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Preface 

The seminar "An introduction to the programming language R for environmental researchers" was 
arranged for researchers at NIVA in 2006. Many types of statistical software are currently in use at 
NIVA. If more researchers used the same software, we would have a common platform for sharing 
scripts, data and experiences, which would facilitate collaboration. There are many good types of 
software available for statistical analysis, but the object-oriented programming software R has three 
unbeatable benefits.  
 
1) It is freely available and can be downloaded from Internet (http://www.r-project.org), no licence or 
dongles are required 
2) It is under rapid development and the list of available tools ("packages") contributed from users is 
growing steadily; many cutting-edge methods are available (e.g. GAMs and smoothers, quantile 
regression, mixed-effect models, community analysis, breakpoint detectors) 
3) There is a large and expanding scientific community of R users, with newsletters and web fora for 
questions and discussions.  
 
Moreover, this software includes all common statistical methods as well as all options for organisation 
of data. Therefore, all operations from formatting of data to analysis and plotting can be done within 
one script. This also means that all steps of data treatment and analysis can easily be communicated 
between researchers via email, which is an enormous benefit when collaborating internationally. 
However, since R is completely text-based, researchers usually need some introductory training to get 
familiar with this programme. 
 
The examples given in this report are based on research problems and data provided by participants 
(Per Stålnacke, Heleen de Wit, and Hilde Trannum). The data and the script files are available upon 
request (jannicke.moe@niva.no, robert.ptacnik@niva.no). 

 
Oslo, 20.12.2007 

 
 

Jannicke Moe 
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1. INTRODUCTION 

Tom Andersen 
 
1.1 The award-winning S language 
The origin of R is S, an object-oriented language for statistical computing. This is used for 
“Programming with data” - it is thus a whole language, not just a statistical package. S was developed 
in AT&T labs (now Lucent Technologies) by Richard A. Becker, John M. Chambers, and Allan R. 
Wilks. The 1998 ACM Software Systems Award was given to John M. Chambers for the S language. 
The reason was that Chambers's work has “forever altered the way people analyze, visualize, and 
manipulate data...” 

S-plus is a value-added version of S sold by Insightful Corporation (formerly MathSoft, Inc.). 
S-plus has a GUI (graphical user interface) and add-on packages. 
 
1.1.1 The R language and environment 
R is a General Public License implementation of S. It was initiated by Ross Ithaka and Robert 
Gentleman. So R may stand for “Ross & Robert” – supposedly. Or “R is before S” (in the alphabet). 

R is freely downloadable and available for several platforms: Unix/Linux, MacOS, Windows. 
It has an active user community and many add-on packages 
 
1.1.2 Differences between R and S-plus 
The rationale behind R is that: “R should make it easier to detect programming errors, while at the 
same time being as compatible as possible with S”. 

S-plus stores objects as separate files, whereas R objects are stored internally. R is generally 
faster than S-plus, especially to load. But - R objects are lost if R crashes! You should save R 
workspace to avoid this. 

It is important to be aware of certain differences: (the meaning will become clear later...): 
– Powers in formulae must be in “insulated” in R 

S-plus: y ~ x + x^2 
R: y ~ x + I(x^2) 

– R uses different default contrasts in (generalized) linear models 
S-plus: Helmert contrasts 
R: Treatment contrasts  

 
1.1.3 Installing R  
R can be installed without administrator privileges! Go to http://cran.r-project.org/ (CRAN = 
Comprehensive R Archive Network). Select a Precompiled Binary Distribution: Linux, MacOS, or 
Windows.  
Windows installation: 
– Select “Windows (95 or later)” 
– Select “Base distribution” 
– Download and run “rw2011.exe” (or the latest version) 
 
Packages can be installed from the menu Packages -> Install package(s). Installation from local zip 
files is possible, but NOT recommended. When installed, a package can be loaded to the workspace by 
require() or by library(). 
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1.1.4 A first encounter with R 
Create a directory (folder) on your home area called “R-seminar” (for example).  
Start R.  
Select from the menu: File -> Change dir... 
Select the directory you just created. All files will now be loaded from and saved to this directory. 
 
Type “demo(graphics)” in the “R console” window to see some capabilities of R. Press enter (return) 
until the demo ends. Notice what happens in the console and graphics windows. 
 
R returns answers to arithmetical expressions typed in the console window. 
– Arithmetic operators (+-*/) 
– Transcendental functions: sin, cos, exp, log, etc. 
– Etc. 
 
Expressions can include named variables. 
Expressions can be assigned to variables. R uses a special assignment operator: "<-" 
 
Remember:  
– R uses Anglo-American decimal separator (period, not comma). 
– R is case-sensitive (e.g. ANC ≠ anc) 
– Lines starting with # are ignored (comments). 
 
1.2 Object-oriented programming in R 
Objects in R can be lists. Lists are in turn ordered collections of objects.  
Arrays are lists of objects of a single type: Numerical, character, or logical. 
List components can be named:  
> names(object) 
How to construct a list: 
> list(object1, object2, ...) 
List components can be accessed in different ways: 
> object$component 
> object[index] 
> attach(object) 
> detach(object) 
 
1.2.1 Data frames in R 
Data tables are usually arranged as the object type data.frame, with different variables in columns 
and subjects/sites/samples in rows. A data frame is a list of data arrays of same length, but not 
necessarily of same type (continuous, categorical etc.). Both rows and columns of a data frame can be 
named. The elements can be accessed by names, or by indexing. 
Whole column:  
> frame$column.name 
> frame[, "column.name"] 
> frame[, column.number] 
Single element:  
> frame[row.number,]$column.name 
> frame["row.name", "column.name"] 
> frame[row.number, column.number] 
 
 
1.2.2 Importing data into R 
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In order to read a data file, you need to set the correct search path first. With the command window in 
front, select from the menu: 

File -> Change dir...  
and navigate to the directory where your file is located. 
 
Alternatively, you can use the console to tell R where to look for and store files and objects. 
Where to look for files: 
> choose.dir()  
Where to put objects (optional): 
> setwd() 
Within the brackets you must write the whole path with double back-slashes and quotes, e.g.: 
> choose.dir("C:\\R-seminar\\Day1\\") 
 
A data table from an ASCII file or other text can be read into a data frame by read.table(): 
> data.frame <- read.table("datafile.txt", header = TRUE) 

header = TRUE: use first row as variable names. 
 
Alternatively, you can specify the path directly in the read command. This can be useful if you want to 
read files from different locations in the same script. (NB: this only tells R where to read files from, 
not where to store files). For example: 
> DATA <- read.table("C:\\R-seminar\\Day1\\data.txt", header=T) 
(Here you must write the name of your own path. Note that R uses double backslashes!) 
This version can be even further generalised (for easier transfer to new scripts): 
> path <- "C:\\R-seminar\\Day1\\" 
> file <- "data.txt" 
> DATA <- read.table(paste(path, file, sep=""), header=T) 

paste() is a useful function for combining text. Here paste() is used to combine the path and file 
names. (sep=" " is default, so one must say sep="" to avoid the space.) 
 
When using the read.table() function, each row in the data table must have the same number of 
elements. The elements can be separated e.g. by tabs (sep="\t") or by spaces (sep=" "). Missing 
values are coded as “NA” (Not Available). 
 
Proprietary file formats like Excel are not supported. Excel worksheet should be saved as tab-
delimited text files, then they can be imported with read.table().  
 
 
1.2.3 Basic R graphics 
 
Make a scatter plot: 
> plot(...) 
Add points to a plot: 
> points(...) 
Add lines to a plot: 
> lines(...) 
Change plot parameters: 
> par(...) 
Add a straight line to a plot: 
> abline(...) 
Notice: Smoothing functions (section 2.6) are great to reveal trends in your data. But there are many 
ways to use them and they can give quite different results, so they should be used with caution.  
 
Make a histogram: 
> hist(...) 
Appearance depends on how breaks are set. Again, there are many ways to set them, so be careful. 
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1.2.4 Scripts in R 
A script is a sequence of R commands collected in a text file. There are several benefits of using script 
files: 
– You can build up an analysis  
– You can easily change settings and re-run the analysis 
– You can make a new analysis or analyse new data by modifying an old analysis 
– You can document and recall the steps in your analysis 
– You can share models, analyses and plotting routines with colleagues 
 
Make a script file by selecting from the menu: File -> New script. You can run a script by either: 
– Typing source("scriptfile.R") in the console window 
– Selecting text and right-click: Run selection 
– Selecting text and pressing ctrl-R 
 
1.2.5 Control structures in R 
When you want a part of the script to execute only under certain conditions: 
if (conditions) {execute commands} 
> if (x < 0) {x <- 0} 
Other possibilities with if : 
 if(test) {yes} else {no} 
 ifelse(test, yes, no)    
 
When you want a part of the script to execute many times: 

for (index) {execute commands} 
> for (i in 1:10) {print(10^i)} 
For larger operations, functions like apply() are more efficient than for() loops (see example p. 67). 
 
Notice: There are different types of brackets: 
() for grouping expressions 
[] for indexing 
{} for grouping statements  
 
1.2.6 User-defined functions in R 
When you have a piece of code that you will use repeatedly, you should make a function: 
 function(input...) {commands... return(output...)} 
 
Executing a function script creates a function object. The object is executed when the function is 
called.  
 
1.2.7 Getting help 
R has an extensive set of help files in html format. However, R (and S-plus) help is basically written 
by programmers for programmers... Manuals are available from inside R: 
– Menu Help -> Manuals (in PDF) 
– help.start() in console window, opens general HTML help in web browser 
 
Help on commands, functions calls, etc from the console window: 
> help(plot)  # or  
> ?plot  # help window on plot function 
Syntax, parameters, examples, related topics: 
> help.search("plot") # all help windows containing "plot" 
> help(help.search)  # for options 
> help(package = "vegan") # help for an installed package 
A package must be installed, before you can search for help on the package. 
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1.3 Example 1: Plot snow cover data 
 
The first example is a time series of snow cover in Asia in the period 1970-1979. 
 
We can specify an integer range by the colon (:) operator 
> year <- 1970:1979 
> year 
[1] 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 
 

The c() operator constructs a list from its arguments. Arguments can again be lists (lists of lists = 
matrices, etc) 
> snow.cover <- c(6.5,12.0,14.9,10.0,10.7,7.9,21.9,12.5,14.5,9.2) 
> snow.cover 
 [1]  6.5 12.0 14.9 10.0 10.7  7.9 21.9 12.5 14.5  9.2 
 
Notice periods (.) are allowed in variable names while e.g. underscores (_) are NOT recommended (cf. 
MS Access export files). Notice also that variable names are case sensitive 
> Snow.cover 
Error: object "Snow.cover" not found 
 

Now let's make a simple plot of the data with the plot() command (Figure 1, left panel). 
> plot(year,snow.cover) 

 
Figure 1. Plots for the data set snow.cover. Left panel: points; right panel: lines. 
 
OK, but kind of dull - aren't there any glitziness-knobs to turn? Let's get some help on this: 
> help(plot) 
 
A line plot would perhaps be more informative? (Figure 1, right panel) 
> plot(year,snow.cover, type = "l") 
 

Notice that we use the "<-" operator to assign objects but we use the "=" operator to change function 
call parameters from default values. 
 
Let's put in some more informative text: 
> plot(year,snow.cover, type = "l", 
+ main = "Asia snow cover 1970-1979",  
+ ylab = "Snow cover (mill. sq.km)") 
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Not for the faint of heart: superscripts in legends. Note that the expression() function expects 
individual terms to be separated by asterisks (*) 
> plot(year,snow.cover, type = "l", 
+ main = "Asia snow cover 1970-1979",  
+ ylab = expression("Snow cover (" * 10^6 * " " * km^2 * ")")) 
 

Check help(plotmath) for more info on plotting mathematical symbols. 
 

Now, what about line styles? Nothing about this in the help for plot(). Many graphics settings are 
documented in the catch-all function par() even parameters which are normally used in plot()... 
> help(par)  
 
Scroll down to the entries for col and lwd 
 col - set the color of a line (predefined or RGB) 
 lwd - set the line width (scaling factor relative to default (1)) 
> plot(year,snow.cover, type = "l", 
+ col = "red", lwd = 4, 
+ main = "Asia snow cover 1970-1979",  
+ ylab = expression("Snow cover (" * 10^6 * " " * km^2 * ")")) 
 
Notice that colors can be specified in several ways 
#  "red" = "#FF0000" = rgb(255,0,0) 

The function colors() gives a (long) list of predefined colors 
 
Suppose we make many different plot of this type then we could make it into a function 
snowplot(t,x,s) with parameters t = years, x = snow cover, s = legend 
> snow.plot <- function(t,x,s) { 
+ plot(t,x, type = "l", col = "red", lwd = 4, main = s,  
+ xlab = "", ylab = expression("Snow cover (" * 10^6 * " " * km^2 * ")")) 
+ } 
 
The curly brackets {} enclose what the function actually does. Notice that we need to execute the 
function definition for the snow.plot function to exist in memory. Type the function name in the 
command window to check that it's there  
> snow.plot. 
 
We can produce the same plot as before by calling our new function: 
> snow.plot(year,snow.cover,"Asia snow cover 1970-1979") 
 

We can add data to an existing plot with functions points() and lines() 
The function abline() lets add straight lines to a plot. 
> help(abline) 
 
Let's add a horizontal line for the mean snow cover: 
> abline(h = mean(snow.cover), lty = 2, lwd = 2, col = "blue") 
 
Or maybe we would rather show the snow cover anomalies: 
> snow.anom <- snow.cover - mean(snow.cover) 
> plot(year,snow.anom, type = "l", col = "red", lwd = 4, 
+ main = "Asia snow cover 1970-1979",  
+ ylab = expression("Snow cover anomaly (" * 10^6 * " " * km^2 * ")")) 
+ abline(h = 0, lty = 2, lwd = 2, col = "blue") 
 
Maybe it would look better with y axis symmetrical around 0? Parameters settings for axis limits are 
for some reason not documented in plot() but in plot.default() ??? 
> help(plot.default) 
 

Ahhh... of course, ylim = ...  
Notice that xlim and ylim expect 2-element lists as arguments, which we construct with the c() 
operator. 
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> plot(year,snow.anom, type = "l", col = "red", lwd = 4, 
+ ylim = c(-11, 11), 
+ main = "Asia snow cover 1970-1979",  
+ ylab = expression("Snow cover anomaly (" * 10^6 * km^2 * ")")) 
> abline(h = 0, lty = 2, lwd = 2, col = "blue") 
 
We can make a function for this plot as well. But we should make sure that the function will work 
with any data set, not just those within the range -11 to 11 
> snow.anomaly.plot <- function(t,x,s) { 
+ z <- x - mean(x) 
+ plot(t,z, type = "l", col = "red", lwd = 4, main = s, 
+ ylim = c(-1, 1) * (1.05 * max(abs(z))), 
+ xlab = "", ylab = expression("Snow cover anomaly (" * 10^6 * " " * km^2 * ")")) 
+ abline(h = 0, lty = 2, lwd = 2, col = "blue") 
+ } 
 
Now check if it works as intended (Figure 2): 
> snow.anomaly.plot(year,snow.cover,"Asia snow cover anomaly 1970-1979") 
 

 
Figure 2. Plots for the data set snow.cover, shown as anomalies (deviations from the mean)  
 
What if we want to have several graphs in the same window? 
Again, this is accomplished with the par() function 
mfrow = Multiple figures, row-wise (siebling of mfcol) 
mfrow expects number of rows and columns in a 2-element list 
> par(mfrow = c(2,1)) # 2 rows of figures with 1 each 
 
Now we can plot both absolute snow cover and anomalies below each other (Figure 3):  
> snow.plot(year,snow.cover,"Asia snow cover 1970-1979") 
> snow.anomaly.plot(year,snow.cover,"Asia snow cover anomaly 1970-1979") 
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Figure 3. Plots for the data set snow.cover: absolute values (upper) and anomalies (lower). 
 
 
It is good programming practice to restore default settings: 
> par(mfrow = c(1,1)) 
 
We can also save the whole graphics environment and restore it afterwards. 
> oldpar <- par(mfrow = c(2,1))  
> snow.plot(year,snow.cover,"Asia snow cover 1970-1979") 
> snow.anomaly.plot(year,snow.cover,"Asia snow cover anomaly 1970-1979") 
> par(oldpar) 
 

Function ls() (unix heritage) gives us a list of the objects that currently exist in the R workspace 
> ls() 
 
If you see more than 5 objects then these are probably leftovers from previous R sessions. Let's 
continue with a clean slate... We can clear the workspace by either selecting  

Misc -> Remove all objects 
(you need to have to console window in front for this menu to show), or you can do this mystical 
incantation: 
> rm(list=ls(all=TRUE)) 
 
Remember that R operates exclusively on data structures in memory (while e.g. S-plus operates on 
files). This means that all our current variables die if R crashes (happens sometimes...). Which is 
another good reason to work from scripts and save them often! 
 
Entering data in a script with the c() function is normally not a good idea except for very small data 
sets. Typically you will have data in a file of some kind, which you want to read into R. 
 
R does not read propritary file formats like MS Excel directly. This means that data must be exported 
to a delimited text file first. Select menu File -> Save as..., and choose file type Text (Tab delimited) 
 
In order to read a data file, you need to set the correct search path first. With the command window in 
front, select  

File -> Change dir...  
and navigate to the directory where your file is located. 
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To check that you're actually in the right spot, you can view the content of your current working 
directory by writing (as in ancient DOS): 
> dir() 
 
If you see the file name Asia.snow.cover.txt in the working directory you can read 
it by using the function read.table() 
> asia.snow <- read.table("Asia.snow.cover.txt", header=TRUE) 
 
If there is no error message you should see a new object in your workspace:  
> ls() 
[1] "asia.snow" 
 
The asia.snow object will show its content if we write its name. The generic function names() gives 
a list of an object's attributes:  
> asia.snow 
   year snow.cover 
1  1970        6.5 
2  1971       12.0 
3  1972       14.9 
4  1973       10.0 
5  1974       10.7 
6  1975        7.9 
7  1976       21.9 
8  1977       12.5 
9  1978       14.5 
10 1979        9.2  
 
> names(asia.snow) 
[1] "year"       "snow.cover" 

asia.snow is an object called a dataframe, which is a rectangular table with individually named 
columns that can be of different data types. We can inspect a dataframe in a (primitive) spreadsheet 
view: 
> fix(asia.snow) 
 

We can inspect the contents of any object with the str() function. The summary() function gives 
information about the content of an object. An object can also show itself graphically though the 
plot() function. Most objects should have generic functions like print(), plot(), summary() 
> str(asia.snow) 
`data.frame':   10 obs. of  2 variables: 
 $ year      : int  1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 
 $ snow.cover: num  6.5 12 14.9 10 10.7 7.9 21.9 12.5 14.5 9.2 
> summary(asia.snow)  
      year        snow.cover    
 Min.   :1970   Min.   : 6.50   
 1st Qu.:1972   1st Qu.: 9.40   
 Median :1975   Median :11.35   
 Mean   :1975   Mean   :12.01   
 3rd Qu.:1977   3rd Qu.:14.00   
 Max.   :1979   Max.   :21.90   
> plot(asia.snow) 
 
The latter gives the same plot as we got earlier from  
> plot(year,snow.cover)  # (See Figure 1) 
 
But what happens if we try this now? We get an error message. This is because the variable "year" is 
currently not visible outside the dataframe "asia.snow" 
 
We can make the attributes of a data frame visible in 3 ways: 
- Accessing attributes of an object explicitly with the $ operator 
- Accessing individual table columns with the [[]] operator 
- Make all attributes accessible with the attach() function 



NIVA 5524-2007 

17 

 
We can specify a specific attribute with the $ operator  
> plot(asia.snow$year, asia.snow$snow.cover) 
 
Individual cells in a dataframe can be addressed by bracket indexing [row,column]. Entire rows or 
columns are addressed by [row, ] or [ ,column]. Double brackets [[index]] can be used to access 
whole columns of a dataframe: 
> plot(asia.snow[[1]], asia.snow[[2]]) 
 

We can put all attributes into the search path with attach(). It is good programming practice to 
detach() an object when you don't need it anymore (to avoid confusing variables with same name): 
> attach(asia.snow) 
> plot(year,snow.cover) 
> detach(asia.snow) 
 

In the read.table() call we set the parameter header = TRUE because we wanted the first row to be 
treated specially as variable names. What happens if we use the default (header = FALSE)? 
> asia.snow <- read.table("Asia.snow.cover.txt") 
> str(asia.snow) 
`data.frame':   11 obs. of  2 variables: 
 $ V1: Factor w/ 11 levels "1970","1971",..: 11 1 2 3 4 5 6 7 8 9 ... 
 $ V2: Factor w/ 11 levels "10.0","10.7",..: 11 8 3 6 1 2 9 7 4 5 ... 
 
Now we get 2 variables with generic names V1 and V2, while our variable names appear in the first 
row of the table. Since there is at least 1 text field in each column, both become factor (nominal) 
variables. The summary() of a factor variable is just an alphabethically sorted list the number of 
occurrences of each unique string (factor level).  
 

Let's take a closer look at the documentation for read.table() 
> help(read.table) 
 
There are actually quite a few knobs to turn in this function. Of particular relevance to non-anglo-
americans is the possibility to handle other the default decimal separator dec = "." 
 
The file asia.snow.cover.no.txt uses the official Norwegian decimal separator (,), which the default 
setting would interpret as text: 
> asia.snow <- read.table("Asia.snow.cover.no.txt", header = TRUE) 
> str(asia.snow) 
`data.frame':   10 obs. of  2 variables: 
 $ year      : int  1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 
 $ snow.cover: Factor w/ 10 levels "10,0","10,7",..: 8 3 6 1 2 9 7 4 5 10 
 
The file is read correctly with the setting dec = ",": 
> asia.snow <- read.table("Asia.snow.cover.no.txt", header = TRUE, dec = ",") 
> str(asia.snow) 
`data.frame':   10 obs. of  2 variables: 
 $ year      : int  1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 
 $ snow.cover: num  6.5 12 14.9 10 10.7 7.9 21.9 12.5 14.5 9.2 
 

read.table() is not very forgiving with empty cells or unequal number of cells per row (remember: 
no blanks in variable or factor level names, concatenate of pad with periods; e.g. "snow.cover"). 
Missing values must be flagged with the special symbol "NA" (not applicable). Delete empty rows: 
they make the table more readable for you, but not for R...  
> asia.snow <- read.table("Asia.snow.cover.NA.txt", header = TRUE) 
> plot(asia.snow, type = "l", col = "red", lwd = 4) 
 

We can remove all rows with missing values with the na.omit() function: 
> plot(na.omit(asia.snow), type = "l", col = "red", lwd = 4) 
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We can also assemble a dataframe by hand, from any set of vector objects of the same size. This is 
most useful for quantities derived from the original input data, e.g. by transformations: 
> year <- 1970:1979 
> snow.cover <- c(6.5,12.0,14.9,10.0,10.7,7.9,21.9,12.5,14.5,9.2) 
> asia.snow <- data.frame(year,snow.cover) 
> rm(year, snow.cover) 
> plot(asia.snow) 
 
The Asian snow cover data is more than just a table, it is an ordered table - a time series. So maybe we 
should have taken this into consideration from the start? R has a particular object class for time series:  
> help(ts) 
Time-Series Objects 
Description: 
     The function 'ts' is used to create time-series objects. 
     'as.ts' and 'is.ts' coerce an object to a time-series and test 
     whether an object is a time series. 
 
So, let's make a ts object instead. Time series have their own plot method with line as default. 
> snow.cover <- c(6.5,12.0,14.9,10.0,10.7,7.9,21.9,12.5,14.5,9.2) 
> asia.snow <- ts(snow.cover, start = 1970) 
> str(asia.snow) 
Time-Series [1:10] from 1970 to 1979: 6.5 12 14.9 10 10.7 7.9 21.9 12.5 14.5 9.2 
> plot(asia.snow) 
 
What more can we do with time series objects? 
> help.search("time series") 

lag.plot() - that looks interesting? What does it do? 
 
> help(lag.plot) 
Time Series Lag Plots 
Description: 
     Plot time series against lagged versions of themselves.  
 
OK, let's try it: 
> lag.plot(asia.snow) 
 
Neat, but maybe not too useful for this data set? We will get back to time series objects later in the 
course, though. 
 
 

1.4 Example 2: Explore and plot water chemistry data 
 
Water chemistry data from NIVA's national lake survey 1995: subset of 716 lakes from southern 
Norway.  
- Unit for Ca, Mg, Na, K, Cl, SO4: mg/L  
- Unit for HCO3: meq/L,  
- Unit for NO3: µg/L 
> ion.data <- read.table("N716ion.txt", header = TRUE) 
 
Did we get all the rows and columns that should have been there? 
> dim(ion.data) 
[1] 716  10 
 
List variable names to get an overview: 
> names(ion.data) 
 [1] "FYLKE"  "K20"    "Ca"     "Mg"     "Na"    "K"      "HCO3"   "Cl"    
 [9] "SO4"    "NO3"    
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Show summary statistics: 
> summary(ion.data) 
     FYLKE         
 Min.   : 1.000    
 1st Qu.: 6.000    
 Median : 9.000    
 Mean   : 9.356    
 3rd Qu.:12.000    
 Max.   :16.000    
(Etc.) 
 
We can use a stem-and-leaf plot get an overview of the distribution of samples among regions 
(FYLKE) 
> stem(ion.data$FYLKE) 
  The decimal point is at the | 
 
   1 | 000000000000 
   2 | 0000000000000 
   3 | 000 
   4 | 00000000000000000000000000000000000000000000000000 
   5 | 00000000000000000000000000000000000000000000000000000000000000000000 
   6 | 00000000000000000000000000000000000000000000000000000000000000 
   7 | 0000 
   8 | 00000000000000000000000000000000000000000000000000000000000000000000 
   9 | 0000000000000000000000000000000000000000000000000000000000000000 
  10 | 000000000000000000000000000000000000000000000000000000000000 
  11 | 00000000000000000000000000000000000000000000000000000000000000000000 
  12 | 00000000000000000000000000000000000000000000000000000000000000000000 
  13 |  
  14 | 00000000000000000000000000000000000000000000000000000000000000000000 
  15 | 000000000000000000000000000000000 
  16 | 00000000000000000000000000000000000000 
 
FYLKE > 16 is missing since this is a S. Norway subset. 
FYLKE 13 is missing (used to be Bergen). 
FYLKE 3 (Oslo) and 7 (Vestfold) have the lowest number of samples. 
 
How would this work out with a histogram (Figure 4)? 
> hist(ion.data$FYLKE) 
 

 
Figure 4. Histogram for NIVA chemistry data: number of observations per Fylke (county). 
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There's something wrong with the break placement. Maybe we should define the breaks explicitly? 
Let each bin bracket the integers from 0 to 20 (Figure 5): 
> hist(ion.data$FYLKE,breaks=-0.5:20.5) 

 
Figure 5. Histogram for NIVA chemistry data: number of observations per Fylke (county), with bins 
as integers. 
 
What type of variable is FYLKE anyway? 
> str(ion.data$FYLKE) 
int [1:716] 1 1 1 1 1 1 1 1 1 1 ... 
 
Maybe FYLKE should be considered a factor variable? Now, how do we make factor variable? 
> ?factor   
 
We overwrite the original with the new factor variable 
> ion.data$FYLKE <- as.factor(ion.data$FYLKE) 
 
Check the result: FYLKE should now be factor 
> str(ion.data$FYLKE) 
Factor w/ 15 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ... 
 
Maybe we could change the levels to something more meaningful? What options do we have to do 
this? 
> ?levels 
 
Ahhh... Of course. We just replace the levels with a list of same length. 
> levels(ion.data$FYLKE) <- 
c("Øf","Ah","Os","He","Op","Bu","Vf","Te","AA","VA","Ro","Ho","SF","MR","ST") 
 
Let's see how this worked 
> summary(ion.data$FYLKE) 
Øf Ah Os He Op Bu Vf Te AA VA Ro Ho SF MR ST  
12 13  3 50 74 62  4 79 64 60 69 79 76 33 38  
 
But what happens if we now want to do the same histogram as before? 
> hist(ion.data$FYLKE) 
Error in hist.default(ion.data$FYLKE) : 'x' must be numeric 
This gives an error message because FYLKE is no longer numerical. 
 

We can recover the numerical ranks of factors with the function as.integer() 
> hist(as.integer(ion.data$FYLKE),breaks=-0.5:20.5)  # Figure 6 
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Figure 6. Histogram for NIVA chemistry data: number of observations per Fylke (county), with Fylke 
as integer. 
 
 
Ups! - only almost recovered. Notice FYLKE 13 is no longer missing because levels have been 
remapped from 1,2,..,12,14,15,16 to 1,2,..,12,13,14,15. So maybe this was not the way to do it? Well, 
what we actually need is to produce bars with values given by summary(FYLKE). Is there something 
called  
> ?barplot 
 
Yes, that seems to do the job (Figure 7). 
> barplot(summary(ion.data$FYLKE)) 
 

 
Figure 7. Barplot of NIVA chemistry data: number of observations per Fylke. 
  
 
Now that we got a regional factor variable, can we then do regional boxplots? 
> ?boxplot 
 
Let's attach the data frame to make the coding more readable 
> attach(ion.data) 
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Yes, it says we can use a "y ~ group" formula to make grouped boxplots. For example chloride 
grouped by region (expand the windows to all legends) 
> boxplot(Cl ~ FYLKE)  # Figure 8 

 
Figure 8. Boxplot of NIVA chemistry data: Chloride per Fylke. 
 
Hmmm... Oslo and Vestfold seems to break a pattern here. These were also the smallest regions with 
the lowest number of samples. Is there a way to exclude these regions? 
> ?which 
 

So we need a logical statement which is TRUE except for Oslo and Vestfold. Remember that R uses the 
following logical operators: "!" (NOT), "&" (AND), "|" (OR). Notice that R uses symbols "==" for 
EQUAL and "!=" for NOT EQUAL. 
> not.Os.Vf <- which((FYLKE != "Os") & (FYLKE != "Vf")) 
> boxplot(Cl[not.Os.Vf] ~ FYLKE[not.Os.Vf]) 
 

 
Figure 9. Boxplot of NIVA chemistry data: Chloride per Fylke (excluding Oslo and Vestfold). 
 
 
Now we see much clearer the contrast between inland and coastal regions. We could also have 
accomplished this with the subset option in boxplot() 
> boxplot(Cl ~ FYLKE, subset = not.Os.Vf) 
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Now we can get ambitious - Let's make the same regional boxplot for all 9 variables in our data set, 
arranged in a 3 X 3 matrix. 
> par(mfrow = c(3,3)) 
> for (i in 2:10) { 
+ boxplot(ion.data[[i]] ~ FYLKE, subset = not.Os.Vf) 
+ } 
> par(mfrow = c(1,1))  # Reset par() 
 

Almost there - except it would be nice to see what plot is which parameter. The function colnames() 
will give us the variable names in a data frame (Figure 10). 
> par(mfrow = c(3,3)) 
> for (i in 2:10) { 
+ boxplot(ion.data[[i]] ~ FYLKE, subset = not.Os.Vf, 
+ main = colnames(ion.data)[i]) 
+ } 
> par(mfrow = c(1,1)) # Reset par() 
 

 
Figure 10. Boxplot for all variables of the NIVA chemistry data. 
 
 
Water chemistry data are for historical reasons often reported in wildly different units. Let's transform 
all varables to charge equivalents 
#    {µeq / L} = {charge} * 1000 * {mg / L} / {mol.weight} 
> Ca.eq   <- 2 * 1000 *   Ca / 40.078  # mg/L  -> µeq/L 
> Mg.eq   <- 2 * 1000 *   Mg / 24.3050  # mg/L  -> µeq/L 
> Na.eq   <- 1 * 1000 *   Na / 22.989770 # mg/L  -> µeq/L 
> K.eq    <- 1 * 1000 *    K / 39.0983  # mg/L  -> µeq/L 
> HCO3.eq <- 1 * 1000 * HCO3 / 1   # meq/L -> µeq/L 
> Cl.eq   <- 1 * 1000 *   Cl / 35.453  # mg/L  -> µeq/L 
> SO4.eq  <- 2 * 1000 *  SO4 / 96.0626  # mg/L  -> µeq/L 
> NO3.eq  <- 1 *    1 *  NO3 / 14.0067  # µg/L  -> µeq/L 
 
# We can then collect all our new variables in a new dataframe 
> ion.eq <- data.frame(Ca.eq,Mg.eq,Na.eq,K.eq,HCO3.eq,Cl.eq,SO4.eq,NO3.eq) 
 
Now can detach() the original data and delete intermediate variables. Again, this is good 
programming practice. 
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> detach(ion.data) 
> rm(Ca.eq, Mg.eq, Na.eq, K.eq, HCO3.eq, Cl.eq, SO4.eq, NO3.eq) 
 

The default plot() method for a dataframe is a scatterplot matrix (Figure 11).  
> plot(ion.eq) 

 
Figure 11. Scatterplot matrix for all variables of the NIVA chemistry data. 
 

The actual function for scatterplot matrices is called pairs() 
> ?pairs 
 
The part about panel functions looks interesting. Are there any predefined ones? 
> help.search("panel") 
 

panel.smooth looks good, let's try that one (Figure 12). 
> pairs(ion.eq,panel=panel.smooth) 
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Figure 12. Scatterplot matrix with smoothed functions for all variables of the NIVA chemistry data 
 
Log transformation reveals the chemists' weird ideas about detection limits. Some variables, e.g. 
HCO3.eq or Cl.eq, show quantization at the detection limit. Notice also that the smooth trend depends 
on which variable is x and which is y. Compare e.g. Ca.eq ~ HCO3.eq and HCO3.eq ~ Ca.eq. 
 
There seems to be more correlation structure in this data set than what can be captured by bivariate 
relations. What options do we have for principal components in R? 
> help.search("pca") 
 

At least 2 different functions: prcomp() and princomp(). Let's try one of them. 
> princomp(ion.eq) 
Error in cov.wt(z) : 'x' must contain finite values only 
 
Which gives an error message, probably because our data has missing values 
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> summary(ion.eq) 
     Ca.eq             Mg.eq              Na.eq              K.eq         
 Min.   :  1.996   Min.   :  0.7406   Min.   :  3.045   Min.   : 0.2558   
 1st Qu.: 17.341   1st Qu.:  9.0516   1st Qu.: 21.749   1st Qu.: 2.0461   
 Median : 40.172   Median : 18.1033   Median : 37.843   Median : 3.8365   
 Mean   : 74.952   Mean   : 30.0360   Mean   : 73.860   Mean   : 6.3809   
 3rd Qu.: 92.320   3rd Qu.: 38.6752   3rd Qu.: 82.319   3rd Qu.: 7.4172   
 Max.   :883.278   Max.   :234.5196   Max.   :904.750   Max.   :80.8219   
                                                                          
    HCO3.eq           Cl.eq             SO4.eq            NO3.eq         
 Min.   :  2.00   Min.   :  2.821   Min.   :  2.082   Min.   : 0.00714   
 1st Qu.: 32.00   1st Qu.: 14.103   1st Qu.: 22.902   1st Qu.: 0.92813   
 Median : 48.00   Median : 33.848   Median : 35.394   Median : 4.06948   
 Mean   : 79.35   Mean   : 75.814   Mean   : 46.234   Mean   : 5.72882   
 3rd Qu.: 82.00   3rd Qu.: 85.324   3rd Qu.: 58.295   3rd Qu.: 7.56781   
 Max.   :864.00   Max.   :789.778   Max.   :303.968   Max.   :73.53624   
 NA's   :  5.00     
 
Yes, there's the culprit - HCO3.eq contains 5 missing values. Let's make a selection variable for this 
subset.  
> not.missing <- which(!is.na(ion.eq$HCO3.eq)) 
 
Now try again 
> p <- princomp(ion.eq, subset = not.missing) 
 

Notice that the default for princomp() is cor = FALSE. That is, principal components on the 
covariance matrix, which is appropriate in our case since all variables are same unit. 
 
p is now a princomp object which can show itself in various ways 
> summary(p) 
Importance of components: 
                            Comp.1      Comp.2      Comp.3       Comp.4 
Standard deviation     163.7245863 124.3512080 28.77241113 16.809869114 
Proportion of Variance   0.6139391   0.3541584  0.01896051  0.006471816 
Cumulative Proportion    0.6139391   0.9680975  0.98705802  0.993529839 
                             Comp.5       Comp.6       Comp.7       Comp.8 
Standard deviation     13.842010127 6.5386169015 5.6127370499 4.0794439211 
Proportion of Variance  0.004388295 0.0009791952 0.0007215176 0.0003811531 
Cumulative Proportion   0.997918134 0.9988973294 0.9996188469 1.0000000000 
 
So, 97% of the variance is contained in the first 2 PCA axes. Which means we should get a good 
representation by a biplot of the first 2 axes. Can R do biplots for us? 
?help.search("biplot") 
 

biplot.princomp() seems to be what we're looking for... 
> biplot.princomp(p) 
Error: could not find function "biplot.princomp" 

Which gives an error message on my computer... While the generic biplot() seems to work OK 
(Figure 13). 
> biplot(p) 
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Figure 13. Biplot of principal components of major ions, showing the contribution from sea salts (Na 
and Cl) and weathering (Ca and HCO3) 
 
The biplot seems to show very clearly the 2 major sources of ions: Na + Cl from sea salts and 
Ca + HCO3 from weathering. We can look in more detail at the sea water contribution under 
the standard assumption that all chloride is sea salts and that other ions accompany Cl according to the 
standard composition of sea water (Figure 14). 
 
> attach(ion.eq) 
> par(mfrow=c(2,3)) 
> plot(Cl.eq,  Ca.eq); abline(0,0.037,col="red") 
> plot(Cl.eq,  Mg.eq); abline(0,0.193,col="red") 
> plot(Cl.eq,  Na.eq); abline(0,0.852,col="red") 
> plot(Cl.eq,   K.eq); abline(0,0.018,col="red") 
> plot(Cl.eq,HCO3.eq); abline(0,0.004,col="red") 
> plot(Cl.eq, SO4.eq); abline(0,0.103,col="red") 
> par(mfrow=c(1,1)) 
> detach(ion.eq) 
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Figure 14. Relations of major ions to chloride, compared to the standard composition of seawater 
 
Since our data are already in charge equivalents, we can easily calculate the acid neutralizing capacity 
(ANC) as the difference between base cations and strong acid anions. We will expect ANC to be 
closely related to alkalinity. 
> attach(ion.eq) 
> ANC <- Ca.eq + Mg.eq + Na.eq + K.eq - Cl.eq - SO4.eq - NO3.eq 
> plot(ANC,HCO3.eq) 
> detach(ion.eq) 
 
 

 
Figure 15. HCO3 is definitely a major determinant of ANC. 
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Another quantity that is easily calculated from charge equivalents is the equivalent conductivities of 
individual ions. If molar conductivities are given as (S/m) / (mol/L)) at 20° C then equivalent 
conductivity = {mol.cond} * {µeq/L} / 1000 = {mS/m} 
> attach(ion.eq) 
> Ca.ec   <- 5.4 *   Ca.eq / 1000# µeq/L -> mS/m 
> Mg.ec   <- 4.8 *   Mg.eq / 1000# µeq/L -> mS/m 
> Na.ec   <- 4.5 *   Na.eq / 1000# µeq/L -> mS/m 
> K.ec    <- 6.7 *    K.eq / 1000# µeq/L -> mS/m 
> HCO3.ec <- 4.1 * HCO3.eq / 1000# µeq/L -> mS/m 
> Cl.ec   <- 6.8 *   Cl.eq / 1000# µeq/L -> mS/m 
> SO4.ec  <- 7.2 *  SO4.eq / 1000# µeq/L -> mS/m 
> NO3.ec  <- 8.4 *  NO3.eq / 1000# µeq/L -> mS/m 
> detach(ion.eq) 
 
Predicted specific conductivity is then just the sum of the equivalent conductivities of the individual 
major ions (Figure 16). 
K20.pred <- Ca.ec + Mg.ec + Na.ec + K.ec + HCO3.ec + Cl.ec + SO4.ec + NO3.ec 
plot(K20.pred,ion.data$K20) 
abline(0,1) 
 

 
Figure 16. Measured vs. predicted specific conductivity (as the sum of the equivalent conductivities of 
the individual major ions) 
 
There are at least 4 possible outlier candidates in this plot 2 with much higher measured conductivity 
than predicted, two of them with somewhat lower conductivity than predicted. Let's look at them in 
more detail (Figure 17). 
> K20.diff <- ion.data$K20 - K20.pred 
> hist(K20.diff, breaks=50) 
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Figure 17. Histogram for of differences between measured and predicted conductivities, showing two 
possible outliers 
 
Since our data set does not include the cation with the by far highest equivalent conductivity 
(H+ 32 (S/m)/(mol/L)), we would expect the specific condutivity to be underpredicted in acid lakes 
(Figure 18). 
 
> plot(ANC,K20.diff) 
 

 
Figure 18. The contribution of H+ to specific conductivity is highest when ANC is low 
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2. FROM LINEAR MODELS TO GAM 

Jannicke Moe 
 
Topics:  
A data import problem: dates format (script: dag2_script1_import_Storgama.txt) 
Linear models: regression, ANOVA etc. (script: dag2_script2_LM_Storgama.txt) 
Generalised linear models: logistic regression etc. (script: dag2_script3_GLM_Storgama.txt) 
Generalised additive models: smooth splines etc. (script: dag2_script4_GAM_Storgama.txt) 
Model selection – some issues (no script) 
 
2.1 Linear models:  what sort of test should I use? 
Let’s say you have one response variable (continuous, normally distributed) and various possible 
predictor variables (Table 1. Basic linear models for different combinations of predictor variables, 
with corresponding model formula in R.). In excel, you must choose the right kind of test from a 
menu, depending on the type of data you have. I R, on the other hand, you can use a standard test 
formulation, and the test result will depend of the type of data you put into it. The basic formula is: 
 
> lm(y ~ x)   
This stands for:  y = b0 + b1*x + residuals 
 
Table 1. Basic linear models for different combinations of predictor variables, with corresponding 
model formula in R. 

Predictor: 
 
 Response: 

1 predictor variable 2 or more                
predictor variables 

Continuous Linear regression: 
lm(y ~ x) 

Multiple regression 
lm(y ~ x1 + x2 + ...) 

Categorical t-test 
lm(y ~ x) 

ANOVA 
lm(y ~ x1 + x2 + ...) 

Combination - ANCOVA 
lm(y ~ x1 + x2 + ...) 

 
 
2.2 Linear models in R: some useful commands 
> fit <- lm(y ~ x1 + x2)  # Store the model as the object ”fit” 
 

Diagnositic plots (good idea to set par(mfrow=c(2,3)) !): 
> plot(fit) 
What is stored in the fit? 
> names(fit) 
The most commonly used info: 
> summary(fit)  
Here you find the names that R gives the summary components, so that you can extract them and  e.g 
use them on plots:  
> names(summaryfit))  



NIVA 5524-2007 

32 

Examples: 
> summary(fit)$adj.r.squared   # gives you the R2 value 
> summary(fit.1)$coef  # this component turns out to be a matrix 
> dimnames(summary(fit.1)$coef) # a matrix has ”dimnames”     
  rather than ”names” 
> summary(fit)$coef["x1", "t value"]  
 
Elements of the fitted object can be accessed just like columns in a dataframe: 
> fit$coefficients  # gives you the coefficients 
> fit$coef   # any unambiguos abbrevation can be used 
    
Extractor functions are made to extract certain information,  you should use these rather than the 
object  components. 
> coef(fit)   # same as fit$coef – usually... 
> fitted(fit) # fitted values   
> resid(fit)  # residuals  
> predict(fit)  # predicted values 
> predict(fit, se.fit=T)  # ...with standard error 
> deviance(fit)  
  

Alternative to lm() exist for certain types of linear models. For example, comparison of two groups 
can also be done with the function t.test(y ~ x), but the function lm(y ~ x) is simpler. 
ANOVA can also be done with the function aov():  
> fit <- aov(y ~ x1 + x2)  # same fit as lm(),  
> anova(fit)   # gives you an ANOVA table 
 
The function aov() seems to do the same as lm(), but it is also possible to combine fixed and random 
effects. This is applicable for balanced design only. For unbalanced design, and for more complicated 
models, you should use the function lme() (linear mixed-effects models, in the package ”nlme”) 
 
 
2.3 Formula syntax in R – general rules 
The following information is extracted from the help file on formulae: 
> ?formula 
  
Y ~ F  Response variable Y is modeled as F, where F may include other terms 
Fa + Fb Include both Fa and Fb in the model 
Fa - Fb  Include all of Fa in the model, except what is in Fb 
Fa : Fb The interaction between Fa and Fb 
Fa * Fb Fa + Fb +  Fa : Fb 
Fb %in% Fa Fb is nested within Fa 
Fa / Fb Fa + Fb %in% Fa 
I(F^m)  All terms in F crossed to order m  
.  in update(): the previous set 
.  in other formulae: all variables (except the response variable(s) Y) 
 
A model with no intercept (going through the origin) can be specified as:  
 Y ~ F - 1 or  
 Y ~ 0 + F 
 
While formulae usually involve just variable and factor names, they can also involve arithmetic 
expressions. The formula 'log(y) ~ a + log(x)' is quite legal. When such arithmetic expressions 
involve operators which are also used symbolically in model formulae, there can be confusion 
between arithmetic and symbolic operator use. To avoid this confusion, the function 'I()' can be 
used to bracket those portions of a model formula where the operators are used in their arithmetic 
sense. For example, in the formula 'y ~ a + I(b+c)', the term 'b+c' is to be interpreted as the sum 
of 'b' and 'c'. 
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2.4 Generalised linear models (GLM) 
What if the y variable is not suitable for linear models? E.g. the y variable is not normally distributed 
but 0/1, proportions, or Poisson-distributed (e.g. counts). The framework for analysing linear models 
can be generalised using a link function g() 
 LM:         y = b0 + b1*x1 + b2*x2 + ... 
 GLM:     g(y) = b0 + b1*x1 + b2*x2 + .... 
 
The link function transforms the y variable into something that can be modelled as                                               
a linear combination of predictor variables. Ordinary linear models are then a ”special case” where 
the link function = identity. 
 
A typical example of a GLM is logistic regression. The y variable is then binary distributed, such as 
0/1. A linear model is obviously not appropriate (Figure 19) - a sigmoid curve is better.  
 
We can use the link function "logit" to obtain a linear link between the predictor and response 
variables:  

logit(y) = log(y / (1-y)) 
logit(y) has range <-Inf, Inf>, and can therefore be modelled as linear combination of the predictor 
variables. 
 log(y/(1-y)) = b0 + b1*x 
Back-transformation gives:  
 y = exp(b0 + b1*x)/(1 + exp(b0 + b1*x)) 
 

 
Figure 19. Binary data: linear regression (left panel) versus logistic regression (right panel). 
 
A logit transformation cannot be done directly on the data, when the response is binary 0/1. In R, the 
transformation is done implicitly by the function glm(). Instead of  
> lm(y ~ x) 
we write 
> glm(y ~ x, family = binomial(link = logit)) 
 
2.5 ”Families” of distributions in R 
What sort link (variance functions) can the different families of distributions use, within the GLM 
framework? The following table summarises the suitable pairings: 
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Table 2. Families of distributions applicable for Generalised Linear Models in R. 
 binomial gaussian Gamma inverse 

gaussian
poisson quasi 

logit x     x 
probit x     x 
cloglog x     x 
identity  x x  x x 
inverse   x   x 
log   x  x x 
1/mu^2    x  x 
sqrt     x x 

 
If you have a non-linear relationship for which none of the GLMs seems suitable, then you can specify 
your own non-linear formula by non-linear least-squares regression, nls(). You must specify 
parameters directly in the formula,  and suggest start values (start=list(...)).  
As an example we can use the backtransformed version of logit(y): 
 
> nls(y ~ exp(b0 + b1*x)/(1 + exp(b0 + b1*x)), start=list(b0=0, b1=0) ) 
 
 
2.6 Generalised Additive Models (GAM) 
 
GLM allows non-linear models within a linear framework, but we must still specify a parametric 
model. Additive Models (AM), on the other hand, are not restricted to linear combination of predictor 
variables. AMs allow you to you can add various functions of predictor variables.  
 LM:  y = b0 + b1*x1 + b2*x2 + b3*(x2^2)+ … 
 AM:  y = b0 + f1(x1) + f2(x2) + … 
Just like linear models, AMs can also be generalised, using a link function g(): 
 GAM:  g(y) = b0 + f1(x1) + f2(x2) + … 
In GAM the functions f() can be non-parametric, e.g. loess (locally weighted regression), or so-called 
splines. In R we can use splines with the function s(). 
> gam(y ~ s(x)) 
 
Non-parametric regression can give you nice flexible curves, but not conventional parameter 
estimates. An example of a data set where a GAM may be more suitable than a linear model is shown 
in Figure 20.  
 

 
Figure 20. Regression with linear model (LM; left panel) versus generalised additive model (GAM; 
right panel). 
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An important consideration when using GAM is how "smooth" your estimated curves should be. If the 
curves are too smooth, you may lose important details in the data structure. On the other hand, if you 
allow the curves to get too "wiggly",  then the estimated curve may become to specific for your current 
data set, and be less useful for more general interpretations. The function gam() in the package "basis" 
(and in S-plus) uses 4 degrees of freedom as default. R also has a package "mgcv" with a somewhat 
different function gam(). In this version, degrees of freedom are optimised by cross-validation 
together with the model fit. We recommend that you use the mgcv version of gam, because of this 
built-in optimisation of the smoothing.  
 
Figure 21 summarises the relationship between linear models, additive models, and generalised linear 
and additive models. 
 
 

LM AM

GLM GAM

Transformation of
y variable
by link function

Transformation of
y variable
by link function

Adding any functions of
x variable 
(not just linear functions)

Adding any functions of
x variable 
(not just linear functions)  

Figure 21. Relationship between LM, AM, GLM and GAM.  
 
 
 
2.7 Model selection 
An important consideration for all types of models is how many explanatory variables you should 
include your model. If there are too few variables, the model will not be able explain much of the 
variation. On the other hand, if there are too many variables, then the model will be too specific for the 
current data set. A guideline for model selection is: when is a more complicated model significantly 
better than a simpler model?  
 
Various criteria are developed for model selection, including the following: 
- Compare how much variation is explained (R2) 
- Compare how much variation is left (Mallow’s Cp, deviance,…) 
- Compare criteria based on log-likelihood (AIC, BIC) 
- Compare ability to predict new data: cross-validation 
 
In R, some approaches use a mix of criteria. The type of model you have may restrict the choice of 
approace and criteria. Some examples are given below. 
 
2.7.1 Model selection for LM: ANOVA table 
A simple example: Model 1 is a subset of Model 2. 
> x1 <- 1:10 
> y  <- x1^3 
> fit.1 <- lm(y ~ x1)  # Adjusted R-squared: 0.8446  
> fit.2 <- lm(y ~ x1 + I(x1^2))   # Adjusted R-squared: 0.9963  
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Fit 2 is obviously better than fit 1, but is it significanly better? 
> anova(fit.1, fit.2) 
Analysis of Variance Table 
Model 1: y ~ x1 
Model 2: y ~ x1 + I(x1^2) 
  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     
1      8 146837                                   
2      7   3089  1    143748 325.77 3.961e-07 *** 
The low p-value of this test means that model 2 is signifiantly better. 
 
Model selection by anova() is restricted to cases where one or more models are subsets of a more 
complete model. Note that rows with missing values should be removed before model fitting, to obtain 
the same number of observations for all models. When applying anova() to glm objects, the function 
does not return p-values directly, but it returns deviances from which a p-value can be calculated. 
 
2.7.2 Model selection for GLM: deviance analysis 
We use the same simple example as above. 
> fit.1 <- glm(y ~ x1) 
> fit.2 <- glm(y ~ x1 + I(x1^2)) 
> deviance(fit.1) 
[1] 146836.8 
> deviance(fit.2) 
[1] 3088.8 
 
Again, fit.2 is obviously better than fit 1, but is it significanly better? The difference in deviance is χ2-
distributed with 1 degree of freedom (=difference in number of parameters). Hence, we can test the 
significance of the difference in deviance with a χ2 test. 
> 1 - pchisq(deviance(fit.1) - deviance(fit.2), df=1) 
[1] 0 
The difference is significant (p < 0.05). 
 
This kind of test is restricted to cases where deviance can be calculated, and where models are subsets. 
Deviance is available also for GAMs, but number of parameters is not defined in the same way as for 
GLMs, so it is not straight-forward to use this test for GAMs. 
 
 
2.7.3 Akaike’s information criterion  
 
Akaike's information criterion (AIC) is calculated as  
  -2*log-likelihood + k*npar,  
where npar = the number of parameters in the fitted model, and k = penalty per parameter. The 
function for AIC in R is  
> AIC(object, ..., k=2) 
 
AIC requires that the log-likelihood function can be easily calculated (which is the case for e.g. GLM, 
but not for nls (non-linear models)), and that the model has parameters in the usual sense (which is 
not the case for GAM). The models do not have to be subsets of each other, but they must use the 
same response variable.  
 
2.7.4 Automatic stepwise selection 
The function step() can help you select the best model from a full model, by automatically adding or 
removing terms in a stepwise fashion. This function uses the criteria AIC and Mallow’s Cp (the total 
square errors). 
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Consider a full model with interactions: 
> fit <- lm(y ~ (x1 + x2 + x3 + x4)^2) 
 
For objects of type lm and glm, you can use 
> step(fit) 
 
For a wider range of object classes (in package ”MASS”), you can use: 
> stepAIC(fit)  
  
 
2.7.5 Model selection by cross validation 
 
Cross validation is a model selection approach that is applicable for all types of models. The procedure 
is generally as follows. 
1. Specify a model (e.g. full model) 
2. Exclude a subset of data (e.g. 1/10): xexcl, yexcl  
3. Estimate the parameters with the remaining data: xincl, yincl 
4. Use the xexcl as input in the model parameterised by xincl, yincl  and predict ypred 
5. Compare the ypred with the real yexcl ,: calculate the squared differences 
6. Repeat for each subset of the data 
7. Sum the calculated squared differences. This gives the CV score for this model 
8. Repeat CV calculation for each model 
 
A drawback with this approach is that there is no general rule for defining a significant difference 
between CV scores. 
 
2.8 Example 3: Nitrate concentrations in the river Storgama 
Request from participant (Heleen de Wit): I wish to import a data file so that I can plot different 
variables versus time, and do time-series analyses. I wish to check if the water nitrate concentration 
shows a temporal trend, or some pattern, and if there is a relationship with the water TOC (total 
organic carbon). 
 
2.8.1 Script 1: Import and formatting of dates. 
 
First we try to read the data as they are. I've saved a copy the excel file Storgama_0.xls (first sheet) as 
a text file "Storgama_0.txt". To tell R where the files are, you can change directory from the menu 
(File -> Change dir...). 
 
> DATA <- read.table("Storgama_0.txt", header=T) 
Why call the object "DATA", not very informative? A benefit is that it's easier to adjust and re-use the 
script to new datasets. 
 
> names(DATA) 
 [1] "STID"  "STCOD" "NAME"  "Date"  "pH"    "KOND"  "TOC"   "TOTN"  "NO3.N" 
[10] "NH4.N" "ECa"   "ECl"   "ENa"   "EMg"   "ESO4"  "EK"    "ENO3"  "EALK1" 
[19] "H."    "ANC1"  "Al.Il" "Al.R"  "LAL"   
 
> is.factor(DATA$Date) # Dates are formatted as levels - not so useful. 
[1] TRUE 
Can we try to change them into numeric?  
> as.numeric(DATA$Date)[1:10]# Look at the first 10  
 [1]  855 1217 1543  149  149  149  149  149  149  149 
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Even less useful. Let's check helpfiles. 
> ?date 
Gives us today's date :-( 
> help.search("date") 
format.Date(base) sounds useful 
> ?format.Date 
> as.Date(DATA$Date)[1:10] 
 [1] "0017-07-19" "0024-07-19" "0031-07-19" "0003-09-19" "0003-09-19" 
 [6] "0003-09-19" "0003-09-19" "0003-09-19" "0003-09-19" "0003-09-19" 
Totally useless - or something wrong with the format 
 
So maybe we should check what sort of format R actually requires 
From helpfile "as.Date": 

The default formats follow the rules of the ISO 8601 international  
standard which expresses a day as '"2001-02-03"'. 

 
NB: sometimes the most useful information is found not in the description, but in the examples. 
I found this at the bottom of the helpfile: 
    ## read in date/time info in format 'm/d/y' 
    dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92") 
    as.Date(dates, "%m/%d/%y") 
HWI has format "%d/%m/%y" - I guess 
> as.Date(DATA$Date, "%d/%m/%y")[1:10] 
 [1] "2019-07-17" "2019-07-24" "2019-07-31" "2019-09-03" "2019-09-03" 
 [6] "2019-09-03" "2019-09-03" "2019-09-03" "2019-09-03" "2019-09-03" 
Now the data series starts in 2020 so either someone has faked these data, or we still have a format 
problem... 
 
 
Let's go back to the excel file and see if we find some solution there. It turns out, some of the cells 
have hidden time values after the date values. Things like this are quite common and can create a lot of 
trouble when you work with other people's excel files. One solution is to split dates into separate 
columns for year, month etc. in excel, with these excel function: 

=year(), =month(), =day(), =hour(), =minute(), =second(). 
and combine these together again in R with the function ISOdatetime(). 
I've done this in "Storgama_1.txt". 
 
> file <- "Storgama_1.txt" 
> DATA <- read.table(paste(path, file, sep=""), header=T) 
 
> DATA$iso.date <- ISOdate(DATA$year, DATA$month, DATA$day) 
Why attach the new vector to the dataset, couldn't it just be separate vector? 
It can be easier to select rows etc. for all variables if it's in the dataset. 
 
> oldpar <- par(mfrow = c(3,2)) 
> for (i in 18:23) { 
+ plot(DATA$iso.date, DATA[[i]], type="l", ylab = names(DATA)[i]) 
+ } 
> par(oldpar) 
 
This plot produces Figure 22.  
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Figure 22. Time-series plots for Storgama. 
 
 
NB: The rest of the script is optional - not required for subsequent scripts 
Alternatively, we can try to import the dates in a date format that R understands. 
 
In "Storgama_1.txt" I've formatted the column "Date": removed everything after the date (replaced " 
*" by "" in excel), and formattet the date like "%d/%m/%y" (Format cells -> Number -> Date)  
Does it now accept the dates as dates? Let's compare with the original version 
> DATA$Date_original[1:5] 
[1] 17/07/1974 24/07/1974 31/07/1974 03/09/1974 03/09/1974 
1556 Levels: 01/02/1979 01/02/1993 01/02/1995 01/02/1999 ... 31/12/1985 
> DATA$Date[1:5] 
[1] 17/07/74 24/07/74 31/07/74 03/09/74 03/09/74 
1556 Levels: 01/02/79 01/02/93 01/02/95 01/02/99 01/03/04 01/03/82 ... 31/12/85 
Both versions are still read as factors 
 
What if we now try to persuade R to read these as numeric dates: 
> as.Date(DATA$Date_original, "%d/%m/%y")[1:5] 
[1] "2019-07-17" "2019-07-24" "2019-07-31" "2019-09-03" "2019-09-03" 
> #[1]  "2019-07-17" "2019-07-24" "2019-07-31" "2019-09-03" "2019-09-03" 
> as.Date(DATA$Date, "%d/%m/%y")[1:5] 
[1] "1974-07-17" "1974-07-24" "1974-07-31" "1974-09-03" "1974-09-03" 
> #[1] "1974-07-17" "1974-07-24" "1974-07-31" "1974-09-03" "1974-09-03" 
Looks much better! But what about those "", is this vector numeric anyway? 
> is.numeric(as.Date(DATA$Date, "%d/%m/%y")) 
[1] TRUE 
:-) 
We'll change this permanently in the dataset 
> DATA$Date <- as.Date(DATA$Date, "%d/%m/%y") 
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NB: There is a very similar function in another package, which does something slightly different! 
> ?as.Date (package:base) 
   Functions to convert between character representations and objects 
   of class '"Date"' representing calendar dates. 
> ?as.date  (package:survival) 
   Converts any of the following character forms to a Julian date: 
    8/31/56, 8-31-1956, 31 8 56, 083156, 31Aug56, or August 31 1956. 
This does NOT use the standard format "1956-08-31", which the base package uses...  
 
When you search for useful functions, it's proably a good idea to select those from the most common 
packages, if possible. 
 
Other potentially useful functions for date conversion in package "survival": 
> library(survival) 
Loading required package: splines 
>  julian(as.Date("2006-05-02"), origin=as.Date("1960-01-01")) #  Default origin 
"1970-01-01" 
[1] 16923 
attr(,"origin") 
[1] "1960-01-01" 
>  date.mdy(16923)# uses origin "1960-01-01" 
$month 
[1] 5 
 
$day 
[1] 2 
 
$year 
[1] 2006 
 
>  mdy.date(5, 2, 2006) 
[1] 2May2006 
 
 

2.8.2 Script 2: Linear models. 
 
Let's look at the data: 
> plot(DATA[,12:16]) 
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This gives pairwise plots of selected parameters (Figure 23). (This is not recommended for all 
parameter columns 12:29 at once). 

 
Figure 23. Pairwise plots of parameters from Storgama. 
 
We want to look at certain parameters against time. Make a continuous numeric vector of time, with 
unit year (with decimals) as.numeric() gives date as no. of seconds since 1970-01-01. 
> DATA$iso.year <- as.numeric(DATA$iso.date)/(365*24*60*60) + 1970  
 
"Trend analysis" tries to describe a temporal trend and at the same time account for autocorrelation in 
the data. "Time-series analysis" in R is a method/framework that requires data with regular intervals 
(see ?ts), and which will require some reformatting of the data in this case. We will get back to these 
issues later. For now, we'll ignore the temporal correlation and treat the data as independent, and start 
with ordinary regression analyses. 
 
First we can "attach" a dataframe: then the columns of the dataframe will be directly accessible, so that 
we can skip the "DATA$", and wrote "NO3.N" instead of "DATA$NO3.N" 
 
> is.object(NO3.N)# No object with this name 
Error: object "NO3.N" not found 
> attach(DATA) 
> is.object(NO3.N)  
[1] FALSE 
Now the column is "visible" for R, although it's not a proper object. 
 
Does nitrate decrease with time? (Figure 24). 
> windows() 
> plot(iso.date, NO3.N, type="l")  



NIVA 5524-2007 

42 

 
Figure 24. Data series NO3.N from Storgama. 
 
Regression of NO3 against time: 
> fit.1 <- lm(NO3.N ~ iso.year) 
> summary(fit.1) 
Call: 
lm(formula = NO3.N ~ iso.year) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-168.17  -78.49  -25.71   47.57  884.64  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 8607.475    680.358   12.65   <2e-16 *** 
iso.year      -4.269      0.342  -12.48   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 121.2 on 1550 degrees of freedom 
Multiple R-Squared: 0.09135,    Adjusted R-squared: 0.09077  
F-statistic: 155.8 on 1 and 1550 DF,  p-value: < 2.2e-16 
Very significant indeed, but has low adjusted R2 (0.09). 
 
Can seasonal variation explain some of the variation? Use month as a categorical factor. This model is 
an ANCOVA (Analysis of covariance). 
> fit.2 <- lm(NO3.N ~ iso.year + as.factor(month)) 
> summary(fit.2)   # (Only selected lines shown below) 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)        7193.1363   519.0880  13.857  < 2e-16 *** 
iso.year             -3.5373     0.2609 -13.557  < 2e-16 *** 
as.factor(month)2    -0.1264    11.7585  -0.011 0.991423     
as.factor(month)3    35.0309    11.5731   3.027 0.002511 **  
as.factor(month)4   124.8507    10.9909  11.359  < 2e-16 *** 
as.factor(month)5   -60.3850    10.9800  -5.500 4.45e-08 *** 
as.factor(month)6  -143.1046    11.5944 -12.343  < 2e-16 *** 
as.factor(month)7  -140.2083    12.2217 -11.472  < 2e-16 *** 
as.factor(month)8  -131.2791    12.1083 -10.842  < 2e-16 *** 
as.factor(month)9  -117.4968    11.5074 -10.211  < 2e-16 *** 
as.factor(month)10  -78.3989    11.3861  -6.886 8.36e-12 *** 
as.factor(month)11  -42.6922    11.6195  -3.674 0.000247 *** 
as.factor(month)12   -2.8566    11.5966  -0.246 0.805462     
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 91.27 on 1539 degrees of freedom 
Multiple R-Squared: 0.4881,     Adjusted R-squared: 0.4842  
F-statistic: 122.3 on 12 and 1539 DF,  p-value: < 2.2e-16  
Adjusted R2 is now much higher (0.48).  
 

Look at coefficients for each month (Figure 25). The argument [-(1:2)] excludes element 1:2. 
> barplot(c(0,coef(fit.2)[-(1:2)]), names.arg=1:12) 

 
Figure 25. Barplot for estimated coefficients per month for Storgama. 
 
Is there an interaction between year and month? This means that effect of time can be different for 
each month.  
> fit.3 <- lm(NO3.N ~ iso.year * as.factor(month)) 
> summary(fit.3) 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                  4094.0268  1870.6059   2.189   0.0288 *   
iso.year                       -1.9794     0.9404  -2.105   0.0355 *   
as.factor(month)2            -279.6590  2631.3218  -0.106   0.9154     
as.factor(month)3            7380.5148  2600.8831   2.838   0.0046 **  
as.factor(month)4           15150.6343  2391.2350   6.336 3.10e-10 *** 
as.factor(month)5            4852.8377  2383.9214   2.036   0.0420 *   
as.factor(month)6           -2660.6283  2551.1398  -1.043   0.2972     
as.factor(month)7           -3186.2961  2819.9376  -1.130   0.2587     
as.factor(month)8           -2583.3170  2870.0494  -0.900   0.3682     
as.factor(month)9             370.1818  2523.3984   0.147   0.8834     
as.factor(month)10           3715.8048  2483.1261   1.496   0.1348     
as.factor(month)11           1687.2379  2556.7416   0.660   0.5094     
as.factor(month)12           2773.3034  2560.6876   1.083   0.2790     
iso.year:as.factor(month)2      0.1401     1.3226   0.106   0.9156     
iso.year:as.factor(month)3     -3.6920     1.3073  -2.824   0.0048 **  
iso.year:as.factor(month)4     -7.5590     1.2025  -6.286 4.24e-10 *** 
iso.year:as.factor(month)5     -2.4709     1.1989  -2.061   0.0395 *   
iso.year:as.factor(month)6      1.2651     1.2824   0.987   0.3240     
iso.year:as.factor(month)7      1.5273     1.4166   1.078   0.2811     
iso.year:as.factor(month)8      1.2283     1.4415   0.852   0.3943     
iso.year:as.factor(month)9     -0.2452     1.2685  -0.193   0.8468     
iso.year:as.factor(month)10    -1.9073     1.2482  -1.528   0.1267     
iso.year:as.factor(month)11    -0.8700     1.2850  -0.677   0.4985     
iso.year:as.factor(month)12    -1.3957     1.2870  -1.084   0.2783     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 88.58 on 1528 degrees of freedom 
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Multiple R-Squared: 0.5213,     Adjusted R-squared: 0.5141  
F-statistic: 72.35 on 23 and 1528 DF,  p-value: < 2.2e-16  
The increased R2 value is probably not worth all the extra parameters. 
 
Does NO3 have a relationship with TOC? 
> fit.4 <- lm(NO3.N ~ iso.year + as.factor(month) + TOC) 
> summary(fit.4) 
Coefficients:  
                    Estimate Std. Error t value Pr(>|t|)     
TOC                   1.0069     1.9195   0.525    0.600     
--- 
Multiple R-Squared: 0.581,      Adjusted R-squared: 0.5755  
F-statistic: 105.6 on 13 and 990 DF,  p-value: < 2.2e-16 
Effect of TOC is not significant (although adjusted R2 is slightly higher). 
 
What if we look at relationship with TOC only? 
> fit.5 <- lm(NO3.N ~ TOC) 
> summary(fit.5) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  135.487     10.981  12.339  < 2e-16 *** 
TOC           -9.680      2.209  -4.382 1.30e-05 *** 
--- 
Multiple R-Squared: 0.01881,    Adjusted R-squared: 0.01783  
F-statistic:  19.2 on 1 and 1002 DF,  p-value: 1.298e-05  
The effect of TOC only is significant, but has a very low R2. 
 
Now what if we try to put year back again: 
> fit.6 <- lm(NO3.N ~ iso.year + TOC) 
> summary(fit.6) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 6822.1445  1048.2457   6.508 1.20e-10 *** 
iso.year      -3.3674     0.5279  -6.379 2.72e-10 *** 
TOC           -3.1584     2.3955  -1.318    0.188     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 87.41 on 1001 degrees of freedom 
Multiple R-Squared: 0.05714,    Adjusted R-squared: 0.05525  
F-statistic: 30.33 on 2 and 1001 DF,  p-value: 1.627e-13  
Then TOC is no longer significant. 
 
Obviously we need a more systematic way to selecting the best model! We will address this issue 
later, but now let's look at some alternatives to the linear model. 
 
> detach(DATA) # Good modelling practice to clean up workspace 
 
 
2.8.3 Script 3: Generalised linear models. 
 
We want to describe relationship NO3.N and pH in Storgama (Figure 26). (This relationship is clearer 
that between TOC and NO3.N) 
 
> attach(DATA) 
> par(mfrow=c(2,2))  # Make panel for 2x2 plots 
> plot(NO3.N, pH, xlab="NO3 (ug/L N)", ylab="pH") 
 
First do a linear regression. 
> fit.lm <- lm(pH ~ NO3.N) 
> abline(coef(fit.lm), col="blue") 
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We would like to add some summary stats from summary(fit.lm) on the plot: R2, p-value. How do 
we extract these values? 
> names(fit.lm) 
 [1] "coefficients"  "residuals"     "effects"       "rank"          
 [5] "fitted.values" "assign"        "qr"            "df.residual"   
 [9] "na.action"     "xlevels"       "call"          "terms"         
[13] "model"         
> names(summary(fit.lm)) 
 [1] "call"          "terms"         "residuals"     "coefficients"  
 [5] "aliased"       "sigma"         "df"            "r.squared"     
 [9] "adj.r.squared" "fstatistic"    "cov.unscaled"  
> dimnames(coef(summary(fit.lm))) 
[[1]] 
[1] "(Intercept)" "NO3.N"       
[[2]] 
[1] "Estimate"   "Std. Error" "t value"    "Pr(>|t|)"   
 

Add title (can also use main() for this): 
> mtext("LM", side=3, line=.5, col="blue") 

We can use the function paste() to combine summary stats values with text on the plot. 
> mtext(paste("R2=", round(summary(fit.lm)$adj.r.squared,2), sep=""),  
+ side=3, line=-2, adj=.5, col="blue") 
The argument line= gives distance from the box, adj= gives adjustment left/right.  
If the p-value is below 0.001, we'll just write "p < 0.001". 
> pvalue <- coef(summary(fit.lm))[2,"Pr(>|t|)"] # extract p-value 
if (pvalue >= 0.001) { 
+ mtext(paste("p=", pvalue, sep=""), side=3, line=-2, adj=1, col="blue")  
}  
The curly brackets mark beginning and end of a statement. This is necessary if the statement is written 
over more than one line. Here the test failed, therefore nothing happened. 
> if (pvalue < 0.001)  
+ mtext("p<0.001", side=3, line=-2, adj=0.99, col="blue") 
The test passed, and so the text was added.  
 
PS: It should be possible to write this test more elegantly with the function  ifelse(test, yes, no) 
or    if(test) {yes} else {no} 
 
We also want to add confidence intervals for the mean. The function 
  predict.lm(object, interval="confidence")  
gives a matrix with columns fit, lwr, upr (lower and upper confidence intervals) for the mean. 
Alternatively for the response, see ?predic.lm. 
Make a sequence of x's for which we will predict the response: 
> new.x  <- data.frame(NO3.N = seq(min(NO3.N, na.rm=T), max(NO3.N, na.rm=T),  
+ length=50)) 
> pred.lm <- predict.lm(fit.lm, interval="confidence", newdata=new.x) 
> is.matrix(pred.lm) 
[1] TRUE 
> is.data.frame(pred.lm) 
[1] FALSE 
 
Matrices can behave a bit differently from data.frames:  
- They don't have "names" for columns, but "colnames" 
- They also have "dimnames", which is a list containing "rownames" (= dimnames[[1]])  and 
"colnames" (= dimnames[[2]]) 
- Length() for a data.frame is no. of columns, but length() for a matrix is no. of elements 
(=nrow*ncol) 
- You can't select the columns of a matrix by DATA$columnname, but by DATA[,"columnname"] 
- dim(), nrow(), ncol() work the same way for matrices and data.frames. 
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> lines(new.x$NO3.N, pred.lm[,"fit"], col="blue")  

This gives the same as line as abline(coef(fit.lm)). 
> lines(new.x$NO3.N, pred.lm[,"lwr"], col="blue", lty=2)  
> lines(new.x$NO3.N, pred.lm[,"upr"], col="blue", lty=2)  

 

Figure 26. Linear regression of pH vs. NO3 in Storgama 
 
################################################ 
 
Now let's say we're only interested in whether pH is above or below a boundary value of 4.5 
> boundary  # OK to use this name? 
Error: object "boundary" not found 
> boundary <- 4.5 
 
Change pH data into binary 0/1, below/above boundary. First make empty vector (not really necessary 
here, but in other cases it's useful). 
> DATA$pH.bin <- rep(NA, nrow(DATA)) 
 
Identify those rows with pH above the boundary, with a logical test: 
test <- DATA$pH > boundary   

(Why use object "boundary" in stead of the value 4.5 directly? - In case we want to change the value 
later, then it needs to be updated in only one place.) 
This gives a vector "test" with components TRUE, FALSE, NA 
> DATA$pH.bin <- as.numeric(test) 

Here, as.numeric() translates these components to 1, 0, NA, respectively. We could also make a 
more compact formulation: 
> DATA$pH.bin <- as.numeric(DATA$pH > boundary) 
 
Note that columns added to a data.frame AFTER it is attached, will not be available directly. So we'll 
detach and attach the data.frame again. 
> detach(DATA) 
> attach(DATA) 
 
> plot(NO3.N, pH.bin, xlab="NO3 (ug/L N)", ylab=paste("pH >", boundary)) 
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How will a linear regression work now (Figure 27)? 
> fit.lm <- lm(pH.bin ~ NO3.N) 
> pred.lm <- predict.lm(fit.lm, newdata=new.x, interval="confidence") 
> lines(new.x$NO3.N, pred.lm[,"fit"], col="red")  
> lines(new.x$NO3.N, pred.lm[,"lwr"], col="red", lty=2)  
> lines(new.x$NO3.N, pred.lm[,"upr"], col="red", lty=2)  
> mtext(paste("R2=", round(summary(fit.lm)$adj.r.squared,2), sep=""),  
+ side=3, line=-2, adj=.5, col="red") 
> pvalue <- coef(summary(fit.lm))[2,"Pr(>|t|)"]# extract p-value 
> if (pvalue >= 0.001) { 
+ mtext(paste("p=", pvalue, sep=""), side=3, line=-2, adj=1, col="red") } 
> if (pvalue < 0.001) { 
+ mtext("p<0.001", side=3, line=-2, adj=0.99, col="red") } 
 

 
Figure 27. Linear regression of binary transformed pH vs. NO3 in Storgama. 
 
The linear model is significant, but common sense shows that an LM is not appropriate. Look at the 
range of fitted values compared to the range of original values: 
> range(pH.bin) 
[1] NA NA 
> range(pH.bin, na.rm=TRUE)  
# na.rm=T can also be used with min(), max(), mean(), stdev(), etc. 
[1] 0 1 
> range(fitted(fit.lm)) 
[1] -0.5725272  0.9426986 
 
LOGISTIC REGRESSION is the solution here: this method deals with binary response variable. R can 
also do logistic regression with the response variable in other formats, e.g. proportions. See ?glm 
 
> fit.glm <- glm(pH.bin ~ NO3.N, family=binomial)    

The default is: family=binomial(link=logit) 
Note that for GLM, predict() or predict.glm() gives us predicted y values on the logit-
transformed scale (-Inf,Inf)... 
> range(predict(fit.glm)) 
[1] -6.536935  2.391123 

...while fitted() gives us fitted y values back-transformed to (0,1) scale. 
> range(fitted(fit.glm)) 
[1] 0.001446826 0.916147870 
 

The function predict.glm() doesn't seemt to give confidence intervals directly, like predict.lm() 
does. But we will still get the standard errors, and can add them ourselves to plot confidence intervals. 
> pred.glm  <- predict.glm(fit.glm, newdata=new.x, se.fit=T) 
> y.lower  <- pred.glm$fit - pred.glm$se.fit 
> y.upper  <- pred.glm$fit + pred.glm$se.fit 
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Now we must back-transform the predicted values to (0,1) scale before plotting them (Figure 28). 
We'll make a little function to help us with this. 
> backtrans <- function(x) { 
+ exp(x)/(1 + exp(x))# inverse function of logit(y) = log(y)/log(1-y) 
+ } 
> lines(new.x$NO3.N, backtrans(pred.glm$fit), col="green") 
> lines(new.x$NO3.N, backtrans(y.lower), col="green", lty=2) 
> lines(new.x$NO3.N, backtrans(y.upper), col="green", lty=2) 
> mtext("GLM: Logistic reg.", side=3, line=.5, col="green")  
> pvalue <- coef(summary(fit.glm))[2,"Pr(>|z|)"] # extract p-value 
> if (pvalue >= 0.001) { 
+ mtext(paste("p=", pvalue, sep=""), side=3, line=-3, adj=1, col="green") 
+ } 
> if (pvalue < 0.001) { 
+  mtext("p<0.001", side=3, line=-3, adj=0.99, col="green") 
+ } 
 

 
Figure 28. Linear regression (red) and logistic regression (green) of binary transformed pH vs. NO3 in 
Storgama. 
 
As it turns out, plotting of the logistic regression prediction could be done simpler. The argument 
type="response" gives predicted probabilities p(y) (on scale 0:1), instead of the default 
log(odds) = log(p(y)/(1-p(y)))  (on scale -Inf:Inf) 
> pred.glm <- predict.glm(fit.glm, newdata=new.x, se.fit=T, type="response") 
> y.lower <- pred.glm$fit - pred.glm$se.fit 
> y.upper <- pred.glm$fit + pred.glm$se.fit 
> lines(new.x$NO3.N, y.lower, col="blue", lty=2) 
> lines(new.x$NO3.N, y.upper, col="blue", lty=2) 
 

The command summary(fit.glm) doesn't give any R2 value for a glm object. But a "pseudo R2" can 
be calculate from the deviance: 
> nres <- length(residuals(fit.glm)) 
> R2 <- (1 - exp((fit.glm$deviance -  
+ fit.glm$null.deviance)/nres))/(1 - exp( - fit.glm$null.deviance/nres)) 
> mtext(paste("R2=", round(R2,2), sep=""), side=3, line=-3, adj=.5, col="green") 
 
But for model selection with GLMs we'll use the deviance directly, rather than R2. Compare what you 
get with anova(fit.lm) and anova(fit.glm): 
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> anova(fit.lm) # gives Analysis of variance 
Analysis of Variance Table 
Response: pH.bin 
            Df  Sum Sq Mean Sq F value    Pr(>F)     
NO3.N        1  54.303  54.303  390.28 < 2.2e-16 *** 
Residuals 1550 215.666   0.139                       
 
> anova(fit.glm) # gives Analysis of deviance 
Analysis of Deviance Table 
Model: binomial, link: logit 
Response: pH.bin 
Terms added sequentially (first to last) 
        Df Deviance Resid. Df Resid. Dev 
NULL                     1551    1651.97 
NO3.N    1   287.28      1550    1364.69 
 
A statistical theorem says that we can use the difference in deviance between "null model" and "full 
model" (given in the the anova table) to test if the parameter(s) in the full model is significant. 
> dev.null <- anova(fit.glm)["NULL", "Resid. Dev"] 
> dev.full <- anova(fit.glm)["NO3.N", "Resid. Dev"] 
> 1 - pchisq(dev.null - dev.full, df=1)# df = difference in number of parameters 
[1] 0   
 
Actually, we can also ask for this test directly within anova():  
> anova(fit.glm, test="Chi") 
Analysis of Deviance Table 
Model: binomial, link: logit 
Response: pH.bin 
Terms added sequentially (first to last) 
        Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                     1551    1651.97           
NO3.N    1   287.28      1550    1364.69 1.950e-64 
 
> detach(DATA) 
 
 
2.8.4 Script 4: Generalised additive models. 
 
Let's go back to our original y variable. 
attach(DATA) 
plot(NO3.N, pH, xlab="NO3 (ug/L N)", ylab="pH") 
fit.lm <- lm(pH ~ NO3.N) 
 
Are we certain that a linear model is the best choice? Does pH really decrease lineary with NO3, no 
lower boundary? We could try various polynomial functions etc., but a more efficient solution is to use 
GAM for explorative data analysis (when you have "enough" data). See Figure 29. 
> library(mgcv) 
This is mgcv 1.3-16 
 
> fit.gam <- gam(pH ~ s(NO3.N))   

The argument s() is a non-parametric, flexible "spline function" 
> summary(fit.gam) 
Family: gaussian  
Link function: identity  
Formula: 
pH ~ s(NO3.N) 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 4.698061   0.005334   880.7   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Approximate significance of smooth terms: 
           edf Est.rank     F p-value     
s(NO3.N) 7.652    9.000 51.89  <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.228   Deviance explained = 23.2% 
GCV score = 0.044412   Scale est. = 0.044165  n = 1552 
> names(summary(fit.gam)) 
 [1] "p.coeff"       "se"            "p.t"           "p.pv"          
 [5] "residual.df"   "m"             "chi.sq"        "s.pv"          
 [9] "scale"         "r.sq"          "family"        "formula"       
[13] "n"             "dev.expl"      "edf"           "dispersion"    
[17] "pTerms.pv"     "pTerms.chi.sq" "pTerms.df"     "cov.unscaled"  
[21] "cov.scaled"    "p.table"       "pTerms.table"  "s.table"       
[25] "gcv"           
  

The command summary(fit.gam) gives us R2 and p-value,  but with slightly different names than in 
summary(fit.lm)  
 
> pred.gam <- predict(fit.gam, newdata=new.x, se.fit=T)  
> y.lower <- pred.gam$fit - pred.gam$se.fit 
> y.upper <- pred.gam$fit + pred.gam$se.fit 
> lines(new.x$NO3.N, pred.gam$fit, col="orange") 
> lines(new.x$NO3.N, y.lower, col="orange", lty=2) 
> lines(new.x$NO3.N, y.upper, col="orange", lty=2) 
> mtext("GAM", side=3, line=.5, col="orange") 
> mtext(paste("R2=", round(summary(fit.gam)$r.sq, 2), sep=""),  
+ side=3, line=-2, adj=.5, col="orange")  
> pvalue <- summary(fit.gam)$s.pv# p-value for spline function 
> if (pvalue >= 0.001) { 
+ mtext(paste("p=", pvalue, sep=""), side=3, line=-2, adj=1, col="orange") 
+ } 
> if (pvalue < 0.001) { 
+ mtext("p<0.001", side=3, line=-2, adj=0.99, col="orange") 
+ } 

  
Figure 29. Generalised additive model (GAM) regression of pH vs. NO3 in Storgama. 
 
The GAM curve gives a better description of the relationship between variables (Figure 29). The CI 
are also more flexible. E.g. for NO3 > 600, you can't really conclude from the data whether pH 
increases or decreases. 
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"GCV" stands for generalised cross-validation - a method for automatic optimisation of smoothness 
together with model fitting. Estimated degrees of freedom is 
> summary(fit.gam)$edf 
[1] 7.651956 
 
But we can allow it to be more wiggly or more smooth manually. The gam() argument "gamma=" 
multiplies the "penalty" for wigglyness. So lower gamma means more wiggly (Figure 30, left panel); 
higher gamma means more smooth (Figure 30, right panel).  
 
> plot(NO3.N, pH, xlab="NO3 (ug/L N)", ylab="pH") 
> fit.gam.2 <- gam(pH ~ s(NO3.N), gamma=.01)   
> pred.gam <- predict(fit.gam.2, newdata=new.x, se.fit=T)  
> y.lower <- pred.gam$fit - pred.gam$se.fit 
> y.upper <- pred.gam$fit + pred.gam$se.fit 
> lines(new.x$NO3.N, pred.gam$fit, col="purple") 
> lines(new.x$NO3.N, y.lower, col="purple", lty=2) 
> lines(new.x$NO3.N, y.upper, col="purple", lty=2) 
Not so much difference from the optimised curve 
 
> mtext("gamma=.01", side=3, line=.5, col="purple", adj=0) 
> mtext(paste("R2=", round(summary(fit.gam.2)$r.sq, 2), sep=""),  
+ side=3, line=-2, adj=.5, col="purple")  
> pvalue <- summary(fit.gam.2)$s.pv# p-value for spline function 
> if (pvalue >= 0.001) { 
+ mtext(paste("p=", pvalue, sep=""), side=3, line=-2, adj=1, col="purple") 
+ } 
> if (pvalue < 0.001) { 
+ mtext("p<0.001", side=3, line=-2, adj=0.99, col="purple") 
+ } 
 
> fit.gam.3 <- gam(pH ~ s(NO3.N), gamma=100)   
> pred.gam<- predict(fit.gam.3, newdata=new.x, se.fit=T)  
> y.lower <- pred.gam$fit - pred.gam$se.fit 
> y.upper <- pred.gam$fit + pred.gam$se.fit 
> lines(new.x$NO3.N, pred.gam$fit, col="turquoise") 
> lines(new.x$NO3.N, y.lower, col="turquoise", lty=2) 
> lines(new.x$NO3.N, y.upper, col="turquoise", lty=2) 
Almost linear fit. 
 
> mtext("gamma=100", side=3, line=.5, col="turquoise", adj=1) 
> mtext(paste("R2=", round(summary(fit.gam.3)$r.sq, 2), sep=""),  
+ side=3, line=-3, adj=.5, col="turquoise")  
> pvalue <- summary(fit.gam.3)$s.pv# p-value for spline function 
> if (pvalue >= 0.001) { 
+ mtext(paste("p=", pvalue, sep=""), side=3, line=-3, adj=1, col="turquoise") 
+ } 
> if (pvalue < 0.001) { 
+ mtext("p<0.001", side=3, line=-3, adj=0.99, col="turquoise") 
+ } 
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Figure 30. Generalised additive model (GAM) regression of pH vs. NO3 in Storgama, with high and low degree 
of smoothing. 
 
detach(DATA) 
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3.  TIME SERIES 

 

3.1 Trends, seasons and autocorrelation 
Jannicke Moe  
 
The data are a series on nutrients etc. in River Glomma (from Per G. Stålnacke). 
 
Question: is there a temporal trend in TN (total nitrogen)? 
 
> glomma.na <- read.delim("PGS_Glomma_TN.txt") 
> names(glomma.na) 
[1] "year"  "month" "Q"     "TN"    "SPM"   "TP"    "Cu"    "Pb"    
 
The series consists of 13 years x 12 months, with some months lacking observations. Some of the 
functions we will use do not accept NAs, so we will replace these by other values.  
> (na.rows <- which(is.na(glomma.na$TN))) 
[1]  74 109 124 133 144 152 156 
 
Make a new data.frame, where we willl replace NAs with numbers: 
> glomma <- glomma.na   
 
We'll use the mean of all remaining years for that month (assuming there is no long-term trend):  
> for (i in na.rows) {   # i runs through rows with NAs 
+ for (j in 3:8) {   # j runs through columns with variables  
+  glomma[i,j] <- mean(glomma[glomma$month==glomma$month[i], j], na.rm=T) 
+  
+ } 
+ } 
 
For larger operations, functions like apply() are more efficient than for() loops. Below I will run 
some functions with both glomma and glomma.na, to test where NAs are accepted. 
 
> plot(glomma) 
It is hard to spot any trend in Figure 31 (against year or month). 
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Figure 31. Pair-wise scatterplots for the data set glomma.  
 
To see the trends more clearly, plot each physical/chemical variable (cols 3-8) against time (Figure 
32).  
> par(mfrow=c(6,1), oma=c(3,3,2,1), mar=c(1,2,1,1)) 
> for (i in 3:8) { 
+  plot(glomma.na[,i], type="l", col=i) 
+ mtext(names(glomma.na)[i], side=2, outer=F, line=3) 
+ } 
> mtext("Time (months)", side=1, outer=T, line=1) 
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Figure 32. Each chemical variable in the data set glomma plotted against time. 
 

3.1.1  Trend analysis by regression  
 
We can start with a simple regression for TN (although this is not recommended by statisticians, since 
it invalidates some assumptions). 
> windows() 
> par(mfrow=c(2,1)) 
 
Fit TN against time sequence counting from 1:end (unit months) 
 
> fit.1 <- lm(glomma$TN ~ seq(1:nrow(glomma))) 

Here I added seq() because lm() got confused by the ":". 
> plot(glomma$TN, type="l") # See Figure 33 
> abline(coef(fit.1), col="red") 
 
We can decompose the model into year and month (month as a categorical covariate), with year.no 
starting at 1: 
> glomma$year.no <- glomma$year - min(glomma$year) + 1 
> fit.2 <- lm(glomma$TN ~ glomma$year.no + as.factor(glomma$month)) 
> summary(fit.2) 
Call: 
lm(formula = glomma$TN ~ glomma$year.no + as.factor(glomma$month)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-289.92  -95.05  -32.65   64.42  679.93  
 
Coefficients: 
                          Estimate Std. Error t value Pr(>|t|)     
(Intercept)                637.253     52.026  12.249  < 2e-16 *** 
glomma$year.no               3.574      3.532   1.012 0.313235     
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as.factor(glomma$month)2    48.977     64.739   0.757 0.450572     
as.factor(glomma$month)3    60.189     64.739   0.930 0.354084     
as.factor(glomma$month)4    79.977     64.739   1.235 0.218713     
as.factor(glomma$month)5  -118.196     64.739  -1.826 0.069976 .   
as.factor(glomma$month)6  -203.811     64.739  -3.148 0.002000 **  
as.factor(glomma$month)7  -248.811     64.739  -3.843 0.000182 *** 
as.factor(glomma$month)8  -231.606     64.739  -3.578 0.000474 *** 
as.factor(glomma$month)9  -185.503     64.739  -2.865 0.004793 **  
as.factor(glomma$month)10  -92.427     64.739  -1.428 0.155562     
as.factor(glomma$month)11  -51.119     64.739  -0.790 0.431058     
as.factor(glomma$month)12  132.091     64.739   2.040 0.043154 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 165.1 on 143 degrees of freedom 
Multiple R-Squared: 0.3929,     Adjusted R-squared: 0.3419  
F-statistic: 7.712 on 12 and 143 DF,  p-value: 6.364e-11  
 
Summer months give strongest seasonal effect, as could be expected.  
 
We obtain the slope per year from  coef(fit.2)[2]. Divide this by 12 to get the slope per month, as 
in the plot. 
> abline(a=coef(fit.2)[1], b=coef(fit.2)[2]/12, col="green")  
This gives a much better fit (check R2 and p values), but there is still no significant trend per year.  
 
In stead of having 12 different parameter estimates for the months, we can use a non-linear fit with 
splines in GAM. 
> library(mgcv) 
> fit.3 <- gam(glomma$TN ~ glomma$year.no + s(glomma$month)) 
> windows()  
> par(mfrow=c(3,1)) 
 
Look at the effect of months (Figure 33, upper panel). Note that this plot is centered around zero on y-
axis. 
> plot(fit.3) 
Also look at the linear trend (Figure 33, middle panel). Here the unit is years. 
> plot(unique(glomma$year.no), coef(fit.3)[2]*unique(glomma$year.no), type="l",  
+ ylim=c(-200,200)) 
 
Standard deviations can be added in a cumbersome way: 
> lines(unique(glomma$year.no), 
+ (coef(fit.3)[2] + summary(fit.3)$se[2])*unique(glomma$year.no), lty=2)   
> lines(unique(glomma$year.no),  
+ (coef(fit.3)[2] - summary(fit.3)$se[2])*unique(glomma$year.no), lty=2)   
 
Compare the fitted model with the data (Figure 33, lower panel): 
> plot(glomma$TN, type="l") 
> lines(fitted(fit.3), type="l", col="red") 
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Figure 33. Trend estimations for TN from Glomma. Upper panel: Effect of month on TN, estimated 
by GAM. Middle panel: linear effect of year on TN. Lower panel: comparison of data and model 
prediction. 
 
Of course, the trend can also be modelled as splines instead of as a line (Figure 34). 
> fit.4 <- gam(glomma$TN ~  s(glomma$month) + s(glomma$year.no)) 
> windows() 
> par(mfrow=c(3,1)) 
> plot(fit.4)  # Plots estimate for each predictor variable in separate plots 
>  # NB: Here R asks for a "return", therefore I've added an empty line. 
> plot(glomma$TN, type="l") 
> lines(fitted(fit.4), col="red") 
The trend is not significantly non-linear, and not significantly != zero, according to this plot. 
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Figure 34. Trend estimations for TN from Glomma. Upper panel: Effect of month on TN, estimated 
by GAM. Middle panel: effect of year on TN, estimated by GAM. Lower panel: comparison of data 
and model prediction. 
  
 
Next we'll make a so-called time-series object, which enables us to do some "proper" time-series 
analyses. These methods accept serial correlation, and can do operations like decomposition into trend 
and season more efficiently than regression. In return they demand strictly regular series (equal time 
intervals), and can be unfriendly towards NAs.  
 
 

3.1.2  Make time-series object  
 
Time-series plot (Figure 35): 
> plot.ts(glomma[,3:8], nc=1)  # PS. Note difference from the command plot()  
> plot.ts(glomma.na[,3:8], nc=1)  # Here NAs are accepted  
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Figure 35. Time-series plot for the data set glomma.  
 

But R doesn't know yet that glomma is a time series: 
> is.ts(glomma) 
[1] FALSE 
… so we'll make it into a time series. 
> glomma.ts <- ts(glomma[,3:8], start=c(1990, 1), frequency=12,  
+  names=names(glomma[3:8])) 
 
The time variables are now defined by start= and frequency= . R assumes that frequency=12 means 
months. Here: start=c(year, month), but could be defined with other time units. NB: the time series 
must have regular intervals! (We can add NAs to obtain this.) 
> glomma.na.ts <- ts(glomma.na[,3:8], start=c(1990, 1), frequency=12,  
+ names=names(glomma.na[3:8])) 
> is.ts(glomma.ts) 
[1] TRUE 
 
Now glomma.ts is no longer a data.frame but a matrix (unfortunately), 
> is.data.frame(glomma.ts) 
[1] FALSE 
> is.matrix(glomma.ts) 
[1] TRUE 
 
… so glomma.ts doesn't have "names" ($col.name), but "dimnames" [,"col.name"]. 
> glomma.ts$TN   
NULL 
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> glomma.ts[,"TN"] 
Time Series: 
Start = 1  
End = 156  
Frequency = 1  
  [1]  564.0000  774.0000  680.0000  610.0000  355.0000  374.0000  444.0000 
  [8]  329.0000  321.0000  431.0000  471.0000  483.0000  991.0000  517.0000 
 [15]  796.0000  730.0000  528.0000  333.0000  428.0000  381.0000  378.0000 
 [etc.] 
 
The rownames and colnames of glomma.ts[,"TN"] are not readily available. Note that time variables 
are not columns in the matrix glomma.ts, they are just stored as the time series' attributes 
> attributes(glomma.ts)  # tsp gives start, end, frequency 
$dim 
[1] 156   6 
 
$dimnames 
$dimnames[[1]] 
NULL 
$dimnames[[2]] 
[1] "Q"   "TN"  "SPM" "TP"  "Cu"  "Pb"  
 
$tsp 
[1]   1 156   1 
 
$class 
[1] "mts" "ts" 
 
Plot the time-series object (Figure 36): 
> plot.ts(glomma.ts, nc=1)  

 
Figure 36. Time-series plot of time-series object glomma.ts. 
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Notice difference on x-axis compared to Figure 35, where we have used the same function plot.ts() 
but plotted the data frame glomma rather than the time-series object glomma.ts. On the other hand, the 
ordinary plot() function used on a ts object will also behave like the function plot.ts(). 
> plot(glomma.ts, nc=1) 
 
 

3.1.3  Trend analysis by non-parametric trend test  
 
Mann-Kendall is a simple non-parametric test (not making assumptions about data distribution), 
checking whether there is a monotonous trend (not necessarily linear). 
 
> library(Kendall) 
> MannKendall(glomma$TN) 
tau = 0.0662, 2-sided pvalue =0.22136 
 
We can try to account for seasonal variation. This test requires a time-series object. Here, seasons are 
implicit (given by the time series' frequency). 
 
> SeasonalMannKendall(glomma.ts[,"TN"]) 
tau = 0.140, 2-sided pvalue =0.020947 

Now it's significant, but less significant than the regression test (compare with summary(fit.2)), as it 
should be. 
 
 

3.1.4  Trend analysis by seasonal decomposition 
 
Now that we have a ts object, we can decompose it into trend, season, and residuals. The function 
stl() does this with loess smoothing. Let's try this decomposition with TN. 
 
> TN.stl <- stl(glomma.ts[,"TN"], s.window="periodic") 

s.window = span for seasonal extraction,  
t.window = for trend extraction, set by R if not given 
> plot(TN.stl, col.range="yellow", main=paste("Seasonal decomposition, t.window=", 
+ TN.stl$win[2])) 
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Figure 37. Seasonal decomposition of time-series object glomma.ts.  
 
The yellow bars indicate the difference in scale for the different components. NAs are apparently not 
welcome here: 
> TN.stl <- stl(glomma.na.ts[,"TN"], s.window="periodic", na.action=na.exclude) 
Error in stl(glomma.na.ts[, "TN"], s.window = "periodic", na.action = na.exclude) :  
        series is not periodic or has less than two periods 
> TN.stl <- stl(glomma.na.ts[,"TN"], s.window="periodic", na.action=na.omit) 
Error in na.omit.ts(as.ts(x)) : time series contains internal NAs 
> TN.stl <- stl(glomma.na.ts[,"TN"], s.window="periodic", na.action=na.pass) 
Error in stl(glomma.na.ts[, "TN"], s.window = "periodic", na.action = na.pass) :  
        NA/NaN/Inf in foreign function call (arg 1) 
 
We can make the the trend estimation more smooth or less smooth (Figure 38) 
windows() 
plot(stl(glomma.ts[,"TN"], s.window="periodic", t.window=35), col.range="yellow", 
 main="Seasonal decomposition, t.window=35") 
windows() 
plot(stl(glomma.ts[,"TN"], s.window="periodic", t.window=7), col.range="yellow", 
 main="Seasonal decomposition, t.window=7") 
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Figure 38.  Seasonal decomposition of time-series object glomma.ts, with more smoothing (left panel) 
and less smoothing (right panel). 
 
Which month gives peak TN, according to our seasonal decomposition? 
> which.max(TN.stl$time.series[1:12])  # Which month during first 12 months? 
[1] 12 
Which are the first and second highest peak? 
> rev(order(TN.stl$time.series[1:12]))[1:2] 
[1] 12  4 
 
Consider: is the double peak in seasonal effect reasonable? 
 
 

3.1.5 Autocorrelation 
 
Time-series data are often correlated in time (a reason why regression should not be used). We can 
check the autocorrelation as a function of number of lags (here: months) 
> windows() 
> par(mfrow=c(3,1)) 
> acf(glomma[,"TN"])# Original data.frame: unit is months 
> acf(glomma.ts[,"TN"])# Time-series object: unit is years 
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Figure 39. Autocorrelation plots for dataset glomma (upper panel) and for time-series object 
glomma.ts. 
 
The ACF plot (Figure 39) indicates significant autocorrelation for lag around 11-13 months, which 
should not be a surprise.  
 
Autocorrelation can also be tested with an autoregressive model ar(), which uses AIC to select 
number of significant lags 
> ar(glomma.ts[,"TN"]) 
Call: 
ar(x = glomma.ts[, "TN"]) 
 
Coefficients: 
      1        2        3        4        5        6        7        8   
 0.1018   0.0847  -0.0421  -0.0393  -0.1454  -0.0476  -0.1188  -0.0045   
      9       10       11       12       13   
 0.1404  -0.1090   0.0524   0.2029   0.1704   
 
Order selected 13  sigma^2 estimated as  32336 
 
Here, the estimated order of 13 lags corresponds to 13 months. Let's try also the time series with NA's. 
 
> ar(glomma.na.ts[,"TN"], na.action=na.exclude) 
Call: 
ar(x = glomma.na.ts[, "TN"], na.action = na.exclude) 
 
Coefficients: 
      1        2        3        4        5        6        7   
 0.1738   0.0041   0.0175  -0.1133  -0.1111  -0.1777  -0.1500   
 
Order selected 7  sigma^2 estimated as  36083  
 

The NA version gives a different result, so the function ar() does not seem robust to missing values... 
 

We can also test the residuals from the seasonal decomposition. We have seen the residuals in the stl 
plot so we know they exist, but how do we get the numbers? 
> names(TN.stl) 
[1] "time.series" "weights"     "call"        "win"         "deg"         
[6] "jump"        "inner"       "outer"       
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Check what "time.series" contains: 
> names(TN.stl$time.series)   
NULL 

When names() does not work, it can be useful to try dimnames() 
> dimnames(TN.stl$time.series)  
[[1]] 
NULL 
[[2]] 
[1] "seasonal"  "trend"     "remainder" 
 
> windows() 
> par(mfrow=c(3,1)) 
> acf(glomma.ts[,"TN"]) 
> acf(TN.stl$time.series[,"remainder"]) # (unit is years) 
> ar(TN.stl$time.series[,"remainder"]) 
Call: 
ar(x = TN.stl$time.series[, "remainder"]) 
 
Coefficients: 
      1        2        3        4        5        6        7        8   
-0.3867  -0.3873  -0.4804  -0.4980  -0.5335  -0.4663  -0.5522  -0.4707   
      9       10       11       12       13       14       15       16   
-0.2449  -0.5266  -0.4503  -0.3780  -0.2023  -0.2896  -0.2729  -0.0976   
     17       18   
-0.1862  -0.2192   
 
Order selected 18  sigma^2 estimated as  16490  
 
Now there is not much autocorrelation left, as expected (Figure 40, upper panel). 
 
What about the trend? 
> acf(TN.stl$time.series[,"trend"]) 
> ar(TN.stl$time.series[,"trend"]) 
 
Call: 
ar(x = TN.stl$time.series[, "trend"]) 
 
Coefficients: 
      1        2        3   
 1.4052  -0.1569  -0.2988   
 
Order selected 3  sigma^2 estimated as  59.95  
 
There is strong autocorrelation is in the trend (Figure 40, middle panel), as expected.  
 
The estimated seasonal effect will of course also have a strong autocorrelation (Figure 40, lower 
panel). 
> acf(TN.stl$time.series[,"seasonal"]) 
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Figure 40. Autocorrelation plots for remainders (residuals) from AR-model of dataset glomma (upper 
panel); for the estimated temporal trend (middle panel); and for the seasonal effect (lower panel). 
 

There is a large framework for time-series analysis called ARIMA, if interested see ?arima 
 
 
 
 

3.2 Structural changes in time series 
Tom Andersen 
 
Data set from Ringkøbing fjord, Denmark (DMU). The data are from 1980-2004, averaged to monthly 
means. 
 
> ring1 <- read.table("Ringkøbing monthly TS.txt", header=TRUE) 
> names(ring1) 
 [1] "Year"   "Month"  "Nsamp"  "Temp"   "Sal"    "Transp" "Chla"   "TotP"   
 [9] "PO4"    "TotN"   "NO3"    
> summary(ring1) 
      Year          Month            Nsamp            Temp        
 Min.   :1980   Min.   : 1.000   Min.   :0.000   Min.   : 0.000   
 1st Qu.:1986   1st Qu.: 4.000   1st Qu.:1.000   1st Qu.: 4.200   
 Median :1992   Median : 7.000   Median :2.000   Median : 9.800   
 Mean   :1992   Mean   : 6.561   Mean   :2.139   Mean   : 9.984   
 3rd Qu.:1998   3rd Qu.:10.000   3rd Qu.:3.000   3rd Qu.:15.300   
 Max.   :2004   Max.   :12.000   Max.   :5.000   Max.   :22.030   
 (etc.) 
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There are a lot of missing values, especially for Chla. Where are they? Let's make a function to count 
missing values 
> count.na <- function(x) { sum(is.na(x)) } 
 
Let's test our function, first columnwise. 
> apply(ring1,2,count.na) 
  Year  Month  Nsamp   Temp    Sal Transp   Chla   TotP    PO4   TotN    NO3  
     0      0      0     33     32     31     64     26     45     26     26  

OK, this  gives the same results as summary(). 
 
> attach(ring1)  
> TotP.missing <- tapply(TotP, Year, count.na) 
> plot(1980:2004,TotP.missing)   # Figure 41 
 

 
Figure 41. Number of missing TotP values per year, in the data from Ringkøbingfjord. 
 

Notice the difference between apply() and tapply() (as commented below):  
> apply(ring1, 2, count.na) # = number of missing in each column of ring1 
  Year  Month  Nsamp   Temp    Sal Transp   Chla   TotP    PO4   TotN    NO3  
     0      0      0     33     32     31     64     26     45     26     26  
> tapply(TotP, Year,count.na)  # = number of missing TotP in each year 
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995  
   0    6    3    2    3    3    3    4    0    0    0    1    0    0    0    0  
1996 1997 1998 1999 2000 2001 2002 2003 2004  
   1    0    0    0    0    0    0    0    0 
 
> detach(ring1) 
 
Most missing values are in the years before 1988. Let's make a subset of the years 1988-2004: 
> ring1.1988 <- subset(ring1, Year > 1987) 
 
Now, let's make a time-series (ts) object out of this. We skip the first 3 columns containing time 
information, since time is implicit in the ts object definition. 
> ring1.ts <- ts(ring1.1988[4:11], frequency=12, start=c(1988,1)) 
> plot(ring1.ts) # Figure 42 
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Figure 42. Time-series plot of data from Ringkøbingfjord. 
 
Something very special seems to have happened in 1995! In the summer of 1995 the outlet of 
Ringkøbing fjord was widened so that the seawater exchange increased. The resulting increase in 
salinity allowed filter-feeding clams to establish, leading to a fast decrease in chlorophyll.  
 

Let's use the strucchange package to investigate this regime shift. (Notice that strucchange depends 
on other packages, therefore installation from local zip file is not recommended.) 
> require(strucchange) 
Loading required package: strucchange 
Loading required package: zoo 
Loading required package: sandwich 
[1] TRUE 
 

Fstats() calculates the F-statistic for all possible breakpoints of a linear model. This significance of 
the identified breakpoint(s) can be tested with sctest().  
Let's test if there is a change in the mean of some variables. The model formula for x = constant is 
x ~ 1.  
 
> par(mfrow=c(2,2)) # Figure 43 
 
Temperature: 
> fs.temp <- Fstats(Temp ~ 1, data=ring1.ts) 
> plot(fs.temp, main="Temperature") 
> lines(breakpoints(fs.temp)) 
> sctest(fs.temp) 
sup.F = 1.1378, p-value = 0.982 
Breakpoint(s) are detected, but not significant. 
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Salinity: 
> fs.Sal <- Fstats(Sal  ~ 1, data=ring1.ts) 
> plot(fs.Sal, main="Salinity") 
> lines(breakpoints(fs.Sal)) 
> sctest(fs.Sal) 
sup.F = 47.0139, p-value = 3.677e-10 
Highly significant breakpoint in March 1995 
 
Chlorophyll a: 
> fs.Chla <- Fstats(Chla ~ 1,data=ring1.ts) 
> plot(fs.Chla, main="Chlorophyll") 
> lines(breakpoints(fs.Chla)) 
> sctest(fs.Chla) 
sup.F = 240.5308, p-value < 2.2e-16 
Highly significant breakpoint in October 1995 
 
> fs.TotP <- Fstats(TotP ~ 1,data=ring1.ts) 
> plot(fs.TotP, main="Total P") 
> lines(breakpoints(fs.TotP)) 
> sctest(fs.TotP) 
sup.F = 122.1825, p-value < 2.2e-16 
# Highly significant breakpoint in November 1995 
 
 

 
Figure 43. Breakpoint analyses for data from Ringkøbingfjord. 
 
Now let's try a more complicated model: There were significant breakpoints in both the Chla and TotP 
time series. Was there also a change in the relationship between them? (Figure 44) 
> fs.Chla.TotP <- Fstats(log10(Chla) ~ log10(TotP),data=ring1.ts) 
> plot(fs.Chla.TotP, main="Chlorophyll vs. Total P") 
> lines(breakpoints(fs.Chla.TotP)) 
> sctest(fs.Chla.TotP) 
sup.F = 148.9023, p-value < 2.2e-16 
Yes, highly significant, but half a year later (July 1996).  
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We can visualize the two regression lines in a plot (Figure 44): 
 
> bp <- fs.Chla.TotP$breakpoint 
> plot(log10(Chla) ~ log10(TotP), data = ring1) 
> points(log10(Chla) ~ log10(TotP), data = ring1, subset = 1:bp, col = 2, pch = 19) 
> abline(lm(log10(Chla) ~ log10(TotP), data = ring1, subset = 1:bp), col = 2) 
> abline(lm(log10(Chla) ~ log10(TotP), data = ring1, subset = -(1:bp))) 
 
 

 
Figure 44. Breakpoint analysis for relationship between Total P and chlorophyll from 
Ringkøbingfjord. 
 
 
So, the relationship between Chla and TotP became stronger after the establishment of benthic filter 
feeders. The reason is possibly that Chla yield per unit TotP was light limited before mussel invasion, 
and because mussel removal of TotP makes the TotP gradient longer. The 3 outliers (2 before, 1 after)  
are probably winter values. Maybe the next step would be to look for a seasonal component?  
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4. MULTIVARIATE MODELS IN VEGAN 

Robert Ptacnik 

VEGAN 
ROCKS

Community analysis using vegan

• Basic terms in community analysis
- metric vs. non-metric methods
- constrained vs. unconstrained methods

• When to choose which approach

• Preparation of data

• Procrustes rotation

• Extract species optima
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What is ordination?

Reduce dimensionality in multivariate data

-> organize your data such that overriding 
gradients become visible ('gradient analysis')

 
(from http://ordination.okstate.edu/index.html ) 

Constrained vs. unconstrained ordination

Unconstrained: Obtain distribution from 
species' information.

-> Find best ordination with respect to 
community data.

Constrained: Force analysis to build axes 
based on environmental variables.

-> See how data can be organized based 
on environmental data.
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Ordination results: 2 types of scores

species scores site scores
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In the process of ordination, axes are calculated which represent the (dis-) similarity of 
samples and species, with most similar observations most close to each other.  
The maximum variation that can be explained in a one-dimensional space is translated into 
the first ordination axis (CCA1 below). Next, as much of the remaining variation that can be 
explained (again in a one-dimensional space) is being projected onto the second axis, and 
so on.  
 
How much of the variability can be explained by the 1st, 2nd, 3rd... axis? 
->'inertia'.

In case of constrained ordination the inertia is split into constrained and 
unconstrained component.

Inertia Rank
Total         0.80328     
Constrained   0.05322    1
Unconstrained 0.75006   15
Inertia is mean squared contingency coefficient 

Eigenvalues for constrained axes:
CCA1 

0.05322 

Eigenvalues for unconstrained axes:
CA1      CA2

0.122600 0.111737

Significance of results can be 
tested with permutation
test.  
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Types of ordination

RDA
redundancy 

analysis

PCA
principal 

components 
analysis

euclidean
distances

least squares

-
NMDS

non-metric 
multidimensional 

scaling

dissimilarity 
matrix

rank-based

CCA
canonical 

correspondence 
analysis

CA (DCA)
correspondence 

analysis
Chi2 distances

weighted 
averaging

constrainedunconstrained

axes are...

method
for scores..

RDA
redundancy 

analysis

PCA
principal 

components 
analysis

euclidean
distances

least squares

-
NMDS

non-metric 
multidimensional 

scaling

dissimilarity 
matrix

rank-based

CCA
canonical 

correspondence 
analysis

CA (DCA)
correspondence 

analysis
Chi2 distances

weighted 
averaging

constrainedunconstrained

axes are...

method
for scores..

 
 
 

Constrained vs. unconstrained ordination

Pros and Cons

Unconstrained: Obtain distribution from 
species' information 

Advantage: 'let the community tell you 
how sites are related to each other'
The sites are grouped based on their 
true variation

Disadvantage: Analysis more time-
consuming; potential problems with 
large datasets (NMDS); 

Constrained: Force analysis to build axes 
based on environmental variables

Advantage: Species can be more easily 
associated with environmental data

Disadvantage: Only  the variation that can 
be related to env. variables will be visible
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RDA
-/-

PCA
gradual 

differences in 
community

least squares

-

NMDS
binary data 
(pres./abs.)

rank-based

CCA
-/-

CA
many species 

have zero 
observations

weighted 
averaging

constrainedunconstrained

RDA
-/-

PCA
gradual 

differences in 
community

least squares

-

NMDS
binary data 
(pres./abs.)

rank-based

CCA
-/-

CA
many species 

have zero 
observations

weighted 
averaging

constrainedunconstrained

Types of ordination - when to choose which

 

RDA
rda(spec, 

env)

PCA
rda(spec)least squares

-

NMDS
metaMDS(spec)rank-based

CCA
cca(spec, 

env)

CA
cca(spec)weighted 

averaging

constrainedunconstrained

spec: species matrix

env: environmental 
predictors

RDA
rda(spec, 

env)

PCA
rda(spec)least squares

-

NMDS
metaMDS(spec)rank-based

CCA
cca(spec, 

env)

CA
cca(spec)weighted 

averaging

constrainedunconstrained

spec: species matrix

env: environmental 
predictors

Types of ordination - commands in vegan
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Constrained vs. unconstrained ordination

Two approaches

start with unconstrained analysis
(NMDS, CA, PCA)

ordi <- cca(resp)

start with constrained analysis
(CCA, RDA)

cca(resp, env)

fit environmental variables to ordination
(incl. permutation test)

envfit(ordi, env, perm=1000)

select most relevant variables
and plot them into ordination

improve model with formula interface
cca(resp~Fac1+Fac2*(Fac3+Fac4)..)

test variables by permutation test

run reduced model  
 

Structure of data

- no missing values accepted
- sums of each single row and column must be >0 (species)
- factors can be used (environ. variables)

Use short identifiers (e.g. TP instead of Total Phosphorus (µg/L))
>> easier to read on plot

row =
observation

column = species
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Structure of data: usually 2 matrices with matching rows

dependent matrix 
(community)

independent matrix
(env. parameters)

rows must match

 
 

- delete column (loose species/predictor)
- delete row (delete observation)
- fill gap with predicted value (requires some consideration)

Structure of data

what to do with missing values?
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Comparing ordinations -

Procrustes rotation

Procrustes analysis determines a linear 
transformation (translation, reflection, 
orthogonal rotation, and scaling) of the 
points in matrix Y to best conform them to 
the points in matrix X.

(...) Theseus ʺfittedʺ Procrustes to his own bed and cut off his head 
and feet. (...) Killing Procrustes was the last adventure of Theseus on 
his journey from Troezen to Athens.  (from Wikipedia)  
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4.1 Multivariate analyses: Examples  
  
4.1.1 Example 4: Basics in vegan 
>  
> rm(list=ls())  #clean workspace 
> require(vegan) # load vegan 
Loading required package: vegan 
[1] TRUE 
 
Let's start with an example dataset from Jari Oksanen. 
> data(varespec) # data on distribution of 44 understorey plant species on 24 sites 
> data(varechem) # environmental data for the sampling sites 
  
First we use Nonmetric Multidimensional Scaling (NMDS) 
> x11(10,5)  # set size of window: x11(width, height) 
> par(mfrow=c(1, 2)) # split into two panels 
> nm1 <- metaMDS(varespec)  
Square root transformation 
Wisconsin double standardization 
Loading required package: MASS 
Run 0 stress 18.44915  
Run 1 stress 23.60978  
Run 2 stress 21.43612  
Run 3 stress 22.97361  
Run 4 stress 19.82376  
Run 5 stress 19.48413  
Run 6 stress 22.81606  
Run 7 stress 21.37383  
Run 8 stress 19.5049  
Run 9 stress 18.25658  
... New best solution 
... rmse 0.04516871   max residual 0.1694442  
Run 10 stress 20.4831  
Run 11 stress 26.25915  
Run 12 stress 19.69805  
Run 13 stress 18.25658  
... New best solution 
... rmse 4.832084e-05   max residual 0.0001559065  
*** Solution reached 
 
> nm1 # inspect result 
 
Call: 
metaMDS(comm = varespec)  
 
Nonmetric Multidimensional Scaling using isoMDS (MASS package) 
 
Data:     wisconsin(sqrt(varespec))  
Distance: bray  
 
Dimensions: 2  
Stress:     18.25658  
Two convergent solutions found after 13 tries 
Score scaling: centring, PC rotation, halfchange scaling  
 
> plot(nm1) 
R doesn't want to show us the species. OK, plot in two steps: 
> plot(nm1, type="n") # empty plot 
> text(nm1, "species", col=2) # the species 
> text(nm1, "sites",  col=1) 
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Fitting environmental data to the NMDS: 
envfit() fits environmental variables into existing ordination. 
If 'perm=xxx' is given, the fit is testen with xxx permutations and statistics are returned 
> (ef.nm1 <- envfit(nm1, varechem, perm = 1000))  
 
***VECTORS 
             NMDS1     NMDS2     r2 Pr(>r)     
N        -0.057241 -0.998360 0.2536  0.043 *   
P         0.619606  0.784913 0.1938  0.100 .   
K         0.766361  0.642411 0.1809  0.135     
Ca        0.685118  0.728432 0.4119  0.003 **  
Mg        0.632459  0.774594 0.4270  0.001 *** 
S         0.191286  0.981534 0.1752  0.139     
Al       -0.871651  0.490127 0.5269 <0.001 *** 
Fe       -0.936054  0.351857 0.4450  0.005 **  
Mn        0.798774 -0.601632 0.5231  0.001 *** 
Zn        0.617446  0.786613 0.1879  0.122     
Mo       -0.903091  0.429449 0.0610  0.510     
Baresoil  0.924936 -0.380124 0.2508  0.043 *   
Humdepth  0.932874 -0.360203 0.5200  0.001 *** 
pH       -0.648097  0.761558 0.2308  0.077 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
P values based on 1000 permutations. 
 
Note that when commands are written in parantheses, the results are written in the console. 
 
Add environmental gradients: 
> plot(ef.nm1) # note: plot.envfit draws into existing ordination 
> plot(ef.nm1, p.max = 0.05, col = "red") # highlight the significant variables 
Arrows and names look a bit messy together (not shown) - why not split into two plots (Figure 45): 
> par(mfrow=c(1, 2)) 
> plot(nm1) #  

Note that this plot may look slightly different on your pc, because nmds() starts with arbitrary initial 
values and converges to an optimal solution from these initial values. 
> plot(ef.nm1) # add environmental gradients 
> plot(ef.nm1, p.max = 0.05, col = "red") # highlight the significant ones 
> plot(nm1, type="n") # empty plot 
> text(nm1, "species", col=2) # the species 
> text(nm1, "sites",  col=1) 
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Figure 45. Non-metric multidimensional scaling (NMDS) for the varespec-data. 
 
Compare with PCA (Figure 46): 
> x11(6, 6) 
> ca1 <- cca(varespec) 
> plot(ca1)  

Note that pca() shows the species names. There are different settings for default plot function. 
> (ef.ca1 <- envfit(ca1, varechem, perm = 1000)) 
 
***VECTORS 
 
               CA1       CA2     r2 Pr(>r)     
N         0.474695 -0.880150 0.2196  0.086 .   
P         0.448265  0.893901 0.3054  0.020 *   
K         0.736164  0.676803 0.1773  0.140     
Ca        0.697240  0.716838 0.3064  0.025 *   
Mg        0.773175  0.634192 0.2466  0.057 .   
S         0.051368  0.998680 0.0902  0.389     
Al       -0.974910 -0.222600 0.4995  0.001 *** 
Fe       -0.963899 -0.266270 0.3682  0.011 *   
Mn        0.914437  0.404729 0.4750  0.001 *** 
Zn        0.770385  0.637578 0.1766  0.133     
Mo       -0.638085 -0.769966 0.0539  0.588     
Baresoil  0.979466 -0.201608 0.2533  0.058 .   
Humdepth  0.916024  0.401123 0.4524  0.002 **  
pH       -0.998306  0.058180 0.2187  0.106     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
P values based on 1000 permutations. 
> plot(ef.ca1) # note: this plotting method requires existing plot 
> plot(ef.ca1, p.max = 0.05, col = "red") # as above 
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Figure 46. PCA of same data as in Figure 45.  
 
Compare how well environmental variables could be fit into the two different ordinations. Discuss 
differences; which method works better with this dataset? 
 
Illustrate major gradients (Figure 47): 
> x11() 
> plot(nm1); plot(ef.nm1) 
> ordisurf(nm1, varechem$Al, add=T, col=2) # fit surface (GAM) over ordination 
Loading required package: mgcv 
This is mgcv 1.3-13  
Loading required package: akima 
 
Family: gaussian  
Link function: identity  
 
Formula: 
y ~ s(x1, x2, k = knots) 
 
Estimated degrees of freedom: 
 5.087141   total =  6.08714  
 
GCV score:  8798.657  
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> ordisurf(nm1, varechem$Humdepth, add=T, col=3) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
y ~ s(x1, x2, k = knots) 
 
Estimated degrees of freedom: 
 5.481066   total =  6.481066  
 
GCV score:  0.2213074  
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Figure 47. NMDS with suface fits for the environmental variables ‘Al’ (red) and ‘Humdepth’ (green). 
 
 
 
 
> #               (( 
> # C O F F E E    )) 
> #  B R E A K   |   |o) 
> #              |___| 
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4.1.2 Example 5: Applications of non-metric multidimensional scaling (NMDS) & 
canonical correspondence analysis (CCA) to benthos data 
 
Unless we restarted R we don't have to reload vegan.  
> rm(list=ls()) #clean workspace 
   
Load data from Hilde Trannum: open EXCEL-sheet, highlight the data in sheet 'speci' and copy table 
to the clipboard (= press 'ctrl'+'C'). Then return to R and run 
> traspe <- read.delim(file="clipboard", row.names=1) # '..., header=T' redundant, 
is the default 
Now go again to EXCEL and copy the environmental data in the same way, then run 
> traenv <- read.delim(file="clipboard", row.names=1) 
 
If this doesn't work, load these files instead 
> load("traspe.bin") 
> load("traenv.bin") 
 
We can save these tables for further use in R (open with load("file.bin") ) 
> save(traspe, file="traspe.bin")  
> save(traenv, file="traenv.bin") 
It is useful to have separate identifier for binary files.  
Function file.bin() stores data in binary format. This can only be opened within R. Advantage: 
easier to open: load("file.bin"), instead of read.table("file.txt", header=T, row.names=T). 
  
I want to check if the rows match; the function match(x,y) finds matching objects among two 
vectors. 
> match(rownames(traspe), rownames(traenv)) 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
> match(rownames(traspe), rownames(traenv))/1:20 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 
The species list is very long. Problem: many taxa occur only at one site. Should we exclude taxa 
occuring below a minimum number? This depends on the focus of the analysis. If the focus is on the 
sites, these taxa give still info on species richness, but if focus is on the species and their distribution, 
we should exclude rare taxa (stochastic occurence). First let's see how the data are distributed. 
 
Visualize number of sites per taxon. The apply() function is useful for aggregation of arrays/matrices: 

apply(array, margin, function):  margin=1 -> by row; margin=2 -> by column 
An example for usage of apply(): 
> mat <- traspe[1:3, 1:3] 
> mat 
        Abra.sp Abys.sp Agla.mal 
GOL1-1        0      28        5 
GOL1-10       0      41        7 
GOL1-11       0      20        9 
> apply(mat, 1, sum) 
 GOL1-1 GOL1-10 GOL1-11  
     33      48      29  
> apply(mat, 2, sum) 
 Abra.sp  Abys.sp Agla.mal  
       0       89       21  
> apply(mat>0, 1, sum) # row-sums = sums per site 
 GOL1-1 GOL1-10 GOL1-11  
      2       2       2  
> apply(mat>0, 2, sum) # column-sums = sums per taxon 
 Abra.sp  Abys.sp Agla.mal  
       0        3        3  
> x11(6, 6) 
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> hist(apply(traspe>0, 2, sum), xlab="Nr. sites per taxon") 
This gives too few breaks. We can increase the number of breaks (Figure 48): 
> hist(apply(traspe>0, 2, sum), breaks=20, xlab="Nr. sites per taxon")  
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Figure 48. Histogram of no. of sites per taxon. 
 
You can abbreviate command within function: 'bre=..' instead of 'breaks=' (or any non-ambiguous 
abbrevation). 
So let's exclude taxa with less than 5 occurences: 
> sel <- which(apply(traspe>0, 2, sum)>4) 
Check if this works (Figure 49): 
> hist(apply(traspe[sel]>0, 2, sum), breaks=20, xlab="Nr. sites per taxon") 

Histogram of apply(traspe[sel] > 0, 2, sum)
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Figure 49. Histogram of no. of sites per taxon. 
 
Should these taxa be excluded? If yes: 
# > traspe<-traspe[sel] # below, we continue with the full dataset 
  
Check environmental variable for their distribution 
> x11() 
> pairs(traenv) # not shown 
There are too many at once; focus on metals: 
> pairs(traenv[1:11]) 
Let's see log-transformed data now (Figure 50): 
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> pairs(log(traenv[1:11])) 
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Figure 50. Command pairs: pair wise scatterplots of environmental variables. 
 
Log-transformed values are not better. Log-transformation of THC and Cd would yield  
negative values. This can avoid by multiplying by 1000. 
> traenv[, 1:2] <- log10(1000*traenv[, 1:2]) 
 
Check correlations among environmental variables. The function cor(x) gives a correlation matrix. 
> round(cor(traenv),2) # not so clear to read, try: 
            THC    Cd    Pb    Al    Ba    Cr    Cu    Fe    Li    Ti    Zn 
THC        1.00 -0.33 -0.04 -0.05  0.33  0.34  0.33  0.35  0.04  0.31  0.29 
Cd        -0.33  1.00  0.21 -0.32 -0.09 -0.05 -0.07  0.00 -0.08 -0.07  0.02 
Pb        -0.04  0.21  1.00  0.32 -0.13 -0.02 -0.22 -0.01  0.55 -0.16  0.27 
Al        -0.05 -0.32  0.32  1.00 -0.15  0.19  0.24  0.06  0.69 -0.10  0.35 
Ba         0.33 -0.09 -0.13 -0.15  1.00  0.89  0.81  0.94  0.31  0.99  0.76 
Cr         0.34 -0.05 -0.02  0.19  0.89  1.00  0.91  0.98  0.60  0.93  0.93 
Cu         0.33 -0.07 -0.22  0.24  0.81  0.91  1.00  0.88  0.45  0.85  0.81 
Fe         0.35  0.00 -0.01  0.06  0.94  0.98  0.88  1.00  0.53  0.96  0.91 
Li         0.04 -0.08  0.55  0.69  0.31  0.60  0.45  0.53  1.00  0.34  0.80 
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Ti         0.31 -0.07 -0.16 -0.10  0.99  0.93  0.85  0.96  0.34  1.00  0.78 
Zn         0.29  0.02  0.27  0.35  0.76  0.93  0.81  0.91  0.80  0.78  1.00 
TOM        0.11 -0.17  0.46  0.41  0.28  0.43  0.32  0.37  0.74  0.27  0.60 
Depth     -0.06  0.05  0.50  0.50  0.07  0.25  0.19  0.21  0.78  0.06  0.52 
Fine.sand  0.01 -0.01 -0.36 -0.55 -0.26 -0.50 -0.47 -0.40 -0.82 -0.28 -0.68 
Pelite     0.03 -0.06  0.38  0.58  0.26  0.50  0.45  0.41  0.86  0.28  0.69 
            TOM Depth Fine.sand Pelite 
THC        0.11 -0.06      0.01   0.03 
Cd        -0.17  0.05     -0.01  -0.06 
Pb         0.46  0.50     -0.36   0.38 
Al         0.41  0.50     -0.55   0.58 
Ba         0.28  0.07     -0.26   0.26 
Cr         0.43  0.25     -0.50   0.50 
Cu         0.32  0.19     -0.47   0.45 
Fe         0.37  0.21     -0.40   0.41 
Li         0.74  0.78     -0.82   0.86 
Ti         0.27  0.06     -0.28   0.28 
Zn         0.60  0.52     -0.68   0.69 
TOM        1.00  0.69     -0.82   0.82 
Depth      0.69  1.00     -0.85   0.89 
Fine.sand -0.82 -0.85      1.00  -0.99 
Pelite     0.82  0.89     -0.99   1.00 
 
The function symnum(x) gives a symbolic representation of numbers: 
> symnum(cor(traenv))  # 'symnum' symbolizes the matrix produced by 'cor'  
          TH Cd Pb A B Cr Cu Fe L Ti Z TO D F. Pl 
THC       1                                       
Cd        .  1                                    
Pb              1                                 
Al           .  .  1                              
Ba        .          1                            
Cr        .          + 1                          
Cu        .          + *  1                       
Fe        .          * B  +  1                    
Li              .  , . .  .  .  1                 
Ti        .          B *  +  B  . 1               
Zn                 . , *  +  *  , ,  1            
TOM             .  .   .  .  .  ,    . 1          
Depth           .  .            ,    . ,  1       
Fine.sand       .  .   .  .  .  +    , +  + 1     
Pelite          .  .   .  .  .  +    , +  + B  1  
attr(,"legend") 
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1 
  
Let's see how the distribution of metals is related to the morphology of the sites: 
> nm.env <- metaMDS(traenv[1:11]) 
Wisconsin double standardization 
Run 0 stress 6.960043  
Run 1 stress 6.954604  
... New best solution 
... rmse 0.001560382   max residual 0.002971707  
*** Solution reached 
 
> x11() 
> plot(nm.env, type="n",  main="NMDS of contaminants")  # Gives Figure 51 
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Figure 51. NMDS of contaminants. 
 
> text(nm.env, "species", col=2) # the species 
> text(nm.env, "sites",  col=1) 
> (ef.nm.env<-envfit(nm.env, traenv[12:15], perm=1000)) 
 
***VECTORS 
 
             NMDS1    NMDS2     r2 Pr(>r) 
TOM        0.60443  0.79666 0.1239  0.326 
Depth      0.19037  0.98171 0.0857  0.382 
Fine.sand -0.37688 -0.92626 0.2647  0.106 
Pelite     0.41919  0.90790 0.2409  0.135 
P values based on 1000 permutations. 
> # only weak effects 
>  
> # NMDS of sqrt-transformed species data 
> nm.sp<-metaMDS(sqrt(traspe)) 
Run 0 stress 13.99375  
Run 1 stress 13.97234  
... New best solution 
... rmse 0.006179893   max residual 0.01612660  
Run 2 stress 14.42431  
Run 3 stress 13.9723  
... New best solution 
... rmse 0.0004250777   max residual 0.001250656  
*** Solution reached 
 
> x11() 
> plot(nm.sp, main="all species") # Figure 52 
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Figure 52. NMDS for all species. 
 
Are the ordinations for contaminants and species similar? We can test by procrustes rotation 
> (pro<-protest(nm.env, nm.sp)) 
 
Call: 
protest(X = nm.env, Y = nm.sp)  
 
Correlation in a symmetric Procrustes rotation:  0.6625  
Significance:  < 0.001  
Based on 1000 permutations. 
 
The two ordinations are correlated (Figure 53), which is not a surprise if the contaminants have an 
effect. 
> x11() 
> plot(pro) 

-0.2 0.0 0.2 0.4 0.6

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Procrustes errors

Dimension 1

D
im

en
si

on
 2

 
Figure 53. Procrustes rotation comparing the NMDS of species and contaminants. 
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We assume that both site morphology and heavy metals influence species distribution, so we first test 
all parameters in the ordination. 
> (ef.nm.sp<-envfit(nm.sp, traenv, perm=1000)) 
 
***VECTORS 
 
              NMDS1     NMDS2     r2 Pr(>r)     
THC        0.943970  0.330030 0.3357  0.030 *   
Cd        -0.894964  0.446138 0.0469  0.689     
Pb        -0.347455  0.937697 0.0094  0.916     
Al        -0.547694  0.836679 0.0630  0.580     
Ba         0.992854 -0.119331 0.7945 <0.001 *** 
Cr         0.989163  0.146824 0.6686  0.001 *** 
Cu         0.999901  0.014096 0.4370  0.023 *   
Fe         0.998195  0.060055 0.7562 <0.001 *** 
Li         0.443578  0.896236 0.2674  0.080 .   
Ti         0.994916 -0.100706 0.7655 <0.001 *** 
Zn         0.958421  0.285358 0.5642 <0.001 *** 
TOM        0.614459  0.788948 0.1607  0.217     
Depth      0.169195  0.985583 0.2600  0.079 .   
Fine.sand -0.344508 -0.938783 0.2034  0.124     
Pelite     0.340739  0.940158 0.2668  0.071 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
P values based on 1000 permutations. 
 
Well, many relationships, but hard to interpret (overfitting! – remember we have only 19 sites!) 
A better way with constrained ordination? 
> x11(); par(mfrow=c(2, 2)) 
> plot(nm.sp, main="metaMDS traspe")  # Figure 54, upper left 
> plot(ef.nm.sp)     
> plot(ef.nm.sp, p.max = 0.05, col = "red") 
> (cca1<-cca(sqrt(traspe)~., traenv)) # Figure 54, upper right 
 
Call: 
cca(formula = sqrt(traspe) ~ THC + Cd + Pb + Al + Ba + Cr + Cu +      Fe + Li + Ti 
+ Zn + TOM + Depth + Fine.sand + Pelite, data = traenv)  
 
              Inertia Rank 
Total          1.0304      
Constrained    0.8433   15 
Unconstrained  0.1871    4 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
   CCA1    CCA2    CCA3    CCA4    CCA5    CCA6    CCA7    CCA8    CCA9   CCA10  
0.11174 0.08121 0.07868 0.07037 0.06634 0.06042 0.05543 0.05044 0.04818 0.04759  
  CCA11   CCA12   CCA13   CCA14   CCA15  
0.03975 0.03756 0.03396 0.03195 0.02966  
 
Eigenvalues for unconstrained axes: 
    CA1     CA2     CA3     CA4  
0.05270 0.05043 0.04377 0.04020  
 
> plot(cca1, main="CCA traspe with traenv")  
 
A high amount of variability is explained; this is expected with high number of explanatory variables. 
However, does this help? 
> ca1 <- cca(sqrt(traspe)) 
> plot(ca1, main="CA traspe") # Figure 54, lower left 
> (pro <- protest(ca1, cca1)) 
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Call: 
protest(X = ca1, Y = cca1)  
 
Correlation in a symmetric Procrustes rotation:  0.9455  
Significance:  < 0.001  
Based on 1000 permutations. 
 
> plot(pro) # Figure 54, lower right 
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Figure 54. Various ordinations and procrustes errors between overfitted CCA and unconstrained PCA 
(lower left). 
 
'Unconstrained' CCA (practically identical to CA, see Figure 54) has too many variables, and is hard 
to interpret. We should therefore build a better (restricted) model. 
 
> mod0 <- cca(sqrt(traspe) ~ 1, traenv) 
> mod1 <- cca(sqrt(traspe) ~ ., traenv) 
> mod <- step(mod0, scope=list(lower = ~1, upper=formula(mod1))) 
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Start:  AIC= 101.6  
 sqrt(traspe) ~ 1  
 
            Df    AIC 
+ Pelite     1 101.52 
+ Depth      1 101.60 
<none>         101.61 
+ Fine.sand  1 101.64 
+ Li         1 101.64 
+ Zn         1 101.78 
+ TOM        1 101.81 
+ Cr         1 102.00 
+ Cu         1 102.01 
+ Fe         1 102.01 
+ Al         1 102.11 
+ Ti         1 102.13 
+ Ba         1 102.15 
+ Cd         1 102.23 
+ Pb         1 102.32 
+ THC        1 102.48 
 
Step:  AIC= 101.52  
 sqrt(traspe) ~ Pelite  
 
            Df    AIC 
<none>         101.52 
- Pelite     1 101.61 
+ Cu         1 101.91 
+ Fe         1 102.00 
+ Zn         1 102.00 
+ Ti         1 102.01 
+ Ba         1 102.02 
+ Cr         1 102.03 
+ Cd         1 102.05 
+ Pb         1 102.25 
+ Depth      1 102.27 
+ THC        1 102.28 
+ Al         1 102.35 
+ Li         1 102.39 
+ Fine.sand  1 102.41 
+ TOM        1 102.45 
 
> mod 
 
Call: 
cca(formula = sqrt(traspe) ~ Pelite, data = traenv)  
 
              Inertia Rank 
Total          1.0304      
Constrained    0.1019    1 
Unconstrained  0.9285   18 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
  CCA1  
0.1019  
 
Eigenvalues for unconstrained axes: 
    CA1     CA2     CA3     CA4     CA5     CA6     CA7     CA8  
0.08413 0.08018 0.07580 0.07199 0.06573 0.05875 0.05716 0.05520  
(Showed only 8 of all 18 unconstrained eigenvalues) 
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Stepwise selection does not work well (all exc. Pelite removed).  
Pelite seems to be a major, overriding factor. We can ‘partial out’ the effect of Pelite in order to make 
a potential effect of the heavy metals more visible. 
 
> (cca.Ba <- cca(sqrt(traspe) ~ Ba + Condition(Pelite), traenv)) 
              Inertia Rank 
Total         1.03038      
Conditional   0.10190    1 
Constrained   0.06715    1 
Unconstrained 0.86133   17 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
   CCA1  
0.06715  
 
Eigenvalues for unconstrained axes: 
    CA1     CA2     CA3     CA4     CA5     CA6     CA7     CA8  
0.08046 0.07678 0.07357 0.06791 0.06356 0.05731 0.05522 0.05381  
(Showed only 8 of all 17 unconstrained eigenvalues) 
 
> anova(cca.Ba) # permutation test on effect of Ba  
Permutation test for cca under direct model 
 
Model: cca(formula = sqrt(traspe) ~ Ba + Condition(Pelite), data = traenv) 
         Df  Chisq      F N.Perm Pr(>F)   
Model     1 0.0672 1.3254   1200 0.0675 . 
Residual 17 0.8613                        
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Number of 'Ba' after removing the effect of 'Pelite' is marginally significant. 
We can perform this test with all potential candidates 
> (cca.Zn <- cca(sqrt(traspe) ~ Zn + Condition(Pelite), traenv)) # same for Zn 
              Inertia Rank 
Total         1.03038      
Conditional   0.10190    1 
Constrained   0.06792    1 
Unconstrained 0.86056   17 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
   CCA1  
0.06792  
 
Eigenvalues for unconstrained axes: 
    CA1     CA2     CA3     CA4     CA5     CA6     CA7     CA8  
0.08193 0.07850 0.07254 0.06574 0.06157 0.05723 0.05582 0.05399  
(Showed only 8 of all 17 unconstrained eigenvalues) 
 
> anova(cca.Zn)  
Permutation test for cca under direct model 
 
Model: cca(formula = sqrt(traspe) ~ Zn + Condition(Pelite), data = traenv) 
         Df  Chisq      F N.Perm  Pr(>F)   
Model     1 0.0679 1.3417   2300 0.06391 . 
Residual 17 0.8606                         
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 



NIVA 5524-2007 

95 

Is species richness related to the environmental variables? We need a non-parametric test as data are 
clearly non-normally distributed. 
> require(Hmisc) 
[1] TRUE 
> nspe <- as.numeric(apply(traspe >0, 1, sum)) 
> x11() 
 
> par(mfrow=c(2, 2)) # Figure 55 
> plot(nspe ~ Depth, data=traenv) 
> plot(nspe ~ Pelite, data=traenv) 
> plot(nspe ~ Ba, data=traenv) 
> plot(nspe ~ Zn, data=traenv) 
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Figure 55. Number of species per site plotted against different environmental factors. 
 
> spearman.test(nspe, traenv$Zn) # and same way for other variables 
    Rsquare           F         df1         df2      pvalue           n  
 0.23140882  5.41947241  1.00000000 18.00000000  0.03177332 20.00000000  
Alternatively: 
> cor.test(nspe, traenv$Zn, method="spearman") 
 
For more than 1 parameter, we can use 2-dimensional GAM (Section 5).  
   
> #  
> #  L U N C H   
> #  B R E A K  ><(((*> 
> # 
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4.1.3 Example 6: constrained ordination. Extracting indicator values from an 
ordination. 
 
> rm(list=ls()) 
> load("NOgen.bin") # phytoplankton composition data from Norwegian lakes (genus 
level) 
> load("NOenv.bin") # corresponding chemistry and lake morphometry 
  
NMDS cannot be used with such large dataset (R will get stuck). 
The genus data are very skewed, with many zeros. We will therefore apply a square-root-
transformation when performing ordinations (sqrt(data), see below). 
Some species may be very rare or absent. 
> sel.gen <- which(apply(NOgen>0, 2, sum)>10) 
> NOgen <- NOgen[sel.gen] 
  
Environmental variables - should we apply log-transformation? 
> pairs(NOenv[3:9]) 
> pairs(log10(NOenv[3:9])) 
> lNOenv <- log10(NOenv) 
> symnum(cor(lNOenv))  
              sy sm M A S_ SC C TN TP 
syear         1                       
smonth           1                    
Mean_depth          1                 
Altitude              1               
Surface_area        .   1             
SCa                 .      1          
Chlorophyll.a       .      .  1       
TotN                       .  . 1     
TotP                .      .  , ,  1  
attr(,"legend") 
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1 
 
It doesn't look too bad (Figure 56). 
 
> (ca1 <- cca(sqrt(NOgen))) 
 
Call: 
cca(X = sqrt(NOgen))  
 
              Inertia Rank 
Total           5.405      
Unconstrained   5.405   82 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for unconstrained axes: 
   CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8  
0.4318 0.3338 0.2828 0.2740 0.2440 0.2327 0.2060 0.2040  
(Showed only 8 of all 82 unconstrained eigenvalues) 
 
> x11() 
> plot(ca1) # Figure 57. 
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Figure 56. Pair-wise scatterplots of environmental variables. 
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Figure 57. PCA of the phytoplankton matrix. 
 
> (ef.ca1 < -envfit(ca1, lNOenv, perm=1000)) 
 
***VECTORS 
 
                    CA1       CA2     r2 Pr(>r)     
syear          0.584072 -0.811702 0.1367  0.003 **  
smonth         0.765518 -0.643414 0.0007  0.948     
Mean_depth    -0.831706  0.555216 0.2036 <0.001 *** 
Altitude      -0.999551  0.029968 0.1096 <0.001 *** 
Surface_area  -0.888171  0.459514 0.0184  0.140     
SCa            0.899901 -0.436093 0.3687 <0.001 *** 
Chlorophyll.a  0.887499 -0.460809 0.6504 <0.001 *** 
TotN           0.882269 -0.470746 0.3658 <0.001 *** 
TotP           0.923900 -0.382634 0.5109 <0.001 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
P values based on 1000 permutations. 
  
We may suspect that the main gradient is eutrophication. Thus it would be nice to illustrate role of 
Chlorophyll (i.e. eutrophication).  
The function cut(x, nbreaks,...) breaks vector into pieces of even intervals. 
 
> chl.code <- cut(lNOenv$Chlorophyll.a, 30, labels=F) # (see part 6. for details) 
> x11(); par(bg="darkgrey") 
> plot(scores(ca1)$sites, pch=20,  col=heat.colors(30)[chl.code]) 
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Figure 58. PCA of the phytoplankton matrix. The colorcode illustrates the Chlorophyll-a 
concentration (dark=low, light=high). 
 
Figure 58 illustrates that communities become more different as Chl-a increases. From previous 
analyses we know that in addition to eutrophication, lake depth and alkalinity (Ca, here SCa) are 
important variables. 
> (cca1<-cca(sqrt(NOgen)~Chlorophyll.a+Mean_depth+SCa, data=lNOenv)) 
 
Call: 
cca(formula = sqrt(NOgen) ~ Chlorophyll.a + Mean_depth + SCa,      data = lNOenv)  
 
              Inertia Rank 
Total           5.405      
Constrained     0.401    3 
Unconstrained   5.004   82 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
   CCA1    CCA2    CCA3  
0.31334 0.06839 0.01925  
 
Eigenvalues for unconstrained axes: 
   CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8  
0.3551 0.2723 0.2665 0.2452 0.2335 0.2111 0.2007 0.1780  
(Showed only 8 of all 82 unconstrained eigenvalues) 
 
Note the difference between inertia of first and second constrained axes. 
> x11() 
> par(bg="grey") 
> plot(cca1) 
> points(cca1, pch=20, col=heat.colors(30)[chl.code]) 
The first axis is mainly eutrophication (Figure 59). 
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Figure 59. CCA of the phytoplankton data with three predictors. 
 
For extracting indicator values, we need to extract the optima of the genera on the eutrophication 
gradient. We could directly use the species scores from the first axis, but there is obvioulsy correlation 
with the other variables. Let's partial out SCa first. 
> (cca2<-cca(sqrt(NOgen)~Chlorophyll.a+Condition(Mean_depth+SCa), data=lNOenv)) 
 
Call: 
cca(formula = sqrt(NOgen) ~ Chlorophyll.a + Condition(Mean_depth +      SCa), data 
= lNOenv)  
 
              Inertia Rank 
Total          5.4054      
Conditional    0.2346    2 
Constrained    0.1664    1 
Unconstrained  5.0044   82 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
  CCA1  
0.1664  
 
Eigenvalues for unconstrained axes: 
   CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8  
0.3551 0.2723 0.2665 0.2452 0.2335 0.2111 0.2007 0.1780  
(Showed only 8 of all 82 unconstrained eigenvalues) 
 
Now the first axis explains much less than before. 
 
> x11() 
> plot(cca2) # Figure 60 
> points(cca2, pch=20, col=heat.colors(30)[chl.code]) 



NIVA 5524-2007 

101 

 
Figure 60. CCA against Chlorophyll-a where the effects of CA and Depth are partialled out. 
 
Re-inferring the lake trophic status from the optima of the species: we can use the optima derived from 
the CCA for predicting lake trophic status. This is a way to test if the species are useful indicators. 
We want to avoid circularity and will therfore splite the data into training and predicting dataset. We 
divide into two random groups using the sample() function. 

sample(x, y, replace=T): select randomly y elements from vector x 
 
> set1 <- sort(sample(1:501, 250, replace=F)) 
> set2 <- (1:501)[-set1] 
> (cca.set1 <- cca(sqrt(NOgen[set1, ]) ~ Chlorophyll.a + Condition(Mean_depth+SCa),  
+ data=lNOenv[set1, ])) 
 
Call: 
cca(formula = sqrt(NOgen[set1, ]) ~ Chlorophyll.a + Condition(Mean_depth +      
SCa), data = lNOenv[set1, ])  
 
              Inertia Rank 
Total          4.9851      
Conditional    0.2683    2 
Constrained    0.1945    1 
Unconstrained  4.5223   82 
Inertia is mean squared contingency coefficient  
 
Eigenvalues for constrained axes: 
  CCA1  
0.1945  
 
Eigenvalues for unconstrained axes: 
   CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8  
0.3373 0.3126 0.2525 0.2300 0.2209 0.2023 0.1945 0.1807  
(Showed only 8 of all 82 unconstrained eigenvalues) 
 
The output is comparable to the output of total data set (above). Species optima for Chl-a correspond 
to the first ordination axis. 
> specopt <- scores(cca.set1)$species[, 1] 
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Plot species-optima with function dotchart()  
> par(mfrow=c(1, 2)) 
> dotchart((sort(specopt))[1:41], xlim=range(specopt))  (Figure 61). 
> dotchart((sort(specopt))[42:83], xlim=range(specopt)) 
Both plots should have same x-scale, though showing different optima. The function range() extracts 
min and max of the optima, and can be used to set the scale for the x-axis. 
 

 
Figure 61. Dotchart illustrating the species optima. 
 
Using weighted averaging, we calculate a trophic score as predicted from the species. The function 
wascores(x, y) calculates weighted averages for sites from species optima(x) and the transposed 
composition matrix (t(y)). See Figure 62. 
> wascr <- wascores(specopt, t(sqrt(NOgen[set2, ]))) 
> x11(6, 6) 
> plot(lNOenv$Chlorophyll.a[set2], wascr, xlab="log(Chlrophyll-a)",  
+ ylab="trophic score") 
> plot(NOenv$Chlorophyll.a[set2], wascr, log="x", xlab="Chlrophyll-a",  
+ ylab="trophic score", main="all species")  
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Figure 62. The calculated trophic scores plotted against the chlorophyll-a concentration. 
 
 
> require(mgcv) 
[1] TRUE 
> gmod<-gam(wascr~s(lNOenv$Chlorophyll.a[set2])) 
> gpred<-predict(gmod, se.fit=T) 
> lines(NOenv$Chlorophyll.a[set2], gpred$fit, col=3) 
> lines(NOenv$Chlorophyll.a[set2], gpred$fit+gpred$se.fit, col=3, lty=2) 
> lines(NOenv$Chlorophyll.a[set2], gpred$fit-gpred$se.fit, col=3, lty=2) 
  
Now we used all genera, but we can also select those with best fit. 
> x11(6, 4) 

The function goodness() extracts value for how well a site or species fits in the ordination (Figure 
63). The larger the better, low goodness implies that species are randomly distributed. 
> hist(goodness(cca.set1, "species"), bre=30) 
> abline(v=0.05, col=2)  
The red line in the histogram indicates the cut-off level for weak fit. 
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Figure 63. Histogram of the species’ ‘goodness’ in the CCA. 
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> sel.ind <- which(goodness(cca2, "species")>0.05) 
> wascr <- wascores(specopt[sel.ind], t(sqrt(NOgen[set2, sel.ind]))) 
> x11(6, 6) # Figure 64 
> plot(NOenv$Chlorophyll.a[set2], wascr, log="x", xlab="Chlrophyll-a",  
+ ylab="trophic score", main="selected species") 

 
Figure 64. As Figure above, but for selected species only. 
 
> gfit<-gam(wascr~s(lNOenv$Chlorophyll.a[set2])) 
> gpred<-predict(gfit, se.fit=T) 
> lines(NOenv$Chlorophyll.a[set2], gpred$fit, col=3) 
> lines(NOenv$Chlorophyll.a[set2], gpred$fit+gpred$se.fit, col=3, lty=2) 
> lines(NOenv$Chlorophyll.a[set2], gpred$fit-gpred$se.fit, col=3, lty=2) 
 
> # - optional for ### P A R T  T H R E E ### 
Is there another way to obtain species optima? Can we use median of all the sites where a species 
occurs? How do we get the Chl-values of the sites where species 1 occurs? 
> NOgen[, 1]>0  
  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE 
 [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  
(…) 

This function returns TRUE for all sites, so that we can get the corresponding Chl-values: 
> lNOenv$Chlorophyll.a[NOgen[, 1]>0] 
 [1] -0.09691001 -0.04575749  0.00000000  0.11394335  0.11394335  0.20411998 
 [7]  0.23044892  0.23044892  0.23044892  0.25527251  0.30103000  0.30103000 
[13]  0.38021124  0.43136376  0.44715803  0.58433122  0.59106461  0.65321251 
…and the median 
> median(lNOenv$Chlorophyll.a[NOgen[, 1]>0]) 
[1] 0.2428607 
 
OK, now let's produce a vector with all genus optima 
> meds <- NA 
> for(i in 1:length(NOgen)) { 
+ meds[i] <- median(lNOenv$Chlorophyll.a[NOgen[, i]>0]) } 
> wascr <- wascores(meds, t(sqrt(NOgen))) 
> x11() 
> plot(NOenv$Chlorophyll.a, wascr, log="x", main="median optima - all species") 
> gmod <- gam(wascr ~ s(lNOenv$Chlorophyll.a)) 
> gpred <- predict(gmod, se.fit=T) 
> lines(NOenv$Chlorophyll.a, gpred$fit, col=3) 
> lines(NOenv$Chlorophyll.a, gpred$fit+gpred$se.fit, col=3, lty=2) 
> lines(NOenv$Chlorophyll.a, gpred$fit-gpred$se.fit, col=3, lty=2) 
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Figure 26. Predicted trophic scores from the species’ medians using weighted averaging. The figure is 
very similar compared to the figure produced from the CCA scores (Fig. 26). The reason is that also 
the CCA uses weighted averaging for finding species scores, and because we had only one 
conbstraining variable (chlorophyll-a) in the CCA. 
 
> #  F I N I  :-) 
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5. DATA VISUALIZATION AND LATTICE  
(Robert Ptacnik) 

 
TOPIC: create color-gradients; 3-dim GAM; Lattice 
 
5.1 Colour gradients and 3-D GAM plots 
 
 
> rm(list=ls()) 
 
Defining colorcodes 
> load("Nstati7-9.bin") #  North-European lake data, samples jul-sept (REBECCA DB) 
> attach(Nstati) 
 
The following object(s) are masked from Nstati ( position 3 ) : 
 
         Alkalinity Alkalinity_type Altitude Altitude_type Ca Chlorophyll.a Colour 
country_code entry_code entry_no GIG GIG_type Humic_type lake_code Mean_depth 
Mean_depth_Type Nsamp pH Reference_lake SCa SColour sday site_code site_nr smonth 
Surface_area Surface_area_type syear Temperature tot.biov TotN TotP Transparency  
 
> chl.code<-cut(log(Chlorophyll.a), 30, labels=F) 
> x11(8,4) 
> par(mfrow=c(1, 2)) # 'par(mfrow=c(X,Y))':split plotting window by X x Y rows x 
columns) 
> plot(Chlorophyll.a, chl.code, log="x")  
See Figure 65, left panel. 
> plot(Chlorophyll.a, chl.code, log="x", col=cm.colors(30)[chl.code], pch=19) 
See Figure 65, right panel. 

 
Figure 65. Example for how to code a color gradient. The y-values range from 0-30 and code the 
corresponding cyan-magenta colors: cm.colors(30). 
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Colors are hard to see; change background (Figure 66). 
 
> x11(12,4) 
> par(bg="dark grey") 
> par(mfrow=c(1, 3)) 
> plot(Chlorophyll.a, chl.code, log="x", col=cm.colors(30)[chl.code], pch=19, 
main="cm.colors") 
> plot(Chlorophyll.a, chl.code, log="x", col=heat.colors(30)[chl.code], pch=19, 
main="heat.colors") 
> plot(Chlorophyll.a, chl.code, log="x", col=rainbow(30)[chl.code], pch=19, 
main="rainbow") 
 

 
Figure 66. Different default color gradients on grey background. (cm.colors(), 
heat.colors(), rainbow()). 
 
function 'identify': 

'identify(x,y,labels=...)'  identify dots in scatterplot (works also e.g. within vegan-
objects) 

> x11(5,5) 
> plot(TotP, Mean_depth, log="xy", col=heat.colors(30)[chl.code], pch=19) 
See Figure 67 
 
> identify(TotP, Mean_depth) 
[1] 498 798 
 
Right-mouse click 'stop' to interrupt 
> identify(TotP, Mean_depth, labels=rownames(Nstati)) #specify labels 
[1] 708 997  

 



NIVA 5524-2007 

108 

Figure 67. Mean depth plotted against total phosphorus, and showing chlorophyll-a as color gradient. 
The labels were produced using the ‘identify’ function. 
 
Interpolate and visualize areas 
> require(mgcv) 
[1] TRUE 
> require(akima) # interpolation applications 
[1] TRUE 
 
Nstati contains missing values; for GAM analysis need datamatrix without missing values 
> mat <- data.frame(TP=TotP, MD=Mean_depth, Chl.a=Chlorophyll.a) 
> detach(Nstati) 
> wh <- which(apply(mat, 1, sum)>0) #which rowsums are positive (i.e. have no NA) 
> mat <- mat[wh, ] 
> gmod <- gam(log(Chl.a)~s(log(TP), k=4)+s(log(MD),k=4), data=mat) 
> summary(gmod) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
log(Chl.a) ~ s(log(TP), k = 4) + s(log(MD), k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.28410    0.01689   76.02   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
             edf Est.rank       F  p-value     
s(log(TP)) 2.928    3.000 460.651  < 2e-16 *** 
s(log(MD)) 2.149    3.000   6.812 0.000152 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.646   Deviance explained = 64.8% 
GCV score = 0.2742   Scale est. = 0.27246   n = 955 
 
> gpred <- predict(gmod) 
  
interp(x, y, z) interpolates between three vectors of equal length such that they can e.g. be plotted by 
surface plot contour() (Figure 68) 
> ip <- interp(log(mat$TP), log(mat$MD), gpred, duplicate="mean") 
> x11(5,5) 
> contour(ip, xlab="TP", ylab="Mean Depth", nlevels=15) 
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Figure 68. 3-dimentional interpolation of the data shown in Figure 67, showing the third variable 
(here chl-a) as contour lines (function contour()). 
 
> x11(5,5) 
> filled.contour(ip, xlab="TP", ylab="Mean Depth",  
+ plot.axes={axis(1);axis(2);points(log(mat$TP), log(mat$MD), col="grey")}) ## [not 
shown] 

Filled contour doesn't accept the log() function; we have to define desired axis-ticks manually 
> xtick<-log(c(0.5, 1:10, seq(10, 100, 10))) 
> ytick<-log(c(3:10, seq(20, 100, 20), 150, 200)) 
> x11(5,5) 
> filled.contour(ip, xlab="TP", ylab="Mean Depth", color.palette=rainbow, 
+ plot.axes={axis(1, at=xtick, labels=exp(xtick)); 
+ axis(2, at=ytick, labels=exp(ytick));points(log(mat$TP), log(mat$MD), 
col="grey")}) 

 
Figure 69. Example for the filled.contour() function. 
 
Wonderful colors (Figure 69)... 
Overlay of datapoints: 
> require(MASS) 
[1] TRUE 
> x11(5,5) 
> plot(Chlorophyll.a~TotP, log="xy", data=Nstati) 
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Figure 70. A scatterplot can be difficult to read when too many dots are plotted together. 
 
Overlay of datapoints - high density blurrs trends in data (Figure 70) 
-> 2-dim density estimation (Figure 71). 
> ip<-kde2d(log(Nstati$TotP), log(Nstati$Chlorophyll.a)) 
> x11(5,5) 
> filled.contour(ip)  # [not shown] 
> xtick<-log(c(0.5, 1:10, seq(10, 100, 10))) 
> ytick<-log(c(0.5, 1:10, seq(20, 100, 20), 150, 200)) 
> filled.contour(ip, plot.axes={axis(1, at=xtick, labels=exp(xtick)); 
+ axis(2, at=ytick, labels=exp(ytick))}) 

 
Figure 71. 2-dim density estimation of the data shown in Figure 70. 
 
Compare Figure 71 with scatterplot (Figure 69) – density plot shows better where data centers. 
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5.2 Lattice 

ʺLattice is suitable for trellis or as 
decorative sections in fences, handrails, 
arbors, pergolas, garden  or deck
privacy screens, windbreaks etc. ...ʺ

Trellis Graphics is a framework for data visualization developed
at the Bell Labs by Rick Becker, Bill Cleveland et al, extending
ideas presented in Bill Cleveland's 1993 book _Visualizing Data_.

Lattice is best thought of as an implementation of Trellis
Graphics for R. 

(from the R help menue - '?lattice')

What mean 'lattice' and 'trellis' in R...

.. and elsewhere?

So it is some kind of geometric arrangement of data? read further...  
 
> require(lattice) 
[1] TRUE 
 
Simple density estimation (Figure 72): 
> x11(5,5) 
> plot(density(log10(Nstati$Chlorophyll.a))) 

 
Figure 72. A density plot, indicating the number of observations along a gradient 
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In lattice, we can split by any factor, e.g. country (Figure 73): 
> x11(5,5) 
> densityplot(log10(Nstati$Chlorophyll.a), groups=Nstati$country_code, auto.key=T) 

 
Figure 73. Implementation of the density function in the lattice package. The data are split by 
countries. 
 
> x11(5,5) 
> boxplot(log10(Chlorophyll.a)~country_code, data=Nstati) # standard boxplot, not 
shown 
> x11(5,5) 
> bwplot(log10(Chlorophyll.a)~country_code, data=Nstati)  # lattice version... 
> x11(5,5) 
> bwplot(log10(Chlorophyll.a)~country_code|GIG_type, data=Nstati) # ...allows split 
by factors (Figure 74). 
 

 
Figure 74. A boxplot produced with the lattice command bwplot.  
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Ordinary scatterplot (Figure 75): 
> x11(5,5) 
> plot(Chlorophyll.a~TotP, log="xy", data=Nstati, pch=as.numeric(country_code)) 

 
Figure 75. Standard scatterplot 
 
Countries are not really separated; try lattice scatterplot xyplot() (Figure 76): 
> x11(5,5) 
> xyplot(log10(Chlorophyll.a)~log(TotP), groups=country_code, data=Nstati, 
auto.key=T) 

 
Figure 76. xyplot produces scatterplots (and others, see ?xyplot). Countries are grouped by a 
color-code. 
 
Split by country (Figure 77): 
> x11(5,5) 
> xyplot(log10(Chlorophyll.a)~log(TotP)|country_code, data=Nstati) 
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Figure 77. xyplot. Data split by countries into sub-panels. 
 
Split by lake types (Figure 78): 
> xyplot(log10(Chlorophyll.a)~log(TotP)|GIG_type, groups=country_code, data=Nstati, 
auto.key=T) 

 
Figure 78. xyplot. Combining split-and group function. 
 
Illustrate y against two or more x variables (makes sense only if they have same unit; Figure 79): 
> xyplot(log10(Chlorophyll.a)~log10(TotN)+log10(TotP)|country_code, data=Nstati, 
auto.key=T) 
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Figure 79. xyplot. Two or more variables can be plotted together using a function argument in the 
command. 
 
Visualize aggregated information of the Nstati table (Figure 80). Make an aggregated table first. 
'x' in aggregate(x, list(y), func) will be aggregated by function func().  
> agg.Nstati<-aggregate(Nstati$TotP>0, list(country=Nstati$country_code,  
+  GIG_type=Nstati$GIG_type), sum) 
> x11(5,5) 
> barchart(x~GIG_type|country, data=agg.Nstati, ylab="nr. of lakes") 

 
Figure 80. Example of a barchart plot. 
 
> x11(5,5) 
> dotplot(GIG_type~x|country, data=agg.Nstati, xlab="nr. of lakes") 
See Figure 81. 
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Figure 81. The dotplot function. 
 
> ################# 
> # T H E   E N D # 
> ################# 
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