REPORT SNO 6112-2011

Available NIVA generated ecotoxdata with relevance to petroleum related chemical compounds

Norwegian Institute for Water Research

- an institute in the Environmental Research Alliance of Norway

Telefax (47) 37 04 45 13

REPORT

Regional Office, Sørlandet Jon Lilletuns vei 3 NO-4879 Grimstad, Norway Phone (47) 22 18 51 00 Phone (47) 22 18 51 00

Regional Office, Østlandet Sandvikaveien 59 NO-2312 Ottestad, Norway

Phone (47) 22 18 51 00 Telefax (47) 62 57 66 53 Regional Office, Vestlandet

Thormøhlens gate 53 D NO-5006 Bergen Norway Phone (47) 22 18 51 00 Telefax (47) 55 31 22 14

Regional Office Central

Pirsenteret, Havnegata 9 P.O.Box 1266 NO-7462 Trondheim Phone (47) 22 18 51 00 Telefax (47) 73 54 63 87

Title Available NIVA generated ecotoxdata with relevance to petroleum related chemical compounds	Report No 6112-2011	Date 31.01.2011
	Project No. 11061	Pages Price 22
Author(s) Eivind Farmen	Topic group Ecotoxicology	Distribution Open
		1
	Geographical area Norway	Printed NIVA

Client(s)	Client ref.
Akvaplan-NIVA, JoLynn Carroll	

Abstract

Main Office

Gaustadalléen 21

NO-0349 Oslo, Norway

Telefax (47) 22 18 52 00

Internet: www.niva.no

This report represents an overview of ecotoxicological data of petroleum-related chemical compounds generated in various NIVA projects. Specific emphasis was put on the sub-Arctic and Arctic marine environment, for applicability to the planned SYMBIOSES model system.

4 keywords, Norwegian	4 keywords, English
 Giftighet Olje Produsertvann Arktis 	 Toxicity Oil Produced water Arctic

al-

Eivind Farmen Project Manager

GTC.

Kevin Thomas Research Manager ISBN 978-82-577-5847-9

tral

Bjørn Faafeng Senior Adviser

Symbioses report

Available NIVA generated ecotoxdata with relevance to petroleum related chemical compounds

Preface

The work described in this report has been performed on request from Akvaplan-niva, and represents an overview of ecotoxicological data of petroleum-related chemical compounds generated from various NIVA projects. Specific emphasis was put on the sub-Arctic and Arctic marine environment, for applicability to the planned SYMBIOSES model system.

Oslo, 28 January 2011

Eivind Farmen

Contents

Summary	5
1. Introduction	6
2. Ecotoxicity testing	7
2.1 Acute toxicity tests	7
2.1.1 Acute toxicity test with the marine algae Skeletonema costatum	7
2.1.2 Acute toxicity test with Daphnia magna	10
2.1.3 Acute toxicity test with fish	10
2.2 Chronic toxicity tests	10
2.2.1 Sediment macroinvertebrate communities	10
2.2.2 Sediment macroinvertebrate Hediste diversicolor	11
2.2.3 Chroinic mussel lab exposure: Mytilus edulis	11
2.2.4 Chroinic fish lab exposure: Danio renio	12
2.2.5 Chroinic fish lab exposure: Gadhus morhua	12
2.2.6 Chroinic mussel field exposure: Mytilus edulis	13
2.2.7 Chroinic fish field exposure: Gadhus morhua	14
2.2.8 In vitro systems: Yeast estrogen and androgen screen	14
2.2.9 In vitro systems: primary hepatocytes from Onchorynchus	
mykiss	17
3. References	20

Summary

This report represents an overview of ecotoxicological data of petroleum-related chemical compounds generated in various NIVA projects. Specific emphasis was put on the sub-Arctic and Arctic marine environment, for applicability to the planned SYMBIOSES model system.

Sammendrag

Denne rapporten representerer en oversikt over økotoksikologiske data for petroleum-relaterte kjemiske forbindelser, generert i ulike NIVA prosjekter. Spesiell vekt ble lagt på sub-arktiske og arktiske marine miljø, for innkorporering i det planlagte SYMBIOSES modellsystemet.

1. Introduction

This project memo describes an overview of the relevant ecotoxicology data related to petroleumrelated chemical compounds generated through projects conducted with NIVA as a partner during the last decade. The memo is as up-dated as possible within the time frame and resources allocated for the work organized by Akvaplan-NIVA within the SYMBIOSES project, and the overview will also be presented at the SYMBIOSES Workshop on Ecotoxicology Meta-data Analysis Exercise on 28 February – 1 March 2011.

The data generated through the various NIVA projects are based on standard experimental systems such as the marine algae Skeletonema costatum and the crustacean *Daphnia magna*, but also systems such as fish primary cell culture (*Oncorhynchus mykiss*), in vivo fish experiments with zebrafish *Danio renio*, Atlantic cod *Gadhus morhua*, as well as benthic invertebrate community structure. Skeletonema costatum are used as the test organism as they are easily cultured within the laboratory and are recommended for use in marine ecotoxicity assessments (ISO 10253, 2006. Water quality – Marine algal growth inhibition test with *Skeletonema costatum* and *Phaeodactylum tricornutum*). NIVA has worked with S. costatum in toxicity studies since 1992.

Daphnia magna is the one of the most widely used organism for toxicity tests and several guidelines for both acute and chronic testing exists (OECD 202, OECD 211, ISO 6341). It is easy to keep in culture, and it reproduces by parthenogenesis making it ideal as a test organism. NIVA has worked with *D. magna* in toxicity studies since 1992.

Compounds tested vary from dispersants and drilling muds to organic extracts of produced water and synthetic produced water, reflecting the water soluble components of oil.

2. Ecotoxicity testing

2.1 Acute toxicity tests

2.1.1 Acute toxicity test with the marine algae Skeletonema costatum

Skeletonema costatum are used as the test organism as they are easily cultured within the laboratory and are recommended for use in marine ecotoxicity assessments (ISO 10253, 2006. Water quality – Marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum). NIVA has worked with S. costatum in toxicity studies since 1992.

A range of tests on dispersants are summarized in NIVA report 3128. Data for comparable tests with Chlamydomonas reinhardtii, where the dispersants were tested together with oil, are also present, but not summarized here due to the higher sensitivity and relevance of the marine algae Skeletonema costatum. In addition tests of drilling mud from well 7816/12-1 Rendalspasset, Svalbard was also extracted from a different report

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	5-100 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, $20 \pm$
	1 °C
Target effects	Growth rate
Type of data available	EC10: 8.4 mg/l, EC50: 29 mg/l
Data format	NIVA Report 3128

Dispersant Arrow Emulsol LW

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-30 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm
	1 °C
Target effects	Growth rate
Type of data available	EC10: 3.2 mg/l, EC50: 13 mg/l
Data format	NIVA Report 3128

Dispergant Dasic Slickgone LTS

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-30 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, $20 \pm$
	1 °C
Target effects	Growth rate
Type of data available	EC10: 11 mg/l, EC50: 15 mg/l
Data format	NIVA Report 3128

Dispergant DisPollene 36S

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-30 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm

	1 °C
Target effects	Growth rate
Type of data available	EC10: 11 mg/l, EC50: 20 mg/l
Data format	NIVA Report 3128

Dispergant Enersperse 1037

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	1.5-55 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm
	1 °C
Target effects	Growth rate
Type of data available	EC10: 11 mg/l, EC50: 13 mg/l
Data format	NIVA Report 3128

Dispergant Enersperse 1583

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-20 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, $20 \pm$
	1 °C
Target effects	Growth rate
Type of data available	EC10: 5.8 mg/l, EC50: 8.2 mg/l
Data format	NIVA Report 3128

Dispergant Finasol OSR-5

Species and life stage	Skeletonema costatum
U	
Exposure time	3 days (72 h)
Exposure concentration	1.5-55 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, $20 \pm$
	1 °C
Target effects	Growth rate
Type of data available	EC10: 10 mg/l, EC50: 13 mg/l
Data format	NIVA Report 3128

Dispergant Finasol OSR-12

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-100 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm
	1 °C
Target effects	Growth rate
Type of data available	EC10: 10 mg/l, EC50: 24 mg/l
Data format	NIVA Report 3128

Dispergant IKU-9

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-55 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, $20 \pm$
	1 °C

Target effects	Growth rate
Type of data available	EC10: 18 mg/l, EC50: 25 mg/l
Data format	NIVA Report 3128

Dispergant Quell Oil C1

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	15-600 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 ± 1 °C
Target effects	Growth rate
Type of data available	EC10: 82 mg/l, EC50: 180 mg/l
Data format	NIVA Report 3128

Dispergant Shell Dispersant VDC

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-55 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm 1 °C
Target effects	Growth rate
Type of data available	EC10: 16 mg/l, EC50: 23 mg/l
Data format	NIVA Report 3128

Dispergant BP1100 WD

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3-55 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm
	1 °C
Target effects	Growth rate
Type of data available	EC10: 23 mg/l, EC50: 49 mg/l
Data format	NIVA Report 3128

Dispergant Ameroid OSD/LT

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	15-1000 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, 20 \pm 1 °C
Target effects	Growth rate
Type of data available	EC10: 140 mg/l, EC50: 470 mg/l
Data format	NIVA Report 3128

Dispergant Biosolve

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	1.5-20 mg/l
Experiment description	Marine algal inhibition test ISO DP 10253, $20 \pm$
	1 °C
Target effects	Growth rate

Type of data available	EC10: 2.4 mg/l, EC50: 3.7 mg/l
Data format	NIVA Report 3128

Drilling mud from well 7816/12-1 Rendalspasset, Svalbard was also tested in a different report:

Species and life stage	Skeletonema costatum
Exposure time	3 days (72 h)
Exposure concentration	3.2, 5.6, 10,18, 32, 56, 100 g/l
Experiment description	Marine algal inhibition test ISO DP 10253
Target effects	Growth rate
Type of data available	NOEC: 10 g/l, EC10: 13 g/l, EC50: 49 g/l
Data format	NIVA Report 2593

2.1.2 Acute toxicity test with Daphnia magna

Daphnia magna is the one of the most widely used organism for toxicity tests and several guidelines for both acute and chronic testing exists (OECD 202, OECD 211, ISO 6341). It is easy to keep in culture, and it reproduces by parthenogenesis making it ideal as a test organism. NIVA has worked with D. magna in toxicity studies since 1992.

Drilling mud from well 7816/12-1 Rendalspasset, Svalbard

Species and life stage	Daphnia magna
Exposure time	2 days (48 h)
Exposure concentration	3.2, 5.6, 10,18 g/l
Experiment description	Daphnia mobility inhibition test ISO6341
Target effects	Immobility/mortality
Type of data available	LC 20: 14 g/l, LC50: 23 g/l
Data format	NIVA Report 2593

2.1.3 Acute toxicity test with fish

Drilling mud from well 7816/12-1 Rendalspasset, Svalbard

Species and life stage	Salmo trutta, 0+, average 3.3 g
Exposure time	4 days (96 h) semi static, renewal every 24 h
Exposure concentration	10 g/l
Experiment description	OECD guidelines for testing of chemicals, No 201: Fish acute toxicity test, 10 ± 1 °C, pH=6.3, conductivity: 3.2 ms, hardness: 11 mg CaCO3/1
Target effects	Mortality
Type of data available	No mortality observed
Data format	NIVA Report 2593

2.2 Chronic toxicity tests

2.2.1 Sediment macroinvertebrate communities

Olefin (Ultidrill, Novaplus) and ester (Anco Green, Pterofree) based drilling muds:

Species and life stage	Sediment communities
Exposure time	6 months

Exposure concentration	Approx 500 g slurry, containing 1-1.5 g drilling
	fluid. Approx 1.5 mm layer
Experiment description	Drill cuttings from drilling sites in the North Sea.
	Undistubed communities transferred from
	Oslofjord, 200 m depth. 7-11 °C, salinity: 32-35
	PSU
Target effects	Sediment community effect
Type of data available	Macrofauna community structure
Data format	NIVA rapport 3475-96

Olefin and ester based drilling muds:

Species and life stage	Sediment communities
Exposure time	3 months
Exposure concentration	$0.5, 5, 20 \text{ mg OP cm}^{-2}$
Experiment description	Undistubed communities transferred from
	Roddenessjøen, Porsangen (Finnmark) 120 m
	detpth, -1.5 °C and Oslofjord, 212 m depth. 7°C
Target effects	Sediment community effect
Type of data available	Macrofauna number of species and individuals,
	diversity
Data format	NIVA rapport 3460-97

Water based drill cuttings:

Species and life stage	Sediment communities
Exposure time	6 months
Exposure concentration	3-24 mm sediment
Experiment description	Undistubed communities transferred from
	Oslofjord, 41 m depth. 10°C
Target effects	Sediment community effect
Type of data available	Macrofauna number of species and individuals,
	diversity
Data format	Schaanning et al., 2009 J Exp Mar Biol Ecol

2.2.2 Sediment macroinvertebrate Hediste diversicolor

Olefin (Ultidrill, Novaplus) and ester (Anco Green, Pterofree) based drilling muds:

Species and life stage	Hediste diversicolor
Exposure time	6 months
Exposure concentration	Approx 500 g slurry, containing 1-1.5 g drilling
	fluid. Approx 1.5 mm layer
Experiment description	Drill cuttings from drilling sites in the North Sea.
	Undistubed communities transferred from
	Oslofjord, 200 m depth. 7-11 °C, salinity: 32-35
	PSU
Target effects	Biomarkers
Type of data available	Catalase activity, glutathione reductase activity
Data format	NIVA rapport 3475-96

2.2.3 Chronic mussel lab exposure: Mytilus edulis

Produced water from Ormen Lange gas processing plant.

Species and life stage	Mytilus edulis, farmed (from snadderogsnaskum)
Exposure time	5 weeks
Exposure concentration	0.01 %, 0.1 %, 0.5%, 1% PW
Experiment description	Laboratory exposure of mussels exposed to
	produced water from Ormen Lange gas
	processing plant.
Target effects	Biomarkers, chemical burdens
Type of data available	Lysosomal stability, micronuclei formation,
	histochemistry, peroxisomal proliferation, mussel
	chemistry
Data format	NIVA rapport 5747-2009

2.2.4 Chronic fish lab exposure: Danio renio

Water soluble components of oil, a mixture of low-molecular-weight PAHs (<5 ring) and short-chain APs (C1–C4)

Species and life stage	Danio renio
Exposure time	1, 7 and 13 weeks
Exposure concentration	sum PAH: 0.54 ppb (low dose), 5.4 ppb (high
	dose and pulsed dose).
Experiment description	Flow through exposure lasting 1, 7 and 13 weeks,
	$26 \pm 2 \ ^{\circ}\mathrm{C}$
Target effects	Biomarkers
Type of data available	Cytochrome P450 1A, Vitellogenin, condition,
	reproduction, recruitment, F1 deformations,
	global gene expression
Data format	Holth et al., 2008 Aq Tox

2.2.5 Chronic fish lab exposure: Gadhus morhua

Water soluble components of oil, low molecular weight PAHs, short chained APs

Species and life stage	Gadus morhua
Exposure time	4, 16, 32, or 44 weeks
Exposure concentration	Low: 0.54 ppb PAH, 1.14 ppb APs, pulsed and
	high: 5.4 ppb PAH, 11.4 ppb APs
Experiment description	Flow through exposure lasting 4, 16, 32, or 44
	weeks
Target effects	Hepatic DNA adduct formation, Hepatic EROD
	activity
Type of data available	Increased DNA adduct formation following > 16
	weeks exposure
Data format	Holth et al., 2009 Environ. Sci. Technol.

Water soluble components of oil, low molecular weight PAHs, short chained APs

Species and life stage	Gadus morhua
Exposure time	4, 16, 32, or 44 weeks
Exposure concentration	Low: 0.54 ppb PAH, 1.14 ppb APs, pulsed and
	high: 5.4 ppb PAH, 11.4 ppb APs
Experiment description	Flow through exposure lasting 4, 16, 32, or 44
	weeks
Target effects	Biomarkers

Type of data available	Condition, gonad maturation, gene expression
Data format	Holth et al., 2010 Can J Fish Aquat Sci

2.2.6 Chronic mussel field exposure: Mytilus edulis

Produced water from Ormen Lange gas processing plant.

Species and life stage	Mytilus edulis, farmed (from snadderogsnaskum)
Exposure time	6 weeks
Exposure concentration	2 reference station, 4 Exposed stations
Experiment description	Caged mussels placed near produced water
	discharge point of Ormen Lange gas processing
	plant. Two reference sites compared to four
	exposed sites.
Target effects	Biomarkers, chemical burdens
Type of data available	Lysosomal stability, micronuclei formation,
	histochemistry, peroxisomal proliferation, mussel
	chemistry
Data format	NIVA rapport 5747-2009

Produced water from Ormen Lange gas processing plant.

Species and life stage	Mytilus edulis
Exposure time	Native mussels (not applicable)
Exposure concentration	Reference station, Exposed station 1, Exposed
	station 2
Experiment description	Collection of native mussels near produced water
	discharge point of Ormen Lange gas processing
	plant. One reference population compared to two
	exposed populations.
Target effects	Biomarkers, chemical burdens
Type of data available	Lysosomal stability, micronuclei formation,
	histochemistry, peroxisomal proliferation, mussel
	chemistry
Data format	NIVA rapport 5747-2009

Produced water discharge in the North Sea.

Species and life stage	Mytilus edulis (farmed), Gadus morhua (farmed)
Exposure time	6 weeks
Exposure concentration	Reference, 500 m, 1000 m, 2000 m, 5000 m,
	10 000 m from platform
Experiment description	In situ exposure of Atlantic cod and blue mussel
	exposed to produced water from oil production
	platform.
Target effects	Biomarkers
Type of data available	EROD activity, GST activity, Lysosomal
	stability, DNA adducts, Micronuclei,
	Histochemistry, Vitellogenin
Data format	Hylland et al., 2008 Mar Poll Bull

2.2.7 Chronic fish field exposure: Gadhus morhua

Produced water discharge in the North Sea.

Species and life stage	Gadus morhua (farmed)
Exposure time	6 weeks
Exposure concentration	Reference, 500 m, 1000 m, 2000 m, 5000 m,
	10 000 m from platform
Experiment description	In situ exposure of Atlantic cod and blue mussel
	exposed to produced water from oil production
	platform.
Target effects	Biomarkers
Type of data available	EROD activity, GST activity, Lysosomal
	stability, DNA adducts, Micronuclei,
	Histochemistry, Vitellogenin
Data format	Hylland et al., 2008 Mar Poll Bull

2.2.8 In vitro systems: Yeast estrogen and androgen screen

YES/YAS: Samples were analysed for estrogenic activity using the yeast estrogen screen (YES), a yeast-based (Saccharomyces cerevisiae) screen developed by Glaxo–Wellcome, plc (Stevenage, Herts, UK), and fully validated by Routledge and Sumpter (1996). The bioassay has been demonstrated to quantitatively detect known estrogens (e.g., 17b-estradiol and estrone) and xenoestrogens (e.g., alkylphenols and Bisphenol A) via a receptor mechanism. The bioassay was carried out using the method of Routledge and Sumpter (1996), with minor variations. Despite not directly relevant to arctic conditions, it could be argued that recombinant yeast screens have importance due to high relevance in determining mechanism of action.. Data exist for two individual PW samples, collected minimum 6 weeks apart. Shown here are results from sampling 1. Both water soluble and particulate fractions of PW were analysed in the yeast screens, but shown here are data from water dissolved fraction only.

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: < 0.03 ng E2/L,
	Flutamide equivalents: 1578 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Grane:

Organic extract of water soluble components of produced water from Gullfaks B:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of

	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. 32 ± 1 °C
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: < 0.03 ng E2/L,
	Flutamide equivalents: 582 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Heidrun:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: < 0.03 ng E2/L,
	Flutamide equivalents: 1627 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Oseberg C:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: 2.1 ng E2/L,
	Flutamide equivalents: 3 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Snorre A:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: <0.03 ng E2/L,
	Flutamide equivalents: 134 µg Flut/L

Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Statfjord A:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: 3.5 ng E2/L,
	Flutamide equivalents: 430 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Statfjord B:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: - ng E2/L, Flutamide
	equivalents: - µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Statfjord C:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. 32 ± 1 °C
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: 4 ng E2/L, Flutamide
	equivalents: 899 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Troll B:

Species and life stage	Saccharomyces cerevisiae

Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: 0.4 ng E2/L,
	Flutamide equivalents: 791 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

Organic extract of water soluble components of produced water from Asgard:

Species and life stage	Saccharomyces cerevisiae
Exposure time	3 days (YES), 2 days (YAS)
Exposure concentration	Serial dilutions of PW extract
Experiment description	Yeast Estrogen Screen (YES) and Yeast
	Androgen Screen (YAS). Organic components of
	PW extrated with solid phase extraction,
	followed by static in vitro exposure of
	recombinant yeast. $32 \pm 1 \ ^{\circ}C$
Target effects	Estrogenic ad anti-androgenic effects
Type of data available	Estrogen (E2) equivalents: 0.1 ng E2/L,
	Flutamide equivalents: 8171 µg Flut/L
Data format	Tollefsen et al., 2007 Mar Poll Bull

2.2.9 In vitro systems: primary hepatocytes from Onchorynchus mykiss

ROS/glutathione/cytotoxicity: The bioassays was carried out using the method of Wang and Joseph, 1999 (ROS), Vandeputte et al., 1994 (glutathione), Schreer et al. 2005 (cytotoxicity). Despite maybe not directly relevant to arctic, it could be argued that *in vitro* analyses of biomarkers in rainbow trout hepatocytes have importance due to high relevance in determining mechanism of action. Data exist for both water soluble and particulate fractions of PW, but shown here are data from water dissolved fraction only, as bioavailability of chemicals in the particulate fraction could be discussed

 Species and life stage
 Onchorynchus mykiss

 Exposure time
 1 h (ROS formation), 96 h (glutathione, cytotoxicity)

 Exposure concentration
 0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW

 Experiment description
 Organic components of PW extrated with solid phase extraction, followed by static in vitro exposure of hepatocytes.

 Target effects
 In vitro biomarkers (oxidative stress and cytotoxicity) in primary cell culture

Organic extract of water soluble components of produced water from Grane:

	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: -,
	cytotoxicity: 33
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced w	water from Troll B:
---	---------------------

8	
Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 11, Glutathione: 11,
	cytotoxicity: 0.3
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Statfjord C:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: 11,
	cytotoxicity: 3
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Statfjord A:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: 11,
	cytotoxicity: 1
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Snorre A:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and

	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: 11,
	cytotoxicity: 3
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Gullfaks B:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: 33,
	cytotoxicity: 110
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Asgard:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: 3,
	cytotoxicity: 1
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Heidrun:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: -,
	cytotoxicity: 3
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Statfjord B:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)

Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: -,
	cytotoxicity: 1
Data format	Farmen et al., 2010 Mar Poll Bull

Organic extract of water soluble components of produced water from Oseberg C:

Species and life stage	Onchorynchus mykiss
Exposure time	1 h (ROS formation), 96 h (glutathione,
	cytotoxicity)
Exposure concentration	0.3, 1, 3, 10, 30, 100, 300 fold concentrated PW
Experiment description	Organic components of PW extrated with solid
	phase extraction, followed by static in vitro
	exposure of hepatocytes.
Target effects	In vitro biomarkers (oxidative stress and
	cytotoxicity) in primary cell culture
Type of data available	(LOEC): ROS formation: 3, Glutathione: -,
	cytotoxicity: 1
Data format	Farmen et al., 2010 Mar Poll Bull

3. References

Brooks, S., Harman, C. 2009. Biological effects monitoring of the discharge water from the Ormen Lange gas facility, Norway. NIVAreport 5747-2009; ISBN: 978-82-577-5782-2

Hylland K, Tollefsen KE, Ruus A, Jonsson G, Sundt RC, Sanni S, Røe Utvik TI, Johnsen S, Nilssen I, Pinturier L, Balk L, Barsiene J, Marigòmez I, Feist SW, Børseth JF. 2008. Water column monitoring near oil installations in the North Sea 2001-2004.Mar Pollut Bull. 2008;56(3):414-29.

Farmen E, Harman C, Hylland K, Tollefsen KE. 2010. Produced water extracts from North Sea oil production platforms result in cellular oxidative stress in a rainbow trout in vitro bioassay. Mar Pollut Bull.;60(7):1092-8

Holth TF, Beylich BA, Skarphédinsdóttir H, Liewenborg B, Grung M, Hylland K. 2009. Genotoxicity of environmentally relevant concentrations of water-soluble oil components in cod (Gadus morhua). Environ Sci Technol.;43(9):3329-34

Holth TF, Thorsen, A, Olsvik PA., Hylland K. 2010. Long-term exposure of Atlantic cod (Gadus morhua) to components of produced water: condition, gonad maturation, and gene expression. Can J Fish Sci 67: 1685–1698

Holth TF, Nourizadeh-Lillabadi R, Blaesbjerg M, Grung M, Holbech H, Petersen GI, Aleström P, Hylland K. 2008. Differential gene expression and biomarkers in zebrafish (Danio rerio) following exposure to produced water components. Aquat Toxicol.;90(4):277-91.

Källqvist, T. 1991. Biologisk testing av boreslam - Reindalspasset - 1, Svalbard. Norsk institutt for vannforskning report 2593; ISBN: 82-577-1914-5

Källqvist, T. 1994. Toksisitetstesting av oljedispergeringsmidler - utprøving av en metode med marine alger (Skeletonema costatum). Norsk institutt for vannforskning (NIVA) report 3128; ISBN: 82-577-2600-1

Routledge, E.J., Sumpter, J.P., 1996. Oestrogenic activity of surfactants and some of their degradation products using a recombinant yeast screen. Environ. Toxicol. Chem. 15, 241–248.

Schaanning, M., Hylland, K., Lichtenthaler, R., Rygg, B. 1996. Biodegradation of Anco Green Novaplus Drilling Muds on Cuttings Deposited in Benthic Chambers. Norsk institutt for vannforskning (NIVA) report 3475-96; ISBN: 82-577-3014-9

Schaanning, M., Lichtenthaler, R., Rygg, B. 1997. Biodegradation of Esters and Olefins in Drilling Mud Deposited on Arctic soft-bottom communities in a low-temperature Mesocosm. Norsk institutt for vannforskning (NIVA) report 3460-97; ISBN: 82-577-3332-6

Schaanning, M.T, Trannum, H.C, Øxnevad, S, Carroll, J, Bakke, T., 2008. Effects of drill cuttings on biogeochemical fluxes and macrobenthos of marine sediments. Journal of Experimental Marine Biology and Ecology 361: 49-57

Schreer A, Tinson C, Sherry JP, Schirmer K. 2005. Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. Analytical Biochemistry 344, 76-85.

Tollefsen KE, Harman C, Smith A, Thomas KV. 2007. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Mar Poll Bull.;54(3):277-83

Vandeputte, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G. 1994. A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biology and Toxicology 10, 415-421.

Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine 27, 612-616.

NIVA: Norway's leading centre of competence in aquatic environments

NIVA provides government, business and the public with a basis for preferred water management through its contracted research, reports and development work. A characteristic of NIVA is its broad scope of professional disciplines and extensive contact network in Norway and abroad. Our solid professionalism, interdisciplinary working methods and holistic approach are key elements that make us an excellent advisor for government and society.

Gaustadalléen 21 • NO-0349 Oslo, Norway Telephone: +47 22 18 51 00 • Fax: 22 18 52 00 www.niva.no • post@niva.no