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Summary 

Polycyclic aromatic hydrocarbons (PAHs) have been and are a prioritized group of environmental 
contaminants in Norway and abroad. In Norway, the point sources have primarily been discharges 
from aluminium- and ferromanganese-smelters using the Søderberg anode in combination with sea-
water scrubbing of pot room gas or flue gas from the baking furnaces at carbon plants. These 
discharges have been substantial and high concentrations of PAHs have been found in sediments and 
mussels in the vicinity of the smelters. Currently, focus on PAHs is especially with regard to planning 
remedial measures for the contaminated sediments, also in correspondence with implementation of the 
EU Water Framework Directive. 
 
Although high concentrations of PAHs have been found in sediments in the vicinity of the smelters, 
the observed effects have been minor. It was hypothesized that the reason for this was that the PAH 
from smelters using the Søderberg anode was adsorbed to particles to a much higher degree than what 
was previously reported. 
 
In Norway, a guidance manual is developed for assessing the environmental and human risk posed by 
contaminated sediments. In this manual, commonly accepted “template”-table values for the 
partitioning coefficients for PAHs are used in the risk algorithms. However, recently performed risk 
calculations for PAH-contaminated sediments near an aluminium production site as well as near an 
anode production facility for ferro-manganese industry in Southern Norway, showed that the empiric 
partitioning coefficients were substantially higher than the “template”-table values. A stronger PAH 
adsorption has a direct effect on the risk assessments, since it leads to less dissolution of PAHs from 
the sediments and thus less bioavailability. 
 
The bioavailability of PAHs originating from coal tar pitch is also currently addressed in a draft risk 
assessment report from EU. In this document, the organic carbon-water partition coefficient is derived 
from octanol-water partitioning (Kow) using free-energy relationship. 
 
To investigate further if the earlier observed PAH-adsorption also applies to sediments in the vicinity 
of other smelters, the Norwegian Insititute for Water Research (NIVA) on contract with Norsk Hydro, 
Elkem Aluminium Mosjøen and Kubickenborg Aluminium AB has investigated the bioavailability of 
PAHs from sediments outside several Nordic smelters operating with Søderberg technology using 
passive samplers as well as investigating actual bioaccumulation in an experimental setup. The main 
aims were: 
 

• Measurements of site specific partitioning coefficients for PAHs between sediment particles 
and water.  

• Quantification of the accumulation of PAH in bottom dwelling organisms. The rationale for 
this is to show if high partitioning coefficients correspond with reduced bioavailability. 

 
Solid phase extraction of polyoxymethylene (POM-SPE) used as passive samplers have been applied 
in partitioning coefficient determinations. A standard test system applying the polycheate Nereis 
diversicolor and gastropod Hinia reticulata was used in the bioaccumulation experiments. On request, 
a third species was also included, namelig the bivalve Nuculoma tenuis. 
 
The results from the POM-experiments showed that the PAHs associated with the sediments in the 
vicinity of the smelters were stronger (a median factor of at least a magnitude) adsorbed/absorbed to 
the particles than the free energy relationship implies. This further implies that the bioavailable 
fraction is correspondingly lower, and one would expect lower bioaccumulated concentrations. The 
accumulated concentrations measured in Nereis diversicolor and Hinia reticulata were in fact very 
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similar to biota concentrations expected based on the POM-deduced sediment-water partitioning 
coefficients (Kds). Thus, the measured biota to sediment accumulation factors (BSAFs) agreed also 
very well with those expected from the POM-deduced Kds. 
 
On the other hand, this good correspondence was not observed for the third species, Nuculoma tenuis. 
There were however logistical intractabilities connected to this species biology and size that render it 
probable that particulate sedimentary matter contaminated the Nuculoma tissues analyses. 
Exceptionally high PAH concentrations relative to the other two organisms and a PAH profile more 
similar to that of the sediments support this assumption. However, the many uncertainties associated 
with Nuculoma tenuis render the interpretations somewhat inconclusive for this species, and further 
investigations would be necessary to eliminate the uncertainties. 
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Sammendrag 

Polysykliske aromatiske hydrokarboner (PAH) har vært og er en prioritert gruppe av miljøgifter både i 
Norge og internasjonalt. I Norge har punktkildene i stor grad vært utslipp fra aluminium- og 
ferromanganverk med bruk av Søderberg-anoden, i kombinasjon med sjøvanns-“scrubbing” av 
avgasser fra smelteovenene på karbon-verkene. Utslippene fra disse verkene har vært betydelige og 
høye konsentrasjoner av PAH er funnet i sedimenter og skjell i nærområdene. I dag er PAH i fokus 
særlig i forbindelse med tiltaksplaner mot forurensede sedimenter og i forbindelse med 
implementeringen av EUs vannrammedirektiv. 
 
Selv om det har blitt observert høye konsentrasjoner av PAH i sedimenter i nærområdene til verkene, 
har de observerte effektene vært små. Dette mente man kunne skyldes at PAH fra verk med 
Søderberganoden var sterkere partikkelbundet enn det som var rapportert i litteraturen. 
 
I Norge er det utviklet en veileder for risikoberegning i forbindelse med tiltak mot forurensede 
sedimenter (nå under revidering). I denne anvendes allmenngyldige, sjablongmessige 
fordelingskoffisienter for å beregne risikoen knyttet til PAH. NIVA har nylig gjennomført 
risikoberegninger knyttet til PAH-forurensede sedimenter nær et aluminiumsverk, samt i nærheten av 
en anodefabrikk for ferromanganindustrien i sør-Norge. Disse undersøkelsene viste at de empiriske 
fordelingskoeffisientene var vesentlig høyere enn de sjablongmessige tabell-verdiene. En sterkere 
PAH-adsorpsjon har direkte betydning for risikovurderinger, siden det fører til mindre PAH løst i vann 
og dermed lavere biotilgjengelighet. 
 
Biotilgjengelighet av PAH fra kulltjærebek er også berørt i et (utkast til et) risikovurderingsdokument 
fra EU. I dette dokumentet er karbon-vann-fordelingskoeffisienter utledet fra oktanol-vann-
fordelingskoeffisienter (KOW) ved bruk av fri-energi-sammenheng. 
 
For å videre undersøke om den tidligere oberverte PAH-adsorpsjonen også gjelder for sedimenter 
utenfor andre smelteverk, har NIVA på kontrakt fra Norsk Hydro, Elkem Aluminium Mosjøen og 
Kubickenborg Aluminium AB, undersøkt biotilgjengeligheten av PAH fra sedimenter utenfor flere 
nordiske smelteverk som opererer med Søderberg-teknologi. I disse undersøkelsene er passive 
prøvetakere benyttet og faktisk bioakkumulering er undersøkt ved hjelp av et spesialdesignet 
forsøksoppsett. Hovedmålene med undersøkelsen var: 
 

• Målinger av stedsspesifikke fordelingskoeffisienter for PAH mellom sedimentpartikler og 
vannfasen 

• Kvantifisering av akkumuleringen av PAH i bunnlevende organismer. Hensikten med dette 
var å se om høye fordelingskoeffisienter korresponderer med redusert biotilgjengelighet 

 
Fastfaseekstraksjon av polyoksymetylen, benyttet som passiv prøvetaker, har vært anvendt i 
bestemmelser av likevekstfordelingskoeffisienter. Et standard testsystem med flerbørstemarken Nereis 
diversicolor og sneglen Hinia reticulata har vært brukt i bioakkumuleringsforsøkene. På etterspørsel 
ble også en tredje art inkludert, nemlig muslingen Nuculoma tenuis. 
 
Resultatene fra POM-forsøkene viste at PAH tilknyttet sedimenter i nærheten av smelteverkeme var 
sterkere (en median faktor på minst en størrelsesorden) adsorbert/absorbert til partiklene enn det som 
fri-energi-sammenheng skulle tilsi. Dette impliserer at den biotilgjengelige fraksjonen er tilsvarende 
lavere, og man skal kunne forvente lavere bioakkumulerte konsentrasjoner i organismer. De 
akkumulerte konsentrasjonene målt i Nereis diversicolor og Hinia reticulata var faktisk også veldig 
like de konsentrajoner man skulle forvente i biota, basert på sediment-vann-fordelingskoeffisienter 
(Kd), bestemt v.h.a. POM-SPE. 
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På den annen side, så kunne denne gode sammenhengen mellom forventet og faktisk målt akkumulert 
konsentrasjon ikke observeres for den tredje arten, muslingen Nuculoma tenuis. Det var imidlertid 
visse logistiske uregjerligheter forbundet med denne artens biologi og størrelse, som gjorde det mulig 
at partikulært materiale (med opphav i sedimentene) kunne ha forurenset vevsprøvene fra denne 
organismen. Eksepsjonelt høye PAH-konsentrasjoner, relativt til i de andre to artene, og en PAH-profil 
som lignet mer på helsediment støtter denne antagelsen. De mange usikkerhetene assosiert med 
Nuculoma tenuis gjør imidlertid tolkningene noe ufyllestgjørende for denne arten og ytterligere 
undersøkelser er nødvendig, dersom man vil disse usikkerhetene til livs. 
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1. Introduction 

1.1 Background 
Polycyclic aromatic hydrocarbons (PAHs) have been and are a prioritized group of environmental 
contaminants in Norway and abroad. In Norway, the point sources have primarily been discharges 
from aluminium- and ferromanganese-smelters using the Søderberg-anode in combination with sea-
water scrubbing of pot room gas or flue gas from the baking furnaces at carbon plants. These 
discharges have been substantial and high concentrations of PAHs have been found in sediments and 
mussels in the vicinity of the smelters. Currently, focus on PAHs is especially with regard to planning 
remedial measures for the contaminated sediments, also in correspondence with implementation of the 
EU Water Framework Directive. 
 
Although high concentrations of PAHs have been found in sediments in the vicinity of the smelters, 
the observed effects have been minor (Næs, 1998). It was hypothesized that the reason for this was 
that the PAH from smelters using the Søderberg-anode was adsorbed to particles to a much higher 
degree than what was reported. It is widely accepted that it is the freely dissolved fraction of pollutants 
that is available for interaction with biological tissues and thereby can cause bioaccumulation and/or 
biological effects. To test this, Næs et al. (1998) quantified PAHs in effluent- and recipient-water 
outside a Søderberg aluminium smelter in Southern Norway. The measurements showed that that the 
partitioning coefficients (i.e. the ratios of particle adsorbed PAHs to dissolved PAHs) were factors of 
100-1000 higher than reported values (Figure 1).  
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Figure 1.  Logaritm of the observed partition coefficient of individual PAHs plotted against log Kow in 
the recipient sea water out side a Norwegian aluminium plant using the Søderberg technology. The 
linear regression lines with 95% confidence bands have also been plotted. The predicted relationship 
between log Kow and log Kc based solely on organic carbon  partitioning (predicted OC) and based on 
both soot carbon and organic carbon (predicted SC and OC) are shown (from Næs et al. 1998). 
 
 
With regard to remedial measures for contaminated sediments, a guidance manual is developed for 
assessing the environmental and human risk in Norway (Breedveld et al., 2005). In this manual, 
commonly accepted “template”-table values for the partitioning coefficients for PAHs are used in the 
risk algorithms. Norwegian Institute for Water Research (NIVA) has recently performed risk 
calculations for PAH contaminated sediments near an aluminium production site as well as near an 
anode production facility for ferro-manganese industry  in Southern Norway. In these projects site 
specific partitioning coefficients (and not use the “template”-table values) were measured. As 
expected, the empiric partitioning coefficients were substantially higher than the “template”-table 
values. 
 
The results indicated that the PAHs were much stronger adsorbed to particles than assumed in the risk 
assessment tool. A stronger PAH adsorption has a direct effect on the risk assessments, since it leads 
to less dissolution of PAHs from the sediments and thus less bioavailability. The PAH-adsorption-
results referred to above are confirmed by recent articles on the same topic (Cornelissen et al. 2005, 
Cornelissen et al. 2006, Khalil et al. 2006). 
 
The bioavailability of PAHs originating from coal tar pitch is currently addressed in a draft risk 
assessment report (RAR) from EU. In this document, the organic carbon-water partition coefficient is 
derived from Kow, using Free-energy relationship (following Karickhoff et al., 1979): 
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logKoc = logKow – 0.21 
 
The document references are made to other studies that have shown substantially higher adsorption to 
sediments (much due to the presence of soot-like materials; black carbon), that what can be deduced 
from the above equation. However, it is chosen to disregard these results in the draft RAR, since the 
implications for risk assessment could be difficult to interpret for several reasons. Furthermore, an 
interesting and comprehensive study by Rust et al. (2004a) showed that despite the effect of black 
carbon on the sorption of PAHs to sediments, the bioavailability did not seem to decrease significantly 
with increasing black carbon content. It should be noted, however, that the authors studied soot 
obtained from tail-pipes of diesel-powered vehicles, and the soot was then spiked with PAHs. The 
relevance to coal tar pitch is thus questionable, and the authors themselves stated that “further work is 
required to determine the extent to which these results can be generalized to other sources of soot 
carbon”. 
 
 
1.2 Aims/Objectives 
The risk assessments with regard to PAH-issues should be as accurate as possible, and it is therefore a 
need to further substantiate if the earlier observed PAH-adsorption also applies to sediments in the 
vicinity of other smelters. Such documentation would be of value in several contexts. It could inter 
alia form a basis for revision of the risk calculations for PAH with regard to remedial measures for 
contaminated sediments, it would strengthen the theory of limited bioavailability of PAH originating 
from coal tar pitch, it would be an important input with regard to marginal values for PAH in water 
proposed in the EU Water Framework Directive, it would give important input of how to monitor 
PAHs in water recourses, etc. 
 
To further pursue this, NIVA took on a task to investigate the bioavailability of PAHs from sediments 
outside several Nordic smelters, using passive samplers for PAHs as well as investigating actual 
bioaccumulation in an experimental setup. The aims of the project were as follows: 
 

1. Verify the partitioning constants for the passive samplers used in the measurements. This was 
laboratory work where the aim is to make certain that the NIVA performance corresponds 
with reported values in the literature.  

2. Measurements of site specific partitioning coefficients for PAHs between sediment particles 
and water. These measurements were performed on sediments collected outside each of the 
smelters. 

3. Quantification of the accumulation of PAH in bottom dwelling organisms. The rationale for 
this is to show if high partitioning coefficients correspond with reduced bioavailability 
(investigate correspondence to pt. 2, above). 

 
The investigations are focused towards the sediment-water system. However, the results will also be 
applicable to the issues with regard to PAHs and particle affinity and bioavailability in other water-
particle systems. 
 
The ideas behind the present project were presented at the EU TC-NES meeting March 6th, 2006. 
Some views and advices were received. These were taken under consideration and attempts have been 
made to meet the requests put forward. An additional species was e.g. included in the experimental 
setup, and a clean sediment spiked with PAHs was introduced (as described in the following). 
 
The Intenational Council for Exploration of the Sea (ICES) is currently performing a passive sampling 
trail survey. Two of the smelter sites are the Norwegian entries to this testing. Here silicon rubber is 
used as passive sampler both for determination of the freely dissolved PAH concentration in pore 
water as well as in the water masses. 
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2. Material and Methods 

2.1 Study areas/Sediments 
Sediments were collected from four locations in Norway and one in Sweden. The sites represent the 
primary sea water recipients for aluminium smelters using the Søderberg technology. In this report, the 
sites are presented as Smelter A, B, C, D and E. At all locations sediments were sampled from one 
representative site, apart from one fjord were three sites in a gradient from the smelter were sampled 
(Smelter A, the three locations are named Smelter A1, A2 and A3). In addition, unpolluted sediments 
representing the control/reference were collected from a clean site in the outer Oslofjord. Finally, a 
spiked sediment (spiked with selected PAHs) was prepared based on samples from the control site. 
(see below). 
 
The sediments were collected using a van Veed grab (0.1 m2). 10 litres of sediments were collected per 
site representing the upper 15 cm of the sediment.The sediments were relatively fine grained with the 
fraction less than 63 µm ranging from 30-96 per cent and total organic carbon from 0.4-6.8 per cent. 
 
 
2.2 Collection of control-sediment and organisms for bioaccumulation 
experiment 
The test-organisms (see below) Nereis diversicolor and Hinia reticulata were collected at the same 
location as the control sediments, Rambergbukta at Jeløya in the outer Oslofjord. Nereis were 
handpicked from sediment dug up using a shovel. Hinia were attracted using a crushed blue mussel 
(Mytilius edulis) as bait, and handpicked. Nuculoma tenuis were collected near Drøbak by the use of a 
0.1 m2 vanVeen-grab. 
 
After an acclimation period in control sediments and the same water used in the experiments of 
approximately one week, twenty individuals of N. diversicolor, 10 individuals of H. reticulata and 8-9 
individuals of N. tenuis were added to each test aquarium (see below). 
 
 
2.3 Homogenisation of sediments (field collected) 
The sediments were stored chilled (∼4 °C) after collection. Before preparation they were homogenised 
60–90 sec. by the use of a mechanical stirrer (paint mixer used for sediments only). Aliquotes were 
taken for chemical analyses, determination of particle:water-partitioning coefficients (Kds; by the use 
of POM-SPE), and the bioaccumulation experiment (see below). 
 
 
2.4 Preparation of sediment spiked with selected PAHs 
It was aimed to prepare a sediment spiked with selected PAHs to concentrations between 0.5 and 1 
mg/kg (dry wt.) for each individual compound. Approximately 1 kg of wet clean reference/control 
sediment was dried at 100 °C for 48 h and sieved (1 mm). Approximately 0.005 g of each of the 
compounds anthracene, phenanthrene, benzo(b)fluoranthene, pyrene, benzo(a)pyrene, 
dibenz(a,h)anthracene, fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene were 
diluted in 100 ml dichloromethane. The solution was added to the dried sediment and shaken 
(approximately 15 h) before the solvent was evaporated. The spiked sediment was mixed into 
approximately 14 kg of wet (clean/same as “control”) sediment, first using a mechanical stirrer 
(treated as the field collected sediments; above), and then in a “cement mixer” for 48 h. 
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2.5 POM-Solid Phase Extraction 
2.5.1 Determination of sediment:water partitioning coefficients (Kd) 
To elucidate the particle association and bioavailability, analyses of freely dissolved fractions of PAHs 
in the sediments were performed with a Solid Phase Extraction (SPE) method using Plastic 
polyoxymethylene (POM) (Jonker & Koelmans, 2001; Cornelissen & Gustafsson, 2004; see reference 
for details). From the results, partitioning coefficients between the particular phase and the water 
phase (Kd) were calculated. Dichloromethane was used to extract the PAHs from the POM-strips (1 
week) before analysis. Prior to the application of the method to the sediments, the partitioning 
coefficient between the POM material and water (Kpom) was tested experimentally (with water spiked 
with PAH-standards). Very good correspondence with the coefficients published by Jonker & 
Koelmans (2001) were obtained (especially for the compounds phenanthrene, anthracene, 
fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene). 
 
The Kd-coefficients for sediments were determined as follows: For each of the sediments ∼2 g 
sediment (wet) and ∼1 g POM (both weighed accurately) were transferred to bottles and added 300 ml 
distilled water (containing a biocide; as described in Jonker and Koelmans 2001). In addition a bottle 
was only added POM and water (blank). Subsequently all bottles were placed on a shaker. After 30 
days the POM was removed (using forceps) and carefully rinsed in distilled water. It was then 
transferred to a test tube, before 40 ml dichloromethane and internal standards (200 ng of each of the 
deuterated PAH components used at the laboratory) were added. The test tubes were sealed and placed 
on a shaker for 7 days. The extract was decanted to another test tube, before the extract was 
evaporated to 200 µl prior to chemical analyses GC-MS (Se below). The detection limit was 2 
ng/POM. 
 
The PAH mass balance in the three-phase-system: particles ⇔ water ⇔ POM can be expressed as 
follows (Jonker & Koelmans 2001): 
 
Qtot = CsMs + CwVw + CpMp 
 
where: 
Qtot is the total amount of PAH in the system (µg; corresponds to the amount analysed in the added 
sediment). 
Cs is the concentration of the compound in the sediment (µg/kg dry wt). 
Ms is the mass of the added sediment (kg dry wt) 
Cw is the concentration in the water (µg/L; unknown) 
Vw is the volume of the added water (L) 
Cp is the concentration in the POM (µg/kg; analysed) 
Mp is the mass of POM (kg) 
 
The following partition coefficients exist for the system: 
 
Kd = Cs/Cw 
Kp = Cp/Cw 
 
Therefore, one can express: 
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Values for Kp for several PAHs are given by Jonker & Koelmans (2001). These autors also show that 
Kp is proportional to the octanol:water-partitioning coefficient (Kow) of the compounds:  
log K′p = 0,72 × logKow + 0,39. 
 
 
2.6 Bioaccumulation experiment 
In the following, a system for direct measurements of bioaccumulation is described. Analogous 
bioavailability studies have been conducted in several countries, in most cases as a tool in the 
assessment of the environmental risk of dredged sediment. The most comprehensive documentation 
from such tests has been produced by the U.S. Environmental Protection Agency (Lee et al., 1991). 
 
2.6.1 Organisms 
Organisms used in the experiments were the ragworm Nereis diversicolor (Figure 2; Polychaeta), the 
netted dog whelk Hinia reticulata (Figure 3; Gastropoda) and the protobranch bivalve Nuculoma 
tenuis (Figure 4). We have earlier used N. diversicolor and H. reticulata in similar bioaccumulation 
tests on a number of occasions (e.g. Ruus et al. 2005). On request a third species was included, namely 
N. tenuis. The rationale for using these species is that they are intimately interacted with the sediment, 
possible to obtain in sufficient numbers, and possible to hold in aquaria for extended periods. 
 
 

 
Figure 2.  Picture of the polychaete Nereis diversicolor. These individuals are ready to be added to the 
test aquaria. 
 
 
Nereis diversicolor is common along the coasts of Europe, from the Meditteranean to Helgeland (Mid 
Norway), and in the Baltic Sea. It is found primarily in shallow waters, where it can occur in dense 
populations. Hinia reticulata is also found in shallow waters and is common from the Canary Islands 
and the Azores in the south, to Lofoten in the north. Both species prefer sandy or muddy sediment and 
are tolerant to low salinities. N. diversicolor is omnivorous, ingesting also sediment, while H. 
reticulata is primarely a scavenger and a predator. N. diversicolor is one of the most studied marine 
invertebrates and has also been used in other bioaccumulation studies (Fowler et al., 1978; Goerke, 
1984). 
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Figure 3.  Picture of the netted dogwhelk, Hinia reticulata. These individuals are ready to be added to 
the test aquaria. 
 
 
Nuculoma tenuis is a primitive protobranch bivalve, fairly common in the Skagerrak and northern 
Kattegat. It is very common in the southern Kattegat, deeper than 10 m. N. tenuis is a selective sub-
surface deposit feeder. It feeds by the use of ciliated tentacles which are extenden into the substrate. 
Particles are carried to the labial palps for sorting, prior to ingestion. Thus, the gills are primarily 
respiratory organs (Gosling, 2003). 
 
 

 
Figure 4.  Picture of the protobrach bivalve, Nuculoma tenuis. These individuals are ready to be added 
to the test aquaria. 
 
 
2.6.2 Experimental setup 
The experimental setup was established a decade ago and described on several occasions (e.g. Hylland 
1996; Ruus et al. 2005). In short, the setup is as follows: The exposure experiments were performed in 
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all-welded glass aquaria (15 × 20 × 22 cm; holding 5 litres of water/sediment), placed on a water-bath 
table with header tanks (secondary; with the same number of outlets as the number of aquaria; Figure 
5). Each aquarium had an outlet 5 cm below the top, covered with a plastic netting (200 µm) to 
prevent organisms from escaping. To maintain a proper flow through, two plexi glass partition walls 
were attached in each aquarium. By the use of a main header tank, a constant, uniform water supply 
was maintained in all aquaria. The water supplied to the aquaria was pumped from 60m depth outside 
NIVA’s marine research station at Solbergstrand, Oslofjord. The same water was supplied to the water 
bath to uphold a stable temperature in the aquaria. Temperature and salinity were logged with WTW 
electrodes every minute in the primary header tank and measured to 8.2-9.4 °C and 33.9-34.3 ‰, 
respectively. 
 
Three replicate aquaria were used for each test sediment. The duration of the accumulation period was 
28 days as recommended by Lee et al. (1991), since it should result in steady-state tissue residues. 
 
 

 
Figure 5.  Picture of parts of the experimental setup, after initiation of the bioaccumulation 
experiment. 
 
 
By termination of the experiment, the test organisms were retrieved from the aquaria (Figure 6). The 
polychaetes were transferred to beakers of sea water in which they were held for 6 to 8 hours to empty 
all remnants of sediments from the intestines before freezing (–20 °C) in glass containers. The soft 
parts of the gastropods were separated from their hard shell using a nut-cracker. The soft parts were 
then rinsed in seawater and transferred to glass containers then stored at –20 °C until chemical 
analysis. Individuals of Nuculoma were rinsed in seawater and frozen (–20 °C ) in glass containers. All 
individuals of the same species from each aquarium were pooled into one sample. 
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Figure 6.  Picture of one experimental unit (aquarium) before termination of the bioaccumulation 
experiment. The shell of a netted dogwhelk (Hinia reticulata) is visible on the sediment surface. 
Burrows of the polychaete Nereis diversicolor in the sediment are also visible. 
 
 
Upon thawing (prior to analysis), the soft parts of N. tenuis were excised from the shells. In this 
process, it was discovered that approximately 40% of the individuals were empty/dead. These were 
also the largest/oldest individuals. This was the case for all aquaria including the control sediment. 
The dead mussels were obviously empty shells from the field, but we also found some indications of 
H. reticulata preying on N. tenuis (a few shells only; Figure 7). To optimize the amount of biomass 
for analysis, the triplicates were pooled for this organism prior to analysis. 
 
 

 
Figure 7.  Empty shells of Nuculoma tenuis after termination of the bioaccumulation experiment. A 
few shells showed signs of possible predation by Hinia reticulata (holes in shell). 
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2.7 Chemical analyses 
All sediments (including the reference/control and the spiked sediment) were analysed for PAH 
compounds, particle size fraction (<63 µm), total organic content and black carbon content at NIVA’s 
laboratory, accredited by the Norwegian Accreditation as a testing laboratory according to the 
requirements of NS-EN ISO/IEC 17025 (2000). Analytical standards of the laboratory are also 
certified by the participation in international calibration tests, including QUASIMEME twice per year. 
 
 
2.7.1 Analysis of total organic carbon (TOC) and black carbon (BC) in sediments 
The sediments were freezedried, crushed and acidified (1N HCl). Subsequently the sediments were 
analysed for total organic carbon (TOC) by catalytic combustion at 1800 °C in an elemental analyser. 
The black carbon (BC) content was analysed by a method described by Cornelissen and Gustavsson 
(2004), first by heating heating the sediment (375 °C) for 18 hours in excess of air, and then following 
the same procedure as for TOC. 
 
 
2.7.2 Analysis of PAHs in sediments 
The sediment samples were homogenised and added internal standards. The PAHs were then extracted 
with dichloromethane and cyclohexane (1:1, vol/vol) by Accelerated Solvent Extraction (ASE) 
(Dionex ASE-200; Dionex Corp., Sunnyvale, CA, USA) at a temperature of 100 °C and a pressure of 
2000 psi. The further cleaning of the extracts and GC/MS analysis was as described for biota, below. 
The certified reference material used when analysing sediment was SRM 1944. 
 
 
2.7.3 Analysis of PAHs in biota 
Samples of polychaetes and gastropods were homogenized, using an ultra Turrax™. The soft parts of 
the individual bivalves (Nuculoma) were small and needed no homogenization before extraction. 
Subsequently, the samples were added internal standards (200 ng each of naphthalene d8, 
acenaphthene d8, phenanthrene d10, chrysene d12, perylene d12, and anthracene d10) and saponified. 
The PAHs were extracted with n-pentane and dried over sodium sulphate. The extraction volume was 
reduced, solvent exchanged to dichloromethane, and the extracts were cleaned by gel permeation 
chromatography (GPC) and solvent exchanged to cyclohexane. The extracts were analysed by gas 
chromatography and mass spectrometry (GC/MS). The MS detector was operated in selected ion 
monitoring mode (SIM), and the analyte concentrations in the standard solutions were in the range 2 to 
5000 ng/µl. The GC was equipped with a 30 m J&W DB-5MS (stationary phase of 5% phenyl 
polysoxilane) column (0.25 mm i.d. and 0.25 µm film thickness), and an inlet operated in the splitless 
mode. The initial column temperature was 60 °C, which after two minutes was raised to 250 °C at a 
rate of 7 °C/min and thereafter raised to 310 °C at a rate of 15 °C/min. The injector temperature was 
300 °C, the transfer line temperature 280 °C and the MS source temperature 230 °C. The column flow 
rate was 1.2 ml/min. Quantification of individual components was performed by using the internal 
standard method. Standard laboratory procedure is to subtract any PAH component concentrations 
detected in blanks (solvent and internal standards) from all sample concentrations. The quality of each 
sample series was controlled by analysing certified reference matiral (SRM 2977). 
 
 
2.7.4 Analysis of PAHs in POM 
The extracts from the POM material (see above) were analysed for PAHs by GC/MS as described for 
the biota extracts (above). 
 



NIVA 5497-2007 

20 

 
2.7.5 Analysis of other variables 
Total dry matter in the sediments was analysed gravimetrically. 
 
Aliquots of the homogenized material (Nereis and Hinia) or an individual mussel (Nucoloma) from 
each of the groups were used to determine the lipid content gravimetrically, after lipid extraction 
(cyclohexane and acetone). 
 
Proportion (weight percentage) of particles with size <63 µm was analysed according to the methods 
described by Krumbein and Pettijohn (1938). 
 
 
2.7.6 Calculations 
a.) The organic carbon-water partition coefficients were derived from Kows, using Free-energy 
relationship (following Karickhoff et al., 1979), as described in the RAR (and the EU Technical 
Guidance Ducument; TGD): 
 
logKoc = logKow – 0.21 
 
The Kows (octanol:water-partitioning coefficients) used were the same as those used in the RAR. 
 
These were compared with the Kocs deduced using the POM method. 
 
b.) Expected biota concentrations (wet weight) were then calculated using the sediment 
concentrations, Kd (sediment water partitioning coefficient; Kd = Koc × foc; foc is the fraction of organic 
content in the sediment) and BCF (bioconcentration factors). 
 
Cbiota = (Cs/Kd) × BCF 
 
The bioconcentration factors were deduced using the equations described in the TGD: 
 
For logKow 2-6: 
log BCF = 0.85 × logKow – 0.70 
 
For log Kow >6: 
log BCF = – 0.20 × logKow

2 + 2.74 × logKow – 4.72 
 
Expected biota concentrations calculated using the free-energy relationship (Karickhoff) deduced Kds 
and expected biota concentrations calculated using the POM-deduced Kds were both compared with 
the actual biota concentrations measured in the species from the experimental setup. 
 
c.) A less crude approach was also pursued. To account for the amount of organic carbon in the 
sediment and amount of lipid in the organisms, biota to sediment factors (BSAF)s were calculated. 
 

OC

lipid

C
C

=BSAF , where Clipid is the lipid normalized concentration in the organism, and COC is the 

organic carbon normalized concentration in the sediment. 
 
Expected BSAFs were calculated from the free-energy relationship (Karickhoff) deduced Kocs, 
assuming the partitioning coefficient between organism lipids and water equals Kow (Klipid = Kow): 
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logKoc = logKow – 0.21 or Koc = 0.62Kow (Karickhoff et al., 1979) 
 
and since: 
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Expected BSAFs were also calculated from the POM-deduced Kds 
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Where CW is the concentration in water and CS is the concentration in sediment. 
 
The two above mentioned calculated expected BSAFs were then compared to the BSAFs calculated 
from actual measured concentrations in organisms and sediments. 
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3. Results 

3.1 Sediment to water partitioning coefficients (Kds) 
Sediment:water-partitioning coefficients (Kds) deduced using the POM-SPE method were higher than 
those derived from Kow, using Free-energy relationship (following Karickhoff et al., 1979). Comparing 
the organic carbon normalized Kds (in other words Kocs), the Kocs deduced using the POM method 
were a factor 4 – 747 (median = 26) higher, looking at all sediment and all PAH compounds (Figure 
8). Kocs could not be deduced using the POM-method for the few compounds with molecular weight 
less than phenanthrene. The individual values are also presented in Appendix F. 
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Figure 8.  The ratio between the organic carbon:water-partitioning coefficient (Koc) deduced by POM-
solid phase extraction and the predicted Koc derived from Kow, using free-energy relationship 
(following Karickhoff et al., 1979). The ratio is presented for all sediments and all PAHs (from 
phenanthrene) presented from left to right with increasing Kows. The median (26) is presented by a 
blue line. Note logarithmic scale. 
 
 
These results imply lower pore-water concentrations to be compared with predicted no adverse effect 
levels (PNECs) in risk assessment. Furthermore, it would imply lower expected bioavailable fractions 
for bioaccumulation. Figure 8 shows that the variability is great between the sediments for 
phenanthrene. Furthermore, it shows that the PAHs in the sediment especially from Smelter E are 
apparently much stronger adsorbed to the particles that the Karickhoff free-energy relationship would 
imply. 
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The KOCs measured by the use of POM-SPE showed a significant linear relationship with the KOWs 
(Figure 9; P<0.000001; R2=0.66). This figure also shows a higher logKOC:logKOW-ratio than the 
Karichoff et al. (1979) relationship. The largest discrepancy, compared with the Karichoff et al. 
(1979)-deduced KOCs appear for the PAHs with the lowest KOWs (Figure 9). 
 
 

Red line: Log KOC = 2.4586 + 0.7899KOW (R2=0.66)
Blue line: Log KOC = KOW - 0.21 (Karickhoff et al. 1979)
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Figure 9.  The logarithms (Log10) of octanol:water-partitioning coefficients (KOW) plotted against the 
logarithms of organic carbon:water-partitioning coefficients (KOC) determined by the use of POM solid 
phase extraction. All sediments and all PAHs (from phenanthrene) are included. The red line 
represents the linear regression from all data points. The blue line represents the Karickhoff et al. 
(1979) free energy relationship. 
 
 
3.2 Biota concentrations (wet weight) 
All individual biota concentrations (predicted using the various methods described above and actual 
measured concentrations in all species) are presented in Appendices B-D and H-I. 
 
 
3.2.1 Nereis diversicolor 
Expected biota concentrations calculated from Kds deduced using POM-SPE, sediment concentrations 
and bioconcentration factors (BCFs; see pt. b. in paragraph  2.7.6 Calculations, above) corresponded 
good with the concentrations actually measured in N. diversicolor. More specific, the expected 
concentrations were a factor 0.3 (0.5 if the PAH-“SPIKE” sediment is excluded) to 24 (median = 4.0) 
higher than the actual accumulated concentrations (varying with PAH compound and sediment; 
Figure 10). No specific sediment or PAH stands out showing any particular discrepancy between 
“POM-predicted” and actual measured (Nereis) biota-concentration. However, sedimentes from 
Smelter A and Smelter E were often among the overestimated by the POM-method (Figure 10). 
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Figure 10.  The ratio between the “POM-predicted” biota concentrations (predicted from the sediment 
concentrations, the Kds (sediment water partitioning coefficients) deduced using POM solid phase 
extraction, and BCFs (bioconcentration factors)) and the actual measured concentrations in the 
polychaete Nereis diversicolor. The ratio is presented for all sediments and all PAHs (from 
phenanthrene) presented from left to right with increasing Kows. The median (4.0) is presented by a 
blue line. Note logarithmic scale. 
 
 
Expected biota concentrations calculated from the Karickhoff et al. (1979) free-energy relationship, 
sediment concentrations and BCFs corresponded not as good with the concentrations actually 
measured in N. diversicolor (Figure 11). More specific, the expected concentrations were a factor 5 – 
3652 (median = 137) higher than the actual accumulated concentrations. The definite highest 
discrepancies were shown for the Smelter E-sediment, in which the biota concentrations seemed 
largely overestimated using the Karickhoff et al. (1979) equation, as compared to the concentrations 
measured in Nereis diversicolor (Figure 11). 
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Figure 11.  The ratio between the “Karickhoff-predicted” biota concentrations (predicted from the 
sediment concentrations, the Kds (sediment water partitioning coefficients) deduced using the 
Karickhoff et al. (1979) free energy relationship, and BCFs (bioconcentration factors)) and the actual 
measured concentrations in the polychaete Nereis diversicolor. The ratio is presented for all sediments 
and all PAHs (from phenanthrene) presented from left to right with increasing Kows. The median (137) 
is presented by a blue line. Note logarithmic scale. 
 
 
3.2.2 Hinia reticulata 
Expected biota concentrations calculated from Kds deduced using POM-SPE, sediment concentrations 
and bioconcentration factors (BCFs; see pt. b. in paragraph  2.7.6 Calculations, above) corresponded 
good with the concentrations actually measured in H. reticulata. More specific, the expected 
concentrations were a factor 0.3 – 32.1 (median = 5.3) higher than the actual accumulated 
concentrations (varying with PAH compound and sediment; Figure 12). No specific sediment or PAH 
stands out showing any particular discrepancy between “POM-predicted” and actual measured (Hinia) 
biota-concentration. However, sedimentes from Smelter A (3) were often among the overestimated, 
using the POM-method, looking at some of the higher moloecular weight PAHs (Figure 12). 
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Figure 12.  The ratio between the “POM-predicted” biota concentrations (predicted from the sediment 
concentrations, the Kds (sediment water partitioning coefficients) deduced using POM solid phase 
extraction, and BCFs (bioconcentration factors)) and the actual measured concentrations in the 
gastropod Hinia reticulata. The ratio is presented for all sediments and all PAHs (from phenanthrene) 
presented from left to right with increasing Kows. The median (5.3) is presented by a blue line. Note 
logarithmic scale. 
 
 
Expected biota concentrations calculated from the Karickhoff et al. (1979) free-energy relationship, 
sediment concentrations and BCFs corresponded not as good with the concentrations actually 
measured in H.reticulata (Figure 13). More specific, the expected concentrations were a factor 3.1 – 
1057 (median = 152) higher than the actual accumulated concentrations. The definite highest 
discrepancies were shown for the Smelter E-sediment, and often Smelter A (2) in which the biota 
concentrations seemed largely overestimated using the Karickhoff et al. (1979) equation, as compared 
to the concentrations measured in Hinia reticulata (Figure 13). 
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Figure 13.  The ratio between the “Karickhoff-predicted” biota concentrations (predicted from the 
sediment concentrations, the Kds (sediment water partitioning coefficients) deduced using the 
Karickhoff et al. (1979) free energy relationship, and BCFs (bioconcentration factors)) and the actual 
measured concentrations in the polychaete Hinia reticulata. The ratio is presented for all sediments 
and all PAHs (from phenanthrene) presented from left to right with increasing Kows. The median (152) 
is presented by a blue line. Note logarithmic scale. 
 
 
3.2.3 Nuculoma tenuis 
Contrary to the results for N. diversicolor and H. reticulata, expected biota concentrations calculated 
from Kds deduced using POM-SPE, sediment concentrations and bioconcentration factors (BCFs; see 
pt. b. in paragraph  2.7.6 Calculations, above) corresponded not as good with the concentrations 
actually measured in N. tenuis (Figure 14). More specific, the expected concentrations were a factor 
0.07 – 1.7 (median = 0.17) higher (in other words, a factor 14 lower to a factor 1.7 higher; median a 
factor 5.9 lower) than the actual accumulated concentrations (see discussion below). 
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Figure 14.  The ratio between the “POM-predicted” biota concentrations (predicted from the sediment 
concentrations, the Kds (sediment water partitioning coefficients) deduced using POM solid phase 
extraction, and BCFs (bioconcentration factors)) and the actual measured concentrations in the bivalve 
Nuculoma tenuis. The ratio is presented for all sediments and all PAHs (from phenanthrene) presented 
from left to right with increasing Kows. The median (0.17) is presented by a blue line. Note logarithmic 
scale. 
 
 
The expected biota concentrations calculated from the Karickhoff et al. (1979) free-energy 
relationship, sediment concentrations and BCF corresponded approximately equally good/bad 
(however, on the conservative side) with the concentrations actually measured in N. tenuis, as those 
calculated by the use of POM-SPE (above; Figure 15). More specific, the expected concentrations 
were a factor 1.1 – 319 (median = 4.2) higher than the actual accumulated concentrations (see 
discussion below). The largest discrepancies were shown for the PAHs with the smallest molecular 
weights in the Smelter E-sediment (Figure 15). 
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Figure 15.  The ratio between the “Karickhoff-predicted” biota concentrations (predicted from the 
sediment concentrations, the Kds (sediment water partitioning coefficients) deduced using the 
Karickhoff et al. (1979) free energy relationship, and BCFs (bioconcentration factors)) and the actual 
measured concentrations in the polychaete Nuculoma tenuis. The ratio is presented for all sediments 
and all PAHs (from phenanthrene) presented from left to right with increasing Kows. The median (4.2) 
is presented by a blue line. Note logarithmic scale. 
 
 
3.3 Biota to sediment accumulation factors (BSAFs) 
All individual biota to sediment accumulation factors (BSAFs; predicted using the various methods 
described above and actual measured BSAFs for all species) are presented in Appendices J-M. 
 
 
3.3.1 Nereis diversicolor 
Expected BSAFs calculated from Kds deduced using POM-SPE, sediment concentrations (OC 
normalized) and Kow (see pt. c. in paragraph  2.7.6 Calculations, above) corresponded very good with 
the BASFs deduced from the actually measured concentrations in N. diversicolor (lipid normalized) 
and sediments (OC normalized). More specific, the expected BSAFs were a factor 0.08 (0.11 if the 
PAH-“SPIKE” sediment is excluded) to 13.8 (median = 1.25) higher than the actual measured BSAFs 
(varying with PAH compound and sediment; Figure 8). Threre is some indication that the discrepancy 
between “POM-predicted” and actual measured (Nereis) BSAFs increase with increasing molecular 
size of the PAHs (Figure 16). Sediments from Smelter A (2 and 3) and Smelter E were often among 
the overestimated by the POM-method (Figure 16). 
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Figure 16.  The ratio between the “POM-predicted” biota to sediment accumulation factors 
(calculated from the POM-SPE-deduced Kds (sediment water partitioning coefficients), KOWs (the 
octanol:water partitioning coefficients) and the OC-normalized sediment PAH-concentrations) and the 
actual measured BSAFs for the polychaete Nereis diversicolor (calculated from the lipid normalized 
concentrations in the organism and the OC-normalized concentrations in the sediments). The ratio is 
presented for all sediments and all PAHs (from phenanthrene) presented from left to right with 
increasing Kows. The median (1.25) is presented by a blue line. Note logarithmic scale. 
 
 
Expected BSAFs deduced from the Karickhoff et al. (1979) free-energy relationship (BSAF=1.62) 
corresponded not as good with the BSAFs deduced from the actually measured concentrations in N. 
diversicolor and sediments (Figure 17). More specific, the expected BSAFs were a factor 1.3 – 1337 
(median = 36.1) higher than the actual measured BSAFs (Figure 17). The definite highest 
discrepancies were shown for the Smelter E-sediment, in which the BSAFs seemed largely 
overestimated deduced from the Karickhoff et al. (1979) relationship, as compared to the 
concentrations measured in Nereis diversicolor (Figure 17). 
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Figure 17.  The ratio between the “Karickhoff-predicted” biota to sediment accumulation factors 
(BSAF=1.62), and the actual measured BSAFs for the polychaete Nereis diversicolor (calculated from 
the lipid normalized concentrations in the organism and the OC-normalized concentrations in the 
sediments). The ratio is presented for all sediments and all PAHs (from phenanthrene) presented from 
left to right with increasing Kows. The median (36.1) is presented by a blue line. Note logarithmic 
scale. 
 
 
3.3.2 Hinia reticulata 
Expected BSAFs calculated from Kds deduced using POM-SPE, sediment concentrations (OC 
normalized) and Kow (see pt. c. in paragraph  2.7.6 Calculations, above) corresponded very good with 
the BASFs deduced from the actually measured concentrations in H. reticulata (lipid normalized) and 
sediments (OC normalized). More specific, the expected BSAFs were a factor 0.03 – 17.3 (median = 
1.41) higher than the actual measured BSAFs (varying with PAH compound and sediment; Figure 
18). Sediments from Smelter A (2) often showed the highest overerstimations of BSAFs, using the 
POM-method (Figure 18). Furthermore, overall the PAHs with larger molecular size (and KOW; from 
chrysene) seemed to be most overestimated. 
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Figure 18.  The ratio between the “POM-predicted” biota to sediment accumulation factors 
(calculated from the POM-SPE-deduced Kds (sediment water partitioning coefficients), KOWs (the 
octanol:water partitioning coefficients) and the OC-normalized sediment PAH-concentrations) and the 
actual measured BSAFs for the gastropod Hinia reticulata (calculated from the lipid normalized 
concentrations in the organism and the OC-normalized concentrations in the sediments). The ratio is 
presented for all sediments and all PAHs (from phenanthrene) presented from left to right with 
increasing Kows. The median (1.41) is presented by a blue line. Note logarithmic scale. 
 
 
Expected BSAF deduced from the Karickhoff et al. (1979) free-energy relationship (BSAF=1.62) 
corresponded not as good with the BSAFs deduced from the actually measured concentrations in 
H. reticulata (lipid normalized) and sediments (OC normalized; Figure 19). More specific, the 
expected BSAFs were a factor 1.2 – 419 (median = 47) higher than the actual measured BSAFs 
(Figure 19). Sediments from Smelter E and Smelter A (2) showed the largest discrepancies, as the 
BSAFs seemed largely overestimated deduced from the Karickhoff et al. (1979) relationship, as 
compared to the concentrations measured in Hinia reticulata (Figure 19). 
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Figure 19.  The ratio between the “Karickhoff-predicted” biota to sediment accumulation factors 
(BSAF=1.62), and the actual measured BSAFs for the gastropod Hinia reticulata (calculated from the 
lipid normalized concentrations in the organism and the OC-normalized concentrations in the 
sediments). The ratio is presented for all sediments and all PAHs (from phenanthrene) presented from 
left to right with increasing Kows. The median (47) is presented by a blue line. Note logarithmic scale. 
 
 
3.3.3 Nuculoma tenuis 
Expected BSAFs calculated from Kds deduced using POM-SPE, sediment concentrations (OC 
normalized) and Kow (see pt. c. in paragraph  2.7.6 Calculations, above) corresponded not as good with 
the BASFs deduced from the actually measured concentrations in N. tenuis (lipid normalized) and 
sediments (OC normalized), as observed for the other two species N. diversicolor and H. reticulata. 
More specific, the expected BSAFs were a factor 0.013 – 0.35 (median = 0.05) higher (in other words 
a factor 2.9 – 77 (median = 20) lower) than the actual measured BSAFs (Figure 20; see discussion 
below). 
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Figure 20.  The ratio between the “POM-predicted” biota to sediment accumulation factors 
(calculated from the POM-SPE-deduced Kds (sediment water partitioning coefficients), KOWs (the 
octanol:water partitioning coefficients) and the OC-normalized sediment PAH-concentrations) and the 
actual measured BSAFs for the bivalve Nuculoma tenuis (calculated from the lipid normalized 
concentrations in the organism and the OC-normalized concentrations in the sediments). The ratio is 
presented for all sediments and all PAHs (from phenanthrene) presented from left to right with 
increasing Kows. The median (0.05) is presented by a blue line. Note logarithmic scale. 
 
 
Expected BSAF deduced from the Karickhoff et al (1979) free-energy relationship (BSAF=1.62) 
corresponded better with the BSAFs deduced from the actually measured concentrations in 
N. tenuis(lipid normalized) and sediments (OC normalized). More specific, the expected BSAFs were 
a factor 0.22 – 34.1 (median = 1.29) higher than the actual measured BSAFs (Figure 21). The highest 
BSAFPredicted (Karickhoff):BSAFMeasured Nuculoma-ratios were for several PAHs observed for the Smelter E-
sediment (Figure 21). 
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Figure 21.  The ratio between the “Karickhoff-predicted” biota to sediment accumulation factors 
(BSAF=1.62), and the actual measured BSAFs for the bivalve Nuculoma tenuis (calculated from the 
lipid normalized concentrations in the organism and the OC-normalized concentrations in the 
sediments). The ratio is presented for all sediments and all PAHs (from phenanthrene) presented from 
left to right with increasing Kows. The median (1.49) is presented by a blue line. Note logarithmic 
scale. 
 
 
3.4 PAH-profiles 
The divergencies between the results for Nuculoma tenuis and the other two species, Nereis 
diversicolor and Hinia reticulata, gave reason for further scrutiny (see discussion below). The PAH-
profiles (relative concentrations; the proportion each PAH compound to the sum of all compounds) 
was calculated in each of the matrices (whole sediment, pore water (deduced using the POM-SPE 
method) and the three organsims). This profile is plotted for the Smelter A1 sediment in Figure 22. 
 
The pattern shows that the bivalve Nuculoma tenuis displays a similar PAH-profile as the whole 
sediment (Figure 22). The polychaet Nereis diversicolor and the gastropod Hinia reticulata show 
profiles more similar to the sediment pore water (Figure 22). 
 
The relative concentrations of the PAHs in all matrices from all sediments were subjected to a 
Principal Component Analysis (PCA; Figure 23). The PCA also showed that the PAH profile in 
Nereis diversicolor and Hinia reticulata resembled the PAH profile in pore water (located more to the 
right in the score plot: Figure 23 b), while the profile in Nuculoma tenuis resembled more the PAH 
profile in whole sediment (located more to the left in the score plot: Figure 23 b). Higher proportions 
of the compounds fluoranthene, pyrene, anthracene and phenanthrene was important for segregating 
the pore water PAH-profile from the whole sediment PAH-profile (loading positively on principal 
component 1, explaining 52 % of the variance in the material; Figure 23 a). 
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The PCA also showed that the sediment spiked with PAH, pore water from this sediment , and all 
three species exposed to this sediment showed PAH-profiles different from the other sediments, pore 
water from these sediments, and organisms exposed to them (Figure 23). This is shown by the PAH-
“SPIKE” data points placed to the lower right in the score plot (Figure 23 b), due to higher relative 
concentrations of phenanthrene and anthracene (Figure 23 a). Therefore, the PCA was performed 
again, without the PAH-“SPIKE” sediment, pore water from this sediment or organisms exposed to it 
(Figure 24). This analysis also showed the strongest reseblance between the PAH-profiles in whole 
sediment and Nuculoma tenuis.  
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Figure 22.  Relative concentrations of individual PAH compounds (expressed as sum of all compounds; sum-PAH) in whole sediment from 
Smelter A1, pore water from this sediment (measured by POM-SPE) and Nereis diversicolor, Hinia reticulata and Nuculoma tenuis exposed to the 
Vefsnfjord 1 sediment for 4 weeks. 
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Figure 23.  Loading- (a.) and score-plot (b.) for a Principal Component Analysis (PCA) performed on 
relative concentations (% of sum-PAH) in whole sediment, sediment porewater, Nereis diversicolor, 
Hinia reticulata and Nuculoma tenuis (all groups/sediments included). 
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Figure 24.  Loading- (a.) and score-plot (b.) for a Principal Component Analysis (PCA) performed on 
relative concentations (% of sum-PAH) in whole sediment, sediment porewater, Nereis diversicolor, 
Hinia reticulata and Nuculoma tenuis (all groups/sediments, except PAH-“SPIKE” included). 
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4. Discussion 

The results from the POM experiments showed that the PAHs associated with the sediments in the 
vicinity of the smelters were stronger adsorbed/absorbed to the particles than the Karickhoff et al. 
(1979) free energy relationship implies. This further implies that the bioavailable fraction is 
correspondingly lower, and one would expect lower bioaccumulated concentrations. It was, however, 
difficult to show any good relationships between the total organic carbon or black carbon content in 
the sediments and the sediment:water partitioning coefficients (Kd), plotted for each PAH compound. 
 
The accumulated concentrations measured in Nereis diversicolor and Hinia reticulata were in fact 
very similar to biota concentrations expected based on the POM-deduced sediment-water partitioning 
coefficients (Kds). Thus, the measured biota to sediment accumulation factors (BSAFs) agreed also 
very well with those expected from the POM-deduced Kds. 
 
On the other hand, this good correspondence was not observed for the third species, Nuculoma tenuis. 
PAH concentrations measured in N. tenuis were up to two orders of magnitude (a factor >300) higher 
than the concentrations measured in Nereis diversicolor and Hinia reticulata. In fact, for some 
compounds and sediments, the Nuculoma wet weight concentrations were even higher than the 
sediment dry weight concentrations. 
 
Due to the low biomass obtained from the N. tenuis individuals, no replicates from each of the 
sediments could be analysed. Still, only 0.35 to 0.61 g of mussel soft tissue was obtained per sample 
for analysis. Thus, the risk of contamination of the biological tissue samples by contaminated particles 
is higher than for the other species (for which 1.5 - 6 g of tissue was obtained per individual sample 
for analysis). Assuming that the PAHs in the sediment are associated with organic material, 
approximately only 1% (weight:weight; equivalent to approximately 5 mg) of sediment organic 
material in a Nuculoma sample would increase its concentration form those observed in Nereis and 
Hinia to the concentrations actually measured in the Nuculoma samples.  
 
As most protobranchs, Nuculoma tenuis is a selective deposit feeder. During feeding, its tentacles are 
extended into the bottom sediments. Deposited materials adhere to the mucus-covered surface of the 
tentacles and then are transported by cilia back to the palps, which function as sorting devices (Barnes, 
1987). It is likely that PAH-contaminated deposit material in the stomach may have been analysed as 
part of the organism. Furthermore, when the organisms sort the particles, light particles are carried by 
crest cilia to the mouth, while heavy particles are carried by groove cilia to the palp margins, where 
they are ejected into the mantle cavity (Barnes, 1987). 
 
The reason for suspecting contamination of Nuculoma samples by particulate material in the first 
place, arise from differences observed in the different PAH profiles (relative concentrations expressed 
as percentages of sum PAH) in the different sample matrices. As expected, the profiles in the Nereis 
and Hinia samples resemble the profiles in pore water (measured by POM-SPE). Fluoranthene and 
pyrene are e.g. two compounds that are measured in high concentrations in pore water relative to the 
other (and higher molecular weight) PAHs (i.e. they have lower Kds). The relative concentrations of 
these compounds are lower in sediment samples and Nuculoma samples. On the other hand, the higher 
molecular PAHs, such as benzo(b,j)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and 
benzo(ghi)perylene constitute higher percentages of sum PAH in sediment samples and Nuculoma 
samples, while they are low or not detected in pore water, Nereis and Hinia (Figure 22). 
 
One the other hand, one could explain the higher concentrations of PAHs in Nuculoma with a lower 
capability of metabolising and eliminating the compounds, than N. diversicolor and H. reticulata. It is 
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likely that especially Nereis has a higher capability of biotransformation than Nuculoma, which is a 
primitive protobranch. The question that still remains is whether the rate of metabolism is sufficient to 
alter the equilibrium appreciable. Studying several organisms, Rust et al. (2004b) found high rates of 
metabolism of benzo(a)pyrene in the polychaetes Nereis virens and Nereis succinea, and that 
bioaccumulation factors were inversely related to the capability of metabolizing benzo(a)pyrene. 
 
Metabolites of pyrene have earlier been shown in Nereis diversicolor (Christensen et al. 2002; 
Giessing et al. 2003), however, pyrene was one of the compounds that bioaccumulated the most in 
Nereis and also Hinia (as expected from the pore water concentrations). Metabolism of e.g. 
benzo(b,j)fluoranthene is less likely, still this compound does not bioaccumulate as much as pyrene in 
Nereis and Hinia, even though the concentration in sediment is higher than the concentration of 
pyrene. The concentration of benzo(b,j)fluoranthene in porewater, however, is lower than the pyrene 
concentrations. Therefore, it seems that the bioavailable compounds in sediment pore water may be 
more important than metabolic capability for determining the bioaccumulation. Benzo(b,j)-
fluoranthene constitutes high percentages of sum PAH in Nuculoma (higher than pyrene), as it does in 
the sediment samples. 
 
It therefore seems likely that uncontrollable factors, rendering us uncertain of the contamination by 
particulate matter in the Nuculoma samples, may have caused the pattern observed in this species, 
which deviates from the patterns observed in Nereis and Hinia. It would seem less likely that a 
selective higher uptake of the higher molecular weight (and thus stronger particle adsorbed) PAHs 
would occur in Nuculoma. It would seem correspondingly unlikely that the pattern observed in Nereis 
and Hinia should be a result of a higher capability than Nuculoma to metabolise and eliminate 
especially the higher molecular weight PAHs, that are hardly detectable in pore water (high Kds) and 
are therefore less bioavailable. However, the many uncertainties associated with Nuculoma tenuis 
render the interpratations somewhat inconclusive for this species, and further investigations would be 
necessary to eliminate these uncertainties. 
 
 
4.1 Conclusions 
The results from the POM-experiments showed that the PAHs associated with the sediments in the 
vicinity of the smelters were stronger (a median factor of at least a magnitude) adsorbed/absorbed to 
the particles than the Karickhoff et al. (1979) free energy relationship implies. This further implies that 
the bioavailable fraction is correspondingly lower, and one would expect lower bioaccumulated 
concentrations. The accumulated concentrations measured in Nereis diversicolor and Hinia reticulata 
were in fact very similar to biota concentrations expected based on the POM-deduced sediment-water 
partitioning coefficients (Kds). Thus, the measured biota to sediment accumulation factors (BSAFs) 
agreed also very well with those expected from the POM-deduced Kds. 
 
On the other hand, this good correspondence was not observed for the third species, Nuculoma tenuis. 
There were however logistical intractabilities connected to this species biology and size that render it 
probable that particulate sedimentary matter contaminated the Nuculoma tissues analyses. 
Exceptionally high PAH concentrations relative to the other two organisms and a PAH profile more 
similar to that of the sediments support this assumption. However, the many uncertainties associated 
with this species, render the interpretations somewhat inconclusive, and further investigations would 
be necessary to eliminate the uncertainties for this species. 
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Appendix A.   
Concentrations (µg/kg dry wt) of PAHs (sum PAH is sum-PAHEPA 16), Total dry matter (TDM, %), proportion of particles smaller than 63 µm (%), total 
organic carbon (%) and amount black carbon (%) in the different sediments. 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 2.3 <2 14 8.2 5.6 80 28 380 250 230
Smelter A2 11 <2 29 19 12 190 69 610 470 510
Smelter A3 16 <2 38 22 13 200 44 350 310 200
Smelter B 1600 50 2100 1600 890 14000 2800 35000 32000 22000
Smelter C 2900 130 3700 2700 1400 22000 8700 56000 38000 61000
Smelter D 27 2.2 110 53 33 520 140 1300 1200 950
Smelter E 140 2.8 320 180 90 1300 260 2100 1800 1300
PAH-"SPIKE" 10 <2 16 18 15 550 320 720 510 49
Control 2.4 <2 <2 <2 <2 3.3 <2 6.3 5.5 2.2

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene Sum PAH
Smelter A1 310 730 220 460 270 68 260 82 300 3164.5
Smelter A2 1100 1800 520 1200 570 150 720 210 840 7668
Smelter A3 270 610 200 400 270 68 340 89 390 3349
Smelter B 33000 66000 18000 44000 30000 5900 23000 6700 24000 311850
Smelter C 140000 150000 44000 95000 72000 14000 42000 12000 39000 694130
Smelter D 1400 3900 1300 2400 2200 550 1900 520 2200 17722.2
Smelter E 1700 2600 910 1500 1600 400 1300 360 1300 17172.8
PAH-"SPIKE" 44 340 340 37 250 26 220 200 37 3624
Control 4.8 7.2 2.1 5 3.1 5.6 3.3 <2 2.2 42.4

TDM (%) <63µm (%) TOC (%) BC (%)
Smelter A1 62.5 56 1.24 0.11
Smelter A2 66.62 76 1.19 0.15
Smelter A3 44.21 96 1.59 0.1
Smelter B 57.74 72 6.76 5.77
Smelter C 51.52 76 5.46 1.87
Smelter D 67.83 30 1.32 0.22
Smelter E 63.77 75 1.36 0.43
PAH-"SPIKE" 73.74 82 0.63 <0.1
Control 76.62 84 0.42 <0.1  
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Appendix B.   
Concentrations (µg/kg wet wt) of PAHs (sum PAH is sum-PAHEPA 16) and lipid content (%) in the polychaete Nereis diversicolor exposed to the 
different sediments. 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 1 <6 <0.5 <0.5 0.76 1.2 1.7 2.4 120 50 13
Smelter A1 2 <6 <0.5 0.62 0.84 1.1 1.7 1.3 79 30 5.7
Smelter A1 3 6.8 <0.5 0.94 0.54 0.98 2.3 1.4 88 32 5.6
Smelter A2 1 <6 <0.5 0.65 0.77 0.69 3.8 3 66 45 8
Smelter A2 2 <6 <0.5 <0.5 0.73 0.64 4 2.4 63 43 10
Smelter A2 3 20 0.56 <0.5 <0.5 0.65 4.9 2.8 81 58 18
Smelter A3 1 <6 <0.5 0.52 <0.5 <0.5 <1 <0.5 <3 5.4 1.1
Smelter A3 2 <6 <0.5 0.64 <0.5 <0.5 1.1 <0.5 4.3 8.2 1.1
Smelter A3 3 <6 <0.5 <0.5 <0.5 <0.5 0.81 <0.5 3.9 5.6 <0.5
Smelter B 1 <6 0.63 3.4 1.6 1.3 20 14 2500 1600 710
Smelter B 2 12 0.61 4.9 1.1 1.4 23 15 2700 1700 640
Smelter B 3 16 0.93 4.2 0.53 1.2 20 13 2700 1700 600
Smelter C 1 <6 <0.5 130 3.6 15 23 130 11000 3800 4300
Smelter C 2 7.9 2.1 120 2.3 14 25 160 14000 4200 6100
Smelter C 3 <6 2 110 2.1 7.5 13 80 11000 2700 4400
Smelter D 1 <6 <0.5 1.4 1.1 1.1 3.5 6.5 150 250 40
Smelter D 2 <6 <0.5 1.4 1.3 0.97 4.4 5.3 160 280 51
Smelter D 3 7.4 <0.5 2.5 0.95 1.1 5.6 5.8 180 330 53
Smelter E 1 <6 <0.5 1.2 0.76 <0.5 2.2 0.59 <3 15 1.1
Smelter E 2 <6 <0.5 1.5 0.87 <0.5 3.3 0.87 7.4 20 2.1
Smelter E 3 <6 <0.5 1.4 <0.5 <0.5 2.3 0.72 <4 18 <1.5
PAH- "SPIKE" 1 <6 <0.5 7.2 5.4 11 400 93 250 160 <0.5
PAH- "SPIKE" 2 16 0.61 6.1 2 9.3 410 62 300 200 <1.5
PAH- "SPIKE" 3 <6 0.67 8.6 3.6 8.7 370 66 330 220 <1.5
Control 1 <6 <0.5 <0.5 <0.5 <0.5 <1 <0.5 <3 <1.5 <0.5
Control 2 <6 <0.5 <0.5 <0.5 <0.5 0.72 <0.5 <0.6 <0.9 <0.5
Control 3 14 <0.5 <0.5 <0.5 <0.5 <0.8 <0.5 <4 <2 <1.5

MEDIANS:
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

Smelter A1 0 0 0.62 0.76 1.1 1.7 1.4 88 32 5.7
Smelter A2 0 0 0 0.73 0.65 4 2.8 66 45 10
Smelter A3 0 0 0.52 0 0 0.81 0 3.9 5.6 1.1
Smelter B 12 0.63 4.2 1.1 1.3 20 14 2700 1700 640
Smelter C 0 2 120 2.3 14 23 130 11000 3800 4400
Smelter D 0 0 1.4 1.1 1.1 4.4 5.8 160 280 51
Smelter E 0 0 1.4 0.76 0 2.3 0.72 0 18 1.1
PAH-"SPIKE" 0 0.61 7.2 3.6 9.3 400 66 300 200 0
Control 0 0 0 0 0 0 0 0 0 0    Cont. on next page 
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Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene Sum PAH
Smelter A1 1 12 35 5 32 4.5 1.1 3.6 1.4 5.6 254.96
Smelter A1 2 11 17 2.1 18 1.7 <0.5 2.2 0.56 3.3 157.02
Smelter A1 3 12 21 2.3 18 <1.3 <0.7 1.8 0.61 2.8 178.09
Smelter A2 1 13 35 3.6 38 4.7 1.7 5.5 2.2 11 202.22
Smelter A2 2 17 37 5.5 37 5.3 1.7 6.4 2.2 11 207.53
Smelter A2 3 32 58 12 53 8 4 11 4.1 24 334.36
Smelter A3 1 1.2 5 0.91 5.2 0.78 <0.5 1.6 <0.5 2.6 19.11
Smelter A3 2 1.7 5.7 0.83 5.7 <0.5 <0.5 1.5 <0.5 2.5 27.57
Smelter A3 3 1.1 2.7 <0.5 3.9 <0.5 <0.5 0.78 <0.5 2.3 17.19
Smelter B 1 240 1800 290 1400 450 93 240 69 320 8258.63
Smelter B 2 500 1600 250 1300 390 79 180 56 280 8352.61
Smelter B 3 430 1500 260 1200 290 54 200 58 280 8072.66
Smelter C 1 4200 6000 660 4100 1600 400 760 220 870 33696.6
Smelter C 2 2800 9900 1200 6400 2700 560 1100 340 1300 43957.3
Smelter C 3 1900 8500 1200 5300 2200 480 880 280 1100 34367.1
Smelter D 1 49 320 45 300 84 35 62 16 100 1128.5
Smelter D 2 75 550 77 480 120 34 76 19 130 1550.4
Smelter D 3 65 570 91 510 130 39 89 23 150 1703.25
Smelter E 1 1.3 9.2 1.8 8.4 1.7 <0.5 2.4 0.81 3.6 41.66
Smelter E 2 5.2 14 2.9 12 2.9 0.67 3.8 1.2 5.5 71.54
Smelter E 3 3.6 11 1.6 9 <1.3 <0.7 2.1 0.72 3.8 45.24
PAH- "SPIKE" 1 <0.5 12 5.7 1.4 3.6 <0.5 2.4 2.3 2.4 944
PAH- "SPIKE" 2 <1 12 6.3 <3 1.8 <0.7 1.8 2.8 <0.5 1021.41
PAH- "SPIKE" 3 <1 19 14 <3 4.1 <0.7 3.2 3.4 <0.5 1042.57
Control 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0
Control 2 <0.5 <1.5 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 0.72
Control 3 <1 <3.2 <0.5 <3 <1.3 <0.7 <0.5 <0.5 <0.5 14

MEDIANS:
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene Sum PAH

Smelter A1 12 21 2.3 18 1.7 0 2.2 0.61 3.3 178.09
Smelter A2 17 37 5.5 38 5.3 1.7 6.4 2.2 11 207.53
Smelter A3 1.2 5 0.83 5.2 0 0 1.5 0 2.5 19.11
Smelter B 430 1600 260 1300 390 79 200 58 280 8258.63
Smelter C 2800 8500 1200 5300 2200 480 880 280 1100 34367.1
Smelter D 65 550 77 480 120 35 76 19 130 1550.4
Smelter E 3.6 11 1.8 9 1.7 0 2.4 0.81 3.8 45.24
PAH-"SPIKE" 0 12 6.3 0 3.6 0 2.4 2.8 0 1021.41
Control 0 0 0 0 0 0 0 0 0 0.72

Lipid (%)
Smelter A1 0.91
Smelter A2 0.89
Smelter A3 0.98
Smelter B 0.8
Smelter C 0.85
Smelter D 1.01
Smelter E 0.95
PAH-"SPIKE" 0.97
Control 0.91  
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Appendix C.   
Concentrations (µg/kg wet wt) of PAHs (sum PAH is sum-PAHEPA 16) and lipid content (%) in the gastropod Hinia reticulata exposed to the different 
sediments. 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 1 110 <2 <2 <2 <2 7.4 <2 62 8.8 <2
Smelter A1 2 59 <2 2 <2 <2 5.9 <2 39 7.4 2.6
Smelter A1 3 <17 <2 <2 <2 <2 <3 <2 76 8.2 2.7
Smelter A2 1 94 <2 2.4 2.1 <2 10 2.6 64 20 4.7
Smelter A2 2 79 <2 <2 <2 <2 9.1 <2 46 12 4.6
Smelter A2 3 630 <2 <2 <2 <2 6.8 <2 74 19 4.4
Smelter A3 1 130 <2 <2 <2 <2 6.7 <2 5.2 4.4 <2
Smelter A3 2 m m m m m m m 18 11 3
Smelter A3 3 100 <2 <2 4 <2 7.4 <2 7.9 5.6 <2
Smelter B 1 m m m m m m m 4100 2300 240
Smelter B 2 31 <2 12 8 4.9 75 21 3600 1500 240
Smelter B 3 <17 <2 5.4 4.1 2.6 42 14 2800 1600 200
Smelter C 1 m m m m m m m 17000 5100 5500
Smelter C 2 32 <2 37 4.6 24 43 180 19000 5800 5800
Smelter C 3 m m m m m m m m m m
Smelter D 1 m m m m m m m 95 58 7.6
Smelter D 2 28 <2 <2 <2 <2 7.3 2.5 140 88 9.2
Smelter D 3 <17 <2 <2 <2 <2 5.1 2.1 94 64 12
Smelter E 1 110 <2 <2 <2 <2 13 <2 9.4 9.2 3.8
Smelter E 2 45 <2 2.4 <2 <2 11 <2 16 15 6.5
Smelter E 3 <17 <2 <2 <2 <2 5.2 <2 4.3 5.4 2.9
PAH- "SPIKE" 1 m m m m m m m 240 110 4.5
PAH- "SPIKE" 2 <17 <2 <2 <2 <2 140 22 150 68 <2
PAH- "SPIKE" 3 <17 <2 <2 <2 <2 170 36 190 83 <2
Control 1 100 <2 <2 <2 <2 8.5 <2 2.6 2.2 <2
Control 2 76 <2 <2 3.2 18 7.6 <2 3.7 2.3 <2
Control 3 <17 <2 <2 <2 <2 3.4 <2 <4 <3 <2

MEDIANS:
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

Smelter A1 59 0 0 0 0 5.9 0 62 8.2 2.6
Smelter A2 94 0 0 0 0 9.1 0 64 19 4.6
Smelter A3 115 0 0 2 0 7.05 0 7.9 5.6 0
Smelter B 15.5 0 8.7 6.05 3.75 58.5 17.5 3600 1600 240
Smelter C 32 0 37 4.6 24 43 180 18000 5450 5650
Smelter D 14 0 0 0 0 6.2 2.3 95 64 9.2
Smelter E 45 0 0 0 0 11 0 9.4 9.2 3.8
PAH-"SPIKE" 0 0 0 0 0 155 29 190 83 0
Control 76 0 0 0 0 7.6 0 2.6 2.2 0    Cont. on next page 
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Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene Sum PAH
Smelter A1 1 5.1 4.2 2.9 10 <2 <2 <2 <2 <2 200.4
Smelter A1 2 6.1 6.4 4.4 14 2.5 3.3 2.2 <2 3.1 140.6
Smelter A1 3 6.6 4.9 4.2 12 <2 <2 <2 <2 <2 102.6
Smelter A2 1 6.1 15 11 36 4.9 <2 6.4 2.1 8.7 254
Smelter A2 2 5 16 8.5 33 4.6 <2 6.7 2.3 10 203.8
Smelter A2 3 4.2 12 6.9 33 4.4 2.5 4.2 <2 13 778.9
Smelter A3 1 2.2 3.6 2.1 5.7 <2 <2 2.1 <2 3.1 159.4
Smelter A3 2 3.9 7.1 4.7 9.9 3.4 <2 5.1 <2 6.4 62.6
Smelter A3 3 2.2 3.8 2.1 5.8 <2 <2 2.4 <2 4 139.4
Smelter B 1 110 550 250 940 180 37 100 42 190 8062
Smelter B 2 220 670 310 930 260 56 200 64 260 7471
Smelter B 3 140 470 190 600 160 29 130 43 160 5958.5
Smelter C 1 2800 7200 1900 5400 1800 370 510 180 650 42640
Smelter C 2 2500 7300 1800 5400 2000 420 600 190 710 45996.6
Smelter C 3 m m m m m m m m m
Smelter D 1 s16 48 45 130 27 8.1 18 5.9 32 336.5
Smelter D 2 s19 53 46 140 31 12 23 4.7 29 461.7
Smelter D 3 s19 56 45 130 29 9.2 20 7.2 40 374.4
Smelter E 1 s6.1 11 5.3 14 5 <2 5.5 <2 8 180.2
Smelter E 2 s7.8 15 8.7 22 8 2.4 8.7 <2 10 146.3
Smelter E 3 s4.1 9.8 5.1 14 4.2 <2 5.7 <2 8.7 51.3
PAH- "SPIKE" 1 s3.4 12 13 8.7 7.2 2.1 6.4 5.8 6.7 405.6
PAH- "SPIKE" 2 <2 3.9 10 <2 4 <2 3.3 3.9 <2 405.1
PAH- "SPIKE" 3 <2 8.7 14 3.5 6.7 <2 6.8 5.2 3.2 523.6
Control 1 <2 <2 <2 <2 <2 <2 <2 <2 <2 113.3
Control 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 92.8
Control 3 <2 <2 <2 <2 <2 <2 <2 <2 <2 3.4

MEDIANS:
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene Sum PAH

Smelter A1 6.1 4.9 4.2 12 0 0 0 0 0 140.6
Smelter A2 5 15 8.5 33 4.6 0 6.4 2.1 10 254
Smelter A3 2.2 3.8 2.1 5.8 0 0 2.4 0 4 139.4
Smelter B 140 550 250 930 180 37 130 43 190 7471
Smelter C 2650 7250 1850 5400 1900 395 555 185 680 44318.3
Smelter D 19 53 45 130 29 9.2 20 5.9 32 393.4
Smelter E 6.1 11 5.3 14 5 0 5.7 0 8.7 154.1
PAH-"SPIKE" 0 8.7 13 3.5 6.7 0 6.4 5.2 3.2 409
Control 0 0 0 0 0 0 0 0 0 92.8

Lipid (%)
Smelter A1 0.36
Smelter A2 1.4
Smelter A3 1.2
Smelter B 0.51
Smelter C 1.6
Smelter D 0.84
Smelter E 0.51
PAH-"SPIKE" 1.5
Control 0.74  
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Appendix D.   
Concentrations (µg/kg wet wt) of PAHs (sum PAH is sum-PAHEPA 16) and lipid content (%) in the bivalve nuculoma tenuis exposed to the different 
sediments. 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 <120 <2.5 2.2 <2.6 2.5 8.4 14 680 390 390
Smelter A2 <120 2.6 2.1 <2.6 2.1 27 27 530 480 610
Smelter A3 <120 <2.5 3 2.8 1.1 17 6.1 74 150 120
Smelter B <120 2.8 27 21 15 220 120 13000 15000 7100
Smelter C <120 4.7 160 32 95 280 1400 52000 22000 24000
Smelter D <120 3.2 5.3 3.1 <0.8 25 33 590 1200 520
Smelter E <120 <2.5 5.2 3.2 1.4 20 7.8 60 230 76
PAH-"SPIKE" <120 3.5 11 12 16 1500 450 2100 1700 29
Control <120 3.4 2.2 <2.6 <0.8 <5 1.2 <3.8 4.6 <1.5  
 
Cont. on next page 
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Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene Sum PAH
Smelter A1 410 1100 300 570 230 44 200 60 230 4014.6
Smelter A2 670 2600 710 1500 580 130 890 260 990 8378.7
Smelter A3 170 690 210 410 140 19 280 76 350 2288.9
Smelter B 2100 16000 4000 9300 4600 730 2800 870 2900 68760.8
Smelter C 15000 36000 7100 20000 10000 1700 3600 1200 3500 176276.7
Smelter D 490 5100 1500 2700 1800 360 1500 370 1500 14639.6
Smelter E 120 850 260 500 170 34 260 76 330 2468.2
PAH-"SPIKE" 27 540 570 62 290 26 190 220 69 7711.5
Control <1.6 7.4 2.1 7.2 <1.3 <5 5.3 <2.1 13 39.2

Lipid (%)
Smelter A1 0.39
Smelter A2 0.97
Smelter A3 0.66
Smelter B 0.94
Smelter C 0.69
Smelter D 0.34
Smelter E 0.44
PAH-"SPIKE" 1.7
Control 0.3  
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Appendix E.   
Sediment:water partitioning coefficients (Kd; L/kg), determined by POM-SPE (triplicates and medians). 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 1
Smelter A1 2 25350 11381 8377 11417 56157
Smelter A1 3 95011 16302 9249 13880 91997
Smelter A2 1 12707 12884 12020 14189 72856
Smelter A2 2 13696 11543 11449 14133 71079
Smelter A2 3 24539 20668 16724 17296 96711
Smelter A3 1 49529 48107 59597 42045 194353
Smelter A3 2 22136 33535 59658 49418 219831
Smelter A3 3 24538 39257 61755 47606 215341
Smelter B 1 63589 37812 28915 24029 178994
Smelter B 2 110294 42229 32084 27832 195395
Smelter B 3 40848 32487 29324 25598 143636
Smelter C 1 748844 81388 38775 46613 217747
Smelter C 2 934558 127756 59133 88061 403392
Smelter C 3 1391437 116263 60331 74858 314249
Smelter D 1 85722 35507 53732 26045 172812
Smelter D 2 37277 28456 35516 22831 173470
Smelter D 3 1164294 41364 37382 20823 141471
Smelter E 1 55391 60707 193501 108358 1043915
Smelter E 2 58583 54720 166173 90017 891086
Smelter E 3 518229 188111 579595 193986 2962240
PAH- "SPIKE" 1 4359 2652 3804 4056 320688
PAH- "SPIKE" 2 7972 3933 5152 5542 386278
PAH- "SPIKE" 3 6464 5010 7264 7885 798442
Control 1
Control 2
Control 3 19912  
 
Cont. on next page 
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Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 1
Smelter A1 2 73151 112426 130970 97741 205252 524662 396088 357342
Smelter A1 3 103692 249645 444550 204699 336266 1101100 970854 730614
Smelter A2 1 123925 141522 190861 110879 226092 486238 213264 267481
Smelter A2 2 110903 120609 158426 110052 158308 354750 256020 261296
Smelter A2 3 158295 149964 195423 134616 219493 413261 313064 290147
Smelter A3 1 178839 210772 353548 223610 293372 873308 626389 594700
Smelter A3 2 201641 237531 369191 213078 270989 608233 450010 416240
Smelter A3 3 201252 283584 372203 216294 406631 612604 462772 446682
Smelter B 1 362410 600362 738761 572083 1346157 3723871 2427022 2476866
Smelter B 2 408833 654986 985812 648799 1503575 3566701 2667381 2531254
Smelter B 3 146814 457110 524843 436363 999333 2123147 1417907 1518004
Smelter C 1 738324 308469 426090 287762 692844 1229792 723622 735104
Smelter C 2 1305116 432344 631691 363728 902505 1321449 946590 958255
Smelter C 3 1276031 437137 680249 366762 918354 1700517 1199016 1181294
Smelter D 1 176442 157386 171276 137946 273618 397997 332889 343880
Smelter D 2 161065 149670 172947 131966 283254 328775 273888 283233
Smelter D 3 146186 140528 162323 126885 276853 373933 299687 330352
Smelter E 1 901713 713877 862303 548341 2199152 1959675 1448692 1197896
Smelter E 2 764173 561596 656904 432820 1861446 1458952 1108480 961872
Smelter E 3 3058523 1468805 1759388 1049973 4843142 3511778 2764221 2079310
PAH- "SPIKE" 1 276077 175883 153534 695899 244271 775487 472484
PAH- "SPIKE" 2 353402 197441 159908 866367 298987 781906 384302
PAH- "SPIKE" 3 716072 380724 333124 595517 1908266 1112569
Control 1
Control 2
Control 3  
 
Cont. on next page 
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MEDIANS:
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

Smelter A1 60181 13841 8813 12648 74077
Smelter A2 13696 12884 12020 14189 72856
Smelter A3 24538 39257 59658 47606 215341
Smelter B 63589 37812 29324 25598 178994
Smelter C 934558 116263 59133 74858 314249
Smelter D 85722 35507 37382 22831 172812
Smelter E 58583 60707 193501 108358 1043915
PAH-"SPIKE" 6464 3933 5152 5542 386278
Control - - - - -  
 

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 88421 181036 287760 151220 270759 812881 683471 543978
Smelter A2 123925 141522 190861 110879 219493 413261 256020 267481
Smelter A3 201252 237531 369191 216294 293372 612604 462772 446682
Smelter B 362410 600362 738761 572083 1346157 3566701 2427022 2476866
Smelter C 1276031 432344 631691 363728 902505 1321449 946590 958255
Smelter D 161065 149670 171276 131966 276853 373933 299687 330352
Smelter E 901713 713877 862303 548341 2199152 1959675 1448692 1197896
PAH-"SPIKE" 353402 197441 159908 781133 298987 781906 472484 -
Control - - - - - - - -  
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Appendix F.   
Organic carbon:water partitioning coefficients (KOC; carbon normalized Kd; L/kg), deduced from KOW, using the Karickhoff et al. (1979) free energy 
relationship, and measured using POM-SPE. 
 
log KOW

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
3.34 3.62 4 4.22 4.57 4.68 5.2 4.98 5.91

KOC deduced from Karickhoff et al. 1979
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

1349 2570 6166 10233 22909 29512 97724 58884 501187

KOC measured (MEDIANS) by POM-SPE
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

Smelter A1 4853296 1116238 710713 1020016 5973952
Smelter A2 1150922 1082719 1010058 1192314 6122366
Smelter A3 1543249 2468968 3752106 2994067 13543487
Smelter B 940672 559348 433780 378663 2647847
Smelter C 17116450 2129353 1083021 1371025 5755473
Smelter D 6494076 2689890 2831959 1729615 13091828
Smelter E 4307555 4463735 14228033 7967520 76758428
PAH-"SPIKE" 1026041 624335 817839 879651 -
Control - - - - -  
 
Cont. on next page 
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log KOW
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene

5.81 6.12 6.11 6.13 6.58 6.5 6.22

KOC Deduced from Karickhoff et al. 1979
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene

398107 812831 794328 831764 2344229 1949845 1023293

KOC Measured (MEDIANS) by POM-SPE
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene

Smelter A1 7130752 14599667 23206454 12195155 21835413 65554898 55118643 43869210
Smelter A2 10413833 11892597 16038776 9317523 18444774 34727854 21514307 22477363
Smelter A3 12657341 14939041 23219539 13603423 18451039 38528563 29105173 28093214
Smelter B 5361091 8881095 10928419 8462768 19913562 52761844 35902691 36640037
Smelter C 23370535 7918386 11569441 6661679 16529398 24202370 17336820 17550463
Smelter D 12201914 11338651 12975459 9997433 20973719 28328282 22703527 25026630
Smelter E 66302441 52490939 63404660 40319221 161702364 144093717 106521466 88080565
PAH-"SPIKE" - 31339829 25382271 - 47458176 124112113 74997451 -
Control - - - - - - - -  
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Appendix G.   
Bioconcentration factors (BCFs) deduced from KOW using the equations described in the Technical Guidance Document (TGD): For logKow 2-6: 
log BCF = 0.85 × logKow – 0.70; For log Kow >6: log BCF = – 0.20 × logKow

2 + 2.74 × logKow – 4.72 
 
log KOW

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
3.34 3.62 4 4.22 4.57 4.68 5.2 4.98 5.91

BCF
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

138 238 501 771 1529 1897 5248 3412 21062  
 
 
log KOW

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
5.81 6.12 6.11 6.13 6.58 6.5 6.22

BCF
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene

17318 36134 35891 36376 44660 43652 38470  
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Appendix H.   
Predicted biotaconcentrations calculated from sediment concentrations (Appendix A), POM-SPE deduced Kds (Appendix E) and BCF (Appendix G): 
Cbiota = (Cs/Kd) × BCF 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 2.0 3.8 226.3 67.4 65.4
Smelter A2 21.2 10.2 266.3 113.0 147.4
Smelter A3 12.5 2.1 30.8 22.2 19.6
Smelter B 336.7 140.5 6264.0 4265.3 2588.7
Smelter C 36.0 141.9 4970.0 1732.0 4088.4
Smelter D 9.3 7.5 182.5 179.3 115.8
Smelter E 33.9 8.1 57.0 56.7 26.2
PAH-"SPIKE" 130.1 154.3 733.4 314.0
Control  
 

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 60.7 145.7 27.4 36.3 14.3 5.2 21.2
Smelter A2 153.7 459.6 97.8 94.5 77.8 35.8 120.8
Smelter A3 23.2 92.8 19.4 33.5 24.8 8.4 33.6
Smelter B 1576.9 3972.4 874.5 810.7 288.0 120.5 372.8
Smelter C 1900.1 12536.7 2499.9 2902.0 1419.4 553.4 1565.7
Smelter D 150.5 941.6 272.4 289.1 226.9 75.7 256.2
Smelter E 32.6 131.6 37.9 26.5 29.6 10.8 41.7
PAH-"SPIKE" 62.2 76.3 30.4 12.6 18.5
Control  
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Appendix I.   
Predicted biotaconcentrations calculated from sediment concentrations and organic content (fOC; Appendix A), Karickhoff et al. (1979) deduced KOCs 
(Appendix F) and BCF (Appendix G): Kd = Koc × foc ; Cbiota = (Cs/Kd) × BCF 
 

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 18.9 91.8 49.8 430.7 145.1 1645.7 1168.2 779.5
Smelter A2 94.4 198.1 120.3 1065.9 372.7 2752.9 2288.5 1801.0
Smelter A3 102.7 194.3 104.2 839.7 177.9 1182.1 1129.7 528.6
Smelter B 2416.4 68.6 2525.1 1783.1 13825.5 2662.0 27804.9 27428.6 13676.5
Smelter C 5422.6 220.7 5508.2 3725.4 26898.6 10240.6 55080.2 40326.5 46950.2
Smelter D 208.8 15.4 677.4 302.5 2629.8 681.6 5288.9 5267.5 3024.5
Smelter E 1051.0 19.1 1912.5 997.1 6381.2 1228.7 8292.4 7668.9 4017.0
PAH-"SPIKE" 162.1 206.4 215.2 5828.0 3264.4 6137.5 4690.6 326.9
Control 58.3 52.5 80.6 75.9 22.0  
 

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 1087.5 2617.1 801.6 952.3 399.5 148.0 909.5
Smelter A2 4021.1 6724.3 1974.4 2094.8 1152.7 395.1 2653.7
Smelter A3 738.7 1705.5 568.3 742.7 407.4 125.3 922.1
Smelter B 21235.7 43402.7 12031.1 19408.6 6481.9 2218.9 13347.0
Smelter C 111541.2 122128.9 36411.6 57671.3 14654.7 4920.3 26852.9
Smelter D 4613.8 13134.4 4449.9 7289.0 2742.2 881.9 6265.7
Smelter E 5437.6 8498.7 3023.3 5145.2 1821.1 592.6 3593.6
PAH-"SPIKE" 303.8 2399.2 2438.5 1735.5 665.3 710.7 220.8
Control 49.7 76.2 22.6 32.3 15.0 19.7  
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Appendix J.   
Biota to sediment accumulation factors (BSAFs) measured for the polychaete Nereis diversicolor. 
 
MEDIANS:

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 0.0603 0.1263 0.2677 0.0290 0.0681 0.3156 0.1744 0.0338
Smelter A2 0.0514 0.0724 0.0281 0.0543 0.1447 0.1280 0.0262
Smelter A3 0.0222 0.0066 0.0181 0.0293 0.0089
Smelter B 0.0634 0.1065 0.0169 0.0058 0.0123 0.0121 0.0423 0.6519 0.4489 0.2458
Smelter C 0.0988 0.2083 0.0055 0.0642 0.0067 0.0960 1.2618 0.6424 0.4633
Smelter D 0.0166 0.0271 0.0436 0.0111 0.0541 0.1609 0.3050 0.0702
Smelter E 0.0063 0.0060 0.0025 0.0040 0.0143 0.0012
PAH-"SPIKE" 0.2923 0.1299 0.4027 0.4724 0.1340 0.2706 0.2547
Control  
 

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 0.0527 0.0392 0.0142 0.0533 0.0086 0.0115 0.0101 0.0150
Smelter A2 0.0207 0.0275 0.0141 0.0423 0.0124 0.0152 0.0119 0.0140 0.0175
Smelter A3 0.0072 0.0133 0.0067 0.0211 0.0072 0.0104
Smelter B 0.1101 0.2048 0.1221 0.2497 0.1099 0.1131 0.0735 0.0731 0.0986
Smelter C 0.1285 0.3640 0.1752 0.3584 0.1963 0.2202 0.1346 0.1499 0.1812
Smelter D 0.0607 0.1843 0.0774 0.2614 0.0713 0.0832 0.0523 0.0478 0.0772
Smelter E 0.0030 0.0061 0.0028 0.0086 0.0015 0.0026 0.0032 0.0042
PAH-"SPIKE" 0.0229 0.0120 0.0094 0.0071 0.0091
Control  
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Appendix K.   
Biota to sediment accumulation factors (BSAFs) measured for the gastropod Hinia reticulata. 
 
MEDIANS:

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 88.3575 0.2540 0.5620 0.1130 0.0389
Smelter A2 7.2636 0.0407 0.0892 0.0344 0.0077
Smelter A3 9.5234 0.1205 0.0467 0.0299 0.0239
Smelter B 0.1284 0.0549 0.0501 0.0558 0.0554 0.0828 1.3634 0.6627 0.1446
Smelter C 0.0377 0.0341 0.0058 0.0585 0.0067 0.0706 1.0969 0.4894 0.3161
Smelter D 0.8148 0.0187 0.0258 0.1148 0.0838 0.0152
Smelter E 0.8571 0.0226 0.0119 0.0136 0.0078
PAH-"SPIKE" 0.1184 0.0381 0.1108 0.0684
Control 17.9730 1.3071 0.2342 0.2270  
 

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 0.0678 0.0231 0.0658 0.0899
Smelter A2 0.0039 0.0071 0.0139 0.0234 0.0069 0.0076 0.0085 0.0101
Smelter A3 0.0108 0.0083 0.0139 0.0192 0.0094 0.0136
Smelter B 0.0562 0.1105 0.1841 0.2802 0.0795 0.0831 0.0749 0.0851 0.1049
Smelter C 0.0646 0.1649 0.1435 0.1940 0.0901 0.0963 0.0451 0.0526 0.0595
Smelter D 0.0213 0.0214 0.0544 0.0851 0.0207 0.0263 0.0165 0.0178 0.0229
Smelter E 0.0096 0.0113 0.0155 0.0249 0.0083 0.0117 0.0178
PAH-"SPIKE" 0.0107 0.0161 0.0397 0.0113 0.0122 0.0109 0.0363
Control  
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Appendix L.   
Biota to sediment accumulation factors (BSAFs) measured for the bivalve Nuculoma tenuis. 
 
MEDIANS:

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
Smelter A1 0.4996 1.4194 0.3338 1.5897 5.6896 4.9600 5.3913
Smelter A2 0.0888 0.2147 0.1743 0.4801 1.0659 1.2529 1.4674
Smelter A3 0.1902 0.3066 0.2038 0.2048 0.3340 0.5094 1.1657 1.4455
Smelter B 0.4027 0.0925 0.0944 0.1212 0.1130 0.3082 2.6711 3.3710 2.3209
Smelter C 0.2861 0.3422 0.0938 0.5370 0.1007 1.2734 7.3478 4.5812 3.1133
Smelter D 5.6471 0.1871 0.2271 0.1867 0.9151 1.7620 3.8824 2.1251
Smelter E 0.0502 0.0549 0.0481 0.0476 0.0927 0.0883 0.3949 0.1807
PAH-"SPIKE" 1.0107 0.5211 1.0809 1.2353
Control 1.1709  
 

Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene
Smelter A1 4.2051 4.7910 4.3357 3.9398 2.7085 2.0573 2.4458 2.3265 2.4376
Smelter A2 0.7472 1.7721 1.6751 1.5335 1.2483 1.0632 1.5165 1.5189 1.4459
Smelter A3 1.5168 2.7250 2.5295 2.4693 1.2492 0.6731 1.9840 2.0572 2.1620
Smelter B 0.4576 1.7434 1.5981 1.5200 1.1027 0.8898 0.8755 0.9338 0.8690
Smelter C 0.8478 1.8991 1.2769 1.6659 1.0990 0.9609 0.6783 0.7913 0.7101
Smelter D 1.3588 5.0769 4.4796 4.3676 3.1765 2.5412 3.0650 2.7624 2.6471
Smelter E 0.2182 1.0105 0.8831 1.0303 0.3284 0.2627 0.6182 0.6525 0.7846
PAH-"SPIKE" 0.5886 0.6213 0.4299 0.3201 0.4076
Control 1.4389 1.4000 2.0160 2.2485 8.2727  
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Appendix M.   

Biota to sediment accumulation factors (BSAFs) predicted from the Karickhoff et al. (1979) free energy relationship ( 62.1
62.0

BSAF =
⋅⋅

⋅
=

Wow

Wow

CK
CK

), 

and BSAFs predicted from sediment concentrations and organic content (fOC; Appendix A), POM-SPE deduced Kds (Appendix E) and Kow (Klipid = Kow):  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

==

OC

S

Wlipid

OC

lipid

f
C

CK
C
CBSAF  where CW = CS/Kd 

 
BSAF predicted from Karickhoff et al. 1979

Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene
1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

BSAF predicted by POM-SPE
Naphthalene Acenaphthylene Acenaphthene Fluorene Dibenzotiophene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene

Smelter A1 0.0077 0.0429 0.2230 0.0936 0.1361
Smelter A2 0.0323 0.0442 0.1569 0.0801 0.1328
Smelter A3 0.0241 0.0194 0.0422 0.0319 0.0600
Smelter B 0.0395 0.0856 0.3654 0.2522 0.3070
Smelter C 0.0022 0.0225 0.1463 0.0697 0.1412
Smelter D 0.0057 0.0178 0.0560 0.0552 0.0621
Smelter E 0.0086 0.0107 0.0111 0.0120 0.0106
PAH-"SPIKE" 0.0362 0.0767 0.1938 0.1086
Control  
 
Cont. on next page 
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BSAF predicted from Karickhoff et al. 1979
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene

1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

BSAF predicted by POM-SPE
Chrysene Benzo(b,j )fluoranthene Benzo(k )fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd )pyrene Dibenz(ac/ah )anthracene Benzo(ghi )perylene

Smelter A1 0.0905 0.0903 0.0555 0.0618 0.0580 0.0574 0.0378
Smelter A2 0.0620 0.1108 0.0803 0.0731 0.1095 0.1470 0.0738
Smelter A3 0.0510 0.0882 0.0555 0.0731 0.0987 0.1087 0.0591
Smelter B 0.1204 0.1484 0.1179 0.0677 0.0721 0.0881 0.0453
Smelter C 0.0276 0.1665 0.1113 0.0816 0.1571 0.1824 0.0946
Smelter D 0.0529 0.1163 0.0993 0.0643 0.1342 0.1393 0.0663
Smelter E 0.0097 0.0251 0.0203 0.0083 0.0264 0.0297 0.0188
PAH-"SPIKE" 0.0421 0.0508 0.0284 0.0306 0.0422
Control  
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