (1 TKB / 100 ml) på stasjonen i Bjoreio, noe som kan tyde på en bedring i forhold til tidligere år.

Det er i Isdalsvann foretatt parallele målinger av termostabile koliforme bakterier i 1999. Det ble her i prøve fra august og september registrert i 1 TKB / 100 ml i blandprøven fra 0 - 10 m. Vurdert ut fra SFT’s klassifiserings-system gir dette en *meget god* vannkvalitet mhp vannets innhold av tarmbakterier.

Tilsvarende målinger av tot P i Isdalsvann (blandprøver fra 0-10 m) ga resultater som i produksjonssesongen lå mellom 4 og 5 μg P/l.

Vurdert ut fra SFT’s klassifiseringsystem gir dette, som i 1998, en meget god vannkvalitet med hensyn på innholdet av næringssaltet total fosfor både i Bjoreio og i Isdalsvann.

Organisk materiale: Målinger av kjemisk oksygenforbruk (KOF) i Bjoreio ved hjelp av permanganat metoden ga verdier for lett oksyderbare forbindelser mellom 1 og 9 mg O/l i 1999. Den høyeste verdien ble målt i mai før vannføringen øknes som følge av pålagt vannslipp til Vøringsfossen. Den midlere verdien for året blir 3,7 mg O/l. Vurdert ut fra SFT’s klassifiseringsystem gir dette en mindre god vannkvalitet (tilstandsklasse III) mhp innholdet av organisk stoff.

Resultatet fra tilsvarende målinger av kjemisk oksygenforbruk i Isdalsvann ga en midlere verdi for organisk stoff på 2,5 mg O/l i blandprøven fra 0 – 10 m. Vurdert ut fra SFT’s klassifiseringsystem gir dette en vannkvalitet mhp organisk innhold som ligger mellom god og meget god vannkvalitet.

Siktedypet i 1999 var i Isdalsvann 8.0 m i juli, 9.0 m i august og 8.0 m i september. Dette er noe bedre enn tilsvarende målinger som er gjort i perioden 1988–1996. Klorofyllmålingene som ble gjort samtidig med siktedypmålingene viste verdier for klorofyll a på 1.18 og 1.12 μg/l. Målingene av siktedyp og klorofyll gir når resultatene vurderes ut fra SFT’s klassifiseringsystem en meget god vannkvalitet.

Konklusjon

Det konkluderes med at det ser ut til å ha vært en positiv utvikling i vannkvaliteten både i innsjøen Isdalsvann og i Bjoreio nedstrøms Garden, når resultatene fra 1999 sammenlignes med tidligere års analysedata. Undersøkelsene de neste årene vil kunne stadfeste dette.

Med den bedring det har vært i pH verdien i Bjoreio ville det vært av interesse å få klargjort i hvilken grad bunns fauna har restitueret seg de siste årene. Dette vil gi viktig informasjon om næringsgrunnlaget for fisken i vassdraget, om vassdragets selvbrenningsvne og et godt bilde av den biologiske vannkvaliteten i Bjoreio. Vi vil anbefale at det gjennomføres en enkel inventering av bunns fauna i Bjoreio på 2-3 stasjoner i år 2000 som et supplement til det siste året med fysisk-kjemiske målinger.
2. INNLEDNING

Isdalsvann

Isdalsvassdraget med Isdalsvann (832.5 m o. h.) ligger i Eidfjord kommune, Hordaland fylke. Nedbørfeltet er beregnet til 25,4 km², men da er den delen av nedbørfeltet som ligger oppstrøms NVE's bekkeinntak i Kleivane (Eidfjord - Nord - Reguleringen) ikke tatt med. Vassdraget drenerer fjellområdene syd-sydvest for Hardangerjøkulen og renner ut i Bjoreia ved Høel like oppstrøms Vøringsfossen.

Bjoreia.

Ved overføringen av øvre deler av nedbørfeltet ble Bjoreio’s nedbørfelt redusert med 74 % fra 506,7 km² til 132.2 km². For å opprettholde en mere naturlig vannføring i Vøringsfossen ble det i reguleringsbestemmelsene (”Manøvreringsreglement for statsregulering av Osa-Sima-Bjoreio”) fastsatt ved kongelig resolusjon 18. mai 1973 at det i tiden fra 1. juni til 15. september skal slippes tilstrekkelig vann i Bjoreio til å opprettholde en minstevannføring i Vøringsfossen på 12 m³/sek. (se fig. 3 og vedlegg, tabell 9). ”Det manøvreres slik at flommene i vassdraget ikke økes, men for øvrig tappes etter kraftverkets behov”.

Overføringen av øvre deler av vassdraget endret sterkt resipient kapasiteten i de resterende delene av Bjoreio. For å kompensere for dette ble det av Eidfjord kommune bygget 4 fullrenseanlegg for kloakk (for fjerning av fosfor og organisk materiale) på strekningen fra Maurset til Eidfjordvann.
Figur 1. Oversiktskart med prøvetakingsstasjonene i Isdalsvann og i Bjørceio nedstrøms Garden.
3. **UNDERSØKELSEN I 1999.**

Prøvetakingssted
Prøvene fra Isdalsvann er hentet inn på det stedet i innsjøen hvor vi finner det største dypet. Dette er den samme stasjonen som ble brukt ved tidligere undersøkelser i Isdalsvann (figur 1). Et dybdekart med stasjonsplassering er vist i figur 2.

Prøvene fra Bjoreia er hentet inn på samme sted som ved tidligere undersøkelser, ca 1 km nedstrøms Garden (UTM koordinater : MM 049 985). Stasjonsplassering er vist i figur 1.

Innsamlingsmetode
Til prøvetakingen i Isdalsvann er det brukt en Ruttner vannprøvetaker med termomenter til måling av temperatur/dybde-profiler og til å hente inn prøver for måling av oksygeninnholdet i bunnvannet. I det øverste vannlaget (0 til 10 m) er det brukt en 2 meter lang Ramberghenter for innsamling av en blandprøve fra dette vannlaget. Fra denne blandprøven er det så tatt ut prøver for: Fysisk-kjemiske analyser, saniterbakteriologiske prøver og prøver for måling av klorofyllnivå, samt prøver som beskriver plante-planktonets variasjon og mengdemessige sammensetning.

Prøvetakingsfrekvens
Det er i programforslaget til denne undersøkelsen lagt opp til en prøvetakings-frekvens med månedlig innhenting av prøver i perioden fra isløsning til islegging. I tillegg skal det fra Isdalsvann tas en prøve fra isen på ettervinteren så nær isløsning som mulig.

Figur 2. Dybdekart over Isdalsvann. (Hentet fra Aanes m. fl., 1990).
* Prøvetakingsstasjon.

Feltarbeid.

4.1 Resultater fra vannføringsmålinger.

Ved overføringen av øvre deler av nedbørfeltet ble Bjøreio’s nedbørfelt redusert med 74 % fra 506,7 km² til 132,2 km². For å opprettholde en mere naturlig vannføring i Vøringsfossen ble det i reguleringssammensetningen ("Manøvreringsreglement for statsregulering av Osa-Sima-Bjøreio") fastsatt ved kongelig resolusjon 18. mai 1973 at det i tiden fra 1. juni til 15. september skal slippes tilstrekkelig vann i Bjøreio til å opprettholde en minstevannføring i Vøringsfossen på 12 m³/sek. "Det manøvreres slik at flommene i vassdraget ikke økes, men for øvrig tappes etter kraftverkets behov".

Daglige registreringer av vannføringen i Bjøreio ved målestasjonen i Vøringsfossen er for 1999 vist i figur 3. Tilsvarende er månedlig vannføring vist i vedlegget bak i rapporten (tabl 9).

Figur 3. Daglige registreringer av vannføringen i Bjøreio ved målestasjonen i Vøringsfossen i perioden 1. Januar til 31 desember 1999 (m³/sek.).
4.2 Fysisk-kjemiske analyseresultater.

Surhetsgrad – pH, alkalinitet og konduktivitet

I Isdalsvann

Vannets surhetsgrad og konduktivitet (den spesifikke elektrolyttiske ledningsevnen), ble registrert fire ganger i 1999. Måling av vannets alkalinitet, som er et mål på vannprøvens evne til å nøytralisere sure tilførsler, ble målt to ganger gjennom vekstsesongen (tabell 1).

Resultatene viser at pH like før isløsning var pH 6.3, mens surhetsgraden i resten av undersøkelsesperioden varierer mellom 6.7 og 6.8. Måleverdien for pH i mai er så lav at den da plasserer Isdalsvann i nest beste tilstandsklasse (II) når vi benytter SFT’s vurderingssystem for miljøkvalitet i ferskvann (vist i tabell 8 i rapportens vedlegg). Tilsvarende plassering gir begge målingene av alkalinitet (mai: 0.119 og juli: 0.112 mmol/l) en plassering i nest beste tilstandsklasse. Resultatene av pH målingene i resten av undersøkelsesperioden ga beste tilstandsklasse i Isdalsvann. Det er tidligere under vårmeltingen registrert en noe lavere pH og alkalinitet (tabell 1). Konduktiviteten var i mai før vannslipp 2.1 mS/m. I resten av prøveperioden varierte konduktiviteten mellom 1.7 og 1.4 mS/m. Resultatet fra tidligere tilsvarende målinger i Isdalsvann har variert mellom 0.9 og 2.75 mS/m.

Sammenlignes materialet fra 1999 med tidligere undersøkelser i innsjøen kan det se ut som om det har vært en reduksjon av sult nedfall i perioden fra undersøkelsen startet i 1988 og frem til i dag. Dette er i tråd med resultatene fra den nasjonale overvåkningen av sur-nedbør (Monsen 1999).

Bjoreio

De fire målingene i 1999 fra mai til september av pH viser alle verdier mellom pH 6.4 og 6.8. Tilsvarende var alkalinitetsverdiene mellom 0.86 og 0.94 mmol/l. Tar vi utgangspunkt i SFT’s system for klassifisering av tilstand og vurderer materialet med tanke på forsuringstilstand i havner st. i Bjoreio i en overgangsfase mellom tilstandsklasse I og II (tabell 8).

Sammenligner vi resultatene fra 1998 og 1999 med tidligere målinger fra perioden 1993 til 1995 (tabell 6 i rapportens vedlegg) så kan det også her se ut som om det har vært en bedring i forsuringstilstanden i denne delen av vassdraget, selv om det i 1999 ble registrert både en noe lavere pH og alkalinitets-verdi enn året før. Interessant blir det derfor å følge med utviklingen i årene som kommer, og viktig er det da også å få med målinger i den perioden hvor vannet fra øvre deler av nedbørfeltet overføres til Sysenvann.
Tabell 1.

<table>
<thead>
<tr>
<th>Dato</th>
<th>18.05.99</th>
<th>12.07.99</th>
<th>16.08.99</th>
<th>14.09.99</th>
<th>15.05.98</th>
<th>28.07.98</th>
<th>15.09.98</th>
<th>Benevning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blandpr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>6.3</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>6.8</td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0.119</td>
<td>0.112</td>
<td></td>
<td></td>
<td>0.102</td>
<td>0.112</td>
<td>0.108</td>
<td>mmol/l</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>2.1</td>
<td>1.7</td>
<td>1.4</td>
<td>1.4</td>
<td>1.6</td>
<td></td>
<td></td>
<td>mS/m</td>
</tr>
<tr>
<td>Hardhet - Total</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hardhet - Total</td>
</tr>
<tr>
<td>Turbiditet</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTU - FTU96</td>
</tr>
<tr>
<td>Farge</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>mg Pt/l</td>
</tr>
<tr>
<td>Nitrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td>ug NO₃-N / l</td>
</tr>
<tr>
<td>Tot P *</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug P/l</td>
</tr>
<tr>
<td>Orto P *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug PO₄-P / l</td>
</tr>
<tr>
<td>Tot N</td>
<td>146</td>
<td>210</td>
<td></td>
<td></td>
<td>110</td>
<td>122</td>
<td>107</td>
<td>ug N/l</td>
</tr>
<tr>
<td>KOF - COD Mn</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>mg KMnO₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dato</th>
<th>1988 - 1989</th>
<th>15.06.93</th>
<th>18.05.94</th>
<th>20.10.94</th>
<th>22.05.95</th>
<th>17.06.96</th>
<th>Benevning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blandpr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>6.9</td>
<td>6.0</td>
<td>6.72</td>
<td>6.55</td>
<td>6.06</td>
<td></td>
<td>6.61</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>2.75</td>
<td>1.50</td>
<td>2.08</td>
<td>1.9</td>
<td>0.90</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Hardhet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
<td><0.05</td>
</tr>
<tr>
<td>Turbiditet</td>
<td>0.71</td>
<td>0.30</td>
<td>0.43</td>
<td></td>
<td>0.90</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Farge</td>
<td>19.70</td>
<td>10.20</td>
<td>15.60</td>
<td></td>
<td>10</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Nitrat</td>
<td>89.0</td>
<td><1</td>
<td>7.5</td>
<td><10</td>
<td>50</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Al - syreløselig</td>
<td>Ikke analysert</td>
<td></td>
<td></td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tot P *</td>
<td>5.0</td>
<td>1.0</td>
<td>2.0</td>
<td>11.0</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Orto P *</td>
<td>2.0</td>
<td><0.5</td>
<td>0.5</td>
<td>10.0</td>
<td>29</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Tot N</td>
<td>228.0</td>
<td>89.0</td>
<td>142.0</td>
<td>170.0</td>
<td></td>
<td>103</td>
<td>175</td>
</tr>
<tr>
<td>KOF - COD Mn</td>
<td>13.7</td>
<td>13.7</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Turbiditet - Farge - KOF og Total Hårdhet

Istdalsvann

For disse parametrene foreligger det en enkelt observasjon (mai) i Istdalsvann i 1999 for total hårdhet og turbiditet, mens det for kjemisk oksygenforbruk (KOF) og farge er fire observasjoner. Den ene målingen av turbiditet (0.29 FTU), som et relativt mål på vannprøvens partikkel innhold, og hårdhet (0.08) er begge lave, og samsvarer godt med det bilde de øvrige parametrene gir av vannkvaliteten.

Vannprøvens fargeverdi gir et bilde av humusinnholdet i vannprøven. Midlere fargeverdi for 1999 var 13.8 mg Pt/l. Parameteren KOF beskriver innholdet i vannprøven av organiske forbindelser. Midlere KOF verdi var i 1999 2.5 mg O₂/l. Både verdiene for farge og KOF gir beste tilstandsklasse i SFT's vurderingssystem.

Bjoreio

I Bjoreio var det i 1999 fire målinger av vannets farge og innhold av lett ned-brytbare organiske forbindelser, men bare en enkeltprøve ble analysert for total hårdhet og turbiditet (tabell 2 A). Resultatene fra prøvetakingen i mai viser en meget lav verdi for total hårdhet (0.06 mmol/l) og en noe forhøyet turbiditetsverdi på 0.5 FTU. Målingene av vannets farge og innhold av organiske forbindelser viser at det i mai var en betydelig større fargeverdi (74 FTU) og KOF verdi (9 mg O₂/l) enn i resten av prøveperioden. Dette er relativt høye verdier som alene plasserer dette vassdragsavsnittet ut fra SFT's vurderingssystem i tilstandsklasse III, en vannkvalitet som klassifiseres som dårlig mhp innhold av organisk stoff. Tilsvarende vurdering på materialet for resten av undersøkelsesperioden i 1999 gir en langt bedre vannkvalitet, tilstandsklasse I. Alle målingene i 1999 med unntak for prøvetakingen i mai ble gjort mens det ble sluppet vann forbi vannintaket (oppsvøms Maurset), noe som virker sterkt fortynnende på de utslipp vassdraget motar oppstrøms prøvetakingsstatasjonen. Interessant kunne det derfor ha vært å ha noen flere målinger av vannkvaliteten i perioden før 1. juni og etter 15. september for å få et bilde av hvordan elven/resipienten påvirkes i perioden med lavvannføring. Tidligere registreringer i Bjoreio av turbiditet, farge, KOF og total hårdhet er vist i tabell 6 i rapportens vedlegg.

Næringssalter: Fosfor og nitrogen

Fosfor er det næringssalt som begrenser planteveksten i Istdalsvann. Resultatene i 1999 fra analysene av de to vannprøvenes innhold av fosfor (tot-P, tabell 1) viser at dette varierer mellom 4 og 5 μg P/l. Tilsvarende viser analyseresultatene at innholdet av nitrogen (tot-N) verdier mellom 146 og 210 μg N/l. Benytter vi disse resultatene fra 1999 og tar utgangspunktet i SFT's system for klassifisering av miljøtilstand i ferskvann plasserer Istdalsvann seg i beste klasse tilstandsklasse både for fosfor og nitrogen.
Tabell 2 A. Fysisk - kjemiske analyseresultater av vannprover fra Bjoreio, nedstrøms Garden i 1999.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>6.4</td>
<td>6.8</td>
<td>6.9</td>
<td>6.9</td>
<td>PH</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0.086</td>
<td>0.094</td>
<td></td>
<td></td>
<td>Mmol/l</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.9</td>
<td>mS/m</td>
</tr>
<tr>
<td>Hardhet Total</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td>mmol/l NS 4728</td>
</tr>
<tr>
<td>Turbiditet</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>NTU - FTU96</td>
</tr>
<tr>
<td>Farge</td>
<td>74</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>mg Pt/l</td>
</tr>
<tr>
<td>Nitrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug NO<sub>3</sub>-N/l</td>
</tr>
<tr>
<td>Tot P</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td>ug P/l</td>
</tr>
<tr>
<td>Tot N</td>
<td>205</td>
<td>102</td>
<td></td>
<td></td>
<td>ug N/l</td>
</tr>
<tr>
<td>KOF-Mn</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Permanganattall mg KMnO<sub>4</sub></td>
</tr>
</tbody>
</table>

Tabell 2 B. Fysisk - kjemiske analyseresultater av vannprover fra Bjoreio, nedstrøms Garden i 1998.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>6.9</td>
<td>6.8</td>
<td>6.7</td>
<td>6.9</td>
<td>PH</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0.102</td>
<td>0.104</td>
<td>0.102</td>
<td>0.148</td>
<td>Mmol/l</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>2.3</td>
<td>mS/m</td>
</tr>
<tr>
<td>Hardhet Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mmol/l NS 4728</td>
</tr>
<tr>
<td>Turbiditet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTU - FTU96</td>
</tr>
<tr>
<td>Farge</td>
<td>16</td>
<td>14</td>
<td>23</td>
<td>33</td>
<td>mg Pt/l</td>
</tr>
<tr>
<td>Nitrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug NO<sub>3</sub>-N/l</td>
</tr>
<tr>
<td>Tot P</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>ug P/l</td>
</tr>
<tr>
<td>Tot N</td>
<td>110</td>
<td>128</td>
<td>110</td>
<td>160</td>
<td>ug N/l</td>
</tr>
<tr>
<td>KOF-Mn</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>Permanganattall mg KMnO<sub>4</sub></td>
</tr>
</tbody>
</table>
I Bjoreio viser resultatene (tabell 2 A) fra mai (7 µg P/l) at fosforkonsentrasjonen da er mer enn doblet av hva den er senere i sesongen (juli: 3 µg P/l), når vannføringen er økt. Tilsvarende var vannprøvens innhold av nitrogen 205 µg N/l i mai og 102 µg N/l i juli 1999. Når disse resultatene sammenlignes med dataene fra vannprøver som ble samlet inn i perioden 1993 til 1995 (tabell 6), kan de se ut som det har vært en reduksjon i tilførslene av plantenæringsstoffer til vassdraget oppstrøms prøvetakingsstasjonen. Det ble da målt maksimal konsentrasjoner på henholdsvis 17 µg P/l og 390 µg N/l. Benytter vi resultatene fra 1999 og tar utgangspunkt i SFT’s system for klassifisering av miljøtilstand i ferskvann plasserer også Bjoreio på stasjonen nedstrøms Garden seg i beste klasse tilstandsklasse både for fosfor og nitrogen.

Siktedyp og Visuell vannfarge

Vannfargen (vannets egenfarge målt ved halve siktedypet) var ved målingene i 1999 grønn. Dominans av grønnalger gir i perioder et større innslag av grønt i vannsøylen over sikteskiven.

Bruker vi SFT’s skjema for klassifisering av miljøkvalitet i ferskvann (tabell 8 i vedlegget) på resultatene fra Isdalsvann skal siktedypet være over 6 meter for å oppnå beste tilstandsklasse etter vurderingssystemet som kom i 1997 (SFT 1997). Resultatene av målingene i 1999 klassifiserer innsjøen i beste tilstandsklasse.

Temperatur

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 m</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>15.0</td>
<td>12.5</td>
<td>11.5</td>
<td>2.5</td>
<td>12.5</td>
<td>10.0</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td>12.0</td>
<td>12.0</td>
<td>11.5</td>
<td>2.5</td>
<td>12.3</td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.5</td>
<td>12.0</td>
<td>11.5</td>
</tr>
<tr>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.4</td>
</tr>
<tr>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0 v. bunn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oksygen

Ved prøvetakingen den 18. mai ble prøver for måling av oksygen-innholdet i vannmassen like over bunnen hentet inn ved hjelp av en Ruttner vannhenter. Uheldigvis ble prøvene ødelagt under transport. Slike prøver er viktige for å få informasjon om oksygenforbruket i bunnvannets gjennom vinterperioden.

<table>
<thead>
<tr>
<th>År :</th>
<th>Dato :</th>
<th>Siktedyp i meter</th>
<th>Vannfarge :</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>04. 07.</td>
<td>8.5</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td></td>
<td>12. 08.</td>
<td>7.0</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td></td>
<td>19. 09.</td>
<td>5.0</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td></td>
<td>18. 10.</td>
<td>4.0</td>
<td>Grønn</td>
</tr>
<tr>
<td>1989</td>
<td>14. 06.</td>
<td>8.0</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td>1993</td>
<td>15. 06</td>
<td>5.0</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td></td>
<td>05. 08</td>
<td>7.5</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td></td>
<td>15.09</td>
<td>7.0</td>
<td>Grønn</td>
</tr>
<tr>
<td>1994</td>
<td>28.06</td>
<td>4.0</td>
<td>Gul</td>
</tr>
<tr>
<td></td>
<td>22.07</td>
<td>6.0</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td></td>
<td>07.09</td>
<td>7.0</td>
<td>Grønn</td>
</tr>
<tr>
<td></td>
<td>26.09</td>
<td>6.0</td>
<td>Gul - grønn</td>
</tr>
<tr>
<td>1995</td>
<td>29.06</td>
<td>8.0</td>
<td>Grønn</td>
</tr>
<tr>
<td></td>
<td>15.08</td>
<td>7.5</td>
<td>Grønn</td>
</tr>
<tr>
<td>1996</td>
<td>17.06</td>
<td>4.0</td>
<td>Gul</td>
</tr>
<tr>
<td></td>
<td>28.08</td>
<td>7.0</td>
<td>gul-grønn</td>
</tr>
<tr>
<td></td>
<td>12.09</td>
<td>7.0</td>
<td>Grønn</td>
</tr>
<tr>
<td>1998</td>
<td>28.07</td>
<td>7.5</td>
<td>Gul</td>
</tr>
<tr>
<td></td>
<td>15.09</td>
<td>8.5</td>
<td>Gul</td>
</tr>
<tr>
<td>1999</td>
<td>12.07</td>
<td>8.0</td>
<td>Grønn</td>
</tr>
<tr>
<td></td>
<td>16.08</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.09</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>
BIOLOGISKE UNDERSØKELSER

Sanitærbakteriologiske prøver

Vannprøver for å beskrive de sanitærbakteriologiske forholdene i Isdalsvann og i Bjoreio nedstrøms Garden ble samlet inn fire ganger i 1999. Resultatene fra Isdalsvann er hentet fra blandprøven 0 - 10 meter. Analysene er utført ved Næringsmiddeltilsynet for Indre Hardanger, Odda. Det ble i prøvene fra Isdalsvann funnet et økt antall koliforme bakterier (KB) i prøvene fra august og september i 1999 med en maksverdi på 107 KB/100ml. Termostabile koliform bakterier (TKB) ble også registrert i august og september med 1 pr. 100 ml prøve (tabell 5). Vannprøven viser derfor ingen større tegn på fékal forurensing.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koliforme bakterier / 100 ml</td>
<td></td>
<td>2</td>
<td>0</td>
<td>107</td>
<td>78</td>
</tr>
<tr>
<td>Termostabile kolif. bakterier (TKB) / 100ml</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kimtall / ml</td>
<td></td>
<td>840</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koliforme bakterier / 100 ml</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Termostabile kolif. bakterier (TKB) / 100ml</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koliforme bakterier / 100 ml</td>
<td></td>
<td>7</td>
<td>0</td>
<td>57</td>
<td>6</td>
</tr>
<tr>
<td>Termostabile kolif. bakterier (TKB) / 100ml</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kimtall / ml</td>
<td></td>
<td>960</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koliforme bakterier / 100 ml</td>
<td></td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>105</td>
</tr>
<tr>
<td>Termostabile kolif. bakterier (TKB) / 100ml</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
</tbody>
</table>

Klorofyll og Planteplankton

Ved innsamlingen av klorofyllprøver i 1998 og 1999 ble det fra blandprøven over innsjøens dypeste parti fra 0 - 10 meter også hentet ut kvantitative prøver som beskriver planteplankton-samfunnet i Isdalsvann.

Målingene av blandprøvens klorofyll innhold ga i 1998 verdier for (KLA/S μg/l) på henholdsvis 1.18 μg KLA /l den 27.juli og 1.12 μg KLA /l den 15. september.

I 1999 ga klorofyllmålingene verdier på 0.36 μg KLA /l (18. mai) like før isløsning. Den 12 juli var vannprøvens klorofyll innhold 1.36 μg KLA /l og den 14. september 1.00 μg KLA /l.

Resultatene fra 1998 og 1999 gir, når de blir vurdert mot SFT’s vurderingssystem for virkning av næringsalter, beste tilstandsklasse.
5. Litteratur - referanser

Tabell 7 A. Temperaturregistreringer i Isdalsvann, 1993 til 1996.

Tabell 8. SFT's skjema for klassifisering av tilstand.

<table>
<thead>
<tr>
<th>Dato</th>
<th>21.04</th>
<th>09.08</th>
<th>05.11</th>
<th>12.04</th>
<th>25.05</th>
<th>16.06</th>
<th>18.07</th>
<th>18.10</th>
<th>05.05</th>
<th>05.06</th>
<th>12.05</th>
<th>05.07</th>
<th>15.08</th>
<th>21.10</th>
<th>17.10</th>
<th>Benevning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.15</td>
<td>6.12</td>
<td>-</td>
<td>5.9</td>
<td>5.65</td>
<td>5.89</td>
<td>6.5</td>
<td>5.6</td>
<td>5.9</td>
<td>5.73</td>
<td>6.26</td>
<td>6.40</td>
<td>6.78</td>
<td>6.09</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>-</td>
<td>mmol/l</td>
<td></td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>4.2</td>
<td>2.1</td>
<td>-</td>
<td>2.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1.2</td>
<td>3.0</td>
<td>1.5</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
<td>2.1</td>
<td>mS/m</td>
<td></td>
</tr>
<tr>
<td>Hardhet</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
<td>0.03</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.07</td>
<td>Hardhet - Total mmol/l</td>
<td></td>
</tr>
<tr>
<td>Turbiditet</td>
<td>0.33</td>
<td>0.52</td>
<td>-</td>
<td>1</td>
<td>0.08</td>
<td>0.72</td>
<td>0.91</td>
<td>0.8</td>
<td>0.40</td>
<td>0.40</td>
<td>0.57</td>
<td>0.65</td>
<td>0.53</td>
<td>0.61</td>
<td>NTU - FTU96</td>
<td></td>
</tr>
<tr>
<td>Farge</td>
<td>71</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>75</td>
<td>15</td>
<td>85</td>
<td>83</td>
<td>85</td>
<td>55</td>
<td>24</td>
<td>15</td>
<td>80</td>
<td>mg Pt/l</td>
<td></td>
</tr>
<tr>
<td>Nitrat</td>
<td>-</td>
<td>ug NO₃-N / l</td>
<td></td>
</tr>
<tr>
<td>Aluminium syreløselig</td>
<td>-</td>
<td>Mg Al/l</td>
<td></td>
</tr>
<tr>
<td>Tot P</td>
<td><5</td>
<td>17</td>
<td>9</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ug P/l</td>
<td></td>
</tr>
<tr>
<td>Orto P *</td>
<td>-</td>
<td>ug PO₄-P / l</td>
<td></td>
</tr>
<tr>
<td>Tot N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>333</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>315</td>
<td>390</td>
<td>218</td>
<td>195</td>
<td>165</td>
<td>150</td>
<td>295</td>
<td>ug N/l</td>
<td></td>
</tr>
<tr>
<td>KOF-Mn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.9</td>
<td>18.7</td>
<td>19.2</td>
<td>3.5</td>
<td>23</td>
<td>20</td>
<td>19.25</td>
<td>12.5</td>
<td>4.25</td>
<td>1.5</td>
<td>11</td>
<td>Permanganattall mg KMnO₄</td>
<td></td>
</tr>
<tr>
<td>Amonium</td>
<td>-</td>
<td>ug NH₄-N / l</td>
<td></td>
</tr>
</tbody>
</table>

Bjoreia nedstrøms Garden

<table>
<thead>
<tr>
<th>Parameter</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>Cl</th>
<th>NO₃</th>
<th>SO₄</th>
<th>Re. Al</th>
<th>Illab. Al</th>
<th>Lab Al</th>
<th>Tot Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato :</td>
<td></td>
</tr>
<tr>
<td>Måleenhet</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>18.10.1994</td>
<td>2.81</td>
<td>0.44</td>
<td>0.28</td>
<td>1.04</td>
<td>1.5</td>
<td>25</td>
<td>2.3</td>
<td>70</td>
<td>60</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>17.10.1995</td>
<td>0.59</td>
<td>2.65</td>
<td>0.26</td>
<td>1.09</td>
<td>2.1</td>
<td>40</td>
<td>2.85</td>
<td>65</td>
<td>65</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dato</th>
<th>06.05.1996</th>
<th>20.05.1996</th>
<th>03.06.1996</th>
<th>17.06.1996</th>
<th>04.11.1996</th>
<th>Benevning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.89</td>
<td>6.42</td>
<td>6.52</td>
<td>6.64</td>
<td>5.38</td>
<td>pH</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td><0.02</td>
<td>mmol/l</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>2.1</td>
<td>2.1</td>
<td>1.5</td>
<td>1.7</td>
<td>2.2</td>
<td>mS/m</td>
</tr>
<tr>
<td>Hardhet</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>0.06</td>
<td>Hardhet - Total mmol/l</td>
</tr>
<tr>
<td>Turbiditet</td>
<td>0.60</td>
<td>0.084</td>
<td>0.90</td>
<td>1.70</td>
<td>0.40</td>
<td>NTU - FTU96</td>
</tr>
<tr>
<td>Farge</td>
<td>95</td>
<td>55</td>
<td>30</td>
<td>30</td>
<td>110</td>
<td>mg Pt/l</td>
</tr>
<tr>
<td>Nitrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug NO₃-N / l</td>
</tr>
<tr>
<td>Aluminium syreløselig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg Al/l</td>
</tr>
<tr>
<td>Tot P</td>
<td>28</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>ug P/l</td>
</tr>
<tr>
<td>Orto P *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug PO₄-P / l</td>
</tr>
<tr>
<td>Tot N</td>
<td>345</td>
<td>285</td>
<td>160</td>
<td>175</td>
<td>210</td>
<td>ug N/l</td>
</tr>
<tr>
<td>KOF-Mn</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>Permanganatall mg KMnO₄</td>
</tr>
<tr>
<td>Amonium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ug NH₄-N / l</td>
</tr>
</tbody>
</table>

Bjoreio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koliforme bakterier antall / 100 ml</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>77</td>
</tr>
<tr>
<td>Termostable kolif. bakterier (TKB) antall / 100ml</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>
Tabell 7 A. Temperaturregistreringer i Isdalsvann, 1993 til 1996.

<table>
<thead>
<tr>
<th>Dyp / År</th>
<th>15.06</th>
<th>05.08</th>
<th>15.09</th>
<th>28.06</th>
<th>22.07</th>
<th>07.09</th>
<th>26.09</th>
<th>29.06</th>
<th>15.08</th>
<th>17.06</th>
<th>28.08</th>
<th>12.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflate</td>
<td>6.5</td>
<td>11.0</td>
<td>7.0</td>
<td>8.5</td>
<td>17.0</td>
<td>11.0</td>
<td>7.5</td>
<td>13.0</td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 m</td>
<td>6.5</td>
<td>9.5</td>
<td>7.0</td>
<td>15.0</td>
<td>10.0</td>
<td>8.0</td>
<td></td>
<td>10.0</td>
<td>14.5</td>
<td>10</td>
<td>14.5</td>
<td>11.5</td>
</tr>
<tr>
<td>5.0</td>
<td>6.5</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>11.5</td>
<td>10.0</td>
<td>8.0</td>
<td>7.8</td>
<td>13.3</td>
<td>9.5</td>
<td>13.8</td>
<td>11.5</td>
</tr>
<tr>
<td>7.5</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>10.0</td>
<td>10.0</td>
<td>8.0</td>
<td></td>
<td>6.3</td>
<td>10.3</td>
<td>8.8</td>
<td>13.3</td>
<td>11.5</td>
</tr>
<tr>
<td>10.0</td>
<td>6.0</td>
<td>8.5</td>
<td>7.0</td>
<td>5.5</td>
<td>6.0</td>
<td>10.0</td>
<td>8.0</td>
<td>6.0</td>
<td>8.5</td>
<td>8.0</td>
<td>12.5</td>
<td>11.5</td>
</tr>
<tr>
<td>12.5</td>
<td>5.5</td>
<td>8.5</td>
<td>7.0</td>
<td></td>
<td>7.5</td>
<td>8.0</td>
<td></td>
<td>5.5</td>
<td>7.5</td>
<td>7.0</td>
<td>12.0</td>
<td>11.5</td>
</tr>
<tr>
<td>15.0</td>
<td>5.5</td>
<td>8.5</td>
<td>7.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td></td>
<td>7.5</td>
<td>5.5</td>
<td>9.0</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>5.5</td>
<td></td>
<td>5.5</td>
<td>6.0</td>
<td>7.0</td>
<td>7.5</td>
<td></td>
<td>7.0</td>
<td>5.5</td>
<td>8.5</td>
<td>11.0</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 7 B. Temperatur - registreringer i Isdalsvann 1988 - 1889.

<table>
<thead>
<tr>
<th>Dato</th>
<th>04.07</th>
<th>12.08</th>
<th>19.09</th>
<th>18.10</th>
<th>11.04</th>
<th>14.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyp / År</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overflate</td>
<td>16.3</td>
<td>15.8</td>
<td>9.0</td>
<td>4.3</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>2.5</td>
<td>16.2</td>
<td>13.4</td>
<td>9.0</td>
<td>4.2</td>
<td>0.4</td>
<td>5.1</td>
</tr>
<tr>
<td>5.0</td>
<td>14.6</td>
<td>12.1</td>
<td>9.0</td>
<td>4.2</td>
<td>0.4</td>
<td>4.9</td>
</tr>
<tr>
<td>7.5</td>
<td>7.3</td>
<td>11.2</td>
<td>9.0</td>
<td>4.2</td>
<td>0.4</td>
<td>4.8</td>
</tr>
<tr>
<td>10.0</td>
<td>6.7</td>
<td>9.8</td>
<td>9.0</td>
<td>4.2</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>12.5</td>
<td>5.7</td>
<td>7.7</td>
<td>9.0</td>
<td>4.2</td>
<td>2.5</td>
<td>4.2</td>
</tr>
<tr>
<td>15.0</td>
<td>5.3</td>
<td>6.7</td>
<td>9.0</td>
<td>4.2</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>17.5</td>
<td>5.4</td>
<td>6.5</td>
<td>9.0</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 8. SFT's skjema for klassifisering av tilstand.

<table>
<thead>
<tr>
<th>Virkninger av:</th>
<th>Parametre</th>
<th>Tilstandsklasse I «Meget god»</th>
<th>II «God»</th>
<th>III «Mindre god»</th>
<th>IV «Dårlig»</th>
<th>V «Meget dårlig»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Næringsalter</td>
<td>Total fosfor, µg P/l</td>
<td><7</td>
<td>11 - 20</td>
<td>4 - 8</td>
<td>20 - 50</td>
<td>>50</td>
</tr>
<tr>
<td></td>
<td>Klorofyll a, µg/l</td>
<td><2</td>
<td>4 - 8</td>
<td>2 - 4</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Siktadyp, m</td>
<td>>6</td>
<td>2 - 4</td>
<td>50 - 90</td>
<td>>150</td>
<td>>150</td>
</tr>
<tr>
<td></td>
<td>Prim. prod., g C/m² år</td>
<td><25</td>
<td>50 - 90</td>
<td>400 - 600</td>
<td>>1200</td>
<td>>1200</td>
</tr>
<tr>
<td></td>
<td>Total nitrogen, µg/l</td>
<td><300</td>
<td>400 - 600</td>
<td>600 - 1000</td>
<td>>1800</td>
<td>>1800</td>
</tr>
<tr>
<td>Organiske stoffer</td>
<td>TOC, mg C/l</td>
<td><2,5</td>
<td>3,5 - 6,5</td>
<td>40 - 80</td>
<td>>15</td>
<td>>15</td>
</tr>
<tr>
<td></td>
<td>Fargetall, mg Pt/l</td>
<td><15</td>
<td>25 - 40</td>
<td>40 - 80</td>
<td>>80</td>
<td>>80</td>
</tr>
<tr>
<td></td>
<td>Oksygen, mg O₂/l</td>
<td>>9</td>
<td>4 - 6,5</td>
<td>40 - 80</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td>Oksygenmetr. %</td>
<td>>80</td>
<td>30 - 50</td>
<td>40 - 80</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td></td>
<td>Siktadyp, m</td>
<td>>6</td>
<td>2 - 4</td>
<td>40 - 80</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>KOF Mn, mg O₂/l</td>
<td><2,5</td>
<td>3,5 - 6,5</td>
<td>40 - 80</td>
<td>>15</td>
<td>>15</td>
</tr>
<tr>
<td></td>
<td>Jern, µg Fe/l</td>
<td><5</td>
<td>100 - 500</td>
<td>400 - 1000</td>
<td>>600</td>
<td>>600</td>
</tr>
<tr>
<td></td>
<td>Mangan, µg Mn/l</td>
<td><20</td>
<td>50 - 100</td>
<td>600 - 1500</td>
<td>>150</td>
<td>>150</td>
</tr>
<tr>
<td>Forsurende stoffer</td>
<td>Alkalitet, mmol/l</td>
<td>>0,2</td>
<td>0,01 - 0,05</td>
<td>50 - 100</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>>6,5</td>
<td>5,5 - 6,0</td>
<td>50 - 100</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>Partikler</td>
<td>Turbiditet, FTU</td>
<td><0,5</td>
<td>1 - 2</td>
<td>5 - 10</td>
<td>>5</td>
<td>>5</td>
</tr>
<tr>
<td></td>
<td>Susp. stoff, mg/l</td>
<td><1,5</td>
<td>3 - 5</td>
<td>5 - 10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td></td>
<td>Siktadyp, m</td>
<td>>6</td>
<td>2 - 4</td>
<td>5 - 10</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Tarmbakterier</td>
<td>Termotol. koli. bakt., ant./100 ml</td>
<td><5</td>
<td>50 - 200</td>
<td>100 - 200</td>
<td>>1000</td>
<td>>1000</td>
</tr>
</tbody>
</table>

Dato: 99-01-01

Månedsverdier Vøringsfossen

Dato: 99-02-01

Månedsverdier

Dato: 99-07-01
Månedsverdier
Vannføring

Dato: 99-08-01
Månedsverdier
Vannføring

Dato: 99-11-01

Månedsvverdier

Vannføring

Dato: 99-12-01

Månedsvverdier

Vannføring