

REPORT SNO 4226-2000

Effect of clear-cutting of forest on the chemistry of a shallow groundwater aquifer in southern Norway

REPORT 51/00

Norwegian Institute for Water Research

Main Office

P.O. Box 173, Kjelsås N-0411 Oslo Norway Phone (47) 22 18 51 00 Telefax (47) 22 18 52 00 Internet: www.niva.no Televeien 3 N-4879 Grimstad Norway Phone (47) 37 29 50 55 Telefax (47) 37 04 45 13

Regional Office, Sørlandet Regional Office, Østlandet

Sandvikaveien 41 N-2312 Ottestad Norway Phone (47) 62 57 64 00 Telefax (47) 62 57 66 53

Nordnesboder 5 N-5008 Bergen Norway Phone (47) 55 30 22 50 Telefax (47) 55 30 22 51

Regional Office, Vestlandet Akvaplan-NIVA A/S

N-9005 Tromsø

Norway Phone (47) 77 68 52 80

Telefax (47) 77 68 05 09

Title Effect of clear-cutting of forest on the chemistry of a shallow groundwater aquifer in southern Norway	Serial No. 4226-2000	Date 15.05.00
groundwater aquiter in southern Norway	Report No. Sub-No. E-96418	Pages Price
Author(s) Arne Henriksen, Norwegian institute for Water Research Lars A. Kirkhusmo, Geological Survey of Norway, Oslo Office	Topic group Acid rain	Distribution
	Geographical area Southern Norway	Printed NIVA

Client(s) Client ref.

Abstract

Clear-cutting of forests have pronounced effects on chemistry of soils and runoff water. The major effects are increased water yield, changes in nutrient cycles and increased leakage of the nutrients nitrate and potassium in runoff. As part of the national monitoring programme for long-range transported air pollutants, administered by the Norwegian Pollution Control Authority (SFT), four groundwater aquifers in southern Norway were monitored for acidification trends during the period 1980-1995. For the monitoring station, Langvasslia in southeastern Norway, sampling was continued until the end of 1999. This groundwater aquifer is located about 3 km north-east of the calibrated catchment Lake Langtjern. The catchment of the groundwater aquifer, covered completely by Norway spruce, was totally clear-cut in September 1986 and was treated with glyphosate in summer 1991. The effects on the groundwater are generally similar to those observed in stream-water from clear-cut areas: increases in water runoff, water temperature, concentrations of K, NO₃ and organic carbon (TOC) and decrease in SO₄-concentration. In the groundwater aquifer also inorganic aluminum decreased and ANC increased more than would have been expected without clear-cutting. NO₃ concentrations are now almost back to the levels prior to clear-cutting, whereas K still shows elevated concentrations.

4 keywords, Norwegian	4 keywords, English
 Grunnvann Snauhogst Vannkjemi Overvåking 	 Groundwater Clear cut Water chemistry Monitoring

Aug Skursehm

Arne Henriksen Project manager

Britlisc & elle ale

Brit Lisa Skjelkvåle Research manager ISBN 82-577-3848-4

Mls Poa Salth

Nils Roar Sælthun Head of research department

Effect of clear-cutting of forest on the chemistry of a shallow groundwater aquifer in southern Norway

By

Arne Henriksen and Lars A. Kirkhusmo

Preface

As part of the national monitoring programme for long-range transported air pollutants, administered by the Norwegian Pollution Control Authority (SFT), four groundwater aquifers in southern Norway were monitored for acidification trends during the period 1980-1995. Three of them, Birkenes, Åmli and Evje (from 1982) are located in Aust Agder county, whereas the fourth aquifer, Langvasslia, is located in Buskerud county. For economic reasons groundwater monitoring was officially terminated in 1995. The Norwegian Institute for Water Research (NIVA) and the Geological Survey of Norway (NGU) jointly sponsored the groundwater monitoring for 1996, hoping that the official monitoring could again be resumed by SFT. Unfortunately, this did not happen. Because the catchment of the groundwater aquifer in Langvasslia (LAG01) was clearcut in 1986, and that the effect on the water quality was still significant in 1996, sampling was continued by NIVA in order to follow the effects of clearcutting for some more years. The sampling was terminated at the end of 1999, thus giving a sampling period of 20 years. We present here trends and changes in water chemistry recorded for this particular groundwater aquifer with special emphasis on the effect of the clearcutting on groundwater chemistry. This report is based on a paper submitted to Hydrol. Earth System Sci.

Oslo, 25.05 .2000

Arne Henriksen

Contents

Preface	5
Summary	7
1. Introduction	8
2. Site description	10
3. Sampling and analysis.	10
4. Results and discussion	11
4.1 Precipitation chemistry and amounts	11
4.2 Groundwater level, temperature and yield	11
5. Water chemistry	14
6. Comparison with surface water	15
6.1 Nitrate and potassium	15
6.2 Sulphate	18
6.3 ANC and base cations (Ca+Mg)	18
6.4 Total organic carbon and labile aluminum	19
7. Concluding remarks	19
8. References	20
Appendix A.	22
Appendix B.	27

Summary

Clear-cutting of forests have pronounced effects on chemistry of soils and runoff water. The major effects are increased water yield, changes in nutrient cycles and increased leakage of the nutrients nitrate and potassium in runoff. As part of the national monitoring programme for long-range transported air pollutants, administered by the Norwegian Pollution Control Authority (SFT), four groundwater aquifers in southern Norway were monitored for acidification trends during the period 1980-1995. For the monitoring station, Langvasslia in south-eastern Norway, sampling was continued until the end of 1999. This groundwater aquifer is located about 3 km north-east of the calibrated catchment Lake Langtjern. The catchment of the groundwater aquifer, covered completely by Norway spruce, was totally clear-cut in September 1986 and was treated with glyphosate in summer 1991. The effects the groundwater are generally similar to those observed in stream-water from clear-cut areas: increases in water runoff, water temperature, concentrations of K, NO₃ and organic carbon (TOC) and decrease in SO₄-concentration. In the groundwater aquifer also inorganic aluminum decreased and ANC increased more than would have been expected without clear-cutting. NO₃ concentrations are now almost back to the levels prior to clear-cutting, whereas K still show elevated concentrations.

1. Introduction

Clear-cutting of forests in lake catchments have pronounced effects on stream and lake water chemistry. Likens et al. (1970) reported on effects of clear-cutting and herbicide treatment in the hardwood forested Hubbard Brook watershed in New Hampshire, U.S.A. Large increases in streamwater concentrations for most major ions, especially nitrate and potassium, were recorded. Also, water yield increased substantially. Similar results were found from clear-cutting hardwood forests in the White Mountains of New Hampshire (Martin et al. 1985). Hornbeck et al. (1987) have extensively reported on effects of clear-cutting practices on runoff water in the Hubbard Brook watershed. The effect was at maximum one year after block cut harvest, giving about 100 % higher sum of measured ions than before harvest. By year 5 after harvest the sum of ions had returned to levels found before harvest. The large increase in nitrate was largely balanced by increases in calcium, magnesium and potassium. Potassium was the only ion that continued to increase at year 5 after the harvest period. Neal et al. (1992a, 1992b) studied the effects of harvesting on stream water chemistry at an acidic and acid sensitive spruce forested area in mid-Wales. The effects of a 3-year conifer harvesting program showed that nitrate and potassium, initially almost quadrupled, remained high for 4 years. Concentrations of aluminum in soils and stream increased and stream pH and alkalinity declined for the first two years, after which the trends reversed to give conditions similar to those pertaining prior to felling. Rosén et al (1996) studied the runoff from 3 forested catchments during a 12-year period. Fifty percent and 95% of the surface of two of the areas were clear-cut, the third area was kept as a control. Average runoff increased by 85% and 110%, respectively, in the clear-cut areas. Stream chemistry changes were identified mainly on increased concentrations of potassium, ammonium, nitrate, organic- and total nitrogen. At the end of the 8-year study period the run-off and stream water successively returned to pre-cut conditions.

As part of the national monitoring programme for long-range transported air pollutants, administered by the Norwegian Pollution Control Authority (SFT) (Johannessen 1995), four groundwater aquifers in southern Norway were monitored for acidification trends during the period 1980-1995. For economic reasons groundwater monitoring was officially terminated in 1996. For one of the monitored stations, Langvasslia (station code LAG01) in South Eastern Norway, sampling was continued by NIVA as a research project until the end of 1999.

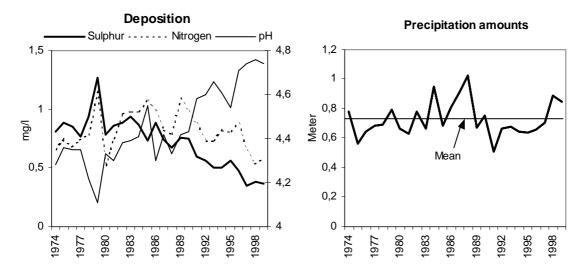
The groundwater aquifer at Langvasslia is located about 3 km north-east of the calibrated catchment lake Langtjern (Henriksen and Wright 1977, Skjelkvåle and Henriksen 1995) (Figure 1) The catchment of the groundwater aquifer, covered completely by Norway spruce, was totally clear-cut without warning by the landowner in September 1986. The slash was not burned or removed. The catchment was treated further with glyphosate in summer 1991 to stop growth of deciduous trees. As a consequence of these manipulations, the water quality of the groundwater aquifer changed considerably. This offered the opportunity to study the effects of clear-cut on shallow groundwater aquifer with a small catchment. We present here trends and changes in water chemistry recorded for the groundwater aquifer at Langvasslia and with special emphasis on the effect of the clear-cutting on groundwater chemistry.

Figure 1. Location of the Langvasslia groundwater aquifer relative to the calibrated catchment Lake Langtjern.

Figure 2. A picture of the catchment of the groundwater aquifer in 1999. The new 13-year-old forest is seen in the foreground. The dense old forest in the background is similar to the forest before clear-cutting.

2. Site description

The bedrock in the area consists of banded granodioritic gneiss with layers of amphibolites of Precambrian age (Smithson 1963), overlain by till. The groundwater aquifer unconfined and located in till deposits on a hill slope. The monitoring screen well was placed in the discharge area of the aquifer, near the bottom of the hill slope at an altitude of 425 m.a.s. The monitoring screen well is located in a basal till overlying the bedrock. The thickness of the till is about 1 - 3 m, with many blocks. The till is probably affected by frost, and thus has become more permeable than a typical basal till.


3. Sampling and analysis.

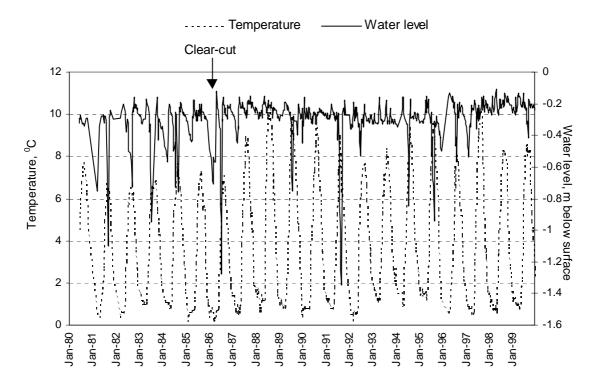
The monitoring 5/4" screen well was placed just above a spring outlet, with the groundwater intake for chemical analysis from 0.75 - 1.75 m (1 m filter) below the surface. Groundwater samples were collected after 15 minutes pumping time. Groundwater level and groundwater temperature were measured weekly. Groundwater samples were collected monthly when possible and water yield was measured at the same time. Groundwater sampling was started in May 1980, all samples were analyzed at the Norwegian Institute for Water Research using standardized methods for the following variables: pH, Conductivity, Ca, Mg, Na, K, Cl, SO₄, NO₃, alkalinity, reactive Al, non-labile Al, SiO₂, turbidity and permanganate value.

4. Results and discussion

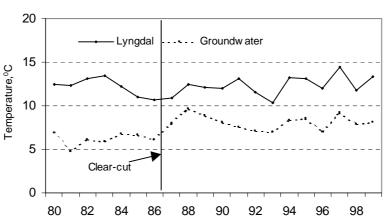
4.1 Precipitation chemistry and amounts

As part of the national monitoring programme for long-range transported air pollutants precipitation chemistry and precipitation amounts were determined by bulk sampling on a daily basis for the period 1974 to 1992 and on a weekly basis thereafter (Tørseth *et al.* 1999). (Figure 3). The precipitation station was located at Sønsteby farm at Gulsvik 7 km west of groundwater aquifer.

Figure 3. Yearly weighted average concentrations in wet deposition and yearly precipitation amounts at monitoring station Gulsvik in Buskerud county, Norway, located 7 km west of groundwater aquifer (Tørseth et al. 1999).


The trends in deposition at Gulsvik follow the general patterns for southern Norway: a significant downward trend in sulphur deposition from the early 1980's and, as a consequence, a marked increase in pH, but no significant changes in N-deposition until the last three years. (Tørseth *et al.* 1999). In 1979 the concentrations of S, N and H^+ were the highest ever measured at Gulsvik. The precipitation amounts were significantly above the average for the measurement period during the later 1980's, thereafter precipitation amounts returned to near the average for the measurement period. During the last three years, however, the amount of precipitation has again increased.

4.2 Groundwater level, temperature and yield


The groundwater level generally varies with season (figure 4): lower levels in late winter and late summer and higher water levels in spring after snowmelt and in late fall due to increased precipitation amounts. The groundwater aquifer is shallow and therefore sensitive to variations in precipitation amounts. The records include several dry periods (Figure 4). These occur all during dry summers, such as in September 1981, July 1983, July 1986, and in August-September 1991 and 1995. Water temperature varies between nearly 0° C during winter and up to 10° C during the summers of 1988 and 1997. 89% of the temperature observations above 7°C were measured in summer months <u>after</u> clear-cutting. There is further a tendency to higher water levels for two years after clear-cutting (Figures 4)

and 6a), but this can partly be caused by higher precipitation amounts for those two years (Figure 3). The clear-cut also resulted in higher summer temperatures in the groundwater (Figure 5).

The water yield of the groundwater aquifer was measured only when a water sample was taken, normally once a month. The water yield measurements were stopped in December 1998. During the sampling period 126 water yield measurements were taken compared with 895 water level measurements. As is expected there is a clear relationship between water level and water yield (Figure 6b).

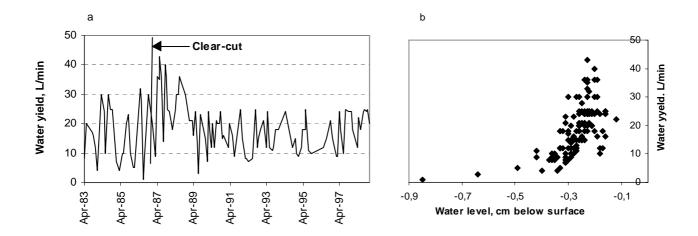


Figure 4. Water level below surface and water temperature in the groundwater aquifer measured weekly.

Summer temperature (June-Sept.)

Figure 5. Summer temperature (July-Sept) in groundwater with air temperature at Lyngdal (Data from the Norwegian Meteorological Institute (DNMI).

Figure 6. Variations in water yield during the measurement period (a), and relationship between water level and water yield (b).

5. Water chemistry

Water samples for chemical analyses were collected once a month whenever possible. Due to occasionally frozen well or very low groundwater level, the measurement frequency was for most years less than once a month. These irregularities are reflected in the number of samples collected per year (Table I). The yearly average values for the measured chemical variables of the groundwater aquifer for the measurement period 1980-1999 (Table I) show that the groundwater is acidic, has high concentrations of labile inorganic aluminum (L-Al) and has low base cation concentrations. The groundwater is highly influenced by soil water, as indicated by the high content of organic matter (TOC). Because of its location inland Norway the groundwater is little influenced by sea salt spray, as reflected in the low concentrations of chloride and sodium. The average ratio of Na/Cl is 1.44 as compared to the seawater ratio of 0.85, indicates the presence of some geologic sources of sodium in the catchment of the aquifer.

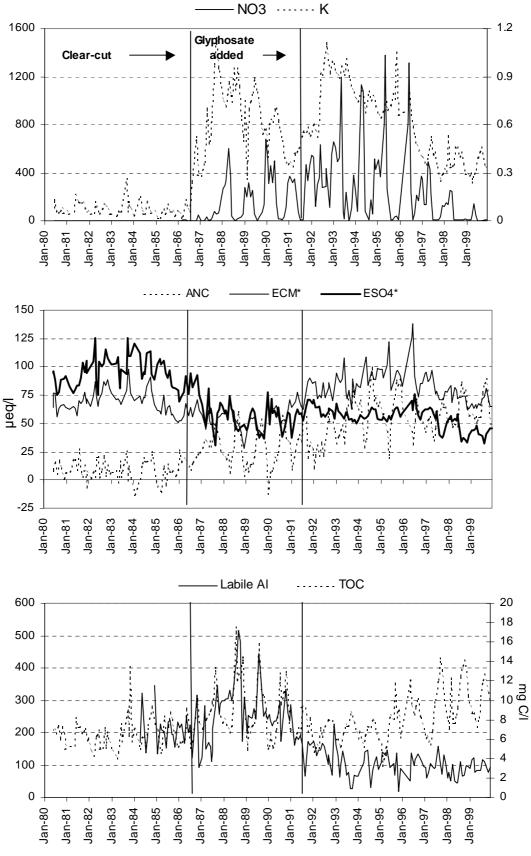
Table I. Yearly average values for analyzed variables in the groundwater aquifer Langvasslia in Buskerud county, Norway. Total organic carbon (TOC) have been estimated from measured permanganate values (PERM) by the empirical equation: TOC = PERM/1.24 based on 87 samples of surface waters in Norway (not published). R-Al = Reactive Al, Org-Al = non-labile Al, L-Al = Labile Al. N= Number of samples per year.

Year	Ν	рН	Ca	Mg	Na	к	CI	SO ₄	NO₃	Alk	ANC	R-AI	Org-Al	L AI	SiO ₂	Turb	тос
			mg l⁻¹	mg l ⁻¹	µgN l⁻¹	µeq l ⁻¹	µeq l ⁻¹	μg ⁻¹	μg ⁻¹	μg ^{I-1}	mg l ⁻¹	FTU	mg l ⁻¹				
1980	10	5.18	1.09	0.21	1.10	0.07	0.7	4.4	10	15	9.6				8.9	1.7	8.2
1981	10	5.30	1.08	0.22	1.13	0.09	0.8	4.4	10	15	9.4				8.5	2.7	7.9
1982	11	5.25	1.24	0.26	1.24	0.07	0.8	5.1	10	12	9.6				8.2	1.7	7.0
1983	9	5.13	1.26	0.25	1.23	0.09	0.9	5.1	10	9	7.7	407	233	174	8.2	1.8	8.0
1984	9	5.07	1.20	0.24	1.22	0.07	0.6	5.0	2	6	11.7	452	219	233	8.2	1.3	8.2
1985	11	5.07	0.95	0.20	1.09	0.05	0.5	4.5	1	4	2.7	476	278	198	8.5	0.9	7.9
1986	11	5.08	0.94	0.21	1.19	0.16	0.7	4.0	8	4	17.7	461	260	202	8.7	2.9	8.2
1987	12	5.09	0.85	0.20	1.03	0.66	0.8	2.9	38	6	34.3	498	285	213	7.4	0.7	10.1
1988	12	5.13	0.86	0.19	1.00	0.77	0.9	2.7	169	10	27.1	621	276	345	7.4	1.0	11.4
1989	11	5.25	0.80	0.21	1.16	0.67	1.1	2.6	202	14	23.7	509	232	277	7.5	1.2	9.7
1990	12	5.24	0.92	0.22	1.11	0.54	0.8	2.8	227	10	28.5	465	214	252	7.1	0.9	9.5
1991	10	5.22	1.19	0.27	1.21	0.47	1.1	3.0	260	20	34.5	435	262	174	7.9	1.0	8.4
1992	11	5.26	1.28	0.29	1.29	0.80	1.3	3.1	378	17	34.5	434	289	145	8.3	2.3	7.7
1993	12	5.31	1.32	0.30	1.27	0.90	1.0	2.8	351	31	56.6	395	310	85	8.5	0.9	8.0
1994	10	5.37	1.44	0.33	1.28	0.76	0.8	2.9	394	43	64.4	386	286	100	8.4	1.0	8.0
1995	10	5.63	1.48	0.33	1.20	0.74	0.9	2.9	339	63	63.1	364	261	103	8.3	1.6	8.3
1996	9	5.39	1.51	0.32	1.13	0.57	0.8	3.1	398	42	50.7	397	288	109	7.7	1.2	10.2
1997	11	5.49	1.32	0.26	1.11	0.38	0.8	2.7	165	47	54.7	376	277	98	7.7	0.6	10.2
1998	12	5.49	1.21	0.21	1.05	0.38	0.7	2.3	80	39	60.8	401	328	73	7.5	0.9	10.3
1999	11	5.63	1.10	0.21	0.97	0.33	0.5	2.1	27	53	61.7	399	304	96	7.4	1.1	9.6
Mean	11	5.28	1.15	0.25	1.15	0.43	0.8	3.4	154	23	33.2	440	271	169	8.0	1.4	7.8

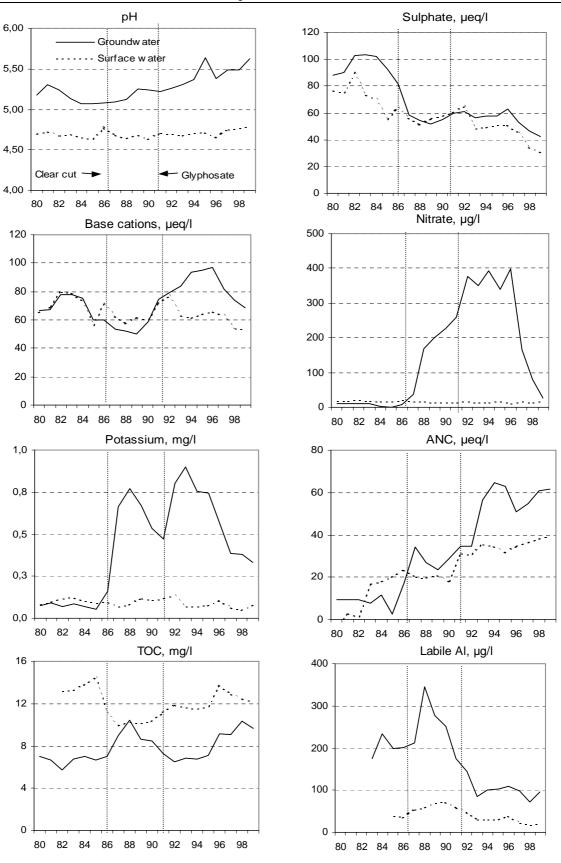
6. Comparison with surface water

The monitoring of the groundwater aquifer was designed for studying the long-term effects of acid rain on groundwater chemistry. Since the clear-cutting of its catchment came as a surprise, no reference groundwater aquifer was established. However, one of the inlets to lake Langtjern (station code LAE03, see Figure 1) is located in similar geologic settings as the groundwater aquifer and located only 3.5 km away. Here, weekly samples have been collected since 1973 (Skjelkvåle and Henriksen 1995). We have compared the yearly average values for the period 1980-1985 (prior to clear-cut) for both sites (Table II). The concentrations of major constituents are very similar. Marked differences in concentrations are found in $H^+(pH)$, TOC and aluminum species. Groundwater has normally significantly higher CO₂-pressure than surface water. Norton and Henriksen (1983) found for the particular aquifer studied here that the pCO₂ at the time of sampling was $10^{-2.08}$ at pH 5.14. After purging the sample with N₂ the pCO₂ rose to $10^{-3.33}$ and the pH rose to 5.49.

A major difference is found for labile inorganic aluminum, the species considered being toxic to fish. The concentration in groundwater is 7 times higher than in surface water (Table II). The groundwater has percolated through the unsaturated zone, and thus its water chemistry reflects the net integrated effects of the processes taking place in this zone. Norton and Henriksen (1983) suggest that aluminum may be transported by dissociation of H_2CO_3 . Since the groundwater aquifer is highly over saturated with CO_2 , the dissociation of H_2CO_3 produces concentrations of H^+ capable of rendering particulate Al soluble, and the HCO_3^- formed may serve as a mobile anion and facilitate the transport of the Al.


Table II. Yearly average chemistry for an inlet creek to lake Langtjern (LAE03) and Langvasslia groundwater aquifer (LAG01) prior to clear-cut (1980-1985).

	рН	Са	Mg	Na	к	CI	SO4	NO₃	ANC	тос	R-AI	Org-Al	L-AI
		mg l ⁻¹	mg l ⁻¹	mg l⁻¹	mg l⁻¹	mg l ⁻¹	mg l⁻¹	µg l⁻¹	µeq l ⁻¹	mg C I ⁻¹	μg ^{I-1}	µg ^{⊦1}	μg ^{Ι-1}
Groundwater	5.16	1.14	0.23	1.17	0.07	0.7	4.7	7	8	7.8	222	122	186
Surface water	4.68	1.11	0.24	0.61	0.09	0.8	3.6	16	5	13.7	92	76	26


Figure 7 shows variations in several chemical variables during the period 1980-1999 based on the individual observations for Langvasslia groundwater aquifer. In order to assess the effect of the clearcut on water chemistry, we have also plotted the yearly average values for both the aquifer and the inlet stream to Langtjern (see Table II) for most of the variables (Figure 8). Below we discuss the effect of clear-cutting as superimposed on the general trends in the surface water.

6.1 Nitrate and potassium

The most marked effect of the clear-cutting is the sharp increase in the concentrations of nitrate (NO₃) and potassium (K) (Figure 7, upper panel) due to less nutrient uptake in the catchment and increased mineralization of organic matter such as dead roots. Before the clear-cutting nitrate and potassium concentrations were low, potassium about 0.08 mg/l and nitrate less than 10 μ gN/l. After clear-cutting potassium increased almost immediately while nitrate started to increase a year later. Nitrate decreased during growing season every year and increased during the dormant season. The addition of glyphosate in 1991 led to increased leaching of both nitrate and potassium, especially high nitrate peaks were observed during the dormant season until 1995.

Figure 7. Langvasslia groundwater aquifer: Variations in several chemical variables during the period 1980-1999 based on individual observations.

Figure 8. Yearly average values for several components in Langvasslia groundwater aquifer (groundwater) with corresponding values for the inlet stream to Langtjern (surface water) for the period 1980-1999. ANC = acid neutralizing capacity, $ECM^* = non-marine Ca+Mg$. $ESO4^* = non-marine SO_4$.

In 1997 the concentration levels of nitrate and potassium were back to the levels before the glyphosate treatment, but still significantly higher than before the clear-cutting. During the last two years, however, the nitrate concentrations were also low during the dormant season and should reach the levels before clear-cut in the near future. Potassium concentrations are still high and appear to have stabilized at a higher level than before clear-cut.

These general trends in leaching of nitrate and potassium are in general agreement with the observations made in other clear-cut in the U.S, UK and Sweden (Likens *et al.* 1970, Neal *et al.* 1992a, 1992b, and Rosén et al 1996). At Langvasslia by 1999, 13 years after clear-cut, nitrate is almost back to the concentrations before the clear-cut. This time span is substantially longer than those reported from other clear-cut experiments. Both Hornbeck *et al.* (1987) and Neal *et al.* (1992b) reported about 5 years before nitrate returned to pre harvest conditions. Rosén *et al.* (1996) found that at the end of the 8 year study period the run-off and stream water successively returned to pre-cut conditions. The extended recovery time for the Langvasslia aquifer could be caused by the glyphosate treatment 5 years after the clear-cut, because the deciduous vegetation growth was stopped to allow the coniferous trees the possibility to dominate, as they do today.

6.2 Sulphate

Fuller *et al.* (1987) showed that whole-tree harvesting in Hubbard Brook Experimental Forest lead to increased mineralization and nitrification and consequently to substantial NO₃ loss, acidification of soil solutions and increased soil adsorption of SO₄. As a consequence, stream-water concentrations and effluxes of SO₄ declined and NO₃ increased after tree harvesting. At the Langvasslia aquifer sulphate concentrations were substantially higher than in the surface water before clear-cut (Figure 8), but started as for the surface water to decline before the clear-cut. After the clear-cut, however, the groundwater concentrations of SO₄ declined at a faster rate than surface water. This reduction in concentration can largely be explained by reduced scavenging of gaseous and particulate sulphur species due to the removal of the trees. One year after clear-cut the concentrations both in groundwater and in surface water are similar, and the concentrations remained fairly constant until 1993 when the groundwater concentrations again were higher than the surface water concentrations. Apparently, the growing forest again scavenged significant amounts of sulphur from the atmosphere. Thus there is no need to invoke changes in soil acidity and SO₄ adsorption to explain the observed pattern in SO₄ concentrations in groundwater at Langvasslia.

6.3 ANC and base cations (Ca+Mg)

A characteristic aspect of surface water quality recovery from acidification in Norway is the decline in sulphate concentration and a stable base cation concentration (Skjelkvåle *et al.* 1998). <u>A</u>cid <u>N</u>eutralizing <u>C</u>apacity (ANC) (Reuss and Johnson 1986) has increased in the surface water, especially since 1990 (Figure 8), due to the reduced sulphur deposition in Norway (Skjelkvåle *et al.* 1998). ANC in the groundwater has also increased, and follows largely the same pattern as for the surface water (see Figure 7 lower panel and Figure 8), but ANC has increased substantially more than in the surface water since the early 1990's.

The ANC of the groundwater aquifer increased significantly after clear-cutting in spite of rather stable sulphate concentrations. This is because the concentrations of non-marine base cations increased during the same period in contrast to the surface water (Figures 7 and 8). After 5 years, however, base

cation concentrations started to decline approaching the levels of the surface water. The "episodic" base cation increase can indicate a short-lived change in weathering or mineralization of organic matter in the soil due to the clear-cut.

6.4 Total organic carbon and labile aluminum

Total organic carbon increased significantly after clear-cutting (Figure 7 center panel, Figure 8), but declined again after a few years. The high peaks of TOC all occur in the summer (Figure 8), and the peaks are highest the first years after clear-cut. The TOC peaks decreased in the first part of 1990's, but have increased significantly during the later years. This is in accordance with the general increase in TOC of surface water observed in southern Norway (SFT 1999) as also reflected in the TOC trend in the inlet stream to Langtjern (Figure 8).

The concentrations of labile Al also increased sharply during the summer months after clear-cut (Figure 7 center panel), especially 2-3 years after clear-cut. Labile Al started to decline around 1990, following the general trends in surface waters in Norway (Skjelkvåle *et al.* 1998), as also reflected in the inlet stream to Langtjern (Figure 8).

7. Concluding remarks

Likens *et al.* (1970) suggest, based on the experience from Hubbard Brook, that clear-cutting reduces shading and evaporation, thus increasing temperature and water content of the forest floor. Decomposition of organic matter proceeds more rapidly, and nitrification increases greatly, leading to higher NO₃-leaching. Also potassium leaching increases due to reduced nutrient uptake by vegetation. These conclusions are in accordance with findings by other researchers (Vitousek *et al.* 1979, Rosén 1984, Martin *et al.* 1985, Hornbeck *et al.* 1987, Rosen *et al.* 1996, Neal *et al.* 1992a, 1992b). Martin *et al.* (1985), however, found from studies in clear-cut areas in New England, US.A that NO₃-leaching into streams was insignificant in most cases. He explained these differences as to be due to the characteristics of the catchments. Although the increased nitrification may cause high NO₃-concentrations in the soil solution, the NO₃ may not reach the stream body because of de-nitrification in the soil is important for the effect of clear-cutting on NO₃-content of soil water and thus also on groundwater. In the catchment of Langvasslia groundwater aquifer the soil cover is thin, and thus the retention time of the water in the soil profile is short. Consequently, de-nitrification reactions and uptake by vegetation are low, leading to high leaching of NO₃ into the groundwater.

The elevated leaching of NO_3 and K persisted for 11 years, and NO_3 is now almost back to the levels before the clear-cut. Other studies indicate shorter recovery time for nitrate. The extended recovery time for the Langvasslia aquifer could be caused by the glyphosate treatment 5 years after the clearcut, because the deciduous vegetation growth was stopped to give the coniferous trees the possibility to dominate. The leaching of K, however, is still higher than before clear-cut. A similar observation was made by Hornbeck *et al.* (1987) in a study of 10 years of recovery from clear-cutting in Hubbard Brook, where the effects of the cutting remained evident through the 10 year of re-growth.

8. References

Fuller, R.D., Driscoll, C.T., Lawrence, G.B. and Nodvin, S.C. 1987. Processes regulating sulphate flux after whole-tree harvesting. Nature, Vol. 325; 707-710.

Henriksen, A. and Wright, R.F., 1977. Effects of acid precipitation on a small acid lake in southern Norway. *Nordic Hydrology* Vol. 8, No. 1, pp. I-10.

Hornbeck, J.W., Martin, C.W., Pierce, R.S., Bormann, F.H., Likens, G.E. and Eaton, J.S. 1987. *The Northern hardwood forest ecosystem: ten years of recovery from clearcutting*. NE-RP-596. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station; 30 p.

Johannessen, T. 1995. Acidification in Norway. The Norwegian Monitoring Programme for Long Range Transported Air Pollutants. *Water, Air and Soil Pollut.*, 85; 617-621.

Likens, G., Bormann, F.H., Johnson, N.M., Fisher, D.W. and Pierce, R.C. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr., 40; 23-47.

Martin, C.W., Noel, D.S. and Federer, C.A. 1985. Clearcutting and the biogeochemistry of streamwater in New England. Journal of Forestry, 83; 686-689.

Neal, C., Fisher, R., Smith, C.J., Hill, S., Neal, M., Conway, T., Ryland, G.P. and Jeffrey, H.A. 1992a. The effects of tree harvesting on stream-water quality at an acidic and acid-sensitive spruce forested area: Plynlimon, mid-Wales. J. Hydrol, 135; 305-319.

Neal, C., Reynolds, B., Smith, C.J., Hill, S., Neal, M., Conway, T., Ryland, G.P., Jeffrey, H.A., Robson, A.J. and Fisher, R., 1992b. The impact of conifer harvesting on stream water pH, alkalinity and aluminium concentrations for the British uplands: an example for an acidic and acid sensitive catchment in mid-Wales. The Science of the Total Environment, 126; 75-87.

Norton, S.A. og A. Henriksen. 1983. The importance of CO2 in evaluation of effects of acid deposition. Vatten Vol. 39; 346-354.

Reuss, J.O. and Johnson, D.W. 1986. Acid deposition and the acidification of soils and waters. Springer-Verlag, New York. 111 p.

Rosén, K. 1984. Effect of clear-felling on runoff in two small watersheds in central Sweden. *Forest Ecology and Management*, 9; 267-281.

Rosén, K., Aronson, J-A. and Eriksson, H.M. 1996. Effects of clear-cutting on stream water quality in forest catchments in central Sweden. *Forest Ecology and Management* 83; 237-244.

SFT, 1999. Overvåking av langtransportert forurenset luft og nedbør. Årsrapport - Effekter 1998. (Monitoring of long-range transported air and precipitation. Yearly report – Effects 1998). Report 781/99. State Pollution Control Authority, Oslo, Norway. (In Norwegian).

Skjelkvåle, B.L. and Henriksen, A. 1995. Acidification in Norway - Status and trends. Surface water and groundwater. *Water, Air and Soil Pollut.* 85; 629-634.

Skjelkvåle, B.L., Wright, R.F:and Henriksen, A. 1998. Norwegian lakes show widespread recovery from acidification: results of national surveys of lakewater chemistry 1986-1997. Hydrol. Earth System Sci. 2; 555-562.

Smithson, S.B. 1963. Granite studies: II The Precambrian Flå Granite, a geological and geophysical investigation. *Norges Geol. Undersøk*. No 219, pp 1-212.

Tørseth, K., Berg, T., Hansen, J.E. and Manø, S. 1999. Overvåking av langtransportert forurenset luft og nedbør. Atmosfærisk tilførsel, 1998. (Monitoring of long-range transported air and precipitation. Atmospheric deposition, 1998). Report 768/99. State Pollution Control Authority, Oslo, Norway. (In Norwegian with English summary and text and figure captions).

Vitousek , P.M., Gosz, J.R., Grier, C.C., Melillo, J.M. Reiners, W.A., and Todd, R.L. 1979. Nitrate losses from disturbed ecosystems. Science, 204; 469-474.

Appendix A.

Chemistry data for the groundwater aquifer at Langvasslia (LAG01).

Yr	Date	рΗ	Cond	Са	Mg	Na	к	CI	SO₄	NO₃	Alk	Alk	ANC	R-AI	Org-Al	L-AI	SIO ₂	Turb	Perm
			mS/m	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mmol/l	µeq/l	µeq/l	µg/l	µg/l	µg/l	mg/l	FTU	MgO/I
1980	606	5.1	2.13	1.21	0.25	0.94	0.13	0.6	5.1	<10		13.1	9.6						8.6
1980	709	5.14	1.97	1.23	0.23	0.94	0.06	0.6	4.7	<10		18.6	15						8.1
1980	808	5.17	2.05	0.97	0.18	1.17	0.05	1.1	4.2	<10		18.6	4.9						9.1
1980	908	5.27	1.98	1.06	0.2	1.21	0.06	0.9	4.2	<10		18.6	17						7.4
1980	1003	5.33	2.08	1.12	0.19	1.24	0.08	0.9	4.8	<10		26.1	10.1				9.0	0.8	9.0
1980	1113	5.24	1.89	1.1	0.21	1.05	0.05	0.9	4.8	<10		18.6	0.8				8.7	3.5	8.1
1980	1219	5.28	1.91	1.04	0.2	1.17	0.06	0.7	4.8	<10		13.1	6.3				9.0	0.8	6.2
1981	219	5.76	2.01	0.99	0.22	1.09	0.04	0.8	4.4	<10			7.3						6.5
1981	425	5.39	2.04	1.02	0.22	1.02	0.06	0.6	4.1	<10		21.8	18.3				7.9	4.7	6.7
1981	523	5.16	1.89	1.02	0.21	1.11	0.16	0.7	4.4	10		15.3	18.1				7.5	3.8	10.1
1981	625	5.14	2	0.99	0.14	1.09	0.12	0.6	4.5	<10		10.9	8.7				8.1	2.1	9.0
1981	722	5.21	1.96	1.13	0.21	1.15	0.12	0.5	4.5	<10		21.8	26.9					2.6	9.0
1981	821	5.76	2.27	1.08	0.22	0.98	0.11	0.7	4.8	<10		49.3	4.8				9.3	3.5	8.1
1981	924	5.25	2.31	1.1	0.26	1.3	0.11	0.9	5.5	<10		25	3.1				9.5	2.9	8.4
1981	1022	5.07	2.38	1.23	0.27	1.17	0.08	0.9	5.1	<10		0	12.6				8.6	1.6	8.7
1981	1123	5.17	2.19	1.08	0.24	1.2	0.06	0.9	5.5	<10		6.4	-6.3				8.3	1.5	7.2
1981	1204	5.1	2.18	1.14	0.25	1.17	0.06	0.9	5	<10		0	6.9				8.5	1.7	7.5
1982	122	5.32	2.19	1.03	0.22	1.24	0.04	0.7	5.2	<10		19.7	1.2				9.3	0.6	5.7
1982	321	5.37	2.2	1.17	0.26	1.36	0.05	0.9	5.4	<10			6.8				9.7	3.4	5.3
1982	411	5.15	2.41	1.36	0.29	1.36	0.12	0.8	6.5	10			2.8				9.4	1.3	7.8
1982	502	5.05	2.17	1.12	0.27	1.04	0.09	0.5	4.7	<10	0.037	6.4	20.5				7.2	0.4	7.9
1982	527	5.12	1.91	0.98	0.24	1.03	0.06	0.6	4.1	<10	0.041	10.9	20.1				6.0	1.2	8.5
1982	616	5.26	2.05	1.12	0.23	1.15	0.04	0.6	5.4	<10	0.048	18.6	1.7				6.7	0.7	6.2
1982	727	5.34	2.23	1.25		1.13	0.07	0.7	5.2	<10	0.058	29.3	9.5				7.6	0.5	6.2
1982	831	5.53	2.64	1.4	0.29	1.38	0.1	1	5.5	<10			21.4				9.1	6.4	8.9
1982	926	5.25	2.53	1.43	0.24	1.4	0.09	1.1	6	<10	0.05	20.7	3.7				9.4	1.4	6.3
1982	1028	5.17	2.44	1.43		1.28		1	5.7	<10	0.046	16.4	12.9				7.2	1.3	8.2
1982	1126	5.13	2.22	1.3	0.28	1.21	0.04	1	5.5	<10	0.041	10.9	4.9				8.5	2.0	7.0
1983	107	5.17	2.16	1.25		1.19		0.8	5.3	<10	0.042	12	7.2				8.7	0.8	5.9
1983	320	5.14	2.2	1.14		1.38		0.8	5.3	<10	0.034	2.9	7.6				8.9	0.5	4.9
1983	415	5.21	2.07	1.16		1.24		0.8	5.6	<10	0.033	1.6	-2				9.3	0.7	5.8
1983	523	5.08	1.86	1.08	0.23		0.06	0.5	4.4	<10	0.036	5.3	16.1				5.1	1.4	9.4
1983	614	5.06	1.98	1.06		1.09		0.6	5.1	<10	0.034	2.9	2.9				7.1	0.8	7.1
1983	913	5.23	2.64	1.33				1.4	5.2	<10		24	25.7				9.2	6.7	11.1
1983	925	5.21	2.56	1.48		1.3		1	6.5		0.045	15.3	-0.6	362	255	107	9.0	1.1	7.9
1983	1016	4.92		1.62			0.12		6.2	<10	0.033	1.6	11.9				7.4	2.2	16.6
1983	1115		2.22	1.24			0.07		5.7	<10	0.041	10.9	0.9	452	211	241	9.0	1.9	7.1
1984	103		2.15	1.15			0.03		6.3	<5	0.044	14.2	-13.3	.			8.3	5.6	8.8
1984	413		2.38	1.18			0.15		5.8	10	0.04	9.8	1.3	348	178	170	9.4	0.8	6.2
1984	511	5.16	1.78	1.06			0.06		4.7	<1	0.035	4.1	14.6	530	209	321	6.8	0.9	7.6
1984	609	5.13	1.99	1.16			0.05		5	<1	0.034	2.9	19.7	440	212	228	8.0	0.3	7.8
1984	705	5.33	2	1.17	0.22	1.21	0.04	0.6	4.9	<1	0.045	15.3	17.3	348	210	138	8.5	0.9	6.5

mSm mgl mgl <th>Yr</th> <th>Date</th> <th>pН</th> <th>Cond</th> <th>Ca</th> <th>Mg</th> <th>Na</th> <th>к</th> <th>CI</th> <th>SO₄</th> <th>NO₃</th> <th>Alk</th> <th>Alk</th> <th>ANC</th> <th>R-AI</th> <th>Org-Al</th> <th>L-AI</th> <th>SIO₂</th> <th>Turb</th> <th>Perm</th>	Yr	Date	pН	Cond	Ca	Mg	Na	к	CI	SO₄	NO₃	Alk	Alk	ANC	R-AI	Org-Al	L-AI	SIO₂	Turb	Perm
1984 1033 128 </th <th></th> <th></th> <th></th> <th>mS/m</th> <th>mg/l</th> <th>mg/l</th> <th>mg/l</th> <th>mg/l</th> <th>mg/l</th> <th>mg/l</th> <th>µg/l</th> <th>mmol/l</th> <th>µeq/l</th> <th>µeq/l</th> <th>µg/l</th> <th>µg/l</th> <th>µg/l</th> <th>mg/l</th> <th>FTU</th> <th>MgO/I</th>				mS/m	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mmol/l	µeq/l	µeq/l	µg/l	µg/l	µg/l	mg/l	FTU	MgO/I
1984 1021 439 2.05 1.06 0.2 1.0 0.02 0.0 0.	1984	804	4.99	2.46	1.31	0.26	1.32	0.12	0.6	5.9	<1	0.036	5.3	16.2	436	240	196	8.6	0.7	9.2
1984 1130 4.95 2.05 1.06 0.22 1.07 0.06 0.7 4.8 1 0.033 1.61 6.10 450 250 451 1.00 550 4.5 0.033 1.61 6.46 6.70 243 1.35 0.65 56 4.1 0.033 1.61 4.04 4.50	1984	923	4.96	2.5	1.48	0.28	1.4	0.06	0.9	6.1	<1	0.034	2.9	17.1				8.7	0.5	10.7
1985 1918 6.89 1.92 0.93 0.21 1.11 0.02 0.5 0.3 1.6 6.8 278 283 283 284 1.1 8.6 1985 208 1.2 0.03 0.21 1.17 0.07 0.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.4 1.03 1.1 1.03 1.04 1.04 1.03 1.4 1.03 1.04 1.03 1.03 1.04 1.03 1.04 1.03 1.04 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 </td <td>1984</td> <td>1021</td> <td>4.93</td> <td>2.27</td> <td>1.26</td> <td>0.25</td> <td>1.19</td> <td>0.05</td> <td>0.6</td> <td>5.1</td> <td>1</td> <td>0.027</td> <td>0</td> <td>24.4</td> <td></td> <td></td> <td></td> <td>7.4</td> <td>0.8</td> <td>11.6</td>	1984	1021	4.93	2.27	1.26	0.25	1.19	0.05	0.6	5.1	1	0.027	0	24.4				7.4	0.8	11.6
1985 306 5.11 2 0.30 0.21 1.11 0.02 0.5 5.1 1 0.03 1.6 -10 386 188 213 1.0 0.01 0.01 0.02 0.02 0.02 0.02 0.05 0.01 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.05	1984	1130	4.95	2.05	1.06	0.22	1.07	0.06	0.7	4.8	<1	0.014	0	8.3	612	265	347	7.8	1.4	9.4
1985 324 5.1 2.0 9.3 0.21 1.17 0.05 1.4 0.02 0.1 1.0.9 3.0.3 1.0.3	1985	118	5.08	1.96	0.97	0.21	1.13	0.02	0.6	5	<1	0.033	1.6	-5.8	378	243	135	8.4	1.1	8.5
1985 508 4.89 2.33 1.12 0.26 1.17 0.07 0.4 5.1 0.20 0.24 4.4 420 207 123 5.23 8.7 1.0 0.85 7.1 0.85 7.1 0.85 7.1 0.55 7.1 0.55 7.1 0.56 7.1 0.57 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 <	1985	306	5.11	2	0.93	0.21	1.11	0.02	0.5	5.2	<1	0.033	1.6	-10	456	228	228	9.2	0.6	5.6
1985 602 6.08 1.73 0.88 0.2 0.95 0.14 0.44 0.303 7.6 4.44 4.20 2.67 1.53 7.1 0.68 7.1 0.68 7.1 0.68 1.7 0.60 3.67 1.30 6.26 1.27 0.30 0.11 0.03 0.6 0.5 1.7 0.03 0.61 0.7 0.03 0.61 0.7 0.03 0.61 0.7 0.03 0.61 0.7 0.03 0.61 0.7 0.03 0.61 0.7 0.03 0.61 0.7 0.03 0.61 0.4 0.03 0.61 0.4 0.03 0.61 0.4 0.03 0.61 0.4 0.03 0.61 0.41 0.03 0.61 0.41 0.03 0.61 0.41 0.03 0.41 0.03 0.41 0.03 0.41 0.03 0.41 0.03 0.41 0.03 0.41 0.03 0.41 0.03 0.41 0.03 0.11 <	1985	324	5.1	2.02	0.93	0.21	1.17	0.05	0.8	5	<1	0.037	6.4	-10.9	398	188	210	8.9	1.0	6.1
1985 711 5.66 2 1.01 0.2 1.07 0.6 0.4 4.7 <1 0.03 6.1 1.05 528 294 2.34 8.3 0.9 9.3 1985 504 5.52 1.77 0.30 0.17 1.00 6.6 4.1 <1	1985	508	4.89	2.13	1.12	0.26	1.17	0.07	0.4	5.1	<1	0.022	0	12.4	508	305	203	8.7	0.8	10.3
1985 908 4.96 1.97 1.03 0.21 1.07 0.03 0.41 0.7 0.03 0.11 0.7 0.03 0.17 0.03 0.17 0.03 0.17 0.03 0.17 0.03 0.16 0.9 0.23 0.93 0.18 0.86 0.65 4.1 2 0.037 6.4 0.16 0.9 1.0 0.03 1.6 0.9 0.46 0.85 0.7 4.5 0.037 6.4 2.0 0.37 6.4 2.0 0.37 6.4 2.0 0.36 0.4 2.0 0.37 6.4 2.0 0.37 6.4 2.0 0.46 2.6 2.0 1.0 0.0	1985	602	5.08	1.73	0.88	0.2	0.95	0.04	0.4	4.6	<1	0.038	7.6	-4.4	420	267	153	7.1	0.6	7.5
1986 9.04 5.02 1.71 0.33 0.17 1.03 0.06 0.5 4 2 0.03 1.6 7.9 5.20 3.26 1.93 7.8 8.3 8.5 1985 10.1 5.2 1.63 0.8 0.7 1.0 0.6 0.4 2.4 0.03 6.4 2.6 0.44 2.6 2.34 1.64 2.6 2.34 1.64 2.6 2.34 1.64 2.6 2.35 1.83 0.2 1.9 0.0 0.6 2.4 0.037 6.4 1.64 2.4 2.4 2.0 1.1 0.0 0.0 0.6 2.4 0.037 0.4 1.0 1.63 0.02 1.6 1.50 0.1 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.1 1.1 0.0 1.1 0.0 0.0 1.1 0.0 0.1 1.1 0	1985	711	5.06	2	1.01	0.2	1.09	0.1	0.4	4.4	<1	0.039	8.7	13.9	528	294	234	8.3	0.9	9.3
1988 928 5.11 1.72 0.93 0.16 0.79 1.62 3.04 4.52 1.63 0.88 0.17 1.1 0.03 0.7 4.4 0.10 0.54 3.4 450 2.94 168 8.3 1.0 0.6 4.4 1986 114 5.29 1.86 0.84 0.18 1.0 0.05 0.6 3.4 2 0.037 6.4 2.63 4.64 2.28 2.1 1.2 7.0 1986 2.23 1.88 0.86 0.21 1.4 0.03 0.5 4.5 4 0.024 1.0 1.6 5.2 3.0 2.2 2.00 7.5 1.1 1.2 1.1	1985	808	4.96	1.97	1.03	0.21	1.07	0.06	0.4	4.7	<1	0.035	4.1	7.5	604	365	239	7.9	1.4	10.9
1985 1031 5.2 1.63 0.88 0.17 1.1 0.03 0.7 4 <1 0.03 6.4 3.4 5.0 94 485 294 186 114 5.11 1.77 0.80 0.18 1.77 0.06 0.6 3.6 2 0.07 6.4 2.63 94 464 20 221 1.7 7.0 1986 5.23 1.88 0.86 0.11 1.03 0.24 1.6 0.01 0.5 3.6 4 0.01 0.18 3.44 2.10 1.1 7.0 1986 5.02 1.17 0.80 0.21 1.1 0.20 0.24 0.2 0.03 1.1 1.1 0.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.20 1.1 1.21	1985	904	5.02	1.78	0.93	0.17	1.03	0.06	0.5	4.1	<1	0.024	0	7.2	520	326	194	7.7	0.7	9.9
1985 1218 5.11 1.77 0.8 0.81 1.77 0.06 0.6 3.9 <1 0.037 6.4 26.3 46.2 201 1.0 1.0 1.0 1.0 1.0 1986 214 5.26 1.18 0.82 0.19 1.18 0.02 0.6 3.6 <1	1985	928	5.11	1.72	0.93	0.18	0.98	0.06	0.5	4	2	0.033	1.6	7.9	502	309	193	7.8	0.5	8.5
1986 114 5.29 1.86 0.84 0.18 1.29 0.05 0.6 3.4 2 0.037 6.4 26.3 46.4 26.2 214 27.0 1986 329 5.23 1.88 0.86 0.21 1.18 0.03 0.5 3.8 4 0.041 1.09 1.88 384 217 17 7.4 1986 608 5.01 1.77 0.89 0.18 0.5 4.5 4 0.024 0 1.65 522 0.90 2.5 2.1 9.9 1986 606 5.01 1.7 0.89 0.25 1.1 4.1 3 0.024 0 1.53 380 2.57 1.1 1.26 1.1 1.1 1.26 1.1 1.1 1.26 1.1 1.26 1.1 1.1 1.27 1.2 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 1.2 1	1985	1031	5.2	1.63	0.88	0.17	1.1	0.03	0.7	4	<1	0.037	6.4	3.4	450	294	156	8.8	0.7	8.3
1986 214 5.16 1.79 0.82 0.19 1.16 0.02 0.6 3.6 <1 0.037 6.4 156 444 216 228 9.1 1.2 7.4 1986 632 5.23 1.38 0.88 0.21 1.18 0.03 0.5 3.8 4 0.041 1.09 1.88 3.84 21 167 5.4 1.14 0.24 0.01 1.6 5.3 8.7 4.22 200 7.5 2.1 1.99 1986 705 4.96 1.81 1 0.21 1.3 0.25 1.1 4.6 3 0.024 0.2 2.4 6.33 8.7 4.50 2.44 1.55 3.55 1.1 1.1 1.2 1.1 1.1 1.46 3 0.24 1.2 4.6 0.033 1.6 2.2 1.25 1.15 1.0 1.1 0.25 1.7 3.3 2.0 0.33 1.6 2.25	1985	1218	5.11	1.77	0.8	0.18	1.17	0.06	0.6	3.9	<1	0.036	5.3	9	468	235	233	11.0	1.0	6.4
1986 329 5.23 1.88 0.24 1.18 0.30 0.5 3.8 4 0.041 10.9 18.8 384 217 167 9.2 1.7 1.44 1986 608 5.01 1.77 0.89 0.24 1.14 0.02 0.07 0.4 0.02 0 1.21 442 2.22 200 7.5 2.11 9.9 1986 606 5.05 2.25 0.94 0.21 1.45 0.02 0.02 1.1 1.53 30.024 1.1 1.53 300 2.21 1.0 0.01 0.22 1.1 1.1 0.26 0.02 0.02 1.1	1986	114	5.29	1.86	0.84	0.18	1.29	0.05	0.6	3.4	2	0.037	6.4	26.3	464	250	214			7.0
1986 502 4.93 2.13 1.03 0.24 1.14 0.10 0.4 3.7 3 0.024 0 1.6 552 300 252 8.4 1.5 1.14 1986 606 5.01 1.77 0.89 0.18 0.11 0.11 1.15 0.00 0.5 4.6 0.21 1.53 302 228 228 9.3 1.30 6.3 1986 1021 4.89 2.41 1.41 0.22 1.4 1.4 0.35 1.15 3.05 2.7 1.22 9.7 1.1 2.6 1986 1020 5.09 1.22 1.10 0.23 1.10 0.33 1.6 2.6 2.033 1.6 2.6 2.033 1.6 2.45 5.00 2.7 2.83 9.7 1.1 2.6 2.8 0.33 1.6 2.43 3.95 2.7 2.83 9.1 0.6 0.6 0.6 1.10 1.00 1.00 </td <td>1986</td> <td>214</td> <td>5.16</td> <td>1.79</td> <td>0.82</td> <td>0.19</td> <td>1.16</td> <td>0.02</td> <td>0.6</td> <td>3.6</td> <td><1</td> <td>0.037</td> <td>6.4</td> <td>15.6</td> <td>444</td> <td>216</td> <td>228</td> <td>9.1</td> <td>1.2</td> <td>7.0</td>	1986	214	5.16	1.79	0.82	0.19	1.16	0.02	0.6	3.6	<1	0.037	6.4	15.6	444	216	228	9.1	1.2	7.0
1986 608 5.01 1.77 0.89 0.18 0.91 0.70 0.4 3.7 3 0.024 0 1.41 4.22 2.20 7.5 2.1 9.30 1986 0.65 5.55 2.25 0.94 0.2 1.43 0.25 1.1 4.1 3 0.035 4.1 1.52 2.24 6.20 5.55 2.25 0.94 0.2 1.43 0.25 1.1 4.6 3 0.024 0.2 2.4 620 5.5 1.75 0.11 1.26 1966 109 5.06 1.80 0.84 0.21 1.1 0.20 0.2 0.20 0.20 0.20 0.20 0.20 0.21 1.20 0.20 0.33 1.6 0.48 0.41 0.43 0.40 0.40 0.22 0.23 0.23 0.23 0.23 0.21 0.21 0.23 0.23 0.21 0.21 0.23 0.23 0.21 0.21 0.23	1986	329	5.23	1.88	0.86	0.21	1.18	0.03	0.5	3.8	4	0.041	10.9	18.8	384	217	167	9.2	1.7	7.4
1986 709 4.96 1.81 1 0.21 1.15 0.06 0.5 4.6 2 0.036 5.3 8.7 452 228 224 9.3 1.30 6.3 1986 806 5.5 2.55 0.44 0.2 1.43 0.25 1.1 4.1 3 0.035 4.1 15.3 380 257 123 9.7 1.11 12.6 1986 1021 4.89 2.41 1.14 0.26 1.0 0.2 0.2 0.24 215 516 1.77 1.2 9.4 0.03 1.6 2.83 395 272 1.23 8.2 0.5 8.7 1987 225 5.16 1.78 0.8 0.81 1.16 0.35 0.7 4 2 0.033 1.6 2.83 301 1.7 1.0 0.6 1.1 1.0 1987 5.24 5.05 1.1 0.55 0.5 1.1 0.0	1986	502	4.93	2.13	1.03	0.24	1.14	0.13	0.5	4.5	4	0.024	0	16	552	300	252	8.4	1.5	11.4
1986 806 5.05 2.25 0.94 0.2 1.43 0.25 1.1 4.1 3 0.035 4.1 15.3 380 257 123 9.7 1.11 1.22 1986 1021 4.54 1.14 0.25 1.11 0.25 1.1 4.6 3 0.024 0 2.24 620 305 315 9.0 1.1 1.28 9.0 1987 1020 5.04 1.1 0.23 1.0 0.3 0.07 1.4 2.0 0.033 1.6 2.33 2.57 2.3 9.1 0.6 9.1 1987 225 5.16 1.78 0.80 0.81 1.0 0.70 1.7 2.4 0.03 1.6 2.40 3.01 3.0	1986	608	5.01	1.77	0.89	0.18	0.91	0.07	0.4	3.7	3	0.024	0	12.1	442	242	200	7.5	2.1	9.9
1986 1021 4.89 2.41 1.14 0.26 1.33 0.52 1.1 4.6 3 0.024 0 2.24 620 3.05 3.15 9.0 1.1 1.26 9.4 1987 109 5.09 1.82 0.91 0.2 1.1 0.28 0.7 3.2 2 0.03 1.6 23.3 395 2.72 1.23 8.2 0.6 9.1 1987 325 5.16 1.78 0.8 1.8 1.6 0.7 0.4 4 0.03 1.6 34 490 340 150 1.6 9.1 1.1 1.0 0.7 1.4 2.9 0.31 0.6 2.6 4.88 317 171 8.0 0.6 1.0 1.0 1.6 2.9 4.14 1.41 341 1.41 1.41 1.4 1.41 1.4 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 <t< td=""><td>1986</td><td>709</td><td>4.96</td><td>1.81</td><td>1</td><td>0.21</td><td>1.15</td><td>0.06</td><td>0.5</td><td>4.6</td><td>2</td><td>0.036</td><td>5.3</td><td>8.7</td><td>452</td><td>228</td><td>224</td><td>9.3</td><td>13.0</td><td>6.3</td></t<>	1986	709	4.96	1.81	1	0.21	1.15	0.06	0.5	4.6	2	0.036	5.3	8.7	452	228	224	9.3	13.0	6.3
1986 1202 5.24 1.9 0.94 0.23 1.11 0.29 0.6 3.7 47 0.026 0 24.2 415 323 92 7.7 1.2 9.4 1987 109 5.09 1.82 0.91 0.23 1.1 0.28 0.93 1.6 28.3 35.5 272 23 8.2 0.55 8.7 1987 225 5.16 1.70 0.73 0.18 1.19 0.37 1 2.4 4 0.03 1.6 344 490 340 150 1.1 8.0 0.03 1.6 1.44 4.40 311 162 6.0 0.0 1.1 8.0 1.0 1.1 0.5 0.5 1.1 0.0 1.0 1.1 0.0 1.0 1.0 1.1 0.0 1.1 1.0 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.0	1986	806	5.05	2.25	0.94	0.2	1.43	0.25	1.1	4.1	3	0.035	4.1	15.3	380	257	123	9.7	1.1	7.2
1997 109 5.09 1.82 0.91 0.2 1.1 0.28 0.7 3.3 2 0.033 1.6 28.3 395 272 123 8.2 0.5 8.7 1987 225 5.16 1.78 0.8 0.18 1.19 0.37 1 2.4 4 0.033 1.6 3.4 490 340 150 1 0.6 9.1 1987 424 5.06 2.01 0.75 0.7 1.7 4 29 0.031 0.6 34.4 473 311 162 6.0 0.9 1.10 1987 624 5.08 1.7 0.77 0.17 1 0.5 0.5 3.1 5 0.037 6.4 3.41 450 3.50 1.10 1.12 1987 614 4.96 1.84 0.75 0.8 0.41 1.9 0.02 1.6 1.16 0.037 6.4 1.16 50 2.1	1986	1021	4.89	2.41	1.14	0.26	1.33	0.52	1.1	4.6	3	0.024	0	22.4	620	305	315	9.0	1.1	12.6
1987 225 5.16 1.78 0.8 0.18 1.16 0.35 1 2.4 4 0.033 1.6 34. 90 300 150 100 1987 322 5.19 1.7 0.73 0.18 1.19 0.37 1 2.4 4 0.033 1.6 34 490 340 150 100 100 1987 624 5.08 1.68 0.83 0.77 0.8 0.83 0.037 6.4 34.1 473 311 162 6.0 0.11 11.2 1987 624 9.9 1.74 0.81 0.19 0.54 0.5 2.9 1 0.02 0 34.1 460 350 1.10 6.8 1.4 1.9 0.44 320 34.1 460 350 1.10 6.8 2.4 1.9 0.44 410 450 250 2.11 1.14 1.1 50 345 7.4 1.41 <td>1986</td> <td>1202</td> <td>5.24</td> <td>1.9</td> <td>0.94</td> <td>0.23</td> <td>1.11</td> <td>0.29</td> <td>0.6</td> <td>3.7</td> <td>47</td> <td>0.026</td> <td>0</td> <td>24.2</td> <td>415</td> <td>323</td> <td>92</td> <td>7.7</td> <td>1.2</td> <td>9.4</td>	1986	1202	5.24	1.9	0.94	0.23	1.11	0.29	0.6	3.7	47	0.026	0	24.2	415	323	92	7.7	1.2	9.4
1987 322 5.19 1.7 0.73 0.18 1.19 0.37 1 2.4 4 0.033 1.6 3.4 90 340 150	1987	109	5.09	1.82	0.91	0.2	1.1	0.28	0.7	3.3	2	0.033	1.6	28.3	395	272	123	8.2	0.5	8.7
1987 424 5.06 2.01 0.95 0.23 1.16 0.7 0.7 4 29 0.31 0 29.6 488 317 171 8.0 0.6 10.6 1987 524 5.08 1.68 0.83 0.17 0.88 0.48 0.41 2.9 3.1 6.4 3.11 1.62 6.0 0.9 1.10 1987 644 4.96 1.84 0.75 0.18 0.96 0.54 0.5 9.1 0.002 0 3.11 400 350 1.00 6.0 0.11 1.0 0.14 1.7 0.82 0.18 0.56 0.5 4.4 10.002 0.6 4.1 460 350 1.02 0.16 1.17 1987 10.4 5.14 0.48 0.2 1.16 0.88 0.1 1.0 0.44 1.2 3.64 5.0 0.41 4.0 2.12 1.16 0.1 1.11 1.1 3	1987	225	5.16	1.78	0.8	0.18	1.16	0.35	0.9	2.6	2	0.039	8.7	34.5	510	227	283	9.1	0.6	9.1
1987 524 5.08 1.68 0.83 0.17 0.88 0.48 0.4 2.9 3 0.037 6.4 34.1 473 311 162 6.0 0.9 11.0 1987 642 4.98 1.7 0.77 0.17 1 0.5 0.5 2.0 1 0.002 0 34.1 460 350 110 6.6 0.4 1.2 1987 628 5.09 1.74 0.81 0.91 0.85 0.4 4.0 0.02 0 34.1 460 350 110 6.6 0.4 1.2 1987 710 5.14 1.77 0.82 0.12 1.16 0.8 1.4 1.0 48.1 570 200 280 41.1 460 0.02 21.3 7.2 0.6 11.7 1987 718 5.04 2.01 0.89 0.2 1.14 1.1 3 58 0.034 21.2 36.4	1987		5.19	1.7	0.73	0.18	1.19	0.37	1	2.4	4	0.033	1.6	34	490	340				10.0
1987 602 4.98 1.7 0.77 0.17 1 0.5 0.5 0.1 5 0.033 1.6 29.7 491 334 157 7.1 0.4 112 1987 614 4.96 1.84 0.75 0.18 0.98 0.54 0.5 2.9 1 0.002 0 34.1 460 350 110 6.6 0.4 12.2 1987 5.14 1.77 0.82 0.81 0.96 0.68 1.7 80 0.041 10.9 48.1 465 252 213 7.2 0.6 11.7 1987 918 5.04 2.16 0.89 0.2 1.1 1.1 3 58 0.034 2.9 41.9 600 255 350 240 280 6.8 0.5 1.5 1987 1106 5.11 2.11 0.49 0.8 0.9 3.3 185 0.042 12 2.3 498 </td <td></td> <td></td> <td></td> <td>2.01</td> <td>0.95</td> <td>0.23</td> <td>1.16</td> <td>0.7</td> <td>0.7</td> <td>4</td> <td>29</td> <td>0.031</td> <td>0</td> <td>29.6</td> <td>488</td> <td>317</td> <td>171</td> <td>8.0</td> <td>0.6</td> <td>10.6</td>				2.01	0.95	0.23	1.16	0.7	0.7	4	29	0.031	0	29.6	488	317	171	8.0	0.6	10.6
1987 614 4.96 1.84 0.75 0.18 0.98 0.55 2.9 1 0.002 0 34.1 460 350 110 6.6 0.4 12.2 1987 628 5.09 1.74 0.81 0.19 0.85 0.54 0.4 2.6 4 0.038 7.6 41.1 500 358 142 6.0 0.9 11.8 1987 5.14 2.12 0.85 0.22 1.1 1.14 1.1 3 58 0.041 10.9 48.1 570 290 280 8.9 0.5 16.5 1987 102 5.12 2.01 0.89 0.22 1.1 1.14 1.1 3 58 0.042 12 36.4 500 244 256 6.4 1.09 1.08 0.04 1.2 2.05 5.0 6.4 1.0 1.11 1987 1020 5.14 0.31 0.20 0.041			5.08	1.68	0.83	0.17	0.88	0.48	0.4	2.9	3	0.037	6.4	34.1	473		162	6.0	0.9	11.0
1887 628 5.09 1.74 0.81 0.19 0.85 0.54 0.4 2.6 4 0.038 7.6 41.1 500 358 142 6.0 0.9 11.8 1987 710 5.14 1.77 0.82 0.18 0.96 0.68 0.8 2.4 19 0.04 9.8 41 465 252 213 7.2 0.6 11.7 1987 817 5.14 2.12 0.85 0.2 1.16 0.98 1.6 1.7 80 0.041 10.9 48.1 570 290 280 8.9 0.5 16.5 1987 1020 5.12 2.01 0.89 0.22 0.9 0.8 3.1 60 0.42 12 36.4 500 244 256 6.4 1.0 11.1 1987 1020 5.16 2.5 0.93 0.22 0.99 0.8 0.19 3.1 85 0.42 12 22.3 498 199 299 7.8 0.8 10.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											5									
1987 710 5.14 1.77 0.82 0.18 0.96 0.8 2.4 19 0.04 9.8 41 465 252 213 7.2 0.6 11.7 1987 817 5.14 2.12 0.85 0.2 1.16 0.98 1.6 1.7 80 0.041 1.09 48.1 570 290 280 8.9 0.5 16.5 1987 1020 5.12 2.01 0.89 0.2 0.95 0.8 3.1 60 0.042 12 36.4 500 244 256 6.4 1.0 11.1 1987 1020 5.16 2.1 0.91 0.21 0.95 0.83 0.9 3.3 185 0.02 122 3.48 199 299 7.8 0.8 0.5 10.2 1987 1209 5.16 3.3 0.95 0.22 1.07 1.4 3.1 200 0.41 10.9 5.1																				
1987 817 5.14 2.12 0.85 0.2 1.16 0.98 1.6 1.7 80 0.041 10.9 48.1 570 290 280 8.9 0.5 16.5 1987 918 5.04 2.16 0.89 0.22 1.1 1.14 1.1 3 58 0.034 2.9 41.9 600 255 345 7.8 0.8 1987 1020 5.12 2.01 0.89 0.2 0.98 0.95 0.8 3.1 60 0.42 12 36.4 500 244 256 6.4 1.0 11.1 1987 1020 5.16 2.5 0.93 0.23 0.9 0.48 185 0.037 6.4 25.5 530 240 290 6.8 0.5 10.2 1987 1209 5.16 2.5 0.93 0.95 0.22 0.70 0.74 1 3 270 0.44 14.2 20 516 217 303 8.5 0.7 8.8 1988 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
19879185.042.160.890.221.11.141.13580.0342.941.96002553457.80.8198710205.122.010.890.20.980.950.83.1600.0421236.45002442566.41.011.1198711065.112.140.910.210.950.930.93.4850.0376.425.55302402906.80.510.2198712095.162.50.930.221.070.74133700.04414.2205162172998.50.610.119881055.122.10.930.221.090.7213.1200.04110.917.95001963048.51.39.319883055.242.040.970.211.050.7112.73250.049.821.95202173038.50.78.819884075.072.571.170.261.130.870.93.76000.331.65.95121823007.61.08.319885095.092.190.990.220.940.780.53380.04110.92.925442.53095.60.61.2.3 <td></td>																				
1987 1020 5.12 2.01 0.89 0.2 0.98 0.95 0.8 3.1 60 0.042 12 36.4 500 244 256 6.4 1.0 11.1 1987 1106 5.11 2.14 0.91 0.21 0.95 0.93 0.9 3.3 185 0.042 12 22.3 498 199 299 7.8 0.8 9.5 1988 115 5.12 2.1 0.93 0.22 1.07 0.74 1 3.1 200 0.041 14.2 20 516 217 299 8.5 0.6 10.1 1988 205 5.1 3.3 0.95 0.22 1.09 0.72 1 3.1 200 0.041 10.9 1.75 500 168 3.3 3.3 1.6 5.9 512 1.45 0.64 0.5 9.3 1988 205 5.07 2.57 1.17 0.26 1.73 0.7 3.3 8.6 0.41 10.9 5.03 1.65 5.15	1987				0.85						80									16.5
198711065.112.140.910.210.950.930.93.4850.0376.425.55302402906.80.510.2198712095.162.50.930.230.990.830.93.31850.0421222.34981992997.80.89.519881155.122.10.930.221.070.74132700.04414.2205162172998.50.610.119882055.13.30.950.221.090.7213.12900.04110.917.95001963048.51.39.319883055.242.040.970.211.050.7112.73250.049.821.95202173038.50.78.819884075.072.571.170.261.130.870.93.76000.0331.65.95121823307.61.08.319885095.092.190.990.220.940.780.63.13650.0376.420.84591612986.40.59.119886055.151.970.810.180.790.740.53380.04110.929.25442353095.60.6 </td <td></td>																				
198712095.162.50.930.230.990.830.93.31850.0421222.34981992997.80.89.519881155.122.10.930.221.070.74132700.04414.2205162172998.50.610.119882055.13.30.950.221.090.7213.12900.04110.917.95001963048.51.39.319883055.242.040.970.211.050.7112.73250.049.821.95202173038.50.78.819884075.072.571.170.261.130.870.93.76000.0331.65.95121823307.61.08.319885095.092.190.990.220.940.780.63.13650.076.42.084591612986.40.59.119885095.055.151.970.810.180.790.740.53380.04110.92.925.442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.55.037553494066.7<																				
19881155.122.10.930.221.070.74132700.04414.2205162172998.50.610.119882055.13.30.950.221.090.7213.12900.04110.917.95001963048.51.39.319883055.242.040.970.211.050.7112.73250.049.821.95202173038.50.78.819884075.072.571.170.261.130.870.93.76000.0331.65.95121823307.61.08.319885095.092.190.990.220.940.780.63.13650.076.420.84591612986.40.59.119886055.151.970.810.180.790.740.53380.04110.929.25442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.550.37553494066.70.621.719887315.172.150.840.190.970.820.92.3<1																				
19882055.13.30.950.221.090.7213.12900.04110.917.95001963048.51.39.319883055.242.040.970.211.050.7112.73250.049.821.95202173038.50.78.819884075.072.571.170.261.130.870.93.76000.0331.65.95121823307.61.08.319885095.092.190.990.220.940.780.63.13650.0376.420.84591612986.40.59.119886055.151.970.810.180.790.740.53380.04110.92.25442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.550.37553494066.70.621.719887315.172.150.840.190.970.820.92.3<1																				
19883055.242.040.970.211.050.7112.73250.049.821.95202173038.50.78.819884075.072.571.170.261.130.870.93.76000.0331.65.95121823307.61.08.319885095.092.190.990.220.940.780.63.13650.0376.420.84591612986.40.59.119886055.151.970.810.180.790.740.53380.04110.929.25442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.550.37553494066.70.621.719887315.172.150.840.190.970.820.92.3<1																				
19884075.072.571.170.261.130.870.93.76000.0331.65.95121823307.61.08.319885095.092.190.990.220.940.780.63.13650.0376.420.84591612986.40.59.119886055.151.970.810.180.790.740.53380.04110.929.25442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.550.37553494066.70.621.719887315.172.150.840.190.970.820.92.3<1																				
19885095.092.190.990.220.940.780.63.13650.0376.420.84591612986.40.59.119886055.151.970.810.180.790.740.53380.04110.929.25442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.550.37553494066.70.621.719887315.172.150.840.190.970.820.92.3<1																				
19886055.151.970.810.180.790.740.53380.04110.929.25442353095.60.612.319887075.182.050.920.1710.9512.3180.04717.550.37553494066.70.621.719887315.172.150.840.190.970.820.92.3<1																				
1988 707 5.18 2.05 0.92 0.17 1 0.95 1 2.3 18 0.047 17.5 50.3 755 349 406 6.7 0.6 21.7 1988 731 5.17 2.15 0.84 0.19 0.97 0.82 0.9 2.3 <1																				
19887315.172.150.840.190.970.820.92.3<10.0520.747.47803664146.90.714.919888315.052.130.810.181.140.950.82.2130.0398.759.88823665167.20.615.7198810025.062.140.730.150.930.8312.4220.0331.630.78854034827.51.815.3198810305.112.140.630.140.890.6312.4310.049.817.44813091727.51.817.9198811295.172.120.520.110.990.51.12.5560.0342.93.86143053097.91.212.319891135.152.060.650.211.10.751.22.32750.04515.315.44692711988.30.86.1																				
19888315.052.130.810.181.140.950.82.2130.0398.759.88823665167.20.615.7198810025.062.140.730.150.930.8312.4220.0331.630.78854034827.51.815.3198810305.112.140.630.140.890.6312.4310.049.817.44813091727.51.817.9198811295.172.120.520.110.990.51.12.5560.0342.93.86143053097.91.212.319891135.152.060.650.211.10.751.22.32750.04515.315.44692711988.30.86.1																				
1988 1002 5.06 2.14 0.73 0.15 0.93 0.83 1 2.4 22 0.033 1.6 30.7 885 403 482 7.5 1.8 15.3 1988 1030 5.11 2.14 0.63 0.14 0.89 0.63 1 2.4 31 0.04 9.8 17.4 481 309 172 7.5 1.8 17.9 1988 1129 5.17 2.12 0.52 0.11 0.99 0.5 1.1 2.5 56 0.034 2.9 3.8 614 305 309 7.9 1.2 12.3 1989 113 5.15 2.06 0.65 0.21 1.1 0.75 1.2 2.3 275 0.045 15.3 15.4 469 271 198 8.3 0.8 6.1																				
1988 1030 5.11 2.14 0.63 0.14 0.89 0.63 1 2.4 31 0.04 9.8 17.4 481 309 172 7.5 1.8 17.9 1988 1129 5.17 2.12 0.52 0.11 0.99 0.5 1.1 2.5 56 0.034 2.9 3.8 614 305 309 7.9 1.2 12.3 1989 113 5.15 2.06 0.65 0.21 1.1 0.75 1.2 2.3 275 0.045 15.3 15.4 469 271 198 8.3 0.8 6.1																				
1988 1129 5.17 2.12 0.52 0.11 0.99 0.5 1.1 2.5 56 0.034 2.9 3.8 614 305 309 7.9 1.2 12.3 1989 113 5.15 2.06 0.65 0.21 1.1 0.75 1.2 2.3 275 0.045 15.3 15.4 469 271 198 8.3 0.8 6.1																				
1989 113 5.15 2.06 0.65 0.21 1.1 0.75 1.2 2.3 275 0.045 15.3 15.4 469 271 198 8.3 0.8 6.1																				
1989 202 5.18 2.02 0.75 0.23 0.96 0.26 1.2 2.4 200 0.048 18.6 6.7 462 208 254 7.8 1.2 9.0																				
	1989	202	5.18	2.02	0.75	0.23	0.96	0.26	1.2	2.4	200	0.048	18.6	b. <i>1</i>	462	208	254	7.8	1.2	9.0

Yr	Date	pН	Cond	Ca	Mg	Na	к	CI	SO₄	NO₃	Alk	Alk	ANC	R-AI	Org-Al	L-AI	SIO₂	Turb	Perm
			mS/m	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mmol/l	µeq/l	µeq/l	µg/l	µg/l	µg/l	mg/l	FTU	MgO/I
1989	312	5.21	2.05	0.87	0.23	1.14	0.7	1.1	3	315	0.044	14.2	13.8	434	186	248	8.0	0.8	8.3
1989	414	5.46	2.32	0.85	0.22	1.01	0.75	1	3.2	195	0.032	0	14.9	415	169	246	7.4	1.4	9.1
1989	512	5.09	1.99	0.88	0.22	1.02	0.8	0.9	3	255	0.038	7.6	20.8	430	156	274	7.1	0.8	9.5
1989	618	5.23	1.99	0.71	0.18	1.1	0.89	0.9	2.5	55	0.05	20.7	39.5	498	256	242	6.6	0.2	12.0
1989	725	5.36	1.93	0.81	0.15	1.18	0.8	1.4	2	<1	0.07	42	43.3	850	404	446	6.9	3.6	19.6
1989	825	5.21	1.96	0.7	0.15	1.36	0.71	0.9	2.1	35	0.035	4.1	53	650	275	375	7.6	2.5	13.8
1989	1010	5.36	1.88	0.67	0.17	1.21	0.54	1.1	1.9	68	0.046	16.4	38.4	545	294	251	7.2	0.7	12.8
1989	1113	5.33	2.51	0.8	0.22	1.32	0.57	1.2	2.8	138	0.041	10.9	28	464	197	267	6.7	0.6	11.2
1989	1211	5.18	2.49	1.05	0.35	1.33	0.57	1.3	3.9	680	0.036	5.3	-12.8	384	141	243	8.7	0.6	6.2
1990	115	4.99	2.47	0.92	0.22	1.11	0.4	1	2.5	505	0.042	12	6.2	389	132	257	8.6	0.9	6.5
1990	209	5.33	2.18	0.97	0.25	1.19	0.6	1.1	3.6	310	0.042	12	8	390	152	238	7.8	1.0	8.0
1990	309	5.22	2.24	0.96	0.26	1.18	0.63	1.1	3	460	0.044	14.2	10.4	390	168	222	8.1	0.9	6.3
1990	405	5.31	2.05	0.97	0.25	1.09	0.62	0.9	3.1	315	0.041	10.9	19.8	388	153	235	7.1	0.5	7.0
1990	501	5.11	2.23	1.02	0.25	1.01	0.7	0.8	2.8	500	0.033	1.6	16.7	394	157	237	6.2	1.2	8.8
1990	608	5.21	1.99	0.91	0.21	1.06	0.7	0.9	3.2	140	0.047	17.5	24.7	466	210	256	5.7	1.1	10.8
1990	704	5.18	1.79	0.73	0.16	1.04	0.62	0.4	2.5	18	0.046	16.4	46.1	580	283	297	6.3	0.9	15.8
1990	801	5.31	1.96	0.83	0.18	1	0.56	0.6	1.9	13	0.049	19.7	56.6	500	327	173	5.5	1.2	11.8
1990	911	5.38	1.92	0.87		1.09	0.5	0.7	2.2	11	0.048	18.6	52.1	600	332	268	6.5	0.8	13.5
1990	1009	5.26	1.93	0.82		1.13		0.9	2.6	32	0.025	0	35.5	595	261	334	7.4	1.1	16.0
1990	1108	5.31	2.12	0.95		1.23		0.9	3	107	0.032	0	33.5	473	209	264	7.5	0.9	12.5
1990	1206	5.28	2.12	1.09		1.22		0.8	2.9	315	0.033	1.6	32.4	417	180	237	8.5	0.5	8.4
1991	106	5.21	2.11	1.11		1.24		2.2	2.1	370	0.041	10.9	9.4	470	184	286	9.0	1.7	8.6
1991	306	5.2	2.07	1.08		1.21		1	2.9	320	0.05	20.7	26	410	249	161	8.9	0.7	7.4
1991	407	5.23	2.22	1.21		1.24		0.8	3.1	350	0.048	18.6	35.2	405	216	189	8.3	0.4	8.1
1991	506	5.24	1.96	1.07	0.25	1.1	0.43	0.6	2.9	215	0.05	20.7	40.1	410	230	180	7.5	1.1	8.9
1991	606	5.26	2.07	1.06		1.06		1	3	71	0.053	24	33.7	449	259	190	6.8	0.9	8.0
1991	705	5.29	1.73	0.97		1.04		0.5	2.6	4	0.056	27.2	54.9	509	345	164	6.6	0.6	11.6
1991	816	5.33	2.28	1.18		1.21		0.5	3	11	0.067	38.8	65.8	400	335	65	7.2	1.8	11.3
1991	1004	5.18	2.6	1.44		1.36		1.5	3.6	465	0.043	13.1	19.3	406	233	173	8.1	0.5	8.4
1991	1103	5.08	2.65	1.48		1.37		1.5	3.6	335	0.046	16.4	33.4	455	293	162	8.3	0.9	10.1
1991	1209	5.2	2.42	1.33		1.28		1.1	3.4	460	0.04	9.8	27.3	439	272	167	8.5	1.1	7.9
1992	105	5.12	2.49	1.35		1.21		1.3	3.6	550	0.044	14.2	10.6	423	251	172	9.1 0.5	0.7	5.8
1992 1992	205 306	5.22 5.29	2.53 2.24	1.38	0.33 0.28		0.6	1.4	3.3	530 115	0.05 0.05	20.7 20.7	22.3 30.8	428 414	278 287	150 127	9.5 8.4	0.7 2.0	6.2 6.7
			2.24 2.34				0.50									145		-	-
1992 1992	406 505	5.38 5.19	2.34	1.18 1.12		1.15		1.5	3.3 2.8	300 355	0.05 0.037	20.7 6.4	21.4 33.2	429 411	284 266	145	8.0 7.1	0.8 0.8	6.3 8.9
1992	605	5.17	2.61	1.42		1.14		' 1.4	2.0	635	0.037	16.4	21.4	429	263	166	7.3	15.0	7.8
1992	705	5.28	3	1.42		1.21		1.4	2.9	280	0.040	18.6	35.7	425	266	159	8.2	0.9	9.0
1992	902	5.35	2.4	1.34		1.42		1.3	3.1	285	0.044	14.2	59.1	489	387	102	8.4	0.6	9.9
1992	904	5.2	2.62	1.38		1.43		1.2	3.2	435	0.04	9.8	52.6	474	343	131	9.0	0.5	10.0
1992	1103	5.37	2.42	1.14	0.26			1.3	3.1	114	0.048	18.6	50.7	433	365	68	8.4	0.7	9.8
1992	1202	5.31	2.49	1.32		1.45		1.4	2.8	558	0.059	30.4	42.1	422	194	228	8.1	0.1	8.0
1993	105	5.28	2.58	1.49		1.29		1.2	3.4	655	0.046	16.4	32.1	443	283	160	9.4	1.1	7.5
1993	205	5.24	2.49	1.41		1.42		1.3	3.1	610	0.055	26.1	38.9	402	271	131	8.5	0.9	7.4
1993	304	5.25	2.51	1.34		1.35		1.2	3	495	0.052	22.9	44.4	362	300	62	8.9	1.1	6.4
1993	401	5.23	2.48	1.4		1.37		1.2	2.9	520	0.056	27.2	48	358	257	101	8.6	1.1	6.5
1993	501	5.12	2.8	1.59		1.36		0.8	2.7		0.049	19.7	32.3	428	284	144	7.1	0.6	8.1
1993	609	5.47	2.12	1.23		1.15		0.9	3	80	0.053	24	63	392	293	99	7.6	0.8	9.2
1993	624	5.4	2.17	1.15		1.17		1	3	13	0.07	42	60.5	403	333	70	8.2	0.5	9.1
1993	730	5.28	2.1	1.28		1.43		0.9	2.7	235	0.065	36.7	74.9	367	288	79	9.1	1.1	9.1
1993	904	5.38	2.11	0.95		1.17		0.8	2.7	<1	0.062	33.5	63	422	395	27	9.3	0.8	10.9
1993	1001	5.4	2.1		0.24				2.6	20	0.058	29.3	83.3	386	359	 27	8.5	0.7	10.4
									-	-									

Yr	Date	pН	Cond	Ca	Mg	Na	к	CI	SO₄	NO₃	Alk	Alk	ANC	R-AI	Org-Al	L-AI	SIO₂	Turb	Perm
			mS/m	mg/l	mg/l		mg/l	mg/l	mg/l	µg/l	mmol/l	µeq/l	µeq/l	µg/l	µg/l	µg/l	mg/l	FTU	MgO/I
1993	1029	5.31	2.09	1.17	0.27	1.29	0.82	0.9	2.7	109	0.059	30.4	68.3	433	363	70	8.0	0.6	9.6
1993	1127	5.29	2.19	1.31	0.31	1.27	0.8	0.8	2.5	380	0.072	44.1	64.8	365	299	66	7.9	0.7	8.2
1993	1229	5.36	2.05	1.28	0.3	1.23	0.76	0.9	2.7	245	0.075	47.2	62.4	369	304	65	8.8	1.0	7.5
1994	128	5.33	2.59	1.29	0.29	1.32	0.74	1	2.9	79	0.073	45.1	70.3	349	273	76	8.8	1.2	8.4
1994	404	5.33	2.73	1.51	0.37	1.43	0.81	0.8	2.7	1130	0.058	29.3	29.2	374	268	106	7.6	1.8	6.5
1994	430	5.15	2.65	1.6	0.39	1.2	0.77	0.5	2.7	1075	0.049	19.7	36.7	416	276	140	7.1	0.6	7.9
1994	605	5.46	5.14	1.28	0.29	1	0.68	0.6	2.8	80	0.065	36.7	67.7	399	252	147	8.1	1.1	9.1
1994	801	5.42	2.2	1.56	0.28	1.49	0.81	0.7	3.2	11	0.091	64	99.2	354	324	30	9.0	0.8	9.1
1994	901	5.25	2.2	1.38	0.31	1.28	0.75	0.8	3.1	172	0.071	43	69.8	391	307	84	8.9	0.8	9.8
1994	930	5.44	1.96	1.34	0.32	1.09	0.78	0.7	3.1	53	0.081	53.5	72.5	428	321	107	8.6	1.4	9.5
1994	1101	5.65	2.09	1.5	0.35	1.33	0.75	0.8	2.7	515	0.072	44.1	65.1	401	277	124	8.7	0.5	8.2
1994	1201	5.31	2.14	1.53	0.33	1.36	0.71	0.9	2.7	430	0.083	55.6	68.5	364	276	88	8.5	0.5	7.4
1995	113	5.51	2.37	1.5	0.35	1.26	0.66	0.9	2.7	505	0.077	49.3	57.7	362	254	108	8.4	0.4	6.8
1995	204	5.52	2.14	1.37	0.33	1.23	0.64	0.8	2.8	365	0.078	50.4	58.5	389	249	140	8.3	0.9	4.0
1995	408	5.54	2.34	1.54	0.37	1.25	0.69	0.9	2.6	800	0.075	47.2	42.7	340	213	127	7.3	0.7	6.4
1995	428	5.35	2.74	1.8	0.45	1.14	0.78	0.7	2.8	1380	0.058	29.3	19.8	372	227	145	7.8	0.5	7.2
1995	603	5.52	1.79	1.23		0.96		0.4	2.6	265	0.068	39.9	57	422	330	92	5.7	0.6	10.5
1995	803	5.67	2.2	1.43	0.28	1.07	0.72	0.7	3.1	5	0.092	65	74.7	429	326	103	8.9	1.0	10.0
1995	831	5.67	2.1	1.55		1.28		0.8	3.2	5	0.104	77.5	87.5	359	290	69	9.8	5.9	14.5
1995	929	5.58	2.4	1.51	0.33	1.22	0.76	0.8	3.2	28	0.121	95.1	83.8	388	251	137	9.5	1.8	10.2
1995	1101	6.02	2.69	1.53		1.54		1.6	2.9	37	0.127	101.3	88.4	259	240	19	8.8	2.2	11.1
1995	1202	5.96	2.25	1.31		1.06	0.66	1	3	4	0.099	72.3	61.3	317	227	90	8.7	1.6	7.6
1996	505	5.19	2.79	1.94	0.45	1.2	0.69	1.1	3.5	805	0.075	47.2	42.3	389	339	50	6.1	1.3	14.9
1996	527	5.21	3.28	2.09	0.49	1.2	0.83	1	3.1	1315	0.053	24	31.4	377	239	138	7.2	2.6	11.6
1996	701	5.52	2.06	1.43		1.14		0.5	3.7	240	0.068	39.9	53.4	417	317	100	7.8	0.7	10.6
1996	725	5.51	1.86	1.26		1.12		0.4	3.1	5	0.075	47.2	70.8	433	318	115	8.1	1.2	11.6
1996	901	5.42	1.89	1.15		1.05		0.5	2.8	60	0.081	53.5	59.4	413	278	135	8.6	1.5	12.6
1996	1002	5.41	2.12	1.37		1.18		1	2.7	215	0.076	48.3	55	410	288	122	7.8	0.4	10.4
1996	1027	5.33	1.96	1.37		1.11		0.9	3	170	0.063	34.6	50.9	419	304	115	8.0	0.5	10.1
1996	1217	5.49	2.05	1.49		1.07		0.8	3.1	375	0.068	39.9	42.7	320	223	97	7.8	1.1	8.7
1997	104	5.45	2.07	1.5		1.13		0.8	3.1	345	0.072	44.1	47.7	311	219	92	7.9	0.6	7.5
1997	203	5.48	1.95	1.39		1.12		0.8	3.1	134	0.08	52.5	53.6	320	260	60	7.9	0.4	7.8
1997	303	5.51	2.11	1.42		1.17		0.8	3.2	138	0.086	58.7	55.5	303	226	77	8.2	0.4	7.1
1997	401	5.41	2.28		0.32						0.072	44.1	42.8	303	199	104	8.0	1.0	6.8
1997	504	5.45	2.11	1.36			0.47		2.9	430	0.059	30.4	34.9	333	238	95	7.1	0.5	8.6
1997	529	5.52	1.95	1.22			0.52		2.7	220	0.06	31.4	47.5	418	327	91 02	6.7	0.4	12.1
1997	620 720	5.58	1.93	1.28		1.09		0.6	3	4	0.082	54.6	61	404	312	92	7.2	0.6	12.5
1997	730	5.58	1.82	1.2		1.04		1.2	2.1	5	0.081	53.5	57.1	393	236	157	7.2	0.4	15.0
1997	911	5.41	1.82	1.18	0.21			0.8	1.9	4	0.081	53.5	71.8	476	367	109	8.3 9.5	1.0	17.8
1997	1001	5.59	1.86	1.14	0.23			0.8	2	4	0.085	57.7	65.1	442	369	73	8.5	0.8	16.2
1997	1031	5.41	1.77	1.3		1.13 1.06		0.9	2.3	34	0.068	39.9	64.5	429 371	299	130	8.1 7.6	0.7	12.5 11.0
1997	1203	5.39 5.45	1.74	1.27			0.29	0.8	2.6	127	0.06	31.4	50.9		270 286	101	7.6 7.0	1.8 0.6	
1998	102	5.45 5.59	1.76	1.32				0.8	2.7	121 150	0.07	42 36.7	53.7	346 359	200 281	60 79	7.9	0.8 1.0	9.8 8.7
1998	130		1.68	1.34		1.07		0.7	2.8		0.065		54 46 4			78 50	8.0 • 1		
1998 1998	227 403	5.09 5.48	1.86	1.14 1.34		1.06		0.8	2.6	138 255	0.038	7.6 33.5	46.4 49.6	293 358	243 257	50 101	8.1 7 9	0.3 0.9	15.2 9.5
1998	403 501	5.48 5.53	1.73 1.53	1.34 1.3		1.12	0.33	0.7 0.6	2.7 2.6	255 245	0.062 0.062	33.5 33.5	49.6 48.8	358 328	257 278	101 50	7.9 7.0	0.9 0.4	9.5 9.5
1998	501 529	5.53 5.6	1.55	1.3 1.18			0.34		2.6 2.9	245 7	0.062	33.5 44.1	40.0 47.3	328 377	278 331	50 46	7.0 6.7	0.4 0.7	9.5 10.6
1998	529 612	5.6 5.73	1.5 1.5	1.16		1.03		0.8 0.4	2.9 2.5		0.072	44.1 48.3	47.3 68.3	377 374	329	46 45	6.7 6.9	0.7	11.6
1998	801 801	5.73 5.43	1.5	1.16		1.04		0.4 0.4	2.5 1.7	8 5	0.076	40.3 49.3	86 86	374 460	329 349	45 111	6.9 7.2	0.4 0.8	15.5
1998	829	5.43 5.6	1.55	1.21		1.04		0.4 0.7	1.7	5 4	0.077	49.3 39.9	00 76.8	460 488	349 422	66	7.2 7.7	0.8 0.8	15.5 16.8
1998	829 1001	5.6 5.37	1.63	1.24			0.4 0.43		1.9 1.8	4 4	0.068	39.9 39.9	76.8 79.7	400 505	422 437	68	7.7 7.9	0.8 1.3	10.0
1990	1001	5.57	1.00	1.20	0.2	1.09	0.40	0.1	1.0	4	0.000	59.9	19.1	505	-101	00	1.3	1.5	17.5

Yr	Date	рΗ	Cond	Ca	Mg	Na	к	CI	SO₄	NO₃	Alk	Alk	ANC	R-AI	Org-Al	L-AI	SIO ₂	Turb	Perm
			mS/m	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mmol/l	µeq/l	µeq/l	µg/l	µg/l	µg/l	mg/l	FTU	MgO/I
1998	1031	5.4	1.47	1.05	0.18	0.96	0.35	0.7	1.7	5	0.06	31.4	62.4	461	361	100	7.1	1.8	16.1
1998	1201	5.58	1.65	1.04	0.19	0.95	0.3	0.6	2	16	0.085	57.7	56.8	457	360	97	8.1	1.6	12.8
1999	105	5.61	1.79	1.1	0.21	1.01	0.29	0.7	2.2	6	0.09	62.9	57.5	385	295	90	7.8	0.5	11.6
1999	205	5.74	1.68	1.03	0.2	1.04	0.28	0.7	2.2	8	0.082	54.6	54.1	389	274	115	7.8	2.1	10.9
1999	309	5.63	1.79	1.1	0.2	1.03	0.3	0.7	2.3	6	0.092	65	55.8	443	322	121	7.6	3.0	10.7
1999	330	5.62	1.83	1.02	0.21	1.05	0.24	0.7	2.4	40	0.093	66	47.4	364	285	79	8.0	0.7	9.7
1999	427	5.58	1.56	1.08	0.2	0.95	0.29	0.4	2	143	0.073	45.1	56	343	258	85	6.3	0.6	9.0
1999	528	5.65	1.37	1.09	0.18	0.87	0.32	0.5	2	47	0.063	34.6	56.1	345	260	85	5.8	0.6	10.3
1999	626	5.63	1.45	1.12	0.21	0.91	0.39	0.2	1.9	3	0.072	44.1	77.3	414	331	83	6.9	1.0	13.0
1999	729	5.68	1.44	1.16	0.21	0.95	0.43	0.3	1.6	<1	0.082	54.6	85.6	436	321	115	7.5	0.3	14.9
1999	830	5.66	1.55	1.28	0.23	1.03	0.46	0.3	2	2	0.088	60.8	89.1	507	398	109	9.0	1.5	15.7
1999	1029	5.48	1.64	1.05	0.21	0.92	0.33	0.7	2.3	4	0.065	36.7	50.2	375	298	77	7.6	1.5	13.3
1999	1201	5.68	1.45	1.03	0.22	0.93	0.32	0.7	2.3	9	0.059	30.4	49.9	392	300	92	7.6	0.8	12.2
1999	1202	5.66	1.55	1.03	0.22	0.93	0.32	0.7	2.3	9	0.088	60.8	49.9	392	300	92	7.6	0.8	12.2

Appendix B.

Acid Rain Research Reports

- 1/1982. Henriksen, A. 1982. Changes in base cation concentrations due to freshwater acidification.50 pp. Out of print.
- 2/1982. Henriksen, A. and Andersen, S. 1982. Forsuringssituasjonen i Oslomarkas vann. 45 pp. Out of print.
- 3/1982. Henriksen, A. 1982. Preacidification pH-values in Norwegian rivers and lakes. 24 pp. Out of print.
- 4/1983. Wright, R.F. 1983. Predicting acidification of North American lakes. 165 pp.
- 5/1983. Schoen, R., Wright, R.F. and Krieter, M.1983. Regional survey of freshwater acidification in West Germany (FRG). 15 pp.
- 6/1984. Wright, R.F. 1984. Changes in the chemistry of Lake Hovvatn, Norway, following liming and reacidification. 68 pp.
- 7/1985. Wright, R.F. 1985. RAIN project. Annual report for 1984. 39 pp.
- 8/1985. Lotse, E.and Otabbong, E.1985. Physiochemical properties of soils at Risdalsheia and Sogndal: RAIN project. 48 pp.
- 9/1986. Wright, R.F. and Gjessing, E. 1986. RAIN project. Annual reportfor 1985. 33 pp.
- 10/1986. Wright, R.F., Gjessing, E., Semb, A. and Sletaune, B. 1986. RAIN project. Data report 1983-85. 62 pp.
- 11/1986. Henriksen, A., Røgeberg, E.J.S., Andersen, S. and Veidel, A. 1986. MOBILLAB-NIVA, a complete station for monitoring water quality. 44 pp.
- 12/1987. Røgeberg, E.J.S. 1987. A coulometric Gran titration method for the determination of strong and weak acids in freshwater. 28 pp.
- 14/1988. Hauhs, M. 1988. Water and ion movement through a minicatchment at Risdalsheia, Norway. RAIN project. 74 pp.
- 15/1988. Gjessing, E., Grande. M. and Røgeberg, E.J.S. 1988. Natural Organic Acids. Their Role in Freshwater Acidification and Aluminium Speciation. 28 pp.
- 16/1988. Wright, R.F. 1988. RAIN project. Annual report for 1987. 77 pp.
- 17/1988. Wathne, B.M and Røgeberg, E.J.S. 1988. Buffering effects of river substrates under acidic conditions. 19 pp.
- 18/1989. Lotse, E.G. 1989. Soil Chemistry 1983-86 at the RAIN Project Catchments. 66 pp.
- 19/1989. Reuss, J.O. 1989. Interpretation of Soil Data from the RAIN Project. 81 pp.
- 20/1990. Skjelkvåle, B.L. and Wright, R.F. 1990. Overview of areas sensitive to acidification: Europe. 20 pp.
- 21/1990. Hindar, A. and Kleiven, E. 1990. Chemistry and fish status of 67 acidified lakes at the coast of Aust-Agder, Southern Norway, in relation to postglacial marine deposits. 47 pp.
- 22/1990. Henriksen, A. Lien, L. and T. Traaen, T.S. 1990. Critical Loads for Surface Waters. Chemical Criteria for Inputs of Strong Acids. 45 pp.
- 23/1990. Wright, R.F. 1990. Reversibility of acidification: soils and surface waters. 39 pp.
- 24/1991. Wright, R.F. RAIN project. Report for the years 1988, 1989 and 1990. 156 pp.
- 25/1991. Wright, R.F., Holmberg, M., Posch, M. and Warfvinge, P. 1991. Dynamic models for predicting soil and water acidification: Application to three catchments in Fenno-Scandia. 40 pp.
- 26/1992. Wohlfeil, I.C. and Müller, D.I. 1992. RAIN-project: Vegetation mapping at Risdalsheia 1991. 42 pp.
- 27/1992. Rosseland, B.O. and Kroglund, F. 1992. Reversibility of acidification; Fish responses in experiments at Risdalsheia. 50 pp.
- 28/1992. Wathne, B.M., Norton, S.A. and Henriksen, A. 1992. Buffering capacities and effects of river substrates during acidic episodes. 24 pp.

- 29/1992. Henriksen, A., Mill, W.A., Kot, M., Rzychon, D. and Wathne, B.M. 1992. Critical loads of acidity to surface waters: A case study from Polish Tatra Mountains. 34 pp.
- 30/1992. Kroglund, F., Dalziel, T., Rosseland, B.O., Lien, L., Lydersen, E. and Bulger, A. 1992. Restoring Endangered Fish In Stressed Habitats. ReFISH project 1988-1991. 43 pp.
- 31/1992. Rosseland, B.O., Brandrud, T.E., Raddum, G.G. 1992. Effects of Aluminium in Acidified Aquatic Ecosystems. 34 pp.
- 32/1993. Henriksen, A., Forsius, M., Kämäri, J., Posch, M. and Wilander, A. 1993. Exeedance of Critical Loads for Lakes in Finland, Norway and Sweden: Reduction Requirements for Nitrogen and Sulfur Deposition. 46 pp.
- 33/1993. Wathne, B.M., Mill, W.A., Kot, M., Rzychon, D., Henriksen, A., and Tørseth, K. 1993. Critical loads of acidity to lakes in the Polish Tatra Mountains. A study of the yearly variations in the precipitation and water chemistry. 37 pp.
- 34-A/94. Lydersen, E. 1994. Long term monitored catchments in Norway a hydrologic and chemical evaluation -, 306 pp. + Appendix.
- 34-B/94. Lydersen, E. 1994. Long term monitored catchments in Norway a hydrologic and chemical evaluation -, Summary Report, 66 pp.
- 35/1994. Wright, R.F. 1994. Modelling long-term hydrochemical response at ENCORE catchments in the UK and Norway. 42 pp.
- 36/1994. Wright, R.F. 1994. RAIN PROJECT. Risdalsheia data report for June 1990 May 1994. 165 pp.
- 37/1995. Závodský, D., Wathne, B.M., Henriksen, A., Sverdrup, H. et al. 1995. Mapping critical levels/loads for the Slovak Republic. 74 pp.
- 38/1995. Wright, R.F. 1995. NITREX: Phase 2 Final Report 56 pp.
- 39/1995. Wright, R.F. 1995. NIVA contributions to ACID REIGN 95? Conference in Gothenburg, Sweden, 26-30 June 1995. 244 pp.
- 40/1996. Henriksen, A. et al. 1996. Regional Lake Surveys in Finland Norway Sweden Northern Kola Russian Karelia Scotland Wales 1995. 30 pp.
- 41/1996. Norton, S.A., Appleby, P.G., Dauvalter V. and Traaen T. 1996. Trace metal pollution in Eastern Finnmark, Norway and Kola Peninsula, Northwestern Russia as evidenced by studies of lake sediment. 18 pp.
- 42/1996. Wright, R.F. 1996. Nitrex: Phase 3 Final Report. 28 pp.
- 43/1996. Závodský, D., Wathne, B.M., Henriksen, A., Sverdrup, H. et al. 1996. Mapping critical levels/loads for the Slovak Republic. Final Report. 93 pp.
- 44/1997. Lydersen, E., Rzychon, D., Worsztynowicz, A., Tørseth, K. Hanssen, J.E., Mill, W.A., Kot, M., Henriksen, A., Wathne, B.M. 1997. Critical loads of acidity to lakes in the Polish Tatra Mountains- Final Report. 49 pp.
- 45/1997. Henriksen, A., Mannio, J., Wilander, A., Moiseenko, T., Traaen, T.S., Skjelkvåle, B.L.S.,
 Fjeld, E. and Vuorenma, J. 1997. Regional Lake Surveys in The Barents region of Finland Norway Sweden and Russian Kola 1995 Results.
- 46/1997. Kjønaas, O.J., Wright, R.F., and Cosy, B.J. 1997. MERLIN model applied to NITREX Gårdsjön. 38 pp.
- 47/1997. Henriksen, A., Skjelkvåle, B.L., Mannio, J., Wilander, A., Jensen, J.P., Moiseenko, T., Harriman, R., Traaen, T.S., Fjeld, E., Vuorenmaa, J., Kortelainen, P. and Forsius, M. 1997. Results of national lake surveys 1995 in Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. 43 pp.
- 48/1997. Lydersen, E., Angell, V., Eilertsen, O., Larssen, T., Mulder, J., Muniz, I.P., Seip, H.M., Semb, A., Vogt, R,D,. Aagaard, P. 1997. Planning of an Integrated Acidification Study and Survey on Acid Rain Impacts in China. Final Report. 77 pp. + Appendix.
- 49/1998. Hindar, A.and Henriksen, A. 1998. Mapping of Critical Load and Critical Load Exceedances in the Killarney Provincial Park, Ontario, Canada . 36 pp.
- 50/1999. Hindar, A., Norgaard, E., Nilsen, P., Høgberget, R. and Wright, R.F. 1999. Wholecatchemnt Application of Dolomite to an Acidified Forest Ecosystem in Gjerstad, Southern Norway. 89 pp.

51/2000. Henriksen, A. and Kirkhusmo L.A. 2000. Effect of clear-cutting of forest on the chemistry of a shallow groundwater aquifer in southern Norway. 19 pp.