
 

 
REPORT SNR 4856-2004 
 

 
 
 
 
 
 
 

 
 
in collaboration with 
Australian Museum 

TARGET as a tool for 
prioritising biodiversity 
conservation payments on 
private land - a sensitivity 
analysis 

Bioindicators Project 

 

      



 
 

Norwegian Institute for Water Research REPORT 
Main office Sørlandsavdelingen Østlandsavdelingen Vestlandsavdelingen Akvaplan-niva  

Postboks 173, Kjelsås Televeien 3 Sandvikaveien 41 Nordnesboder 5  
0411 Oslo 4879 Grimstad 2312 Ottestad 5005 Bergen 9296 Tromsø 
Telefon (47) 22 18 51 00 Telefon (47) 37 29 50 55 Telefon (47) 62 57 64 00 Telefon (47) 55 30 22 50 Telefon (47) 77 75 03 00 
Telefax (47) 22 18 52 00 Telefax (47) 37 04 45 13 Telefax (47) 62 57 66 53 Telefax (47) 55 30 22 51 Telefax (47) 77 75 03 01 
Internet: www.niva.no     

 
TItle 

TARGET as a tool for prioritising biodiversity conservation 
payments on private land - a sensitivity analysis 
 

Snr. 

4856-2004 

 Project no. 

O-23307   

Date 

June 2004 

 Pages Price 

73  

Author(s) 

David N. Barton, Graciela Rusch, Jan Ove Gjershaug, Daniel 
P.Faith, Luis Paniagua  
  
  
  

Subject 

Resource economics 

 Geographical area 

Costa Rica 

Distribution 

Open 

 Printed 

NIVA 

 
 
Client(s) 

Norwegian Research Council 
 

Project Reference 

141032/720 

 
Summary 

The report is a companion to Barton, Faith et al. (2003) which motivates the use of the software TARGET 
for the prioritisation of biodiversity conservation payments on private land, or so-called “environmental 
service payments” in the Costa Rican context.  The present report conducts an extensive sensitivity 
analysis for a number of variables that were deemed critical by managers reviewing initial TARGET 
results.  Three different approaches to constructing the biodiversity indicators (attribute-based, PCA, and 
k-means) are followed, showing that the cost-efficient set of locations is most sensitive to this variable.  
The importance of the geographical scale and resolution of the environmental data for prioritisation of 
areas to receive payments is evaluated as these assumptions also implicitely define the comprehensiveness 
of the surrogate biodiversity indicator.  Similarly, the generation of information on the opportunity cost of 
land-use for the whole study area is shown to be very sensitive to the GIS techniques used.     
Nevertheless, given an agreed set of assumptions on how to evaluate the existing georeferenced 
environmental and economic data – the TARGET algorithm provides quite robust and reliable sets of 
priority locations.   
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Preface 

 
The Project  ”Decision-making models for evaluating cost-effectiveness 
of conservation priorities using alternative biodiversity indicators” (Short 
title: Bioindicators Project) has since its conception been motivated by 
applying the theoretical strengths of TARGET software to biodiversity 
conservation planning in practice.   This report is in response to issues 
discussed in a series of training workshops on the TARGET software 
held at the National Biodiversity Institute of Costa Rica (INBio) in 2002-
2004.  Participants from Panamá, Costa Rica, Honduras, Guatemala, El 
Salvador and Belice raised a number of questions regarding the reliability 
of TARGET when applied to prioritising payments for biodiversity 
conservation.  In an effort to test the robustness of TARGET under 
different data assumptions, and to answer the questions of protected area 
managers in Central America we have written this report. 
 
David N. Barton (NIVA) has conducted TARGET analyses, produced 
GIS maps and written the main body of the report.  Graciela Rusch and 
Jan Ove Gjershaug (NINA) have conducted the PCA and Cluster 
analyses and written sections on constructing biodiversity surrogates and 
the use of biodiversity data in Costa Rica.    Dan P. Faith (Australian 
Museum) made the TARGET software available to the project and 
provided valuable comments to the report.   L. Paniagua (INBio) has 
provided supplementary GIS data. Tuomo Saloranta (NIVA) wrote an 
algorithm for running correspondence analysis of TARGET output. We 
would like to thank Per Stalnacke (NIVA) for quality assuring the report. 
 
The data used in this report builds on GIS data compiled by Marco Castro 
in INBio’s ECOMAPAS project and species data compiled by Alvaro 
Herrera (INBio) from INBio’s biodiversity inventory Atta.    Mauricio 
and Edwin Vega (Instituto de Politicas para la Sostenibilidad, IPS) 
conducted the original studies of agricultural and forestry opportunity 
costs in ACOSA;   Bodil Wilman (NINA) provided assistance in 
formatting GIS data to Access and TARGET input files.    
 
The Bioindicators Project has been supported by a grant from the 
Norwegian Research Council.  We are very grateful for their support.   
We would also like to thank NORAD for supporting the participation of 
conservation area managers from Central American countries in the 
workshops and to thank INBio for organisation and hosting of the events. 
 
 
 

Oslo, June 2004 
 
 

David N. Barton 
Project Manager
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Summary 

Title: TARGET as a tool for prioritising biodiversity conservation payments on private land  
- a sensitivity analysis 
Year: 2004 
Author(s): David N. Barton, Graciela Rusch, Jan Ove Gjershaug, Daniel P. Faith, L. Paniagua 
Source: Norwegian Institute for Water Research, ISBN No.: 82-577-4539-1 
 
Cost-efficient conservation priorities should be of high management relevance in countries with 
limited conservation budgets. However, in Costa Rica the fact that land use conversion from forestry 
to agriculture is illegal has been used as a general critique of conducting any kind of trade-offs 
analysis by some researchers and managers.  In practice, gradual forest encroachment and 
fragmentation may lead to long term deforestation, calling for prioritisation of conservation efforts 
with limited resources available to authorities in charge of public protected areas and economic 
incentives for conservation on private lands.    Another argument against trade-offs analysis has been 
that recent forest statistics have shown net reforestation in Costa Rica as a whole.  However, trade-offs 
analysis may still be useful as TARGETs use of environmental biodiversity surrogates provides a 
guide to which areas have highest complementary value for reforestation/restoration. 
 
These general arguments, along with a number of specific technical questions, have been posed by 
managers and researchers who have had a chance to review results of the Bioindicators Project on 
trade-offs analysis using TARGET software.  The objectives of this report have been to answer the 
more technical questions regarding  

• how biodiversity indicators have been constructed,  
• how opportunity cost of protection have been calculated, and  
• how varying assumptions will affect the set of cost-efficient locations selected by the 

TARGET algorithm.   
 
Furthermore, the report is a companion to Barton, Faith et al. (2003) which motivates the use of 
TARGET for the prioritisation of biodiversity conservation payments on private land, or so-called 
“environmental service payments” in the Costa Rican context.  This report is primarily written for 
readers who wish to learn more of the technical possibilities and limitations of the TARGET software, 
and the demands the model places on the underlying environmental and species data.   
 
The report illustrates the impact of three different approaches to constructing the biodiversity 
indicator, showing that the cost-efficient set of locations is (naturally) most sensitive to this variable.  
Furthermore, we illustrate the importance of the geographical scale and resolution of the 
environmental data as these assumptions also implicitely define the comprehensiveness of the 
surrogate biodiversity indicator (as a substitute for pure species-based indicators).  Similarly, the 
generation of opportunity cost information for the whole study area is very sensitive to the GIS 
techniques used.     However, given an agreed set of assumptions on how to evaluate the existing 
georeferenced environmental and economic data – the TARGET algorithm provides quite robust and 
reliable sets of locations.  The report shows that any use of such priority setting tools in allocating 
resources for conservation on private land in Costa Rica has a dual challenge:  

- transparency and user-friendliness of the priority-setting model 
- politically acceptable priority-setting ‘rules’ that may be established by conservation 

authorities (what we will call sets of assumptions, or ‘model scenarios’ 
 
In the course of sensitivity analyses the report therefore discusses a number of potential improvements 
that could be made to the TARGET software, both for research and presentational purposes. 
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Resumen 

A pesar de que la priorización costo-efectiva de esfuerzos de conservación debería ser de relevancia 
general, el hecho de que la conversión del uso de la tierra es illegal en Costa Rica se ha usado como un 
cuestionamiento general contra los análisis de priorización entre bosque y otros usos de la tierra.  Otro 
argumento en contra de análisis de priorización ha sido que el país experimenta la reforestación neta 
en los últimos años,  lo que hace reduntante esfuerzos de análisis la deforestación.  En la práctica, la 
conversion gradual de bosque en otros usos a través de procesos de cercenamiento y fragmentación 
puede a mediano y largo plazo conllevar la deforestación - por ende la necesidad de priorizar recursos 
para protección en tierras públicas y privadas de forma consistente.  Además, indicadores ambientales 
de la biodiversidad empleados por TARGET presentan una guía a cuáles areas ofrecen la mayor 
biodiversidad complementaria potencial con la  recuperación del bosque. 
 
Estas preguntas y respuestas sobre políticas, junto con una serie de preguntas específicas y técnicas, se 
han hechos por funcionarios e investigadores que han revisado los resultados del Proyecto 
Bioindicadores y su uso del software TARGET.   Los objetivos de este informe han sido de contestar a 
las preguntas más técnicas sobre: 

• cómo los indicadores de biodiversidad han sido construidos,  
• cómo costos de oportunidad han sido cálculados, y  
• cómo diferentes supuestos han afectado el conjunto de areas prioritarias seleccionadas por el 

algoritmo de TARGET.   
 
Además, este informe acompaña Barton, Faith et al. (2003), cuyo fin era justificar el uso de TARGET 
para la priorización de pagos por servicios ambientales (PSA) en tierras privadas en Costa Rica y 
contextos similares.  Este informe ha sido escrito principalmente para los lectores que desean 
aprender más sobre las posibilidades y los limitantes técnicos-metodológicos del software TARGET, 
y lo que puede exigir de los datos ambientales y de especies que lo fundamentan. 

 
El informe demuestra cómo el uso de diferentes tipos de bioindicadores afecta el conjunto costo-
efectivo de localidades seleccionadas, siendo la priorización de las áreas sensible al tipo de indicador 
usado.   Además, se ilustra cómo el cálculo de costos de oportunidad de la conservación son muy 
sensibles a las técnicas de sistemas geográficas que se utilisan.  Sin embargo, dado un conjunto de 
supuestos de común acuerdo entre los usuarios de esta metodología, el algoritmo de TARGET provee 
conclusiones robustas y consistentes en el tiempo sobre cuáles áreas priorizar para PSA.  El informe 
demuestra que el uso de cualquier herramienta de priorización de recursos de conservación en Costa 
Rica y el istmo tiene un reto doble: 

• transparencia y amigabilidad al usuario  
• “reglas del juego” sobre priorización de áreas y PSA que son de acuerdo político en el tiempo  

 
Por tanto, en el transcurso del informe y sus análisis de sensibilidad se discuten una serie de mejoras 
posibles que se podrían hacer al software TARGET, tanto para propósitos de investigación como de 
presentación y capacitación. 
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1. Introduction 

TARGET is one module of the DIVERSITY software package (Faith and Walker 1995) and is also a 
software module described in the BioRap toolbox (Faith and Walker 1996).   Extensive applications of 
TARGET are reported in the set of publications following the World Bank funded “BioRap” study in 
Papua New Guinea (Faith, Margules et al. 2001; Faith, Nix et al. 2001; Faith and Walker et al. 2001). 
Barton, Faith et al. (2003) apply TARGET to the study of priority-setting for environmental service 
payments to private land owners within the Osa Conservation Area (ACOSA) of southwestern Costa 
Rica. 
 
Barton, Faith et al. (2003) demonstrated that TARGET could be used to achieve more cost-effective 
identification of areas for biodiversity protection in than the actual allocation of environmental service 
payments in the ACOSA study area for the years 1999-2001.  Effectiveness was measured in terms of 
biodiversity complementarity – i.e. the degree of achievement of a target to represent – with a pre-
defined probability - environmental attributes as a complement to those attributes already represented 
within existing protected areas.   The study also demonstrated an operational approach to using 
TARGET to prioritise payments to land-owners in “real time” , i.e. as applications for funding are sent 
in to the National Forestry Financing Fund (FONAFIFO) charged with allocating a limited budget.  
 
Scepticism from managers in Costa Rica to using the TARGET model as a tool to actually prioritise 
payments to land owners in practice have centered on: 
 

• reliability – is the selection of locations consistent over many model runs? 
 
• robust – is the selection of locations consistent under varying conditions of access to and use 

of environmental, species and economic data  ? 
 
 
The purpose of this report is to evaluate these questions so that conservation area managers and 
funding agencies can better determine whether TARGET is sufficiently reliable and robust in order to 
be used as a day-to-day management tool. 
 
Reliability and robustness will both be measured according to the criteria of whether the selection of 
priority locations is consistent in repeated trials, and for different assumptions of: 
 

• geographical scale of analysis /extent of study area 
 
• geographical resolution of environmental and economic data 

 
• alternative definitions of biodiversity surrogates 

 
 
More specifically the hypotheses tested in this paper are given in Table 1. 
 
Table 1.  Research questions for TARGET sensitivity analyses 
Hypothesis The selection of cost-effective set of locations… 
1 is stable in repeated trials with a fixed starting point (preselect on a single location)   
2 is stable in repeated trials with random starts 
3 is not sensitive to the definition of the study area 
4 is not sensitive to resolution of data 
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5 is not sensitive to the definition of the biodiversity surrogate when based on the same 
underlying data set.   

6 is sensitive to including unique representations of biodiversity attributes such as 
endemic species  

In addition to these hypotheses the report discusses some other limitations raised by managers, 
including: 

• static definition of opportunity costs to agriculture and forestry of conservation.   Alternative 
GIS approaches to extrapolating opportunity costs have been set forth by other studies (Ortiz 
et al. 2003; Wielaard 2003).  Data on historical deforestation rates and projections of future 
deforestation are available for parts of the study area.  We discuss the implications of using 
this data for our calculation of opportunity costs. 

 
• comparing cost-effectiveness across property polygons of varying shape and size.  The 

TARGET analysis is conducted on a grid of locations of equal size while the underlying data 
is in polygon format.  We discuss the implications for the accuracy of the analysis. 

 
Section 2 provides a brief description of the study area;  an introduction to TARGET analysis 
methodology; a discussion of the availability of biodiversity data; the definition of alternative 
biodiversity surrogates based on this data; and a description of correspondence analysis for evaluating 
the sensitivity of TARGET to differing assumptions.  Section 3 reviews the results regarding 
TARGET sensitivity to different sets of assumptions on biodiversity surrogates –  henceforth called 
scenarios in this paper.  In this section we test the different hypotheses laid out in Table 1.  Section 4 
evaluates alternative assumptions regarding calculation of opportunity costs.   Section 5 presents 
conclusions and recommendations for for other avenues of research on biodiversity priority-setting. 
 
For ease of presentation details regarding data, computational issues and additional maps have been 
placed in appendix.  Appendix 1 contains further technical issues relating to computation of alternative 
biodiversity surrogates we have called “overlay”, PCA and k-means.  Appendix 2 contains a detailed 
overview of the TARGET model scenarios that were tested, including all key parameter settings and 
data assumptions.  Appendix 3 contains further details on the reciprocal averaging technique used to 
compare TARGETresults for each scenario.    Appendix 4 provides some background to the discussion 
of alternative definition of opportunity costs, including analysis of the correlation between 
deforestation probability and estimated opportunity costs of biodiversity protection.  Finally, 
Appendix 5 provides some further examples of uncertainty inherent in converting polygon to grid data 
in the TARGET analysis. 
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2. Data and methodology 

2.1 Study area 

Figure 1 gives and overview of Area de Conservación Osa (ACOSA) and the study area for the 
Bioindicators Project.    ACOSAs approximately 4 241 km2 area is located on the southern Pacific 
coast of Costa Rica , bordering on Panamá. It comprises one of 11 conservation areas within the 
National System of Conservation Areas (SINAC) which covers the whole of Costa Rican territory.  
Land cover data from 2000 shows five broad categories of forest ecosystems, as well as mangrove and 
Yolillo palm wetland, dominating the natural vegetation.  The area includes a number of national 
parks, forest reserves, wildlife reserves and wetland protected areas.  National parks, of which 
Corcovado and Piedras Blancas are the biggest in ACOSA, represent the strictest land use regulations 
excluding forestry and agricultural activities.   Through the report we will refer to the Osa Peninsula 
where Corcovado is located as the ‘peninsula’,  and to the ‘corridor’ which comprises the section of 
Golfo Dulce Forest Reserve between Corcovado and Piedras Blancas national parks designated by 
SINAC authorities as a biological corridor. 
 

 
Figure 1.  ACOSA study area, including protected areas and forest cover1.   
 
The environmental and species data used in this study are the same as for the TARGET analyses 
conducted in Barton, Faith et al. (2003), unless stated otherwise.  See Appendix 1 for a further 

                                                      
1 Costa Rica 1:50 000 maps of 2000 forest cover are also available at 
http://www.eosl.eas.ualberta.ca/website/cr1/viewer.htm 
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description of available biodiversity data in Costa Rica.  That study was to a large extent based on GIS 
data on land cover and environmental attributes available from the ECOMAPAS project coordinated 
by the Costa Rican National Biodiversity Institute (INBio) (Kappelle et al., 2003 ).  ACOSA was the 
first conservation area covered by the ECOMAPAS project and was therefore the basis for the 
Bioindicators project.  By 2006 the ECOMAPAS project will have mapped and ground truthed 
ecosystems for the whole of southern Costa Rica, making TARGET type analysis possible for several 
conservation areas at once.  Combined with other comparable GIS datasets developed independently 
by other institutions for the northern and central parts of the country2, TARGET type analysis based on 
biodiversity surrogates is now technically possible for most of the country.   Before such analysis is 
undertaken however, questions regarding the sensitivity of priority-setting to the scale of the study 
area and the resolution of biodiversity and opportunity cost data need to be evaluated. 
 
 

2.2 TARGET methodology 

TARGET is one module of the DIVERSITY software package (Faith and Walker 1995) and is also a 
software module described in the BioRap toolbox (Faith and Walker 1996).   Extensive applications of 
TARGET are reported in the set of publications following the World Bank funded “BioRap” study in 
Papua New Guinea (Faith, Margules et al. 2001; Faith, Nix et al. 2001; Faith and Walker et al. 2001). 
Barton, Faith et al. (2003) apply TARGET to the study of priority-setting for environmental service 
payments to private land owners within ACOSA.   
 
TARGET assumes that locations in a region under study are described as containing one or more 
different biodiversity “attributes”.  Attributes that are assigned to locations (i.e. grids) may be 
environmental characteristics such as biotopes, habitat types, vegetation types etc. or the presence of 
known species.  The available biophysical data constitutes the basis for the biodiversity surrogate 
indicator – all unique attributes have the same weight within the indicator, independent of whether 
they represent species of environmental data. Fundamental to all TARGET analysis are estimates of 
complementarity -  the marginal contribution in biodiversity representation provided by a location in 
addition to that already represented in set of protected areas.  Because complementarity always 
depends on the set of protected areas, TARGET algorithms operate by iteratively re-calculating 
complementarity as new locations are added to the protected set.   
 
For priority-setting TARGET weighs biodiversity complementarity of a location j with the value of 
that location for other uses -  in this case the returns to agriculture and forestry foregone from 
protecting existing vegetation – also called opportunity cost (OCj).   Comparison of complementarity 
and opportunity cost are made possible by a trade-off weight (β). The weight can be adjusted by the 
user of the model to conduct sensitivity analysis and generate trade-off curves representing the cost-
efficient set of locations according to different assumptions about the relative importance of 
opportunity costs and biodiversity complementarity.  The weight has the same economic interpretation 
as an isoquant (price ratio) in a production possibility frontier between biodiversity protection and 
agricultural-forestry production.  A schematic overview of the input data, target algorithm, and output 
data is given in Figure 2.  TARGET produces both maps showing locations selected for protection, as 
well as curves showing the optimal trade-off between target achievement and opportunity cost. 
 

                                                      
2 Amongst others Area de Conservación Cordillera Volcánica Central (ACCVC), Area de Conservación 
Guanacaste (ACG). 
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Figure 2.  Schematic representation of TARGET algorithm 
 
The first step in TARGET involves setting a target level for representation of biodiversity attributes. In 
this paper we will use the probability-based target-setting mode3.  The user typically (in the simple 
case) nominates a target for the overall regional probability of persistence, R, of each attribute. This 
overall probability is to be achieved by one minus the products of the probabilities of extinction of the 
attribute over the different locations in the region.   The user nominates a base probability of 
persistence, B – equivalent to a default or "do-nothing" value.    Lastly the user nominates the 
probability of persistence, P, for an attribute in a protected location (equivalent to one minus the 
probability of extinction of the same attribute in any location that is not selected for protection).   
 
Probabilities of persistence are equal to one minus probability of extinction of an attribute in a location 
that is not selected.     Extinction is used in the sense that lack of protection increases the likelihood 
that the attributes in any specific location - be they environmental or species characteristics -  will be 
lost due to land use conversion.  Probability of extinction also applies to selected locations if the 
protection regime is less than 100% effective.   
 
The study area for ACOSA is divided into a grid of J=4752 locations 1 km2.  The datafile describing 
locations will contain a total Ti occurrence of each attribute, Ni occurrences within existing protected 
areas, and Ti -Ni occurrences outside.   In the simplest case where no location in the study area is 
protected initially, the total “do nothing” probability of persistence, B, for attribute i across the whole 
study area, is defined as; 
 

(1) 

∑
=

T

Bij

i eB
ln

summing over the T occurrences in locations j =[1..4752] of attribute i.   

 
The TARGET algorithm works directly on the number of attributes required to meet the probability of 
exctinction implied by the probability of persistence target. In other words, the overall regional 
probability of "extinction" is taken to be the product of the probabilities of extinction in the individual, 
independent, places. The formula above uses ln transform because it is convenient to express 
                                                      
3 The other mode involves setting a target for the % of locations with any given attribute to be represented within 
the selected set.    
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contributions of places additively.    The algorithm initially calculates the number of occurrences of 
attributes Ni  required of the selected set, given user defined  probability values R, B, and P , as 
follows;  
 
(2) 1 - R  =   ( T - N )* ( 1 - B ) * N * ( 1 - P ) 
 
This is the simplest case where the same probabilities are applied to all attributes i; R=Ri , B=Bi, P=Pi.     
 
The TARGET algorithm searches the study area maximising the difference between complementarity 
value of a location (CPj) - the number of attributes it provides towards the target regional probability 
of persistence - and its β-weighted opportunity cost.   Iterations continue until there are no locations in 
which the weighted opportunity cost (β*OCj ) is less than the complementarity value, or until the total 
probability of persistence for all attributes, protected and unprotected, is equal to the target (R). 
 
(3)   Max   CPj – β*OCj 

 
subject to  Nj – β*OCj  > 0  for all j locations 
and    1 - R     ( T - N )* ( 1 - B ) * N * ( 1 - P ) for all i attributes. 
 
The iterative optimisation algorithm searches the study area based on initial conditions which may for 
example be the existing set of protected areas.  Imposing existing protected areas on the solution 
modifies the amount of additional attributes needed,N, to reach the established target R. 
The algorithm does not guarantee a global optimum, and hence the user is required to vary initial 
conditions in order to test for local optima in a heuristic approach.   This is an issue to which we will 
return in the sensitivity analysis below.  The strategy in TARGET of searching for optimal solutions 
by varying the weights on costs has been shown to be more effective than the standard approach for 
such problems of selecting places based on a simple benefit/cost ratio (Faith 2001). 
 
As indicated in Figure 2 and equation (3) the TARGET user must set a weight on the ratio of trade-off 
between cost and units of biodiversity complementarity (β).  By varying the importance of costs 
versus complementarity cost-efficient trade-off curves are generated in a what is basically a sensitivity 
analysis.  We have seen that the user must also define the regional target (R), baseline (B) and 
protection (P) probabilities of persistence.  These are variables for which there very seldom exist 
studies that would provide empirical values, encouraging users to do further sensitivity analysis.  
 
Figure 3 illustrates the sensitivity of the cost-efficient set of locations to β and P. Increasing the 
effectiveness of protection reduces the cost of achieving any given target, because fewer locations are 
required to provide the same representation of biodiversity.  Increasing P has incidentally the same 
effect as increasing B, because more biodiversity persists outside protected areas.  Figure 3 also 
illustrates the standard feature of the optimisation algorithm that the lower the importance of costs, the 
higher the cost of the optimal set for a given distance to the target. 
 
Behind the particular analysis illustrated in Figure 3 are two further features determined by the user: 

(i) Pre-selected areas:   national parks are pre-selected and imposed on the solution, the 
biodiversity they contain being counted towards achievement of the target R.   

(ii) Deteriorated areas: non-forest areas are defined as not available for selection. 
 
These are practical features for applied policy analysis. However, unless stated otherwise all 
sensitivity analyses in this report are conducted without imposing locations on the optimal solution 
and without excluding any locations from the analysis. 
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Figure 3.  Sensitivity of biodiversity-cost trade-off to the effectiveness of protection and weight on   
costs.   Note: Sensitivity analysis on P=90%, 50% and 10%.  For all analyses B=0% and R=99%. 
 
 
 
2.3 Alternative surrogate biodiversity indicators 

 
2.3.1 Biodiversity indicators in site selection 
 
This study has explored a methodological approach to incorporate biodiversity conservation goals into 
an existing program of environmental service payments implemented in Costa Rica. Since the 
protection of regional biodiversity requires that conservation priorities on individual areas are based 
on the contribution of the area to represent overall biodiversity, our aim was to improve overall 
biodiversity representation by selecting, among environmental service payment (ESP) candidates, 
areas with highest biodiversity complementarity value (sensu Faith & Walker 1996), i. e. those which 
would make the highest contribution to increase the representation of the existing biodiversity in the 
protected areas system.  
 
Priority-setting in conservation planning must be based on some knowledge about the biodiversity of 
the areas. Since maps of the distribution of the biota are not available, the first step of the analyses was 
to identify the variables that would characterize the areas in terms of their biodiversity properties, or in 
other words, to identify surrogate variables that would represent the areas biodiversity 
complementarity value. One standard approach is to identify biodiversity surrogates based on indicator 
groups of taxa (Juutinen & Mönkkönen 2004). There are numerous studies in the literature that have 
explored the adequacy of a series of biodiversity surrogates (Noss, 1990, McGeogh 1998, Panzer & 
Schwartz 1998, Pharo et al. 2000, Polasky et al. 2001) but the support for the use of indicator taxa in 
reserve selection is often varied and conflicting (Reyers & van Jaarsveld 2000). The use of subsets of 
taxa for biodiversity representation requires testing the adequacy of the indicators and require both 

β=0.1 

β=0.5 

β=1 
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thorough inventories of the selected taxa (Juutinen & Mönkkönen 2004) and rigorous validation in 
order to be interpreted with confidence (Reyers & van Jaarsveld 2000). These comprehensive data on 
species distributions are possible to obtain when the number of areas to be prioritized is small but are 
costly and not feasible when the analysis deals with large numbers of land units. 
  
Our focus was therefore to use the natural environments or habitats of ACOSA as surrogates for more 
definite biodiversity data. We used maps of natural resources since they provide an important basis for 
nature conservation (Austin 1991, Pressey and Bedward 1991, Faith et al. 2001a), and have been 
amply used (García, 1996 (vegetation macrotypes), Powel et al. 2000 (life-zones), Austin 1991) due to 
the difficulty of obtaining comprehensive data on species relative to that of producing resource maps 
(Pressey & Bedward 1991). Our assumption was that since topography, climate and substrate are 
fundamental determinants of biological activity, the spatial distributions of these factors will reflect to 
a large extent the distribution of plant and animal species (Faith et al. 2001a).  
 

Our approach relied largely on biophysical spatial data retrieved from cartography and aimed at 
developing a database with all existing significant data that gave complete coverage of ACOSA at the 
highest possible spatial resolution. Based on previous work in ACOSA (Madrigal and Rojas 1980; 
Herrera 1986; Gómez and Herrera 1993; Tournon and Alvarado 1997; Ardón and García 1998; 
Kappele, M.Castro et al. 2003) the major environmental variables influencing the distribution of forest 
types were assumed to be climate, soil, lithology, topography (elevation) and landform.  

 
The use of a data set based on the natural environments was additionally supported by two features 
related to the nature of the ESP contract allocation and to the purpose of the study that preclude the 
feasibility of conducting biodiversity inventories of selected organisms. First, the number of ESP 
candidates is large and it would be administratively and financially unrealistic to conduct inventories 
on candidate farms prior to the selection process. Second, one of the aims of the ESP system is to 
provide incentives for conversion of land to forest. The potential biodiversity complementarity value 
of abandoned agricultural or pastoral land and of forest under natural regeneration will not be reflected 
in biodiversity inventories at early stages of land conversion but can be adequately predicted from a 
the natural environments or habitat features.  
 
2.3.2 Testing the sensitivity of the priorization procedure to different biodiversity 
surrogates 
 
The applicability of biodiversity indicators to identify areas with relatively higher conservation value 
will depend on the sensitivity of the priority setting procedure to the type of biodiversity surrogate 
used. One purpose of the study was then to assess the sensitivity of the outcome of the TARGET 
priority setting analysis to the type of biodiversity surrogate. Based on the same data set on 
biophysical features, we generated four biodiversity surrogate sets using three three different 
approaches: hereon i) “overlay”, ii) “endemics” iii) “PCA” and iv) “k-means”.  
 
The comparison between the ‘overlay’ and ‘endemics’ data sets aimed at assessing the sensitivity of 
the prioritization analysis to including data on endemic species as attributes. Endemic species have a 
high conservation priority at the same time that the attributes have a narrow geographical distribution 
in the data set (i. e. occur in a limited number of grid-cells) and often the knowledge about the factors 
underlying their distributions in the area is poor.  
 
The comparison between ‘overlay’, ‘PCA’ and ‘’k-means’ biodiversity surrogates aimed at assessing 
the sensitivity of the TARGET analysis to the method used to generate the biodiversity surrogates. The 
four types of biodiversity surrogates (including the ‘endemics’ data set) were generated using the same 
database of environmental data and since the TARGET analysis is sensitive to the number of 
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attributes, the four biodiversity surrogate sets were generated with a comparable number of 
biodiversity attributes.  
 
2.3.3 The ‘overlay’ and ‘endemics’ indicators 
 
The first set was created by overlaying each class of climate, soil, landform, geology and altitude. 
These resulted into 678 actual combinations. Seven additional attributes were generated for 
combinations when any of the environmental layers was missing. Three additional attributes resulted 
from the combinations of open water, altitude and climate classes, and 4 attributes resulted from the 
combination of climate, soil, land form and elevation band with mosaics of geological classes that 
could not be distinguished at the grid-cell level. In total this rendered 685 surrogate biodiversity 
attributes. In order to make a more refined use of available data we additionally included major 
vegetation formations (vegetation macro-types). Appendix I gives a detailed account of the data 
sources and the criteria used to construct the biodiversity attributes. The retrieval of cartographic data 
was conducted by the Institute of Biodiversity in Costa Rica (INBio).  
 
Each mapping unit was allocated the area of the attributes that was derived from the polygons on the 
biophysical maps (climate, soil, geology and landform). The ACOSA boundaries of the different 
digitised maps were compared and searches were conducted to detect boundary errors (area 
mismatches) that result from digitising. When the polygon areas of the overlain variable classes 
differed within a grid cell, the area allocated to the environmental attribute (product of crossing 
variable classes) was that of the variable class with lowest coverage. A biodiversity attribute was 
consider to be represented in a land unit when the cover in a grid cell was larger than 5 % (5 ha). 
 
The second data set, ‘endemics’, included 685 biodiversity attributes and the endemic species as 
described in appendix 1. Including these endemics raised the total number of attributes to 744.  
 
Cartographic data was associated with land-use capacity polygons in the whole study area 
and converted to 25 ha grid cells (raster), and then 1x1 km mapping units for purposes of 
analysis in TARGET. Although biodiversity attribute data are available at 25 ha resolution, while 
using a 1 km2 resolution in the trade-off analysis was a restriction set by the processing capacity of 
TARGET. 
 
Finally, the biodiversity attributes were coded for each land unit and the files were prepared in 
TARGET-readable format. 
 
2.3.4 The principal component analysis and “PCA” indicator 
 
In the ‘overlay data set’ all environmental features (e.g. different classes of climate, altitude ranges) 
had the same weight in defining the biodiversity surrogate attributes. Therefore, each combination of 
environmental classes and vegetation macro-types were used as biodiversity surrogate (“habitat type”). 
However, it was expected some underlying structure in the biophysical variables data set, i. e. some 
variables to be more important than others to characterize the variation between grid cells. It was also 
expected that some variables would covariate or be correlated with each other, e.g. hypothetically 
climate and altitudinal classes could show such correlation.  
 
The main advantages of using a multivariate analysis technique as a base to generate the biodiversity 
surrogates is first that, by allowing the analysis of a large number of variables simultaneously, it 
makes possible to combine all data available for the entire set of land units and therefore allows a finer 
definition of biodiversity surrogates than if only one criteria had been used, as for example, vegetation 
macro-types. Secondly, the ordination permits to structure the data set and reduce redundancy, by 
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establishing the relative contribution of the variables to the total variation of the data set and by 
identifying correlations among variables. Methodological details are provided in Appendix 1. 
 
To identify and reduce redundancy of correlated variables in the environmental data set, we used 
principal component analysis (PCA) a multivariate analysis technique to summarize the data and 
extract a few ‘important’ components of variation (Palmer 2004), by using the software package 
CANOCO for Windows 4.5 (ter Braak & Smilauer 2002). The PCA was conducted on the matrix of 
the biophysical classes used to generate the ‘overlay’ biodiversity surrogates in the 18 062 grid cells 
(25 ha).   
 
The three first axis of the PCA ordination accounted to 72 % of the variation (table 2). The two main 
variation sources in the data set appeared to be a gradient related to humidity and the length of the dry 
season (axis 1), and the second one was related to differences in substrate, soils and elevation ranges 
(axis II) (Fig. 4). The climate classes related to high humid climate, i.e. very high humidity index, 
short dry season, low aridity index and hydric deficit were negatively related to PCA axis 1 and as 
expected, strongly related to each other. Positively related to PCA axis 1 were climate classes related 
to dryer climate, with moderate hydric and aridity indices and dry season. PCA axis 2 was positively 
related to elevation bands between 200 and 800 meters, inceptisol and ultisol soils on basalt 
formations. PCA axis 2 was negatively related to elevations up to 200 masl, and mollisol soils on 
sedimentary formations and alluvial deposits. The correlation between soil types, geology and 
elevation revealed by the ordination shows that these variables are spatially correlated in the data set.  
 
Table 2.   Eigenvalues and cumulative % variance of 4 Principal Component axes derived from the 
biophysical data set (environmental variables and vegetation macro-types).  
 
 

 PCA axis 1 PCA axis 2 PCA axis 3 PCA axis 4 

Eigenvalue  0.523 0.138 0.063 0.042 

Cummulative % variance 52,3 66,1 72,4 76.6 

 
Note: Cummulative % variance indicates the accumulated fraction of the variance accounted for by the 
PCA axes. 
 
The PCA also produced an ordination diagram where the 18 062 grid cells (25 ha) were plotted and 
where their relative positions were related to the number of biophysical classes shared with other grid 
cells (Fig. 5). Grid cells close to each other shared more biophysical classes than grid cells far apart. 
 
The 3-dimensional PCA ordination space (ordination along PCA axes 1-3) was divided in 1000 cube 
volumes by splitting each of the first three ordination axis at 10-units intervals. Each of these 1000 
cubes represented a 3-dimensional range within the major environmental gradients and corresponded 
to a particular combination of environmental characteristics. Each 3-dimensional portion of the PCA 
space was considered as a “habitat type” and used as a biodiversity surrogate. The number of 
biodiversity surrogates was determined by the number of cubes in the environmental space where grid 
cells occurred, in total 573.  
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Figure 4.  Two dimensional PCA diagram indicating the relationships among the environmental 
variables in the   ordination space.  
 
 

 
Figure 5.  Two dimensional PCA diagram indicating the distribution of the 500 x 500 m grid cells in 
the environmental space. 
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2.3.5 The k-means analysis and indicator 

In order to obtain a third set of biodiversity surrogates of comparable size and of the same 
type as those of the ‘overlay’ and the ‘PCA’ biodiversity surrogates, we applied a 
classification technique using the same data set of environmental variables used previously. 

Comparable to ordinations, classifications of multivariate data sets are also aimed to reduce 
redundancy in the data set by identifying relatively homogeneous groups of cases based on 
selected characteristics (in our case, classes of the environmental variables). We applied k-
means, a non-hierarchical classification method, in the software package SPSS version 11.5 
for Windows to the same set of 18 062, 25 ha grid-cells and environmental variables. The 
methods was appropriate to our data set as it uses an algorithm that can handle large numbers 
of cases, being efficient primarily because it does not compute the distances between all pairs 
of cases, as do many clustering algorithms (SPSS version 12.1 manual). 

By applying the k-means algorithm we could a priori specify the number of clusters the grid 
cells should be grouped into, and was therefore appropriate for the purpose of our study where 
we aimed to contrast the outcome of TARGET priority setting using sets of biodiversity 
surrogates of comparable size, generated in different ways.  

The environmental variables classes were represented as dummy variables as in the PCA data 
set (see section 2.3.4).  The grid cells were grouped into 684 clusters according to their 
similarity regarding the environmental variables classes used in the PCA analysis. The 
resulting clusters were regarded as the biodiversity surrogates, which was allocated to each 
500 x 500 m grid cell. 

 
Table 3 summarises the theoretical and appliced advantages of the three types of indicators evaluated 
in the study. 
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Table 3.  Theoretical and applied advantages of surrogate biodiversity indicators evaluated 
 
Surrogate indicator Theoretical advantages Applied advantages 
“Overlay” Relationship between original data and 

attributes intuitively evident. 
Represents the number of attributes per 
location, and requires only simple GIS 
techniques to specify 

PCA (or other ordination techniques) Identify the most important factors that 
underlay the variation in the data set.  
Reduce redundancy in the data set by 
reducing the importance of correlated 
variables.  

The number of biodiversity surrogates can 
be easily changed according to the purpose 
of the analysis. 

k-means (or other classification technique) 4Identify biodiversity surrogates by 
grouping land management areas according 
to their similarity with respect to a set of 
descriptive variables. 
It provides a formal grouping into classes 
(as compared to the proposed division of 
ordination space used in this study). 

It can be performed with commercial 
statistical packages. The generation of 
biodiversity surrogates by identifying 
relatively homogenous groups of cases. 

 

                                                      
4 K-means classification was used in this study because of the extension of the data set (K-means is a technique 
suitable for large data sets as it uses an algorithm that can handle large number of cases). With a smaller data set 
a hierarchical classification technique would be preferable and comparable to an ordination in the sense of 
allowing to generate a continuous number of biodiversity surrogates.  
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2.4  Evaluating scenarios and sensitivity analysis 

Following a counterfactual approach we have tried to identify assumptions we a priori think will have 
a significant impact on the locations and attributes selected by TARGET. Decision-makers should be 
interested in both the robustness of the cost-effcicient set of locations, as well as which biodiversity 
surrogate attributes are protected.    TARGETs results include (i) a list of selected locations, (ii) the 
occurrence of attributes per selected location, and (iii) the complementarity value of selected 
locations, and these are analysed as if they are species occurrences. 

 
Correspondance analysis (CA), or reciprocal averaging, (Palmer 1993)  was used as a method for 
comparing the results of TARGET model scenarios.   Whereas Pearsons R computes correlation 
between two vectors,  correspondance analysis allows for multiple vector comparisons.    Model 
scenarios refer to the set of assumptions or parameter settings that are applied in running TARGET.  
Appendix 2 gives a summary of the scenarios used in running the TARGET model. A further 
description of the CA method used to compare scenario results is given in appendix 3. 
 
The use of CA is based on the following analogy with the more traditional use of correspondence 
analysis of site species lists (Table 4).  In the traditional correspondence analysis the data consist of 
species occurrences by sampling location.    Each scenario is analogous to a “site”. 
 
Table 4.   Analogy between comparing site species lists and TARGET output 
 
Data matrix:  Comparing species lists by site: Comparing TARGET output by scenarios: 
Rows Observed occurences of species  Complementarity value of locations  

Occurences of surrogate attributes 
Columns Sampling location Model scenarios (sets of assumptions) 
 
A minimum of three different scenarios need to be compared for correspondence to have meaning 
given that correspondence scores are relative (they sum to 0).   The assumptions of each scenario are 
presented in Appendix 2.  The essential differences between the scenarios are summarised in Table 5.    
 
Table 5.   Assumptions of each scenario subject to sensitivity analysis 
 
Key assumption tested  Scenario name 
1. Initial location(s) within set of protected areas  “Impose random location”; “Select nat.parks”; 

“Select PSA” 
2. Definition of study area  
 

“ACOSA”; “Peninsula”, “Corridor” 

3. Definition of surrogate biodiversity indicator  “ACOSA”(overlay); “Endemics”; “K-means”; 
“PCA” 

 
In the first set of assumptions (1) in Table 5 we vary the starting point for the optimisation algorithm 
used by TARGET to select the cost-efficient set.  In an analysis with no pre-selected locations 
TARGET searches the whole study area sequentially, starting with location #1 (north-west corner of 
study area) and then searches for a more cost-efficient location5.  TARGET can be started with a 
single randomly selected location (we tested locations #1, #500, #1000), or with a set of locations such 
as the set of locations within national parks, or within environmental service payment contract areas 
(PSA).   
 

                                                      
5 In case two adjacent locations have the same complementarity and cost, the first sequential location is chosen 
by default. 
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In the second set of assumptions (2) we vary the definition of the study area, well aware of the fact 
that complementarity value of any location depends on the universe of attributes under consideration.  
Had we had data for the whole of Costa Rica - or the whole of Central America for that matter – 
would the same set of locations as in ACOSA be selected as cost-efficient?    Similarly, and with data 
only available for ACOSA, we ran TARGET for the whole of “ACOSA”, and smaller study areas we 
have called the Osa “Peninsula” and the “Corridor” between Corcovado and Piedras Blancas National 
Park  (see Figure 1).  
 
In the third set of assumptions (3) we vary the definition of the biodiversity surrogate indicator.  We 
look at the simple “overlay” indicator, the “k-means” indicator based on clustering techniques, and the 
“PCA” indicator base on principle component analysis.   
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3. Sensitivity to alternate biodiversity surrogates and 
model scenarios 

3.1  Overall correspondence analysis of scenarios 

The correspondance analysis gives an initial scan of the similarity of results from different TARGET 
scenarios.  These results are discussed first before we illustrate the difference between scenarios in 
terms of selected locations in the study area. 
 
3.1.1 Correspondance of location selection  
 
Figure 6 shows the correspondance between the locations selected across all analyses.  The three 
graphs are organised with correspondence across all scenarios first.  In the two following panels the 
most dissimilar scenarios are removed to evaluate smaller differences that are not visible across all 
scenarios.  
 
Relatively speaking the biodiversity surrogates “k-means” and “pca” are dissimilar to all the analyses 
using the “overlay” indicator .  Eliminating these two surrogates from the comparison,  panel  2 
(Figure 3) shows that the starting point for the analysis (whether national parks and psa areas are 
“select” i.e. pre-selected) has a large impact on the selection of the cost-efficient solution, indicating 
that there are several local cost-efficient optima in the ACOSA study area.  Given that random pre-
selection of several separate locations did not produce significant dissimilarities it would seem that 
there are relatively few local cost-efficient optima.  Removing the most dissimilar “national park” and 
“psa” scenarios we see in panel 3 (Figure 6),  that the definition of the study area has the expected 
effect – the smaller the study area  - peninsula or corridor -  the more dissimilar the selection of 
locations.    
 
The addition of endemic species to the “overlay” indicator had very little impact on the selection of 
optimal sites, contrary to expectations implicit in the calculation of biodiversity complementarity. 
 
In summary, the cost-efficient selection is most sensitive to the methodology used to define of the 
biodiversity surrogate, followed by the definition of pre-selected locations (e.g. in existing national 
parks), the definition of the study area, and finally is not sensitive to the addition of endemic species. 
 
3.1.2 Correspondance of location complementarity  
 
Figure 7 compares the complementarity value of selected locations in the set, i.e. what contribution 
each location selected makes to attaining the biodiversity protection target.  The locations selected are 
the same as those discussed under each scenario in Figure 6, except that locations are compared for 
numerical similarity of complementarity value, rather than simply selected/not selected (1/0).   At the 
broad level the same pattern emerges with biodiversity surrogates “k-means” and “pca” producing 
both selected locations and complementarity values that are most different from other scenarios.  
However, after eliminating these scenarios from the comparison it is the scope of study area that has 
the greatest effect on the solution (second panel, Figure 7) .  Removing “corridor” and “peninsula”, 
the scenario that most stands out among those remaining is “select psa” and to a lesser extent 
“nat.parks” as before (third panel, Figure 7).   
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These results were as expected because both changing the surrogate indicator, as well as the study 
area, changes the number of attributes, which has a very direct bearing on complementarity values of 
locations. 
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Figure 6. Location selection - correspondance analysis of TARGET assumptions   
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TARGET scenario correspondance - location selection
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Figure 7. Location complementarity - correspondance analysis of TARGET assumptions       
 
 
 
 
3.1.3 Correspondance of attribute occurrence  
 
Finally, we compared the extent to which similar attributes are protected under the different scenarios 
by looking at the occurrence, or representation, of attributes in the cost-efficient set of locations.   We 
can imagine this type of robustness mattering to managers in a global sense – independently of which 
specific locations are chosen, and what their complementarity values may be,  they will want to know 
whether the final solution under the different scenarios selects the same biodiversity attributes for 
protection.  
 
Figure 8  shows that scenarios offer very different attribute selection, which can roughly be grouped 
in two clusters (i) “select random location”,  “select psa” and “ACOSA” are more similar in terms of 
attributes than (ii) “ select national parks” ,  “peninsula” and “ “corridor”.   This is as expected.  Pre-
selecting a single random starting location or no location at all within ACOSA both reach very similar 
local optima, while pre-selecting a large number of locations as under the 1999-2001 PSA programme 
forces TARGET to sample over the whole study area, thereby increasing the chances that highly 
complementary attributes will be selected.  On the other hand, “select national parks” pre-selects a 
large number of locations in the Corcovado and Piedras Blancas national parks  largely within the 
same geographical area as the scenario confined to “peninsula” (Figure 1).  The scenario defined as 
“corridor” overlaps less with national parks, but lies in an area with similar environmental conditions 
thereby leading to similar selection of attributes.  This was confirmed by a review of forest ecosystem 
types mapped by the ECOMAPAS Project (Figure 1). 
 

TARGET scenario correspondance - location complementarity 
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TARGET scenario correspondance - attribute occurence

-1,5

-1

-0,5

0

0,5

1

1,5

Select
random
location

Select nat.
parks

Select psa ACOSA Peninsula Corridor

TARGET model scenario

S
ce

n
ar

io
 c

o
rr

es
p

o
n

d
an

ce
 

sc
o

re

 
Figure 8.  Attribute occurence - correspondance analysis of TARGET assumptions 
 
 
3.1.4 Conclusion – overall correspondence of scenarios 
 
The sensitivity analyses show that a number of local cost-efficient optima exist within the study area.  
This has several implications:   

• prior to applying TARGET to the priority-setting for environmental service payment 
locations, authorities such as FONAFIFO have to clarify which assumptions or which 
‘scenario’ the selection criteria for payments is to be based on.   

 
• once the Conservation Areas that are to be included in the biodiversity-cost trade-off analysis 

has been defined (study area definition), and a biodiversity surrogate has been chosen, 
TARGET provides relatively robust solutions, sa far as we can see from this correspondance 
analysis.   

 
• a drawback to this observed robustness is that adding endemic species data to the mainly 

environmentally determined surrogate did not have the expected large impact on the locations 
selected or even the attributes selected.  This implies that preferences for protecting endemic 
species should be dealt with differently.  Two approaches are possible in TARGET: 

 
o by pre-selecting and imposing all locations with endemics on the solution found by 

TARGET.  
o alternately, the locations with endemics or restricted range threatened species can be 

evaluated using a  "look here first" strategy within TARGET (an initial mask restricts 
the search to these locations).  In a study from Papua New Guinea (Faith et al 2001) 
this strategy showed how representativeness and sampling of the key species were 
efficiently accommodated.   
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3.2 Sensitivity to the definition of 
the biodiversity surrogate 

To provide a visual appreciation of the 
degree of correspondance between the 
different scenarios this section looks at the 
spatial distribution of the selected locations 
under each set of TARGET assumptions.  
We are interested in observing whether any 
broad patterns emerge which correspond to 
official prioritisation strategies for 
environmental service payments in the area.   
 
3.2.1 Selected set with different 
surrogate indicators 
 
Figure 9 confirms the pattern in the 
correspondance analysis.  K-means results in 
a set of locations that differs more from the 
“overlay” indicator than PCA.   Locations to 
the north east are favoured in all scenarios, 
although “clustering” effects are more 
pronounced with the k-means approach 
(which after all a cluster analysis approach).  
Areas within the Golfo Dulce corridor and 
buffer zone around around Corcovado 
National Park are also selected (refer to 
Figure 1 for a definition of the park 
boundaries).  Areas to the south east are 
favoured using the “overlay” and PCA 
indicator.   
 
An INBio-SINAC study (Acevedo et al.; 
2002) compiled a number of prioritisation 
criteria for environmental service payments 
(PSA).  The most important conclusions 
from that study are reflected in the category 
“PSA priorities” in Figure 10.   These 
priority areas also coincide with those 
chosen by the National Forestry Financing 
Fund (FONAFIFO) for their prioritisation of 
PSAs.  Broadly speaking the locations 
selected by TARGET using different 
biodiversity surrogates cluster in two of the 
three  “priority 1” areas.  The exception is 
the biological corridor straddling the 
Peninsula between the two national parks.  
This is not prioritised by TARGET because 
complementarity focuses on biodiversity 
representation – the attributes within the 
corridor are already well represented within 

the adjacent national parks.  If the area designated a corridor by authorities is indeed important for 

Overlay surrogate 

 
PCA surrogate 

  
K-means surrogate 

 
Figure 9.  Biodiversity surrogates – site selection 
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species viability, this illustrates quite clearly that functional criteria are best dealt with outside the 
TARGET framework. 
 

 
Figure 10. Priority areas based on three distinct biodiversity surrogates      
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The observed clustering effect and the coincidence with the priority areas is also driven by opportunity 
costs.  One of the Costa Rican authorities criteria for defining priorities in the INBio-SINAC study 
was minimising land use conflict by prioritising areas of low agricultural value.    Given that 
opportunity costs play a part in the trade-off in TARGET, priority locations tend towards land of low 
value for agriculture and forestry, producing some of the clustering observed.  Over all, given the 
disparity in selected locations, the sensitivity analysis shows the importance of authorities such as 
FONAFIFO establishing a consistent set of criteria -  what we have called a scenario – under which to 
run all priority-setting analyses.   
 
3.2.2 Surrogate indicators  including endemic species 
 
We hypothesised that TARGET solutions would be highly sensitive to the inclusion of ACOSA’s 
endemic vascular plant species6 in the surrogate indicator.  As can be seen in Figure 11,  the TARGET 
algorithm selects only a few of the locations with endemics for any particular study area.   
 
A couple of reasons for why all locations with endemics were not selected are: 
 
1. single locations have multiple observations of endemics so sites not selected may have 

observations of an endemic, but “redundant” species (i.e.already included in the selected set).  
The clustering of observations of endemics in Figure 11 point towards the possibility of 
repeated observations of the same species across locations.  It also suggests that species 
sampling has not been conducted with TARGET type analysis in mind7 – where area-
proportional sampling is preferred across the whole study area if species data are to be included 
in a consistent manner in the biodiversity surrogate.   

 
2. if the biodiversity conservations target is set relatively low; probability of persistence is 

relatively high outside protected areas; while weight on costs is set high; and the attribute is 
found in an area with a high opportunity cost, a location with an endemic may not be selected by 
TARGET despite a relatively high complementarity value.  However, in this case regional 
biodiversity target was R= 99%, meaning only a 0.01% chance of non-representation.  
Probability of persistence outside protected areas B=0%, while within protected areas we set 
P=90%.  So this particular reason doesn’t then seem to explain the fact that alle endemics were 
not selected.   

 
Another lesson emerges for application of TARGET in practice.   Given the TARGET algorithm’s 
focus on complementarity, rather than simply species richness, locations with endemic species should 
be imposed on the solution in the same way as e.g. national parks if they are consistently to be 
prioritised for conservation.  It is worth noting that the objective in TARGET is not to have every 
location with one or more endemics.   If this is the goal then these locations are simply imposed on the 
seleted set. 
 

                                                      
6 endemics recorded in Atta and Ecomapas databases at INBio as of May 2003. 
7 For example, anecdotal evidence from the area shows that observations of endemics clusters in protected areas 
at risk of deforestation, and is correlated to accessibility around research stations. 
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Figure 11.   Correspondance between selected locations and observations of endemic vascular plant 
species as of May 2003.
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3.3  Sensitivity to the extent of the study area  

Figure 12 shows TARGET scenarios selecting from either the Corcovado-Piedras Blancas Biological 
Corridor, the Osa Peninsula or the whole of the ACOSA region.  
 

 
Figure 12. Extent of study area and effect on site selection  
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The GIS themes in Figure 12 are ordered as follows: the map theme containing locations selected 
within ACOSA (black outline) is overlaid the theme containing locations selected within the peninsula 
(blue line), which in turn is overlaid the theme containing locations selected within the corridor (green 
line).   
 
Organising the modelling results in GIS in this way showed that within the corridor, locations selected 
under the ‘ACOSA’ scenario (red dots) or ‘peninsula’ scenario (blue dots) coincided with locations 
selected under the ‘corridor’ scenario (green dots).   Within the peninsula, locations selected under the 
‘ACOSA’ scenario (red dots) coincided with locations selected under the peninsula scenario (blue 
dots) (see map legend Figure 12).  In other words, any green and blue dots/locations seen on the map 
are unique to the corridor and peninsula scenarios, respectively.  These locations are “in excess” 
compared to cost-efficient sets of locations selected in the scenarios for consecutively larger study 
areas.   
 
The tendency for TARGET to select “clusters” of locations along the edge of the study area to the 
northeast and southeast may be due to a large altitudinal gradient and a larger number of correlated 
attributes per area than on e.g. the peninsula.    None of the scenarios had pre-selected national parks, 
so clustering must be explained by relatively higher attribute density with high altitude gradients, as 
well as lower opportunity costs than in lowland areas.  We have no observations for the reverse slope 
gradient towards the east and outside the ACOSA study area.   If the study area were extended to 
cover both sides of the mountain range to the northeast we would expect the density of selected 
locations in this area to decrease.   
 
So as a general conclusion,   the smaller the study area the greater tendency there is to “over-select” 
locations.  This is because the attributes selected within progressively smaller study areas may be 
found elsewhere within the initial study area (in this case ACOSA).    By analogy, some of the 
locations selected in the ‘ACOSA’ scenario will be redundant if the study area is increased to include 
the adjacent conservation area, southern Costa Rica, or indeed the whole country.  This in turn raises a 
question regarding the definition of a “valid” study area in prioritisation exercises. 
 
 

3.4 Sensitivity to local optima – robustness of the selected set 

Repeated random starts with a single pre-selected location produced the same final set of locations8, 
showing that TARGET solution is robust to small changes in the initial conditions of the optimisation. 
However, more “radical” starting points for the TARGET optimisation showed that there are several 
local optima.  Pre-selection of areas within Corcovado and Piedras Blancas national parks and pre-
selection of the areas under contract for PSAs between 1999-2001 produced very different (local) cost-
efficient solutions (Figure 13).   The approach to pre-selection used here was to designate either 
national parks or PSA areas as part of the selected set, but allow TARGET to search the whole study 
area for better alternative locations.  In other words, the locations in the initial set are not imposed on 
the solution, but are ‘ radical’ enough to illustrate the presence of several optima.   Random starts with 
sets of locations is feature of TARGET allows for extensive sensitivity analysis. 
 
A particular point to note was how both pre-selection strategies led to “lumpiness” in the final solution 
adjacent to or within the locations that were pre-selected.  Particularly curious was the fact that none 
of the locations within the Corcovado Nation Park were rejected from the solution under the scenario 
where national parks were pre-selected (middle panel, Figure 13)9.     

                                                      
8 We tried three different random starts set by the user.  A potential improvement of the software would allow for 
automatically generated multiple random starts, possibly  with Monte Carlo simulation functionality. 
9 This result was counter-intuitive - we ran the analysis twice to double check obtaining the same result as for the 
first run.   See footnore in Figure 11 (next page). 
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Random pre-selection of single location Pre-selection of national parks10  Pre-selection of 1999-2001 PSA areas  
Figure 13.  Sensitivity to different assumptions of an initial selected set

                                                      
10 Note that both Piedras Blancas an Corcovado were in the pre-selected set of areas.  Whereas TARGET readily traded off pre-selected locations in Piedras Blancas,  
this did not happen for Corcovado where all locations remained in the final set.  Given that Piedras Blancas lies to the north of Corcovado its location sequence # are 
lower.  One explanation is that the sequential search algorithm reaches a solution before having to search in areas to the south of Piedras Blancas.  Further evaluation is 
merited of this explanation.  If true it could be mitigated by using a random rather than sequential optimisation algorithm. 
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Part of the explanation for local optima lies in TARGETs optimisation routine which searches the 
study area sequentially from first location applying a “tie-break” rule of selecting the first of two equal 
locations.  This means that locations in the north-western sector of the study area have a higher 
probability of being in the selected set than to the south-east, while pre-selected areas have a higher 
probability of being in the set, ceteris paribus.   Currently this problem can be addressed in TARGET 
by shuffling the order of the locations in the input files and re-running the analysis - for most data sets, 
there should not be an extensive tie-breaking problem.   A random rather than sequential optimisation 
routine would also resolve this problem. 
 
Sensitivity analysis can also be used to test the strategic importance of particular locations. If there is 
an argument about the "necessity" of having a particular location in the set - then an approach to this is 
to carry out runs with versus without that location excluded from the analysis (“masked out”) - if it is 
not possible to obtain the same optimality when it is masked out then there is some argument for its 
necessity. 
 
As a final note, whether priority-setting is based on weighing complementarity with costs should also 
affect the extent of local optima.     Costless choice is expected to result in the highest number of local 
optima, because cost acts as a “tie-break” rule when two locations have otherwise similar biodiversity 
complementarity.  The higher the weight on costs the stronger this effect and the fewer local solutions 
expected. 
 
 
 

3.5 Accuracy issues – resolution of data 

Current processing capacity of TARGET11 sets an upper limit on the number of locations that can be 
analysed at 5000.  Underlying GIS data on e.g. forest cover has an accuracy of 100-400 meters12 (4-16 
hectares) which led us to convert polygon themes to a grid of 500m x 500m (25 hectares).  This 
produced a total of 18156 gridcells, i.e. far above the current processing limit of TARGET13.  In order 
to deal with the whole of the ACOSA study area we used 4753 1000m x1000m (100 hectare) gridcells 
as the unit of analysis for all the model runs discussed above.  An obvious question during initial 
analyses was whether the selection of locations would vary if the resolution was changed while 
holding study area constant.  In order to evaluate this question we ran TARGET only for the corridor 
area; first on 623 1000m x1000m gridcells and then the same analysis on 2235 500m x 500m gridcells.  
The corridor area contains only 12,9% (85/685) of the attribute richness of the ACOSA area14  .   
 
The results are presented in Figure 14 showing both the selected locations and their complementarity 
value.  Only about 1/3 of the selected locations coincided between the two analyses.   It is immediately 
obvious that location selection is highly sensitive to the aggregation approach we used in GIS. The 
two main sources of error are: 
 

- Opportunity costs: values in 25 hectare gridcells were based on an area-weighted average of 
the underlying polygon values for that cell.  100 hectare gridcells were the simple average of 
four 25 hectare gridcells.   

 

                                                      
11 Windows 2000 (beta version) 
12 Personal communication Marco Castro, ECOMAPAS project, INBio 
13 The processing limit is likely a feature left over from the DOS version first used in 1995 when processing 
power for personal computers was more limited.  In future versions of TARGET it should be possible to increase 
the processing limits manifold. 
14 The corridor represents approximately 12,2% of ACOSAs area,  i.e. attribute richness by area is about 
“average”. 
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- Attribute values:  25 hectare gridcells were given an attribute value if more than 5% of the 
cell area had that specific attribute.  The 100 hectare gridcell represents all the attributes in 
underlying gridcells, as well as counting the number of times the attribute occurs (i.e. a 
maximum of four times per 100 hectare gridcell).  The complementarity value of gridcells 
could also vary substantially across resolutions. 

 
The approaches we used tried to represent as much of the underlying information as possible, but it is 
inescapable that decreasing resolution changes the characteristics of the units of analysis.  The only 
viable solution to this issue is to use the most detailed information available within the available 
research budget.  In our case the increased costs of using 25 hectare gridcells would be minimal 
considering the available GIS data, while increasing resolution to e.g. 16 hectares would require more 
GIS work on accommodating a new grid, but would also feasible with little additional funding.  
Beyond that costs increase sharply because better satellite imagery or aerial photos become necessary, 
including digitisation costs.   On the other hand, the benefits to increasing resolution in the context of 
allocating PSAs are equally obvious; sub-optimal allocations of payments in as much as 65% of the 
cases would probably justify quite substantial investments in increasing the accuracy of the underlying 
GIS data. 
 

 
Figure 14.  Sensitivity to spatial resolution of data 
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4. Sensitivity to opportunity costs 

Chapter 3 evaluated the sensitivity of priority-setting to assumptions concerning the surrogate 
biodiversity indicator.  In this chapter we look at some other sensitivity issues raised by managers, 
particularly the definition of opportunity costs.   
 
Opportunity costs used in this study have been estimated based on land-use suitability data and 
average regional returns to typical crops for suitability classes.   The advantage of this approach is that 
it uses nationally available datasets and is relatively easy to apply.  Critique of the approach has 
focused on: 

1. opportunity costs are deterministic and static; do not account for access costs, economies of 
scale, and the likelihood of deforestation within existing protected areas. 

2. per hectare returns to agriculture on marginal land do not sufficiently account for poor 
suitability in the lowland humid areas of ACOSA, resulting in inflated opportunity costs for 
these areas 

3. alternative approaches to calculating area-weighted average returns give lower opportunity 
cost estimates 

 
In the following, we address some of these questions.   
 

4.1 Deforestation probabilities and expected opportunity costs 

 
ACOSA is a relatively well studied part of Costa Rica from a conservation point of view.  Amongst 
others, Rosero-Bixby et al. (2002) conducted a regression analysis of the causes of deforestation on 
the Osa Peninsula which has been used to predict future probabilities of deforestation until 2010.  
Obvious questions arise as to whether historical deforestation rates can be used as : 

• an empirical measure of predicted probability of persistence.   
• a determinant of expected opportunity costs.    

 
To answer these questions we first rapidly review the results from Rosero-Bixby et al. (2002).    The 
reduced model regressors employed to predict deforestation on the Osa Peninsula in 2010 are listed in 
Table 6, along with their sign and significance.  The dependent variable is change in forest cover per  
12.5 hectare gridcell between 1980 and 1995/96(17 806 observations).   In  table 5 we have added a 
column regarding the expected correlation with returns to agriculture and forestry and hence 
opportunity costs.   
 

Predicted probability of persistence 
 
TARGET calculates aggregate probabilities of persistence for individual attributes by assuming 
independence of probabilities of extinction between locations.  In GIS jargon there is no spatial 
autocorrelation between locations for extinction.  While this is a strong simplifying assumption which 
excludes ecological functions, it is generally more valid the smaller the range requirements of a 
species – more valid for plants and insects than vertebrate animals and birds.  However, probabilities 
of deforestation were also calculated based on an assumption of independence  - or  no spatial 
autocorrelation – making the Rosero-Bixby et al. approach a relevant starting point for empirically 
setting the baseline probability of persistence value B (equation  2).   
 
One current limitation in TARGET is that the software allows probabilities to be defined for attributes 
rather than locations.    A possible approach is to weight attribute values of locations by probabilities 
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of deforestation directly in GIS as part of generating the location input data files for TARGET. 15  The 
other approach explored below is in calculating expected opportunity costs. 
 
 
Table 6.  Predictors of deforestation in Osa Peninsula 
Regressor  Significance Probable 

determinants 
of forest and 
agricultural 
return 

Number of households per gridcell in 1984 +++  
Km from edge of forest --- (accessibility) 
Km from road --- accessibility 
Km from coastline --- (accessibility) 
Corcovado National Park (dummy) ---  
Golfo Dulce Forest Reserve (dummy) ---  
Agricultural institute (IDA) settlement (dummy) +++  
Precipitation > 4000 pmc (dummy) 0 suitability 
Slope>3% (dummy)  0 suitability 

accessibility 
Life zones (forest types):   
Bosque Muy humedo tropical (dummy) ---  
Bosque muy húmedo-premontano trans. Basal (dummy) 0  
Bosque muy húmedo Tropical Ref.  
Bosque muy húmedo-tropical transición premontano (dummy) ---  
Bosque pluvial-premontano transición basal (dummy) ++  
R2=0.247   
Source: adapted from Rosero-Bixby et al.  (2002).   Note: +++ coefficient positive and significant at 1%, ++ at 
5% and + at 10% levels, and similarly for negative coefficient signs.  Variables in grey are expected to be 
correlated with opportunity costs.  The model was not run for spatial autocorrelation and is therefore, according 
to the authors, more relevant for prediction than hypothesis testing. 
 

Expected opportunity costs 
 
We expect returns to forestry and agriculture to be correlated to measures of accessibility, both in 
terms of distance to roads, forest edge and coastline (in  that order of importance), as well to criteria 
for land suitability for agriculture.  In the Rosero-Bixby et al. study all distance related variables were 
strongly correlated to deforestation rates, while precipitation and slope, also used in evaluation of land 
use suitability, were not significant16.   There is a weak positive but significant relationship between 
total deforestation probabilities calculated by Rosero-Bixby et al. and our estimates of total 
opportunity cost based on land use suitability and standing forest (Figure A1, Appendix 4).      We 
expect that agricultural land use suitability explains some of the probability of deforestation, but this 
cannot be concluded from the regression analysis of Rosero-Bixby et al..  Their study does suggest 
that the opportunity cost estimates should be adjusted by access or transportation costs.   Standing 
forest is used to calculate the opportunity cost of forestry of protection.  Because deforestation 
probability is higher for fragmented forest these are significantly negatively correlated and offer little 
in the way of additional explanation (Figure A2, Appendix 4).    
 
                                                      
15 This would be the subject of future research as similar studies on deforestation probabilities exist for  the 
whole of Costa Rica (see Barton, Faith et al. 2003 for an overview).    
16 A number of other criteria are used to calculate land use suitability indices in Costa Rica including i.a. soil 
type, drainage (Barton, Faith et al. 2003). 
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If probability of deforestation is not correlated to opportunity costs, but rather to population pressure 
or other exogenous variables17, probability of deforestation could be used to generate expected 
opportunity costs.  Probability of deforestation can then be interpreted as a baseline probability of 
opportunity costs being incurred if the location in question is protected.  The regression results in 
Table 6 also show that the probability of deforestation is significantly lower within national parks and 
forest reserves than otherwise. 
  
In Figure 15 we illustrate the principle of adjusting opportunity cost estimates by probabilities of 
deforestation to generate expected opportunity costs.   Moving clockwise, the original probability of 
deforestation data in Rosero-Bixby et al. (2002) (step 1) is converted to a 100 hectare gridcell format 
(step 2).  This is then multiplied for each location with the original opportunity costs(step 3) to 
generate expected opportunity costs (step 4).  Comparing step 3 and 4 we see that the main impact on 
TARGET analyses is to make the high opportunity cost areas within Corcovado National Park less 
costly and therefore more likely to be selected for protection.   
 

 
Figure 15.  Incorporating probability of deforestation - expected opportunity costs  
 
Although this has an intuitive and theoretical appeal, it is unlikely that locations within national parks 
would be subject to TARGET-type trade-offs analysis by Costa Rican authorities (they would be pre-

                                                      
17 There is some evidence to support this in Rosero, Bixby et al. (2002), but that begs the question whether 
population growth is causally related to returns to land use.   

1 2 

3 4 
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selected and imposed on the selected set).  For large inaccessible forest areas outside national parks, 
adjustments to opportunity costs are probably better dealt with by explicitely by calculating distance 
dependent accessibility costs.   
 
 

4.2  Calculation method for opportunity costs  

Opportunity costs used in this study were calculated based on land use suitability maps for ACOSA 
and average returns for crop types present in each suitability class within the Brunca region, of which 
ACOSA is a part (Barton, Faith et al. 2003; Vega and Vega, 2002).   Average returns for each  crop 
type were weighted by the relative crop area to generate average returns by suitability class.   One 
critique of this approach is that the Brunca region includes higher altitudes than are found in ACOSA 
with amongst other high value dairy pasture18.   This has tended to inflate the opportunity costs of low 
suitability land use classes (with steep slopes, poor drainage and fertility soils).   This will lead to 
relatively fewer locations in marginal areas being selected for protection by TARGET if costs are 
given a relatively high weight in the trade-off (Barton, Faith et al. 2003).   
 
Wielaard (2003), using opportunity cost data generated by the Biodincators Project (Vega and Vega, 
2002), employed a similar area-weighted averaging approach, where weights were based on the 
fraction of area cultivated in ACOSA.  Whereas the approach used in Vega and Vega (2002) reflects 
average potential returns, Wielaards approach is more conservative by reflecting the fact that most 
land is underutilised despite its potential.   Using this approach  82% of land area in ACOSA within 
the lowest suitability class VIII has no agricultural use and is assigned zero returns, while e.g rice has 
net returns of  1909 $/ha yr. (1996$), but is cultivated on 0,85 % of the area in class VIII.  If TARGET 
is to be used for exercises implicitly valuing biodiversity using opportunity costs of protection (natural 
resource accounting) Wielaard’s conservative valuation approach is more appropriate.  With hindsight 
basing weights on crop areas within ACOSA seems more appropriate than weighting by areas in the 
larger Brunca region19.    
 
Opportunity costs used in this report are inappropriate for evaluating the incentive effects of payment 
levels for any particular location.  The current data20 is too coarse grained for predicting the regional 
demand for  PSAs at any given particular payment levels – we would conduct ground truthing studies 
of actual returns to different crops and suitability classes before making such a recommendation.  
However, if the purpose is prioritising PSAs between locations, as was the case in Barton, Faith et al. 
(2003). the relative value of opportunity costs is sufficient to improve decision-making. 
 
By way of conclusion, GIS techniques for extrapolating agricultural and forest returns to the whole 
study area have been used to illustrate the potential that TARGET offers for better priority-setting with 
existing data.  Given the large sensitivity to different weighting assumptions, we recommend a 
conservative approach in future applications, combined with ground truthing of opportunity cost 
estimates. 
 
 
 
 
 
 
 

                                                      
18 Personal communication Edgar Ortiz, FONAFIFO and Ortiz et al. (2003). 
19 Brunca crop areas were originally used because statistics on crop returns were averages for the whole Brunca 
region (Vega and Vega, 2002). 
20 The Bioindicators Project used only available published data with no additional field work. 
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5. Conclusions 

The purpose of this study has been to conduct sensitivity analysis of priority-setting in biodiversity 
protection  using the TARGET software given a range of assumptions on input data.   The study is in 
part a response to a number of questions raised by protected area managers and other stakeholders at 
workshops held by the Biodincators Project in Costa Rica in 2003-2004.  Questions raised by 
stakeholders were ‘distilled’ to 6 main research questions or hypotheses.  These questions and our 
concluding evaluation of them are summarised in Table 7. 
 
Table 7.  Concluding evaluation of research questions 

 
Further conclusions derived from this report regard biodiversity surrogates, opportunity costs, the 
TARGET algorithm and the management implications of the sensitivity analyses conducted here. 
 
 
 
 

Research 
questions 

The selection of cost-
effective set of 
locations… 

Evaluation 

1 is stable in repeated 
trials with a fixed 
starting point  

TARGET solutions are identical for repeated trials using 
the same starting point, because of the sequential sampling 
optimisation  routine (as opposed to a random sampling 
routine). 

2 is stable in repeated 
trials with random 
starts (preselect a 
single location)   

TARGET solutions were identical for three different 
random starts using single locations.   However, using 
different sets of pre-selected locations as initial conditions 
for the optimisation routine produced different local optima. 

3 is not sensitive to the 
definition of the study 
area 

TARGET solutions are sensitive to the definition of the 
extent of study area, mainly due changing the absolute 
number of and relative importance of biodiversity attributes 
present within the study area, and thereby their 
complementarity values. 

4 is not sensitive to 
resolution of data 

TARGET is sensitive to resolution of the the units of 
analysis (gridcell) used.  This is due mainly to the averaging 
effects of aggregating data to larger units of analysis. 

5 is not sensitive to the 
definition of the 
biodiversity surrogate 
when based on the 
same underlying data 
set.   

TARGET is (highly) sensitive to the choice of surrogate 
biodiversity indicator, in this case the so-called ‘overlay’, 
‘PCA’ and ‘k-means’ approaches.  There are practical  and 
pedagogical reasons for choosing the ‘overlay’ indicator, 
while PCA and k-means may be preferable for theoretical 
reasons. 

6 is sensitive to 
including unique 
representations of 
biodiversity attributes 
such as endemic 
species  

TARGET analysis was not (highly) sensitive to inclusion of 
endemic vascular plant species in the biodiversity surrogate 
indicator.  Although this is contrary to expectations this 
may be an artefact of the particular scenario defined by the 
user and should be evaluated further. 
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Biodiversity surrogates 
 
Definition of the biodiversity surrogate has the greatest impact on the cost-efficient selection of 
locations, followed by the definition of pre-selected locations (e.g. in existing national parks), the 
definition of the study area, and finally is not sensitive to the addition of endemic species. 
 
Can the data underlying the biodiversity surrogates be improved, particularly in including species 
information?    The surveys of the Inventory program at INBio have posed restrictions on a formal 
statistical analysis of species distributions since the sampling design does not conform to an objective 
representation of areas and of ecological (environmental explanatory) factors.   To be more valuable 
for priority setting,  future sampling design may take some guidance from the TARGET analyses 
shown here, improving area representativity. 
 
In addition to improving sampling and ground truthing, remote sensing images with better resolution 
can be employed.     We think the additional costs will be justified by benefits to increasing resolution 
in the context of allocating PSAs; sub-optimal allocations of payments in as much as 65% of the cases 
in ACOSA would probably justify quite substantial investments in increasing the accuracy of the 
underlying GIS data. 
 
Opportunity costs 
 
The opportunity costs used in this study are overestimates for more marginal lands were forests are 
most common.  They are also overestimates in the sense that transport and other access costs have not 
been factored in.   For ACOSA this has the greatest impact on the relatively large and relatively 
inaccessible forested areas of the Corcovado National Park.    For large inaccessible forest areas 
outside national parks, adjustments to opportunity costs should be explicitely by calculating distance 
dependent accessibility costs.   
 
GIS techniques for extrapolating agricultural and forest returns to the whole study area have been used 
to illustrate the potential that TARGET offers for better priority-setting with existing data.  Given the 
large sensitivity to different weighting assumptions, we recommend a conservative approach in future 
applications, combined with ground truthing of opportunity cost estimates. 
 
TARGET algorithm 
 
The procedure followed by TARGET is a formalisation of a selection procedure with the advantage of 
allowing documentation, repeated evaluation of the results and analyses of sensitivity.    The algorithm 
does not guarantee a global optimum, and hence the user is required to vary initial conditions in order 
to test for local optima in a heuristic approach.   However, the strategy in TARGET of searching for 
optimal solutions by varying the weights on costs has been shown to be more effective than the 
standard approach for such problems of selecting places based on a simple benefit/cost ratio (Faith 
2001). 
 
Management implications 
 
The possibility of a number of local cost-efficient optima exist within the study area has several 
implications.   Prior to applying TARGET to the priority-setting for environmental service payment 
locations, authorities such as FONAFIFO have to clarify which assumptions or which ‘scenario’ the 
selection criteria for payments is to be based on.  Given a set of assumptions TARGET provides a 
robust selection of the cost-effective set of locations for protection. 
   
Given the TARGET algorithm’s focus on complementarity, rather than simply species richness, 
locations with endemic species should be imposed on the solution in the same way as e.g. national 
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parks if they are consistently to be prioritised for conservation.  If the objective is simply to represent 
all endemics (but not all locations with endemics) within  the system of protected areas, TARGET 
provides a sufficient solution. 
 
Although trade-offs analysis in general has high management relevance, it is unlikely that locations 
within national parks would be subject to TARGET-type trade-offs analysis by Costa Rican 
authorities.  In fact, land use conversion from forestry to agriculture is illegal and has been used as a 
general critique of conducting any kind of trade-offs analysis in Costa Rica.  In practice, gradual forest  
encroachment and fragmentation may lead to long term deforestation, calling for prioritisation of 
conservation efforts with limited resources available to SINAC and FONAFIFO.    Another argument 
against trade-offs analysis has been that recent forest statistics have shown net reforestation in Costa 
Rica as a whole.  TARGETs use of environmental biodiversity surrogates provides a guide to which 
areas have highest complementary value for restoration. 
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7.1 Appendix 1:  Species data availability and use for ACOSA biodiversity 
and indicators for planning 

 
Biodiversity surrogates were considered as ‘environmental classes’ or ‘habitat types’ generated from 
available cartography in digitized format from the ECOMAPAS project at the Costa Rican National 
Biodiversity Institute (INBio) (Kappelle et al., 2003). A set of biophysical attributes characterised the 
land units in terms of their natural environments in ACOSA. The basis for the environmental classes 
were topography, climate and substrate as these factors are fundamental determinants of biological 
activity and therefore, it was assumed that their spatial distribution correlated well with that of animal 
and plant species. The use of natural environments to generate surrogates for biodiversity, is an 
approach that has often been used in lack of more definitive biodiversity data (Austin 1991) due to the 
difficulty of obtaining comprehensive data on species relative to that of producing resource maps 
(Pressey and Bedward 1991). 
 
Our approach aimed at developing a database with all existing significant data that gave complete 
coverage of ACOSA at the highest possible spatial resolution. Based on previous work in ACOSA 
(Madrigal and Rojas 1980; Herrera 1986; Gómez and Herrera 1993; Tournon and Alvarado 1997; 
Ardón and García 1998; Kappele, M.Castro et al. 2003), the major environmental variables 
influencing the distribution of the vegetation types were assumed to be climate, soil, lithology, 
topography (elevation) and landform.  
 
7.1.1 Land units and biodiversity surrogates database 

 
The first step was to identify the planning units to provide the basis of the database and the subsequent 
priority setting analysis. Since a land property map is not available for the whole ACOSA, we used a 
regular grid with 1x1 km2 cells as the basic unit of analysis. The grid consisted of 4762 cells and it was 
overlaid on the ACOSA ecosystems map (Kappelle et al., 2003), using the ArcView GIS tool. The 
physical data consisted of 20 climate classes, 16 geological formations, 4 soil orders, 6 land-form 
classes, 9 elevation bands, and the presence or absence of open water. An additional data set consisting 
of vegetation macro-types was also generated from digitised cartography.  
 
Each mapping unit (1 km2 grid-cell) was allocated the class of the attributes that was derived from the 
polygons on the physical maps (climate, soil, geology and landform). The ACOSA boundaries of the 
different digitised maps were compared and searches were conducted to detect boundary errors (area 
mismatches) that result from digitising. The area (in ha) of the environmental variable classes in each 
of the 1x1 km cell was computed using the package ArcView 3.2 by overlying the grid with the 
digitised maps.When the polygon areas of the overlain variable classes differed within a grid cell, the 
area allocated to the environmental attribute (product of crossing variable classes) was that of the 
variable class with lowest area coverage.  A biodiversity attribute was consider to be represented in a 
land unit when the cover in a grid cell was larger than 5 %  (5 ha). The vegetation macro-type classes 
were considered additional biodiversity surrogates or ‘grid cell attributes’.  
 
Finally, the biodiversity attributes were coded for each land unit and the files were prepared in 
TARGET-readable format.  
 
Climate 
 
The climate database was created by digitising and combining climate maps from four different 
sources (Kappelle et al 2003). We used twenty climate types (Table A2.1 in Barton et al. 2003) 
derived by Kapelle et al. (2003) by overlying the variables and corresponding classes that define the 
Climate Types according to Herrera (1986, map scale 1:250.000) and the 3 Thermal and 3 Humidity 
Provinces, and the length of the dry season from Herrera & Gómez 1993 (map scale 1:685000, ‘Biotic 
Units map’). The 9 variables that define the Climate Types in Herrera (1986) characterise the climate 
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in terms of 3 major gradients, humidity (mean annual rainfall, annual potential evapotranspiration 
(PET), hydric and aridity indices), seasonality (occurrence and length of the dry period) and 
temperature (mean annual temperature). Hydric index reflects the relationship between PET and mean 
annual precipitation ((P/PET)-1)*100. Humidity provinces by Herrera 1986, are geographic areas with 
ranges defined by precipitation and PET (Kappelle et al. 2003). In ACOSA; there are three humidity 
provinces: sub-humid, humid, and very humid. The ranges of the Thermal Provinces (Herrera 1986) 
are defined by altitudinal belts (Kappelle et al. 2003). In ACOSA the three provinces are: tropical (0 – 
500 m), subtropical (500 – 1200 m) and Temperate (1200 – 2100 m) (Kappelle et al. 2003). The length 
of the dry season based on days with soil water deficit was digitised from the maps by Herrera 1986 
based on geographical areas with ranges delimited. A dry month is defined in their map as ”a month in 
which precipitation is less than 50% of ETP”. 
 
Geology, landforms and soils 
 
The geological data were obtained by digitising the map by Tournon & Alvarado 1997. There are 6 
geological classes in ACOSA that characterise 16 formations (table A2.2 in Barton et al. 2003). Five 
classes correspond to rocks of sedimentary and intrusive origin, including recent swamps and fluvial, 
colluvial and coastal deposits (Kappelle et al. 2003). Two classes have volcanic origin and are 
characterised by basaltic rocks from the Cretaceous and Eocene, i.e. Complejo Nicoya and Grupo 
Golfito, respectively. Landform data were digitised from the geomorphology map by Madrigal & 
Rojas 1980 (Kappelle et al. 2003) where six land form classes are distinguished for ACOSA (Table 
A2.3 in Barton et al. 2003). Soil type classes  were obtained by digitising the map of soil orders by 
Pérez et al. (1978 SEPSA, in Kappelle et al. 2003, table A2.4 in Barton et al. 2003). 
 
Other environmental data 
 
Additional environmental data were 9, 200 meters elevation bands derived from digitised 1:200.000 
topographic maps (Instituto Geográfico Nacional (IGN), 1988. Talamanca & Golfito Topographic 
sheets. Scale map 1:200.000 scale. San José, Costa Rica.). 
 
Areas with water 
 
Based on colour photography (INBio) at 1:40 000 taken 1995 and 1996. Photos were interpreted and 
georeferenced at INBio. 
 
Vegetation macro-types 
 
Vegetation macro-types (Gómez 1986) were additionally used to characterise biodiversity. The macro-
types geographical data base was obtained by digitising the map of by Gómez (1986b, scale 1: 200 
000). Twelve types are found in ACOSA of a total of 55 for the entire country (Table A2.5 in Barton 
et al. 2003). The vegetation macro-types have been derived by the knowledge of experts about forest 
types, dominant species, elevation, soil type and geomorphology. The unit limits in the map have been 
drawn based on the field experience. 
 
Endemic species 
 
Endemic species are usually of high priority for biodiversity conservation world wide and in Costa 
Rica, and were therefore included as individual biodiversity attributes of the grid cells where they 
occurred. At present, four plant species have been published as endemics for ACOSA (Ardón & 
García 1998). However, the inventory database (Atta) at the Institute of Biodiversity Atta included, in 
March 2003, 178 endemic vascular plant species for the Conservation Area. Geo-referenced data of 
species endemic to ACOSA were obtained from the Atta database at the INBio. Of these, 59 were 
considered to be ‘true’ endemics of ACOSA and included in the ‘endemic species’ TARGET runs 
(Barton et al. 2003, Table A4). 
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However, the complete distribution of endemic species is poorly known, and therefore priority setting 
of areas where endemics are known to occur should be considered with caution.  For example, 
anecdotal evidence from the area shows that observations of endemics clusters in protected areas at 
risk of deforestation, and is correlated to accessibility around research stations. 
 
 
7.1.2 PCA surrogate data 

 
Principal component analysis 
 
Principal component analysis (PCA) is an ordination technique that constructs theoretical variables 
that minimize the total residual sum of squares after fitting straight lines to the data. The score of a 
variable in PCA is the slope of the line fitted for the variable against the PCA axis. A positive score 
means that the value of the variable increases along the axis, a negative score means that the value 
decreases and a score near 0 that the value is poorly related to the axis. The first axes of PCA is a 
theoretical variable minimizing the total residual sum of squares among all possible choices of one 
explanatory variable. The first PCA axis is the variable that explains the data best, and second and 
later axes also explain the data best but subject to the constraint of being uncorrelated with previous 
PCA axes. PCA axes that explain only a small proportion of variance in the data are in practice 
ignored (Jongman, ter Braak & van Tongeren 1987). 
 
Multiple regression can also be used to study nominal (classes) variables or both quantitative and 
nominal variables. In the ACOSA data set each class of the environmental variables and vegetation 
macro-types were nominal variables and therefore defined as “dummy variables”. For example, the 
dummy variable for the geological formation ‘Sabana Azul’ took value 1 if the grid cell was on that 
formation and 0 if the grid cell occurred on other formations.  
 
PCA on‘overlay data set’ 
 
The complete ‘overlay data set’ included the data set on the physical environment and vegetation 
macro-type classes as attributes. 
 
The aim of the PCA analysis was to generate biodiversity attributes (“habitat types”) using all 
available information and at the same time to reduce redundancy in the ‘overlay’ data set. The first 
PCA analysis was conducted with the entire ‘overlay’ data set (derived from physical environmental 
variables) and vegetation macro types. The results of this analysis are presented in the section below. 
They indicate that climate, geology and soils were related with the main PCA axes and that only few 
vegetation macro types classes showed strong relationships with the PCA axes. Vegetation classes 
were also strongly related to the physical environmental variables.  
 
Therefore a PCA analysis was conducted on the physical variables only. This analysis resulted a more 
robust model (explained higher portion of the variance, particularly that by the two first axis) while 
displaying very similar grid cells ordination (Figure 5 in section 2 of this report and Figure A1 of this 
appendix). The results of this PCA analysis were the ones used to generate the biodiversity surrogates 
as described in section 2.2.3.  
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Results of PCA with ‘overlay’ physical environmental and vegetation macro types data21 
 
The three first axis of the PCA ordination on this data set accounted to 69.9 % of the variation (Table 
A1). The variables with strongest relationship with PCA axis-1 (scores > 0.65) were related to very 
humid and warm climate, low elevation (0-200 m), ultisols and molisols soils, and vegetation macro-
types, “bosque tropical lluvioso de bajura sobre formaciones de origen tectónico” (lowland tropical 
rainforest on formations of tectonic origin) and “pantanos herbáceos” (wetlands with herbaceous 
vegetation). PCA axis 2 was strongest related to moderate hydric deficit, moderate aridity index, 
intermediate dry season. PCA Axis-3 was positively related to medium elevations (200 – 400 m), 
ultisol soils and negatively related to low elevations and molisol soils (Table A2 and Fig. A1).  
 
Table A1 Eigenvalues and cumulative % variance of 4 Principal Component axes derived from the 

biophysical data set (environmental variables and vegetation macro-types). Cummulative % 
variance indicates the accumulated fraction of the variance accounted for by the PCA axes. 

 
 PCA axis 1 PCA axis 2 PCA axis 3 PCA axis 4 

Eigenvalue  0.499 0.127 0.074 0.047 

Cummulative % variance 49.9 62.5 69.9 74.6 

                                                      
21 The software CANOCO provides a series of options at different steps of the analysis. For the analysis reported 
in section 2.2.3, the options were: 
Principal component analysis with symmetric scaling of species and samples and species (in our analysis the 
physical environment variables) scores divided by standard deviation. 
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Table A2: PCA ordination on physical environmental data and vegetation macro-types. Variables 
with scores > 0.65 

 
Variable 
code 

Variable Scores 
on PCA 
– w/veg 
Axis 1 

Scores 
on PCA 
– w/veg 
Axis 2 

Scores 
on PCA 
– w/veg 
Axis 3 

 MC         Temperature 
Very warm 

   1.1565   

 ETP  h    ETP high    1.1565   

 MH         Humidity Very humid    1.0589   

 Hvh        Hidric index very high    1.0589   

 Dl         Hidric deficit low    1.0569   

 Al         Aridity index low    1.0564   

 Dia  l     Length of dry season low    1.0564   

 El-1       Elevation 0-100    0.9554   

 Ul         Ultisol soils    0.8300   

 Ma33      Lowland ropical rainforest on alluvial formations, undulating topography    0.8061   

 El-2       Elevation 100-200 m    0.7744   

 Gcn        Complejo Nicoya (basalt)    0.7422   

 Ma26      Lowland ropical rainforest on alluvial formations, flat topography    0.6866   

 Mo         Molisol soils    0.6541   

 Dm         Hydric deficit moderate     1.4458  

 Am         Aridity index moderate     1.4458  

 Dia  m     Length dry season moderate     1.4458  

 H          Humidy High     1.2222  

 Hm2        Humidity index moderate-1     0.9024  

 Hm1        Humidity index moderate-2     0.7075  

 Gtl        Terraba formation     0.6756  

 Al         Aridity index low    -0.6766  

 Dia  l     Length dry season low    -0.6766  

 El-3       Elevation 200-300 m      1.0773 

 Ma33      Bosque tropical lluvioso de bajura sobre formación alluvial, undulating topography      1.0134 

 Ul         Ultisol soils      0.9154 

 El-4       Elevation 300-400 m      0.8974 

 El-2       Elevation 100-200 m      0.7964 

 Gcn        Formation Nicoya complex      0.7283 

 Mo         Molisol soils     -1.2670 

 Ma26      Bosque tropical lluvioso de bajura sobre formación alluvial, flat topography     -1.1453 
 El-1       Elvation 0-100     -0.8077 

 Gsq        Formation sabana grande     -0.8045 

 Gdf        Fluvial deposits     -0.6599 
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Figure A1. PCA ordination diagram (Axis I and II) on ‘overlay physical data’ and vegetation macro –
types 
 
 
 

 
Figure A2  Grid cells ordination diagram based on PCA analysis (Axis I andn II) on ‘overlay physical 
data’ and vegetation macro –types 
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Table A3    59 species ‘true’ endemics of ACOSA that were included in the ‘endemic species’ 
TARGET runs (see appendix 1, data set). 

Endemic vascular plants 

Aiouea obscura 

Anthurium burgeri 

Bourreria grandicalix 

Bourreria rinconensis 

Calathea hylaeanthoides 

Calathea lasiophylla 

Calathea nitidifolia 

Calliandra grandifolia 

Cavendishia linearifoli 

Cavendishia osaensis 

Coccoloba bejuco 

Combretum graciliflorum 

Coryanthes horichiana 

Costus osae 

Costus stenophyllus 

Daphnopsis costaricensi 

Dendropanax ravenii 

Duroia costaricensis 

Epiphyllum grandilobum 

Faramea permagnifolia 

Ficus osensis 

Geonoma scoparia 

Guatteria pudica 

Hebeclinium hygrohylaeu 

Heliconia wilsonii 

Hoffmannia hammelii 

Huberodendron allenii 

Inga bella 

Inga golfodulcensis 

Inga tenuiloba 

Justicia aurantiimutata 

Justicia deaurata 

Licania corniculata 
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Licania diegogomezii 

Licaria pergamentacea 

Macroclinium allemiorum 

Maxillaria vittariifoli 

Mormodes fractiflexum 

Mouriri osaensis 

Mouriri tuberculata 

Ocotea multiflora 

Ocotea patula 

Ocotea rivularis 

Oncidium stenobulbom 

Osa pulchra 

Ouratea rinconensis 

Parathesis longipedicel 

Pentaplaris doroteae 

Peperomia trichomanoide 

Piper sagittifolium 

Pouteria triplarifolia 

Prestonia hammelii 

Rauvolfia amoena 

Rudgea raveniana 

Syngonium hastiferum 

Syngonium oduberi 

Thelypteris illicita 

Trichilia skutchii 

Zygia rubiginosa 
 

 
7.1.3 Biodiversity and indicators for planning in ACOSA 
 
The rainforests of the ACOSA area in southeastern Costa Rica belong to the most species-rich forests 
in Central America, with strong floristic affinities with the Columbian Choco-region (Weissenhofer et 
al. 2001). According to INBio (Atta information system, February 2001) 2659 species of vascular 
plants have been recorded in ACOSA, distributed among 203 families and 1029 genera. The 
ECOMAPAS Project recorded for the Area species of 794 vascular plant, representing this number, 
7.1 % of the vascular flora known for Costa Rica (Kappelle et al. 2002). It is also remarkable, that the 
region harbours over 700 tree species – the highest tree species diversity in all of Central America 
(ref.? How is this comparison made?). In recent years,  57 species from ACOSA have been described 
as new to science (Weissenhofer et al. 2001). Until now, at least 70 species of marine crabs, 61 fresh-
water fish species, 46 amphibians, 71 reptiles, 375 birds, 124 terrestrial mammals and 58 bats have 
been recorded (Soto & Jimenez 1992, Maldonado 1997). 
 
Information about the distribution of biological diversity is the basis of conservation planning and 
priority-setting. For both biodiversity assessment and ecological monitoring it is necessary to relay on 
indicator taxa which serve as surrogates for the entire biota (Kremen 1992, Norton and Ulanowicz 
1992, Pearson and Cassola 1992, Kremen et al. 1994) since taxa inventories generally represent only a 
portion of the total richness. This is especially true for invertebrates, which are estimated to make up 
as much as 90% of  the biodiversity at the species level (Disney 1986, Kim 1993, Samways 1994). 
 
Because of the need to use biodiversity surrogates in conservation planning, considerable effort has 
been dedicated to review the attributes of adequate indicator taxa (Noss1990, Kremen 1992, Pearson 
& Cassola 1992, Halffter & Favila 1993, Pearson 1994 and Spector and Forsyth 1998).  
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Species as indicators of human-induced biodiversity changes 
 
Useful indicators of habitat alteration must be capable of displaying a gradient of responses to a 
gradient of environmental change. A wealth of life-history and ecological studies have assessed the 
degree to which a species is threatened by human activities. Based on ecologically empirical findings, 
Henle et al. (2004) identified , a series of life-history traits that confer susceptibility to fragmentation 
for a wide spectrum of organims , i.e.population size, population stochasticity and storage effect, traits 
related to competition and sensitivity to disturbance in plants, use of micro-habitats or habitat mosaics, 
rarity (as low abundance within a habitat) and biogeographical position (as location in the 
distributional range)  
 
Trends in population numbers or the distribution of individual species with well-known life histories, 
ecological requirements and population dynamics, as for instance mammals, or groups of well-known 
taxa (e.g. birds and butterflies) can be useful as warning signals of expected biodiversity loss. 
However, the extrapolation of the effects of human activities to other organisms can be misleading. 
Needless to stress are the enormous differences among individual organisms regarding the life-traits 
that determine their abundance and their distributional ranges. It is therefore extremely unlikely that 
different species will show similar response to even major changes in habitat (Lawton et al. 1998). If 
species data are to be used as indicators of biodiversity change , an approach in which a wide range of 
taxa embracing species with  different life history traits and ecological roles have to be considered. In 
contrast, individual species with well-known ecological characteristics, habitat requirements and 
showing high sensitivity (rapid response times) to specific changes in the environment are more 
reliable as indicators of the effects of human activities (Henle et al. 2004). For example, insects are 
promising as indicators of habitat change or loss because of their abundance, habitat specialisation, 
and their response to small-scale habitat heterogeneity (Hill 1996, Niemela et al. 1996) and because of 
their important role in ecosystem function (Didham et al. 1996). However, terrestrial surveys in the 
tropics rarely include insects other than butterflies. 
 
The threats to human health by water and air pollution led to early research on bioindicators in order to 
map and monitor the effects of pollution on selected organisms. Because of their sensitivity to air 
pollution and acid rain, lichens are among the most widely used biomonitors in terrestrial 
environments (Nimis et al. 2002). Different species of lichens, beetles and birds have been used as 
indicators of forest continuity (late successional stages) (Kuusinen 1996, Nilsson et al. 1995, Jonsson 
& Jonsell 1999, Uliczka & Angelstam 2000). Due to their position in the trophic chain, raptors have 
proved their value as indicators of trends in pollutant levels (pesticides and heavy metals) in the 
environment (Newton 1979). 
 
As a consequence of their dependence on a variety of habitats across large ranges neotropical migrant 
birds have become flagship indicators of the negative consequences of fragmentation and of large-
scale source/sink population dynamics (Robinson 1998, Burke and Nol 1998).  
 
Species as indicators of overall biodiversity  
 
The use of  indicator taxa to represent local richness relies on the premise that, across large areas, the 
number of species in one well-studied taxon is well correlated with the number of species in other less 
well-known taxa (Schall & Pianka 1987).  Because of its potential use for conservation planning and 
management, there have been many attempts to explore these correlations, usually with limited degree 
of success. Instead, plants and birds are used as surrogates for overall biodiversity (Wege and Long 
1995, Stotz et al. 1996). However,  the need for testing and validation has been stressed (Noss 1990) 
and caution has been recommended about the sensitivity of  biodiversity surrogates to conservation 
objectives and spatial scales (McGeogh 1998).  For example, Basset et al. (1996), Gaston and Hudson 
(1994) suggest that plants and vertebrates do not accurately predict patterns of insect biodiversity, and 
that species richness of individual butterfly families did not correlate in any consistent way with 
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overall butterfly species richness. A Emberson (1985) found weak correlations between plant species 
richness and soil mite species richness in British grasslands, and Usher (1992) came to the same 
conclusion for plants and arthropods in the British heatlands. Similar disparity has been found in very 
different ecosystems and at different spatial scales. For example, Prendergast et al. (1993) and 
Prendergast and Eversham (1997) found that the relationship between species richness of certain 
higher taxa in Britain (birds, butterflies, dragonflies and plants) is spatially highly variable and 
unpredictable while in Norway, Sætersdal et al. (1993) found that in the same woods, there was no 
coincidence between locations with high species diversity of bird and plants.  
 
This lack of coincidence has also been shown for tropical ecosystems. Howard et al. (1998) for 
example, found little spatial congruence in the species richness of woody plants, large moths, 
butterflies, birds and small mammals across 50 Ugandan forests. Also Lawton et al. (1998) concluded  
that assessing the effects of habitat modifications and disturbance on tropical biodiversity by using 
changes in species richness of familiar and well-studied groups such as birds or butterflies as 
indicators of changes in other taxa gives a highly misleading picture of overall faunal changes.   
 
Species data not used and why 
 
Generally, broadly distributed taxa are preferred as biodiversity surrogates as they are comparatively 
easy to identify, and allow comparisons between areas with different biophysical conditions and 
threats. Useful indicators of habitat alteration must be capable of displaying a gradient of responses to 
a gradient of environmental change. Indicator taxa for ecosystem viability should therefore have well-
understood natural histories and be known to have key roles in ecosystem functioning such as nutrient 
cycling, biomass production, pollination, or seed dispersal. 
 
However, our approach has had a different focus. The biodiversity value of a land unit has not been 
related to its richness but rather to the magnitude of the additional contribution that a specific unit of 
land makes to the overall representation of biodiversity in the area subject to conservation planning.   
Two concepts are central to our approach of prioritisation of areas for biodiversity conservation. The 
first one refers to the aspect of biodiversity that is targeted to conserve. TARGET maximises the 
representation of biodiversity.  This implies that the more distinct an area is in terms of its biodiversity 
attributes, the higher its representativity value. Hence, the biodiversity value an area within a selected 
set is related to its contribution to the increment in biodiversity representation in relation to the overall 
biodiversity conservation targets, in other words the biodiversity value of an area corresponds to its 
complementarity value (Faith and Walker 1996).  
 
Priority setting in conservation planning must be based on some knowledge about the biodiversity 
attributes of a target area and how these attributes relate to those of other areas. The procedure 
followed by TARGET is a formalisation of a selection procedure with the advantage of allowing 
documentation, repeated evaluation of the results and analyses of sensitivity. At each prioritisation 
step the areas are compared with each other and to the already selected set. Consequently, the 
knowledge of the distribution of the biodiversity attributes by which the areas are compared must be 
calculated under the same premise.  
 
The INBio. through its inventory program has compiled an impressive data base of geo-referenced 
taxa in the country. However, complete maps of the biota of ACOSA, which would be necessary for 
species-based priority setting, do not exist. Models of species distribution can be used to predict 
occurrences in non-surveyed areas (Wielaard (2003) Kadmon et al. 2004, Otaviani et al. 2004, 
Rushton et al. 2004 (and references therein)). These models must are based on ecological knowledge 
about the species or the ecological communities, i. e. it is necessary to understand the main 
environmental and biological drivers that underlie the patterns of their distribution.  
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Ordination techniques is a family of methods used to reveal relationships between large number of 
species or ecological communities, e.g. the relationships of hundreds of species simultaneously 
(Palmer, 2004). Some direct ordination methods (as Canonical Correspondence Analysis) make 
possible the analysis of species and environmental variables and can be used to statistically predict 
species distributions. However, for statistical validity data collection has to conform a sampling design 
that is representative of the universe about which predictions are to be made. It will involve random, 
stratified random, or regular distribution of sampling sites (Palmer 2004). In other words, if there is 
any subjectivity involved in locating the sampling sites, the sampling effort, or the taxa or specimens 
collected the results are technically not valid for this kind of analysis. 
 
Ordination techniques can also be used for “exploratory” purposes, where the aim is to describe the 
variation of the data set and to identify trends of main underlying factors that account for this variation 
and their relative importance.  
 
The surveys of the ‘Inventario’ program at INBio pose restrictions to a formal statistical analysis of 
species distributions since the sampling design does not conform an objective representation of areas 
and of ecological (environmental explanatory) factors.  
 
Topography, climate and substrate are fundamental determinants of biological activity and their spatial 
distributions strongly determine those of plants and animals (Faith et al. 2001a). We used an own 
compilation of cartographic data in digitized format together with a considerable amount of these data 
from the ECOMPAS project, at INBio to derive a series of environmental variables to describe the 
areas (grid cells) that where part of the prioritization exercise (Appendix 1 in Section 7, this report) in 
terms of their ecological features. 
  
Based on these environmental data and species lists (insects and plants) from grid cells with records 
from the ‘Inventario’ survey, we performed Canonical Correspondence Analysis (CCA) to explore the 
relationship between species occurrences and classes of environmental variables. This was an attempt 
to understand the drivers of species distribution patterns and to associate these distributions to the 
areas in the conservation priority setting exercise.  
 
The species data consisted of records of 10 families of well-known and ubiquitous vascular plants 
from the Atta database collected in 419 grid cells. The number of species per grid cells ranged 
between 236 (once) and 1 (116 times). The environmental variables used in the analyses had a poor 
explanatory value (total variation explained by the CCA axes 43.264 and variation explained by 
canonical axes 4.626 ) of the overall species distribution patterns.  
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Figure A3 Canonical Correspondence Analysis (CCA) based on occurrences of vascular plants in grid 

cells (source geo-referenced data in the Atta base, INBio) and environmental variables and 
vegetation macro types.  

Note: Elevation (Ama and Ami), Moll: molisol soil, Macro type 26: Lowland tropical rainforest on 
alluvial formations and flat topography, HI: hydric index, Pre: precipitation, MH and H: climate 
humidity, Hvh: humidity index, humidity, Gdf: fluvial deposits and vegetation macro type 
33:lowland tropical rainforest on alluvial formations, undulating topography  

 
 
We attributed this poor correlation to two main reasons. The first one is related to the fact that 
inventory surveys have had the purpose of compiling a collection of the plants and insects of Costa 
Rica as complete as possible being. An assessment of distribution patterns has been beyond the aims 
of the Inventario program. A more systematic survey could improve the predictability of species 
distributions in the future.   Secondly, each grid cell contains a variety of habitat types and ecological 
conditions that are not fully represented in the cartographic material that is available. The scale of 
some of the maps is too small, and the mapping resolution and accuracy are rather coarse compared to 
the scales we expect these variables will affect the distributions of organisms. These data can be 
improved with more detailed climate data derived from e.g. models of rainfall and temperature based 
on accurate terrain models and by including records of key environmental/habitat data with specimen 
collections.   
 
 
 
 
 
 
 
 

Variable  Lambda1 
Ama        0.23 * 
Ami        0.22  
Moll       0.18  
26   0.18  
Hl          0.18  
Pre        0.17  
MH         0.17  
Hvh        0.17  
H          0.17  
Gdf        0.16  
33   0.16 * 
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7.2 Appendix 2: TARGET model scenarios 

Table A4.  Target modell scenarios 

    Study area TARGET parameters TARGET data files 
Sensitivity 
Issue 

Run 
# 

Scale Resolution 
Grid=25ha 
Unit=100ha 

Regional 
PP (%) 

Protected 
PP (%) 

Unprotected 
PP (%) 

Cost 
weight 
(b) 

Cost 
defin- 

Preselected 
locations 
/committed 
location 

Masked 
locations 

Biodiversity 
surrogate 

*.env 
file 

*.loc 
file 

*.att 
file 

 
 
Reliability 

0 ACOSA unit 0.99 0.9 0 1 total random 
location(#1, 
#500, 
#1000), 
natparks.sel, 
psa.sel 

none overlay678 costa5-td.env costa1.loc cost1.att 

1 Corridor unit 0.99 0.9 0 1 total none non-
corridor 
locations 

overlay678 

masked 
costa5-td.env costa1.loc cost1.att 

2 Osa 
Peninsula 

unit 0.99 0.9 0 1 total none non-
peninsula 
locations 

overlay678 

masked 
costa5-td.env costa1.loc cost1.att 

 
 
 
Scale 

3 ACOSA unit 0.99 0.9 0 1 total none none overlay678 costa5-td.env costa1.loc cost1.att 

Resolution 4 Corridor grid 0.99 0.9 0 1 total none none overlay86 corrg-td.env corrg.loc corrg.att 

5 Corridor unit 0.99 0.9 0 1 total none none PCA121 corru-td.env curru.loc cost1.att 

6 ACOSA unit 0.99 0.9 0 1 total none none PCA573 pca-td.env pca.loc cost1.att 
7 ACOSA unit 0.99 0.9 0 1 total none none overlay678+end costa6-td.env costa2.loc cost1.att 

  
 
Surrogate 
definition 
  
  

8 ACOSA unit 0.99 0.9 0 1 total none none k-means kmean-
td.envtd.envnv 

lmeans1.loc cost1.att 

9 Osa 
Peninsula 

unit 0.99 0.9 0 0.1 expect none non-
peninsula 
locations 

overlay678 costa5-td.env costa1.loc cost1.att  
 
Cost 
definition 
  

10 Osa 
Peninsula 

unit 0.99 0.9 0 0.1 total none non-
peninsula 
locations 

overlay678 costa5-td.env costa1.loc cost1.att 
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7.3 Appendix 3:  Correspondance analysis of TARGET model results 

Correspondance analysis (reciprocal averaging) was used as a method for comparing the results of 
TARGET model scenarios, both with respect to the locations and attributes selected.   Model scenarios 
refer to This standard method is briefly explained in the following22.   TARGET produces a number of 
results files two of which contain (i) the number of replicates of attributes in the selected set of 
locations and (ii) the complementarity value within the set of each selected location. 
 
When comparing the selected sets of locations and attributes between TARGET scenarios the 
following analogy is made to the more traditional use of correspondence analysis of site species lists. 
 
Data matrix:  Comparing species lists by site: Comparing TARGET output by scenarios 
Rows Observed occurences of species  Complementarity value of locations  

Recurrence of surrogate attributes 
Columns Sites Scenarios 
 
The species matrix Y, where the m species are arranged as rows and the n sites as columns, can be 
analysed with a technique called reciprocal averaging, RA (Palmer, 1993). This method, also called 
correspondence analysis, is an ordination technique with which sites (i.e. samples, localities) and/or 
species can be arranged along environmental gradients (Palmer, 1993). This method is based on the 
assumption that the data have a unimodal response to a gradient. In its basic form RA produces two 
vectors of so-called scores, one for sites (x) and one for species (u;  also called ”species loadings”). 
These scores can directly be used in ordination. For example, the site scores (one value per site) 
characterise the species composition of a particular site with a single number, and the differences in 
the site scores indicate differences in species composition between the sites. In other words, site scores 
serve as an ordination index based on the species composition of the sites. Similarly, species which 
have similar species scores will exist in about the same selection of sites. 

 

The RA algorithm is: 
 

                                                      
22 We are grateful to Tuomo Saloranta, NIVA, for editing this section and programming a MATLAB 
correspondance analysis Excel workbook  which we used to analyse the TARGET output textfiles in Excel. 
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( ) : Species by sites matrix 

:  Abundance of species  at site 

 : Site scores (1  vector)

 : Species loadings ( 1 vector)
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The RA technique is related to detrended correspondance analyse (DCA) and canonical 
correspondance analyse (CCA) techniques, but as long as one considers only the first gradient axis, 
there should be no differences in the results of these three techniques. Results from RA can be 
sensitive to inclusion of very rare species and/or localities with very few species in the matrix Y. 
Therefore, these extremities should be removed from Y prior to RA analysis, in order to get a more 
balanced output from the RA analysis and to avoid clear outliers in the site or species scores. Also, the 
species included in Y should be identified to the same level of detail, i.e. a blend of e.g. single species 
and species groups should be avoided. 
  
 
References (appendix 3) 
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7.4 Appendix 4 : Correlation between probability of deforestation and 
opportunity cost to agriculture and forestry 

Figure A4 illustrates the correlation between total opportunity cost used in this study and 
deforestation probabilities calculated by Rosero-Bixby et al. (2002). 
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Figure A4.  Probability of deforestation - total opportunity cost (forestry and agriculture) 
 
 
Polynomial Fit Degree=2 
DEFOR_PROB = 42,238676 + 0,0327963 TOTAL_COST - 0,0000069 (TOTAL_COST-401,138)^2 
 
Summary of Fit 
RSquare 0,102665 
RSquare Adj 0,099766 
Root Mean Square Error 27,90577 
Mean of Response 54,11576 
Observations (or Sum Wgts) 622 
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  42,238676 2,007751 21,04 <.0001 
TOTAL_COST  0,0327963 0,005116 6,41 <.0001 
(TOTAL_COST-401,138)^2  -0,000007 0,000003 -2,74 0,0064 
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Probability of deforestation - forest opportunity cost. 
 
Figure A5 illustrates the correlation between forestry opportunity costs used in this study and 
deforestation probabilities calculated by Rosero-Bixby et al. (2002).     Predicted deforestation 
probability reflects current forest fragmentation implying less standing forest and lower returns to 
forestry per unit of area. 
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Figure A5 Forestry opportunity cost and deforestation probability 
 
 
Transformed Fit to Square 
DEFOR_PROB = 89,790157 - 0,0042605 Square(Forest opp cost) 
 
Summary of Fit 
RSquare 0,639252 
RSquare Adj 0,63867 
Root Mean Square Error 17,67943 
Mean of Response 54,11576 
Observations (or Sum Wgts) 622 
 
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  89,790157 1,288758 69,67 <.0001 
Square(Forest opp cost)  -0,00426 0,000129 -33,15 <.0001 
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7.5 Appendix 5: GIS accuracy – converting polygon to grid data 

The 500mx500m grid used for calculating opportunity cost and biodiversity surrogate values uses an 
area-based weighting of polygons themes falling within any particular grid cell.  The values in four 
adjacent 25 ha. cells are then averaged and assigned to 1000mx1000m (1 km2) cells used in the 
TARGET analysis.   In Figure A6  an illustration is provided of the grid overlay on forest polygons 
used to calculate forest opportunity cost.  Some GIS based errors are introduced along the coastline 
border of the study area due to different interpretations of land area on mud-flats (see “manglar”= 
mangrove area), which in turn affects the weighted value of the 1 km2 grid cells.  GIS data may have 
errors of interpretation of  400m-500m as illustrated in the figure – area based weighting averages 
errors across 1km2 cells used for analysis and imply that there should be no systematic bias across the 
study area.  The sensitivity analysis og grid resolution is conducted to evaluate whether using  25 ha. 
and 100 ha cells for analysis affects the set of selected locations. 
 

 
Figure A6 GIS errors in converting polygon to grid data. 
Source: Ecomapas, INBio. 
 
The use of TARGET for prioritising environmental service payments to land-owners depends on 
accurate and consistent georeferencing of property boundaries and areas under payment.  Figure A2 
illustrates several practical GIS issues that must be overcome before TARGET can become an applied 
tool for priority setting: 
- property boundaries and environmental service payment contract areas do not overlap 
- PSA contracts for forest protection and plantation/reforestation have been assigned to the same 

locations within few years, raising doubts about the effectiveness of monitoring and enforcement 
of contract conditions for the different types of management. 

-  
 
Is TARGET algorithm normalised by area.  If not large “resource units” will be prioritised over 
smaller ones. 
Large polygons have large complementarity (larger probability of multiple attributes within polygon).   
Opportunity cost will vary with property size. 
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Figure A7 Georeferencing inaccuracies in cadastre information on PSA contracts 
Source: Property cadastre data (CEDARENA), environmental service payment contract areas (1999-
2001) FONAFIFO. 
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7.6 Appendix 6:  Example of TARGET calculation of probabilities of 
persistence 

 
The user typically (in the simple case) nominate a target for the overall regional probability of 
persistence, R, of each attribute. This overall probability is to be achieved by one minus the products 
of the probabilities of extinction of the attribute over the different places in the region. 
 
The user nominates a base probability of persistence, B - this is the probability of persistence (one 
minus probability of extinction of an attribute in any place that is not selected - think of it as the 
default "do-nothing" value. Lastly the user nominates the probability of persistence, P, if a place is 
selected for protection. 
 
If an attribute has T occurrences over all places in the LOC file, and N of these occurrences are 
represented in the course of selecting a set of places, then: 
 
1 - R  =   ( T - N )* ( 1 - B ) * N * ( 1 - P ) 
in other words, we have multiplied up the probabilities of extinction for  the attribute. 
 
TARGET uses this formula to figure out ahead of time how big N has to be, given user defined values 
for R, B, and P and the count of the value T calculated from the LOC file for each attribute. 
 
THE FOLLOWING SIMPLE CASE REQUIRES A BASIC KNOWLEDGE OF THE TARGET 
SOFTWARE INTERFACE 
 
Suppose we have place 1 with 3 attributes, 1,2, and 3; place 2 with attributes 1 and 2; place 3 with 
attributes 2 and 3; and place 4 with attributes 1 and 3. T = 3 for all attributes. 
 
So, in this example, let the probabilities be R = .99999, B = .9 and P = .99 .: 
 

 
Then the distance to target is "6", because 2 copies of each of the 3 attributes must be selected (giving 
for each attribute a product of (1-B) times (1-P) times (1-P), or .1*.01*.01 = .00001 = 1 - .99999, 
which was the regional target): 
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when the best place, number 1, with all three attributes is selected, the distance to target goes down to 
"3": 

 
when place number 1 and number 2 are selected, only attribute 3 still needs further representation, so 
the distance is now 1: 

  
 
In the "attribute export" file: 
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(note minor rounding errors; e.g. 1.999 instead of "2") 
 
and finally after 3 places are selected we have reached the targets - in fact attribute 2 occurs  3 times: 
 

 
 
 
 

  Locations on select list  
 1 2 
 
  Committed to protection 
 
 
 
Attribute      On list        No. repl       Dist to Target Target set     Target on list  
       1               1               2           0.000           1.999           2.000                                
       2               1               2           0.000           1.999           2.000                                
       3               1               1           0.999           1.999           1.000                                
 
  Current distance from target        .....               0.999 
  Number of attributes fully represented...                   2 
  Number of attributes partly represented..                   1 
  Number of attributes not represented   ..                   0 
  Attribute furthest from target         ..                   3                                                     
  Maximum distance from target           ..               0.999 
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Note that these gains against the effective need for "6" units mean that the complementarity value of a 
place is given by how many required units it contributes (much the same as when we are just counting 
up species in the simple case). It is these complementarity values that are compared to weighted costs 
when the analysis performs trade-offs. 
 
 

Locations on select list  
 1 2 3 
 
  Committed to protection 
 
 
 
Attribute      On list        No. repl       Dist to Target Target set     Target on list  
       1               1               2           0.000           1.999           2.000                                
       2               1               3           0.000           1.999           3.000                                
       3               1               2           0.000           1.999           2.000                                
 
  Current distance from target        .....               0.000 
  Number of attributes fully represented...                   3 
  Number of attributes partly represented..                   0 
  Number of attributes not represented   ..                   0 
  Attribute furthest from target         ..                   0                                                     
  Maximum distance from target           ..               0.000 
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