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Abstract 15 

Recently, increased attention has been paid to biodiversity conservation provided by 16 

blue-green solutions such as engineered ponds that are primarily established for water 17 

treatment and flood control. However, little research has been done to analyse the 18 

factors that affect biodiversity in such ponds. The purpose of this study was to 19 

evaluate the influence of environmental factors on aquatic biodiversity, mainly 20 

macroinvertebrate communities, in road sedimentation ponds in order to provide a 21 

foundation for recommendations on aquatic biodiversity conservation. Multivariate 22 

statistical methods, including unconstrained and constrained analysis, were applied to 23 

examine the relationships between organisms and the water quality as well as physical 24 

factors (including plant cover). Stepwise multiple regressions indicated that the most 25 

important variables governing the variation in the biological community composition 26 

were pond size, average annual daily traffic, metals, chloride, distance to the closest 27 

pond from study pond, dissolved oxygen, hydrocarbons, and phosphorus. The 28 

presence of most taxa was positively correlated with pond size and negatively 29 

correlated with metals. Small ponds with high pollutant loadings were associated with 30 

a low diversity and dominated by a few pollution tolerant taxa such as oligochaetes. A 31 

comprehensive understanding of impacts of various environmental factors on aquatic 32 

biodiversity is important to effectively promote and conserve aquatic biodiversity in 33 

such sedimentation ponds. Our results indicate that road sedimentation ponds should 34 

be designed large enough, because large ponds are likely to provide a more 35 

heterogeneous habitat and thus contain a species rich fauna. In addition, larger ponds 36 

seem to be less contaminated due to dilution compared to smaller ponds, thereby 37 

maintaining a higher biodiversity. Finally, creating some additional ponds in the vicinity 38 

of the sedimentation ponds in areas with few water bodies would increase the 39 

connectivity that facilitates the movement of invertebrates between ponds.  40 

Keywords: aquatic biodiversity; pond size; road runoff; road salt; sedimentation ponds; 41 

water quality42 



1 
 

1. Introduction 43 

It is widely accepted that roads have major environmental impacts on aquatic 44 

ecosystems. For example, habitat quality can be altered through sediment loading 45 

(Angermeier et al., 2004) and pollutants released from transportation (Le Viol et al., 46 

2009, Scher and Thièry, 2005). Runoff from roads contains a plethora of pollutants and 47 

is considered a major source of diffuse pollution (Bohemen and Janssen Van De Laak, 48 

2003), causing negative impacts on the receiving water bodies (Meland et al., 2010a, 49 

Jensen et al., 2014). Therefore, the national road administrations as well as the 50 

environmental authorities consider pollution reduction to be important. In most 51 

countries, blue-green solutions such as engineered sedimentation ponds and wetlands 52 

are the preferred mitigation measure for protecting receiving waters both from peak 53 

runoff volumes and elevated pollution loadings and concentrations (Meland, 2016). In 54 

addition to pollution, roads and the construction of them may disturb or even destroy 55 

aquatic habitats physically. Disruption of connectivity by roads may also negatively 56 

affect the movement of animals (Forman et al., 2003). In comparison to terrestrial 57 

habitats, freshwater habitats suffer greater biodiversity decline due to various 58 

stressors dominated by anthropogenic variables, such as habitat loss and degradation, 59 

and pollution (Hassall, 2014, Burroni et al., 2011). 60 

Ponds are defined as engineered and natural water bodies between 1 m2 and 2 ha in 61 

area, that may be permanent or temporary (Biggs et al., 2005). A highway 62 

sedimentation pond, which reduces the peak flow during major storm events and 63 

prevents water from either chronic or acute contamination reaching streams and lakes 64 

(Scher et al., 2004), functions as a part of an urban drainage system. Sedimentation 65 

ponds have also recently gained interest in an ecological context due to their potential 66 

capacity to conserve and promote aquatic biodiversity e.g. Le Viol et al. (2009) and 67 

Chester and Robson (2013). Only in Europe, thousands of ponds and other blue-green 68 

solutions are built along major roads (Meland, 2016). The high number may in fact 69 

underline their importance and relevance in an ecological context. Compared with 70 

other freshwater habitats, natural ponds can support significantly more species, 71 

especially rare, endemic and/or Red List species (Céréghino et al., 2007). These 72 
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multiple ecosystem services provided by ponds make them excellent candidates to be 73 

incorporated into road construction. 74 

Some studies found that pond density is a major variable that determines aquatic 75 

macroinvertebrate richness (Gledhill et al., 2008, Staddon et al., 2010, Hassall, 2014). 76 

Gledhill et al. (2008) indicated that species richness for macroinvertebrates was higher 77 

in an area with more ponds, potentially due to higher connectivity between ponds. 78 

Hassall (2014) suggested maximizing the habitat connectivity between ponds to 79 

enhance and protect biodiversity. Plant cover is another factor that influences the 80 

distribution of aquatic invertebrates by, for instance, affecting predation and food 81 

availability (De Szalay and Resh, 2000). The richness and density of aquatic 82 

macroinvertebrates in ponds with vegetated areas are significantly greater than in 83 

ponds lacking vegetation (Hsu et al., 2011). Pond size is also likely to affect aquatic 84 

biodiversity; larger ponds tend to contain more species. However, Oertli et al. (2002) 85 

demonstrated that this biogeographic principle has limitations when it is applied to 86 

ponds; they found that it was only relevant for a few taxa, such as Odonata. Regarding 87 

pond age, Williams et al. (2008) found that compared with older ponds, 6-12-year-old 88 

ponds were able to support significantly more species and more uncommon species, 89 

while Gee et al. (1997) demonstrated that the number of taxa of macroinvertebrates 90 

was not significantly related to pond age. In addition, owing to the pollutant retention 91 

function, ponds normally contain high levels of pollution (Karlsson et al., 2010, 92 

Vollertsen et al., 2007), and may become sink-habitats and ecological traps. Chemical 93 

pollutants have lethal and sublethal effects on aquatic organisms via physiological and 94 

behavioural processes (Foltz and Dodson, 2009). Even if the concentration of a 95 

pollutant is low, chemical accumulation in roadside ponds can be an issue, as in the 96 

case of metals (Chester and Robson, 2013). Accumulation of metals and organic 97 

pollutants in the sediments may have long-term adverse effects on aquatic organisms 98 

(Grung et al., 2016), and it has been shown that metals and PAHs are easily 99 

accumulated in aquatic organisms (Meland et al., 2013, Grung et al., 2016).  100 

There is still a lack of comprehensive understanding of factors that influence aquatic 101 

biodiversity (Hsu et al., 2011). Although some studies have examined the effects of 102 
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certain factors on biodiversity in ponds, few of them have combined water quality and 103 

physical factors into a single comprehensive analysis. Moreover, those few studies that 104 

have combined various factors, included only a very limited number of chemicals such 105 

as nutrients. Without this information, biodiversity conservation is likely to be 106 

impeded or even impossible. It has been questioned whether ponds that are designed 107 

for treating stormwater runoff are also able to enhance or maintain regional 108 

biodiversity (Hassall and Anderson, 2015). Therefore, it is necessary to examine the 109 

relationship between different factors and aquatic biodiversity. 110 

The objectives of this study were to (1) assess the impact of a number of 111 

environmental factors on aquatic organisms, mainly macroinvertebrate communities, 112 

in road sedimentation ponds and (2) identify the factors that contribute the most to 113 

their abundance and diversity. Given the lack of comprehensive knowledge about the 114 

relationship between environmental factors and biological communities, both water 115 

quality and physical variables (including plant cover) were investigated in this study. 116 

The water quality variables included nutrients, metals, organic pollutants (such as 117 

PAHs and hydrocarbons), pH, dissolved oxygen (DO), total organic carbon (TOC), and 118 

conductivity. The physical variables recognized in this study as drivers of aquatic 119 

organisms were age and size of ponds, average annual daily traffic (AADT), the number 120 

of ponds/water bodies within 1 km radius, the distance to the closest pond from each 121 

study pond as well as plant cover within and around the ponds. Macroinvertebrates 122 

were selected as the main study organisms because many of them are sensitive to 123 

pollution and have rapid response to a variety of changing environmental conditions 124 

(Vermonden et al., 2009, García et al., 2014). Moreover, loss of biodiversity in 125 

macroinvertebrate communities could easily be attributed to anthropogenic pressure 126 

(Giorgio et al., 2016). 127 

2. Material and methods 128 

2.1 Study area 129 

Twelve highway sedimentation ponds situated along the major four-lane highway E6 130 

were included in the present study (Figure 1). One sedimentation pond is located in 131 
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the City of Oslo, while five and six sedimentation ponds are located in the counties of 132 

Akershus and Østfold, respectively. The ponds were visited four times during the 133 

study: in April, June, August and October 2012. Water and biological samples were 134 

obtained on each visit. 135 

2.2 Field work and laboratory analyses 136 

2.2.1 Water quality variables 137 

Twenty-eight water quality variables were analysed in this study. Water samples were 138 

collected close to the inlet of the ponds in April, June, August and October 2012. 139 

Sampling was performed using separate bottles for different parameters: one 125 mL 140 

acid washed polyethylene (PE)-bottle for metals (aluminium (Al), antimony (Sb), 141 

arsenic (As), barium (Ba), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), 142 

copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), mercury (Hg), 143 

molybdenum (Mo), nickel (Ni), potassium (K), silicon (Si), silver (Ag), sodium (Na), 144 

strontium (Sr) and zinc (Zn)); one 1 L glass bottle for oil (hydrocarbons); one 1 L glass 145 

bottle for polycyclic aromatic hydrocarbons (US EPA 16 PAHs); one 125 mL PE-bottle 146 

for the anions, chloride (Cl-), nitrate (NO3
-) and sulphate(SO4

2-); one 125 mL PE-bottle 147 

for total organic carbon (TOC). The chemical analyses were performed by ALS 148 

Laboratory Group, Skøyen, Oslo. 149 

Dissolved oxygen (DO), conductivity, pH and temperature were measured near the 150 

inlet of each pond. In the first two surveys, handheld probes Extech Exstick 11 DO600 151 

and Extech Exstick EC500 were used, while during the last two surveys, a multi-152 

parameter probe YSI 6600 V2-4 was used. 153 

2.2.2 Physical variables 154 

The data on several physical variables considered to be relevant for the composition of 155 

the macroinvertebrate community were collected either from digital maps (Norwegian 156 

Mapping Authorities) or directly from the Norwegian Public Roads Administration 157 

(NPRA) (Table 1). Plant cover within and around the ponds was estimated in the field 158 

as “little”, “medium” and “extensive” and represented in the model with percentages 159 

33%, 66% and 100%, respectively. 160 
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2.2.3 Aquatic organisms 161 

Aquatic organisms, including 91 macroinvertebrates, 2 zooplankton (Cladocera and 162 

Copepoda) and 3 amphibians, were sampled using a kick net with an opening of 30×30 163 

cm and a mesh size of 0.45 mm. The kick samples were taken at the bottom of the 164 

pond, if the substrate was stony; and at approximately 50 cm above the bottom, if the 165 

substrate was muddy or containing a lot of organic material. In all cases, five sweeps 166 

were made. Sampling was done once in the inlet basin and twice on either side of the 167 

main pond.  168 

In addition to kick sampling, traps made of 1.5 L transparent plastic bottles were used. 169 

The bottles were cut in two where the bottleneck starts to form the spout; the 170 

bottleneck was turned around placing the spout inside the bottle and attached using 171 

transparent tape. Two traps were placed into the main pond at the places where the 172 

kick samples were taken and left for 1 – 4 days, depending on time of the year. After 173 

sampling, the organisms, except larger specimens such as amphibians, were preserved 174 

in 70% ethanol. 175 

Biological samples were sorted in the laboratory and identified to order, family, or 176 

species level: Odonata were identified to family level, while Trichoptera, 177 

Ephemeroptera, Coleoptera, Plecoptera and Heteroptera were, where possible, 178 

identified to species level. Literature that was used for identification included Elliott et 179 

al. (1988), Hynes (1993), and Nilsson (1996, 1997). 180 

2.3 Statistical analyses 181 

Both univariate and multivariate statistical methods were applied to analyse the 182 

collected data. The IBM SPSS Statistics Version 22 was used for univariate statistical 183 

analysis, while the CANOCO5 software (Microcomputer Power) was used for 184 

multivariate statistical analysis. The different statistical methods used in the present 185 

study are summarised in a schematic overview (Figure 2). 186 

2.3.1 Water quality 187 

The general trends in water quality were analysed using principal component analysis 188 

(PCA). The data were log(x+1) transformed prior to the PCA in order to reduce the 189 
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skewness and improve the normality of the data. The concentrations below the limit of 190 

quantification (LOQ) were substituted with ½ LOQ. If the concentrations for a variable 191 

were below LOQ in more than 15% of the total number of samples, the variable was 192 

excluded from the analysis. This was the case for PAH compounds, NO3
- and Hg. 193 

To disclose any differences in water quality between the different sedimentation 194 

ponds, one-way analysis of variance (ANOVA) followed by Tukey post-hoc tests were 195 

conducted on the sample scores extracted from axes 1 and 2 of the PCA analysis for 196 

the water quality data. The sample scores were checked for normality and 197 

homogeneity prior to the analysis. Results with p < 0.05 were considered statistically 198 

significant. 199 

Datasets with water quality variables often display high co-linearity. The risk of 200 

overfitting the RDA model is high when too many explanatory variables are included. 201 

For example, it is likely that some of the explanatory variables become statistically 202 

significant just by chance. Therefore, the number of water quality variables was 203 

reduced by using sample scores extracted from axis 1 of the PCA analysis for metals 204 

(Figure S3) as a proxy for metal concentrations. In this way, the number of variables 205 

was reduced from 28 to 7, as well as reducing the risk of overfitting the RDA model. 206 

2.3.2 Aquatic organisms – community analyses 207 

The evaluation of the biological community composition was conducted by using 208 

ordination analyses (multivariate statistics) in several steps (Figure 2). Prior to the 209 

analyses, the data were log(x+1) transformed. A Detrended Correspondence Analysis 210 

(DCA) was applied to disclose whether the data followed a linear or a unimodal 211 

response. The response is defined according to the species turnover in the data, 212 

measured as standard deviation (SD) units and termed gradient length in the DCA 213 

(Šmilauer and Lepš, 2014). If the length is less than 3 SD, the linear method is 214 

recommended; if the length is more than 4 SD, the unimodal method is recommended. 215 

The output of the DCA in this study showed that the data had a gradient of 3.8 SD; and 216 

therefore no clear decision whether the data followed a linear or unimodal response 217 

could be made. Both linear and unimodal methods were applied to test the biological 218 

data. The results showed that the linear methods explained more variation than the 219 
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unimodal methods. Hence, PCA (unconstrained) and Redundancy Analysis (RDA, 220 

constrained) were used in the final analyses. PCA was undertaken to reveal the 221 

maximum variation in the biological community, while RDA was used to evaluate the 222 

relationship between the biological community composition and the environmental 223 

data (i.e. water quality and physical variables). 224 

An RDA with a global permutation test (RDA global) was conducted on the entire 225 

environmental dataset to disclose the overall impact of the variables on the 226 

community composition. In addition, the output of the significance test (p < 0.05) was 227 

used as a criterion for conducting a second RDA with forward selection (Šmilauer and 228 

Lepš, 2014). The RDA with forward selection was conducted in order to disclose a 229 

subset of the most important and significant environmental variables. The conditional 230 

(partial) effect of each variable was tested, and the effect size and significance of 231 

variables depend on the already selected variable(s). Month was included as a 232 

covariate in order to remove any seasonal effects on the community composition. 233 

After the selection, the effects of the selected groups of explanatory variables (water 234 

quality and physical groups), including their overlap, were quantified using variation 235 

partitioning. Monte Carlo permutation tests (499 permutations, p < 0.05) were used 236 

for determination of the statistical significance in the RDAs. The significance tests 237 

performed during the forward selection were conducted without p-adjustment (i.e. 238 

preventing Type I error). This is considered valid as the number of variables (e.g. 239 

metals) was reduced prior to the RDA global test and in addition the RDA global test 240 

was significant (Šmilauer and Lepš, 2014). Each water quality variable was represented 241 

by four values measured during the sampling campaign (12 ponds × 4 months, n = 48), 242 

while each physical variable was represented by one value constant during the 243 

sampling campaign (12 ponds × 1, n =12). Thus, the dataset for the physical variables 244 

was unequal in size to the datasets for the water quality and the biological community. 245 

In order to run the RDA with the complete environmental dataset (i.e. water quality 246 

and physical variables), the physical dataset was upscaled from n = 12 to n = 48. 247 

Therefore, the tests of the physical variables must be interpreted with caution as the 248 

number of the degrees of freedom is incorrect for those variables. 249 
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3. Results 250 

3.1 General trends in water quality variables 251 

The concentrations for the water quality variables are presented in Table S1-S3. The 252 

priority metals that are able to induce toxicity at low levels of exposure are As, Cd, Cr, 253 

Pb, Ni and Hg (Tchounwou et al., 2012, Beasley G, 2002) . In addition, Zn and Cu are 254 

also typical pollutants from road runoff. Although Zn and Cu are considered as 255 

essential elements for biological functioning, an excess can lead to tissue damage 256 

(Tchounwou et al., 2012). The concentrations of selected priority pollutants were 257 

compared to the Environmental Quality Standards (EQS) (Tables S4 and S5) according 258 

to the EU Water Framework Directive (EU WFD) and the Norwegian River Basin 259 

Specific Pollutants (Council Regulation (EC), 2008, Pettersen, 2016). Although the EQS 260 

for metals are based on the dissolved fraction and in our study the total 261 

concentrations were measured, the comparison indicates which metals may appear at 262 

toxic concentrations and have an impact on the aquatic organisms in the 263 

sedimentation ponds.  264 

The ecological status of surface water is categorized into classes from 1 to 5, with 1 265 

being background level and 5 being very poor quality (Pettersen, 2016). For As, most 266 

ponds belonged to class 2, and some belonged to class 3; only the pond Taraldrud 267 

north (in August) belonged to class 4. For Cr, most ponds belonged to class 2, while the 268 

ponds Såstad (in August and October), Fiulstad (in October), Idrettsveien (in October) 269 

and Enebekk (in October) belonged to class 4. For Cd, most ponds had very low 270 

concentrations and belonged to class 1, and only the pond Såstad (in October) 271 

belonged to class 5. For Pb, 30 samples belonged to class 2, and 17 samples belonged 272 

to class 3; only the pond Karlshusbunn (in October) belonged to class 5. For Ni, most 273 

ponds belonged to class 2, and some belonged to class 3; only the ponds Taraldrud 274 

north (in April and August) belonged to class 1. For Zn, 11 samples belonged to class 2, 275 

and 25 samples belonged to class 4; the ponds that belonged to class 5 were Nøstvedt 276 

(in April, and October), Vassum (in June, August and October), Enebekk (in April, June, 277 

August and October), Såstad (in October), Idrettsveien (in October) and Karlshusbunn 278 

(in October). For Cu, 26 samples belonged to class 2, and 17 samples belonged to class 279 
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4; the ponds that belonged to class 5 were Vassum (in April, June and October), 280 

Fiulstad (in October) and Såstad (in October). As mentioned above, Hg was not 281 

considered in the analysis, since the concentrations in most samples were below LOQ. 282 

Chloride (Cl-) concentrations, representing road salt pollution, were compared to the 283 

criteria set by the United States Environmental Protection Agency (US EPA): a 284 

maximum concentration of 860 mg/L and a continuous concentration of 230 mg/L 285 

(United States Environmental Protection Agency, 2017). The Cl- concentrations were 286 

above 230 mg/L in 22 samples, while in the pond Vassum in June the concentration 287 

was 2090 mg/L. The DO concentrations in most of the ponds were above 10 mg/L, and 288 

none were below the threshold set by the US EPA of 2.3 mg/L (EPA, 2000). Therefore, 289 

the DO levels were generally good. 290 

Axes 1 and 2 in the PCA captured 44% and 18% of the total variation in the water 291 

quality data, respectively (Figure 3). Many of the water quality variables were 292 

positively correlated to each other, and as displayed in the ordination plot some 293 

clusters were evident. For example, the cluster of Fe, Co, Si, Mn, Mo, Cd and Ni was 294 

highly correlated with axis 1, while the cluster of Zn, Pb, P, Al and Cr and the cluster of 295 

TOC, SO4
2-, Ba, K, Mg, Ca, Sr were located on either side of the first cluster. The cluster 296 

of pH, hydrocarbons and Sb, and the cluster of Cl-, Na, conductivity and DO were 297 

negatively correlated with each other along axis 2. The PCA revealed that there were 298 

differences in water quality between different sedimentation ponds.  299 

To better illustrate the differences in water quality between ponds, the sample scores 300 

from PCA axes 1 and 2 were displayed in box-plots (Figure 3) and tested for statistical 301 

differences using the ANOVA followed by Tukey post-hoc tests. Based on the sample 302 

scores extracted from axis 1, some of the ponds were significantly different from each 303 

other. The ponds Vassum, Såstad, Fiulstad, Idrettsveien and Enebekk appeared to have 304 

higher concentrations for the variables related to axis 1, while Taraldrud north and 305 

south, Skullerud and Taraldrud crossing appeared to have lower concentrations for the 306 

variables related to axis 1. Based on the sample scores extracted from axis 2, none of 307 

the ponds were significantly different. The ponds Såstad, Taraldrud crossing, Fiulstad, 308 
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Idrettsveien and Karlshusbunn appeared to have high concentrations for the variables 309 

related to axis 2, mainly because of the road salt (indicated by Cl-, Na and 310 

conductivity).  311 

According to ANOVA followed by Tukey post-hoc tests, there were no statistically 312 

significant differences in water quality between sampling periods when using PCA 313 

scores extracted from axis 1, but there were statistically significant differences for PCA 314 

scores extracted from axis 2 (Figure S1-S2). The PCA scores extracted from axis 2 315 

indicated that the lowest and highest levels of road salt (Cl-, Na and conductivity) were 316 

observed in October and June, respectively (3.6 – 2090 mg/L). The opposite pattern 317 

was observed for pH (4.3 – 9.7). 318 

3.2 Biological community composition in relation to water quality and physical 319 

variables 320 

Of the 96 taxa found in the studied sedimentation ponds (Tables S6.1 – 6.8), 7 taxa 321 

occurred in all investigated ponds (Hydracarina, Hirudinea, Notonecta reuteri 322 

(Hemiptera), Chironomidae, Chaoboridae, Caenis horaria (Ephemeroptera), 323 

Coenagrionidae), while 32 taxa were present in two or more of the sedimentation 324 

ponds.  325 

The result of the unconstrained PCA for biological data showed that 40% of the 326 

variation in the biological community could be explained by axes 1 and 2; most taxa 327 

were gathered along axis 1 and the rest along axis 2 (Figure S4). For clarity, only 25 328 

taxa that were well characterised by the first four ordination axes are displayed; the 329 

same was done for RDA. 330 

The results of PCA for water quality variables (Figure 3A) showed that all metals were 331 

correlated with each other as well as with SO4
2-; thus, SO4

2- was analysed together with 332 

metals. PCA was repeated for metals (including SO4
2-) to extract the PCA scores. Axis 1 333 

from PCA for metals (including SO4
2-) explained 58% of the variance (Figures S3); thus, 334 

the PCA scores extracted from axis 1 were used (denoted PCA1 (M)). Moreover, Cl- 335 

content was highly correlated with conductivity and Na; thus, the concentration of Cl- 336 

was used to represent road salt. Therefore, seven variables (TOC, DO, P, hydrocarbons, 337 
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Cl-, pH and PCA1 (M)) were used in the RDA to analyse the effects of water quality 338 

variables on the biological community composition.  339 

The RDA analysis showed that the overall RDA global model (Figure S5) was significant 340 

(p = 0.002). The RDA with forward selection showed that out of the 14 variables 341 

(metals (including SO4
2-), P, TOC, DO, pH, hydrocarbons, Cl-, size, age, AADT, number of 342 

ponds/water bodies within 1 km, distance to the closest pond from study pond, as well 343 

as plant cover within and around the ponds), 8 variables were statistically significant: 344 

metals (including SO4
2-), Cl-, P, DO, hydrocarbons, AADT, distance and pond size (Figure 345 

4); the simple effects of each variable are presented in Table S7 (i.e. the explained 346 

variation as if the variable is used alone in the RDA). Axes 1 and 2 explained 19% and 347 

7% of the variation in the biological community composition. The RDA plot indicated 348 

that the variable pond size had the greatest impact on the biological community 349 

composition. Metals (including SO4
2-) and AADT also contributed considerably to 350 

explaining the variation in the biological community composition. Most taxa were 351 

positively correlated to the pond area, with some exceptions, e.g. Hydraenidae and 352 

Oligochaeta. Most taxa were positively correlated with AADT. Most taxa were 353 

negatively correlated with metals, with some exceptions, e.g. Phryganea bipunctata 354 

(Trichoptera) and Oligochaeta. Moreover, most taxa were negatively correlated with 355 

the distance to the nearest neighbouring pond. Among the 25 dominant taxa, some 356 

taxa were positively correlated with Cl-, e.g. Rana sp, Notonecta sp. Nymphs 357 

(Heteroptera) and Semblis atrata (Trichoptera), while others were negatively 358 

correlated with Cl-, e.g. Cloeon inscriptum and Paraleptoplebia sp. (Ephemeroptera). 359 

Some taxa were positively correlated with P and DO, while other taxa were negatively 360 

correlated. Compared with the other selected variables, hydrocarbons had the least 361 

contribution to the biological community composition; most organisms were positively 362 

correlated with hydrocarbons. 363 

The result of the RDA after removing the seasonal effect (i.e. month used as a 364 

covariate) showed that the variation in taxa explained by the eight selected variables 365 

decreased from 42% to 39%. This indicates that seasons had a minor influence on the 366 

variation in the biological community composition in the present study. 367 
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The variation partitioning (Table 2) showed that the group of water quality variables 368 

(metals (including SO4
2-), Cl-, DO, P, and hydrocarbons) explained 48%, while the group 369 

of physical variables (size of ponds, AADT, and distance to the nearest neighbouring 370 

pond) explained 41% of the total variation in the biological community composition. 371 

The shared effects of these two groups of variables accounted for 11% of the total 372 

variation.  373 

4. Discussion 374 

Due to the lack of studies that combine water quality and physical variables into a 375 

single analysis of species community over several ponds, there is a lack of 376 

understanding of the relative impacts of such variables on species richness (Hassall et 377 

al., 2011). In our study, the effects of water quality and physical variables on 96 taxa, 378 

including 91 macroinvertebrates, 2 zooplankton and 3 amphibians, were analysed. 379 

Among the identified taxa, 4 macroinvertebrate species (Brychius elevates, Hygrotus 380 

confluens, Ilybius guttiger, Ilybius quadriguttatus) and one amphibian species (Triturus 381 

vulgaris) belong to the “near threatened” category, while Plateumaris braccata 382 

belongs to the “vulnerable” category in the Norwegian Red List (Artsdatabanken, 383 

2011). The water quality variables included 19 metals, hydrocarbons, P, Cl-, SO4
2-, TOC, 384 

DO, pH and conductivity. It should be stressed that the sampling strategy in the 385 

present study did not aim to collect water samples after runoff episodes. Therefore, 386 

the measured concentrations can be considered representative of the general water 387 

quality levels in the studied ponds and not an indication of extreme concentrations 388 

that may occur after runoff episodes. Nevertheless, some of the metals were present 389 

at relatively high concentrations.  390 

Pond size is the most important physical variable that was statistically selected by RDA 391 

forward selection method. The results showed that large ponds can support more 392 

species than small ones; this is in accordance with the conventional species-area 393 

relationships. Gotelli and Graves (1996) mentioned that small ponds have low species 394 

richness due to their higher vulnerability to disturbance, such as degradation resulted 395 

from pollutant loads. Nevertheless, the results of studies involving the pond size are 396 

conflicting. Oertli et al. (2002) found that the species-area relationship had limitations 397 
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when it was applied to ponds. The species-area relationship was apparent for Odonata, 398 

but not relevant for Coleoptera and Sphaeriidae (Oertli et al., 2002). Biggs et al. (2005) 399 

also found that the trend that larger ponds support more species was stronger for 400 

macrophytes, but weaker for invertebrates. A possible explanation to such 401 

phenomenon might be the small island effect, in which species-area relationships are 402 

not valid for small pond sizes (Hassall et al., 2011, Lomolino, 2000). The small island 403 

effect suggests that in small pond patches, extrinsic, stochastic processes have a larger 404 

effect compared to intrinsic, ecological processes in structuring communities (Hassall 405 

and Anderson, 2015). In urban environments, such effect could be aggravated by 406 

numerous interacting stressors that act on top of natural processes (Hassall and 407 

Anderson, 2015). 408 

Followed by pond size, AADT was selected by the RDA as the second most important 409 

physical variable. Most taxa appeared to be positively correlated with AADT; this is a 410 

bit unexpected as more traffic may be expected to cause higher concentrations of 411 

contaminants in road runoff and subsequently in the receiving ponds. However, in our 412 

study, the AADT was the highest in the areas with the largest ponds. Therefore, 413 

dilution may have been playing a crucial role in reducing the contaminant 414 

concentrations in these sedimentation ponds. Another possible explanation is that 415 

there is no obvious correlation between AADT and pollutants. For example, Kayhanian 416 

et al. (2003) found that although AADT has an influence on most road runoff 417 

constituents concentrations, there was no direct linear correlation between pollutant 418 

concentration in road runoff and AADT. 419 

Most taxa were negatively correlated with the distance from the study pond to the 420 

nearest neighbouring pond. This is potentially attributed to the higher connectivity 421 

that facilitates the mobility of invertebrates between ponds (Gledhill et al., 2008). The 422 

importance of nearby ponds is in agreement with previous studies, which indicate that 423 

pond density and connectivity appeared to be the major contributing variables to 424 

biodiversity (Noble and Hassall, 2015, Staddon et al., 2010). This highlights the 425 

importance of pond and wetland density to maintain metapopulations of species. 426 
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Hassall (2014) referred to such kind of networks as “pondscapes”, constituting a 427 

network of distributed discrete habitat patches. 428 

Most taxa were negatively correlated with the metals concentrations in water. Metals 429 

in road runoff arise from various sources, including automobile sources (e.g. fuel 430 

components, brakes and tyres), traffic barriers, road signs and road lightning 431 

infrastructures (Meland, 2010). It has been demonstrated that increases in heavy 432 

metal concentrations lead to decrease in biodiversity (Phillips et al., 2015). Although 433 

several metals can act as essential nutrients for living organisms (e.g. Ca, Na, K, Mg, Fe, 434 

Zn, Cr and Se), these metals are harmful to living organisms when they reach excessive 435 

levels or enter certain oxidation states (Weiner, 2008). Compared to the WFD EQS for 436 

the priority pollutants and the River Basin Specific Pollutants for Norway (Pettersen, 437 

2016), the concentrations of Zn and Cu in most ponds in our study were high, while the 438 

concentrations of As, Cd, Cr, Ni and Pb were generally relatively low, but could 439 

occasionally reach high levels. It is important to stress that we did not collect water 440 

samples directly after runoff episodes when the concentrations are believed to be the 441 

highest. 442 

The aquatic organisms were greatly affected by Cl-. The reason why Cl- was quite high 443 

in some ponds (the maximum concentration recorded in our study reached 2090 mg/L) 444 

is because sodium chloride (NaCl) is widely used on roads in Norway as a de-icing 445 

agent. Thus, road runoff and snowmelt-induced runoff normally contain high 446 

concentrations of Cl- in these areas during winter and spring, thereby considerably 447 

affecting the water quality of receiving ponds. Different from rainstorms, snowmelt 448 

runoff can persist for several days to weeks. Furthermore, in the areas with frozen soil, 449 

both pervious and impervious surfaces contribute with snowmelt runoff (Semadeni-450 

Davies, 2006). Marsalek et al. (1999) has demonstrated that in winter, road runoff 451 

exhibited the highest frequency of severe toxic effects. The elevated concentration of 452 

Cl- can cause toxicity due to the osmotic stress related to overall ionic strength (Elphick 453 

et al., 2011, Blasius and Merritt, 2002). In addition, high Cl- concentrations may kill 454 

roadside vegetation resulting in increased erosion and sediment load that have a 455 

negative impact on the abundance of invertebrates (Blasius and Merritt, 2002). Other 456 
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severe consequences resulting from Cl- deposition and retention are the prevention of 457 

water circulation leading to anoxic conditions in bottom waters, and release of trapped 458 

metals from sediment causing lethal toxicity to pond organisms (Van Meter et al., 459 

2011). Therefore, due to the characteristics of snowmelt runoff and excessive amount 460 

of Cl-, future studies need to further investigate the influence of road salt on biological 461 

community composition during winter and spring, especially in cold regions. 462 

Although of apparently lower importance, P, DO, and hydrocarbons were included as 463 

statistically significant variables in the forward selection procedure. P is the primary 464 

growth limiting nutrient in most freshwater systems (Yang et al., 2009). Some taxa 465 

were positively related to the P concentration, but some were negatively correlated. 466 

Houlahan et al. (2006) also found that total species richness in wetlands was negatively 467 

correlated with water nutrient levels. If nutrient loading rates exceed the critical level, 468 

species composition can be altered over a short time (Verhoeven et al., 2006). For 469 

example, P concentration in the runoff could result in eutrophication in receiving 470 

water bodies. Eutrophication is considered to be one of the main impacts on small 471 

standing water bodies (Menetrey et al., 2005) causing episodes of noxious blooms, 472 

reduction in aquatic macrophyte communities and the depletion of DO in bottom 473 

waters (Conley, 1999). As one of the crucial limnological variables, DO affects the 474 

distribution of many species and maintains aquatic life (de Moura Guimaraes Souto et 475 

al., 2011, Connolly et al., 2004). In addition, DO plays the crucial role in speciation of 476 

metals, influencing their biomobility and toxicity (Rabajczyk, 2010). Since the DO 477 

concentrations in the studied ponds were above the threshold value for the aquatic 478 

organisms to live, DO levels do not appear to be a major limiting factor in the present 479 

study. Nevertheless, the RDA plot indicated that different taxa may have different 480 

oxygen requirements and tolerance to hypoxia; this can be attributed to a diverse 481 

array of structural and behavioural respiratory adaptations among various aquatic 482 

organisms (Connolly et al., 2004). Lastly, there was an indication of a small positive 483 

correlation between the hydrocarbons and the abundance of macroinvertebrates 484 

which may be somewhat obscure. Further research is needed to evaluate the effects of 485 

hydrocarbons on biological community composition in sedimentation ponds. 486 
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5. Conclusions 487 

We studied the impacts of multiple environmental factors, including water quality and 488 

physical variables, on the biological community composition in sedimentation ponds. 489 

In the present analysis, the key variables controlling the aquatic biodiversity were the 490 

pond size, distance to the closest pond from study pond, AADT and a combination of 491 

various contaminants such as metals, phosphorus, road salt, dissolved oxygen and 492 

hydrocarbons. The pond size plays a crucial role in affecting biological community 493 

composition, as more species tend to live in the larger ponds. Our study indicates that 494 

sedimentation ponds have the potential to contribute to biodiversity conservation. In 495 

order to promote and conserve aquatic biodiversity in road sedimentation ponds, 496 

larger ponds would be preferable due to the “species-area effect” and the dilution of 497 

harmful pollutants. In addition, the shorter distance between ponds allows organisms 498 

to spread more easily due to the higher connectivity, which maintains biodiversity. 499 

More studies are still needed to investigate the influence of additional environmental 500 

factors using different approaches and methods, such as process-based modelling. 501 

Furthermore, measurements of the pollutants in the pond sediments, which may act 502 

as a more accurate proxy for the overall pollution level compared to water samples, 503 

should be included in such studies. These studies could then provide recommendations 504 

for optimising aquatic biodiversity in the road sedimentation ponds. 505 
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Table 1. Physical variables for the twelve sedimentation ponds surveyed in the present 

study. 

Ponds Constructed  Size (m2)a No. of pondsb Distance (m)c AADTd 

Skullerud (SKU) 1998/1999 910 1 980 66500 

Taraldrud north (TAN) 2004 780 3 450 42900 

Taraldrud crossing (TAK) 2004 1400 6 120 42200 

Taraldrud south (TAS) 2004 474 4 130 42200 

Nøstvedt (NØS)  2009 340 3 15 35500 

Vassum (VAS) 2000 363 5 30 41000 

Fiulstad (FIU) 2004 150 3 330 33575 

Såstad (SÅS) 2004 80 3 92 33575 

Idrettsveien (IDR) 2004/2005 19 3 690 22735 

Karlshusbunn (KAB) 2004/2005 87 3 240 22735 

Nordby (NOR) 2004/2005 89 8 600 22735 

Enebekk (ENE) 2004/2005 132 5 587 23837 

a Pond surface area 

b Number of neighbouring ponds within a radius of 1 km 

c Distance to the nearest neighbouring pond 

d Annual Average Daily Traffic 
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Table 2. Variation partitioning analysis representing how much of the variation in the 

biological community composition could be ascribed to the water quality variables (metals 

(including SO4
2-), chloride (Cl-), phosphorus (P), dissolved oxygen (DO) and hydrocarbons) 

and the physical variables (pond size, average annual daily traffic (AADT), and distance to the 

nearest neighbouring pond). 

Fraction % of Explained % of All p – value 

Metals (including 

SO4
2-), Cl-, DO, P and 

hydrocarbons 

48% 13% 0.002 

Pond size, AADT, and 

distance to the 

nearest 

neighbouring pond 

41% 11% 0.002 

Shared parts of two 

groups 

11% 3% 0.002 

 



 

Figure 1. Location of the studied sedimentation ponds (red dots) in Oslo and Akershus 

county (A) and in Østfold county (B). In A), the ponds are SKU - Skullerud, TAN - Taraldrud 

north, TAK - Taraldrud crossing, TAS - Taraldrud south, NØS - Nøstvedt, and VAS - Vassum. In 

B), the ponds are SÅS - Såstad, FIU - Fiulstad, IDR - Idrettsveien, KAB - Karlshusbunn, NOR - 

Nordby, ENE - Enebekk. The distance between the two farthest ponds (Skullerud and 

Enebekk) is 71 km. 
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Figure 2. Schematic overview of the methods that were used for the data analysis: DCA - 

Detrended Correspondence Analysis, PCA - Principal Component Analysis, RDA - Redundancy 

Analysis, and ANOVA – One-way Analysis of Variance. * In order to run the model, the 

physical variables were upscaled to n=48 to match the water quality variables. 

  



 

Figure 3. A) Principal components analysis (PCA) for water quality variables. The same 

symbol with the same colour indicates that samples were collected from the same pond; the 

first three letters indicate the name of the pond; “1”, “2”, “3” and “4” indicate that the 

samples were collected in April, June, August and October, respectively; “V” indicates the 

basin receiving road runoff. B) Box-plot of PCA score extracted from axis 1 for twelve ponds. 

The small letters besides the boxes indicate which ponds were significantly different from 

each other. C) Box-plot for PCA score extracted from axis 2 for twelve ponds. None of the 

ponds were statistically different.  



 

Figure 4. Redundancy analysis (RDA) with forward selection of taxa in relation to the water 

quality and physical variables. The effect of covariate “month” was removed. PCA1 (M) 

represents concentrations of metals (including SO4
2-), DO - dissolved oxygen, and P – 

phosphorus; “DistToPn” represents the distance to the nearest neighbouring pond from 

each study pond. Blue arrows indicate different taxa. Red arrows indicate explanatory 

variables. Figure B) describes the relationship between environmental variables and 

different samples. The same symbol with the same colour indicates that samples were 

collected from the same pond; the first three letters indicate the name of the pond; “1”, “2”, 

“3” and “4” indicate that the samples were collected in April, June, August and October, 

respectively; “V” indicates the basin receiving road runoff. 
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