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Abstract

LC-HR-QTOF-MS recently has become a commonly used approach for the anal-

ysis of complex samples. However, identification of small organic molecules in

complex samples with the highest level of confidence is a challenging task. Here

we report on the implementation of a two stage algorithm for LC-HR-QTOF-MS

datasets. We compared the performances of the two stage algorithm, implemented

via NIVA MZ AnalyzerTM, with two commonly used approaches (i.e. feature detec-

tion and XIC peak picking, implemented via UNIFI by Waters and TASQ by Bruker,

respectively) for the suspect analysis of four influent wastewater samples. We first

evaluated the cross platform compatibility of LC-HR-QTOF-MS datasets generated
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via instruments from two different manufacturers (i.e. Waters and Bruker). Our data

showed that with an appropriate spectral weighting function the spectra recorded by

the two tested instruments are comparable for our analytes. As a consequence, we

were able to perform full spectral comparison between the data generated via the two

studied instruments. Four extracts of wastewater influent were analyzed for 89 ana-

lytes, thus 356 detection cases. The analytes were divided into 158 detection cases

of artificial suspect analytes (i.e. verified by target analysis) and 198 true suspects.

The two stage algorithm resulted in a zero rate of false positive detection, based on

the artificial suspect analytes while producing a rate of false negative detection of

0.12. For the conventional approaches, the rates of false positive detection varied

between 0.06 for UNIFI and 0.15 for TASQ. The rates of false negative detection

for these methods ranged between 0.07 for TASQ and 0.09 for UNIFI. The effect of

background signal complexity on the two stage algorithm was evaluated through the

generation of a synthetic signal. We further discuss the boundaries of applicability

of the two stage algorithm.The importance of background knowledge and experience

in evaluating the reliability of results during the suspect screening was evaluated.

Keywords:

Two stage algorithm, LC-HR-QTOF-MS, Target and suspect screening, False

detection, Confident identification

1. Introduction1

The suspect and non-target analysis of complex environmental samples for small2

organic molecules is a challenging task [1, 2]. For the samples that are selected a3

priori for suspect and non-target analysis, the analyst performs a generic sample4
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preparation and uses a wide range instrumental analysis [2–6]. A list of suspects is5

then compiled including some chemical specific information. This information is used6

for the confident identification of suspect analytes while processing those samples [1–7

6]. For non-target analysis, the analyst after performing generic sample preparation8

and instrumental analysis investigates the data without having any prior information9

about the compounds of interest [2]. Recent advancements in high resolution mass10

spectrometers coupled to liquid and/or gas chromatography (LC-HR-MS and/or GC-11

HR-MS) has enabled the analysts to perform these type of analyses faster and with12

high levels of confidence in the identification, having access to the exact mass in-13

formation [1, 7]. However, due to the large amount of data produced by these new14

technologies a confident identification during the suspect and non-target analysis of15

complex samples remains a difficult and time consuming task.16

17

Several approaches are available for the suspect analysis of complex samples an-18

alyzed via LC-HR-MS. However, the majority of these data processing algorithms19

employ two different strategies in suspect analysis when dealing with the data pro-20

duced via LC-HR-MS [1, 8]. The first strategy is based on peak picking in the21

extracted ion chromatograms (XICs) of the molecular ion and the relevant qualifier22

ions in the sample chromatogram. This is performed by first extracting the XICs23

and then performing peak picking on those XICs. That way the retention time of24

a peak is first defined and then matched with other fragment XICs (i.e. qualifiers).25

In case of a positive match between the XIC retention time of the parent ion and26

the fragments, those fragments are included in the spectra of that peak. The parent27
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ion and the included fragments, based on their retention time match, are used as28

diagnostic tools during the identification. Confidence in the identification then is29

improved by adding another orthogonal parameter to the parent ion and the frag-30

ments match. These parameters include either the XIC peak shape (employed by31

ChromaLynx, Waters) or isotopic fit (utilized by TASQ, Bruker). In other words,32

the algorithms using the XIC strategy, employ XIC retention time match and either33

isotopic fit or XIC peak shape as two orthogonal parameters in order to identify a34

suspect peak in the sample. The second data processing strategy consists of first35

performing peak picking or feature detection in the MS1 (or first function having a36

collision energy varying from 4 eV to 6 eV) independently from the target or suspect37

list (e.g. UNIFI by Waters, MZmine [9], XCMS [10], and OpenMS [11]). Afterwards38

these algorithms group all the ions related to a specific unique feature. This opera-39

tion includes grouping the fragments, isotopes, and adducts. Once the unique feature40

detection is completed, these algorithms use the information provided by the ana-41

lyst, such as the exact masses of molecular ions and potential fragments to assign an42

identity to a certain unique component. In the last stage, the analyst needs to create43

filters based on isotopic fit, theoretical fragmentation pattern, mass accuracy of the44

parent/fragment ions, and/or retention time match of the standard and the sample45

peaks to prioritize amongst the potential candidates. The list of potential candidates46

then are processed using carefully designed filters in order to remove false positives,47

thus increasing the level of confidence in the final identification. This post processing48

step is necessary, independently from the detection method used (i.e. peak picking49

or XICs).50
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51

The commonly used data processing approaches for suspect and non-target anal-52

ysis are not always as effective as needed, particularly for highly complex samples.53

One of the frequently observed issues with these algorithms is peak picking or fea-54

ture detection (as reviewed by Zhang et al.[12] and [13]). Also it has been shown55

that even parameter optimization [14] may not result in a perfect outcome for all56

the peaks, due to the sample complexity [14, 15]. Therefore, considering that the57

majority of algorithms have peak picking as an essential step during data process-58

ing, they may be affected by the probability of failure during peak picking due to59

the high levels of noise and broad peaks. Independently from peak picking, another60

commonly observed issue is caused by mass calibration [16]. Improper mass calibra-61

tion can create difficulties during the isotopic fit and/or the grouping process. These62

potential artifacts caused by the complexity of the samples may translate into the63

erroneous identification of a suspect peak. Overall, these algorithms require careful64

tuning and post processing in order to produce identifications with a high levels of65

confidence.66

67

In our recent study, we developed an alternative algorithm (i.e. two stage algo-68

rithm, for detail information please see section 2.4.1) for target and suspect screening69

in complex samples analyzed via high resolution time of flight mass spectrometer70

(HR-TOF-MS) [17]. The two stage algorithm does not perform peak picking or peak71

deconvolution in the sample chromatogram, which reduces its probability of failure72

caused by the peak picking algorithm. This algorithm takes advantage of a full spec-73
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tral comparison between the spectra of the standard stored in a local or a public74

spectral library and the sample. The two stage algorithm calculates the similarity75

between the standard spectrum and sample spectrum at each scan number of the76

sample chromatogram. If a suspect analyte is present in the sample then a peak of77

similarity is observed in the sample. The two stage algorithm was modified in order78

to process the data produced via LC-HR-QTOF-MS. This algorithm is shown to be79

effective in the target and suspect analysis of complex samples with the highest levels80

of confidence and minimum post processing efforts.81

82

Herein we report the comparison between three different data processing strate-83

gies for the suspect analysis of 89 analytes, including pharmaceuticals and illicit84

drugs, in four wastewater extracts (i.e. 4 × 89 analytes, 356 detection cases).85

The investigated strategies comprised of: the two stage algorithm implemented via86

NIVA MZ AnalyzerTM, UNIFI by Waters, and TASQ by Bruker. One hundred and87

fifty eight detection cases (i.e. 2 × 33 Oslo analytes + 7 common analytes + 2 × 3288

Athens analyes + 7 common analytes) out of 356 total cases were artificial suspects89

whereas the remaining 198 detection cases were analyzed only in suspect mode. In90

other words, the presence and/or absence of an artificial suspect analyte in the sam-91

ples was confirmed through target analysis. In this study, UNIFI was considered a92

representative of the methods, that perform peak picking on the whole m/z domain93

whereas TASQ was used as an example for peak picking on XICs. On the other hand,94

NIVA MZ AnalyzerTM, which does not rely on peak picking, was considered as an95

alternative approach. We used influent wastewater extracts as our testing matrix96
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due to their complexity, high level of noise, and background signal. In this study we97

evaluated the problems that analysts face during this type of analysis and the way98

that each algorithm tries to overcome these issues. The cross platform compatibility99

of the data produced via LC-HR-QTOF-MS as well as the applicability boundaries100

of the two stage algorithm were also discussed.101

2. Experimental102

2.1. Chemicals and sample collection103

For our assessment we used a suite of 89 analytes consisting of pharmaceuti-104

cals (including antibiotics) and illicit drugs. These chemicals were selected based on105

their importance and high frequency of detection in the wastewater samples from106

both Oslo [18–20] and Athens [5, 21]. These chemicals were divided in Oslo analytes107

(33 out of 89), the Athens analytes (32 out of 89), the library analytes (17 out of108

89), and the common analytes (7 out of 89). A complete list of the suspect/target109

analytes is included in the Supporting Information, section S1.110

111

We examined the performances of the three selected approaches on four extracts112

of wastewater influent. Two out of the four samples were collected from the VEAS113

treatment plant in Oslo. Throughout this article we will refer to these samples as114

”Oslo samples”. The other two samples of influent were from Athens wastewater115

treatment plans (hereafter referred to as ”Athens samples”). These four samples116

were 1L flow proportional 24 h composite samples of the two studied wastewater117

treatment plants. These samples were part of a large sampling campaign conducted118
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during the spring of 2015, where we collected one sample every day. We randomly119

selected four samples out of the pool of samples for evaluation of data processing120

approaches. These four samples appeared to be representative of the pool of sam-121

ples collected during the sampling campaign, based on their chromatogram similarity122

(TIC) to the other samples collected during the sampling campaign.123

124

The Oslo plus common analytes, 40 compounds, and the Athens plus common125

analytes, 39 chemicals, were analyzed in both target and suspect analysis mode in126

Oslo samples and Athens samples, respectively. The Oslo analytes plus the library127

analytes were considered as true suspects in Athens samples whereas the Athens128

analytes and the library analytes were analyzed as pure suspects in Oslo samples.129

This experimental design enabled us to fully evaluated the capabilities and limitations130

of all three approaches for both suspect and retrospective analysis.131

2.2. Sample preparation132

The Oslo samples were extracted using Oasis HLB sorbent [18] whereas the133

Athens samples were extracted using a modified version [5] of the method devel-134

oped by Kern et al. 2009 [22].135

136

We considered these samples adequate, based on their complexity (as reviewed137

by Krauss et al. [23]), high level of background signal, large number of unique138

features, and finally the diversity of the compounds present in this type of sample139

[5, 18, 21, 24]. These characteristics of the samples enabled us to test the capabilities140

and also the limitations of the tested approaches.141
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2.3. Instrumental setups142

For our analysis we employed two different instrumental setups. Xevo G2-S Q-143

TOF-MS (Waters, USA) was used for Oslo samples while Maxis Impact Q-TOF-MS144

(Bruker, Germany) was employed for Athens samples. Each instrumental setup145

performed the analysis under different data acquisition conditions. The diversity146

in the instruments and the data acquisition settings introduced an extra level of147

complexity to our dataset, which was desired in order to better characterize the limits148

in the capabilities of the investigated strategies. Detailed information regarding149

the chromatography and HR-MS conditions is provided in Supporting Information150

section 2.3.151

2.4. Data processing algorithms152

We evaluated three different approaches used for suspect analysis of complex153

samples. Among the alternative methods, the two stage algorithm implemented154

via NIVA MZ AnalyzerTM was selected. The two stage algorithm was previously155

developed for target and suspect analysis of the GC-HR-TOF-MS data [17]. The156

second tested algorithm was UNIFI by Waters (for more information see section157

2.4.2). This algorithm was considered a representative method for software that158

employ feature detection or peak peaking and/or modeling as the first step of analysis159

(e.g. MZmine [9] and XCMS [10]). The third approach was implemented via TASQ160

by Bruker. This algorithm utilizes the retention time match of the XICs and the161

isotopic ratios as a means for identification, similar to software packages such as162

MassHunter by Agilent and ChromaLynx by Waters. These three software programs163

appeared to cover the two approaches commonly used and an alternative one for164
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the suspect and target analysis of complex samples analyzed via LC-HR-QTOF-MS.165

Moreover, this is one of the rare studies where the performance of an open access166

software is compared to the vendor software packages.167

2.4.1. NIVA MZ AnalyzerTM
168

The NIVA MZ AnalyzerTM is a Graphical User Interface (GUI) via matlab [25]169

for implementation of the two stage algorithm [17] applicable to both GC-HR-TOF-170

MS and LC-HR-QTOF-MS data. This algorithm is also independent from mass171

spectrometer manufacturers. The two stage algorithm produces a spectra library of172

the standards in the first stage and then calculates the similarity score between each173

scan of the sample chromatogram and the standard spectrum. More information174

regarding the suspect analysis procedure is provided in SI, section S4.1.175

176

During the first stage (i.e. Unique Ion Extractor) the MS1 and MS2 spectra for177

each standard peak are processed separately. These two spectra are then recorded178

and stored in the standard library. Therefore, for each entry in the standard library179

there are two spectra for the low and high collision energies. During the second stage,180

the MS1 and MS2 spectra are treated as two complementary spectra. Therefore,181

the similarity matrix between the library component and the sample spectra are182

calculated separately for the MS1 and MS2. The similarity matrix is the dot product183

of the weighted and normalized reference spectra and each scan of the sample [17].184

Thus if an analyte is present in the sample, higher levels of similarity scores are185

observed at the same location for both the MS1 and MS2 spectra when compared186

to the background similarity values. Furthermore, five XICs (including the parent187
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ion and 4 qualifiers) are extracted in order to increase the level of confidence in188

the identification. The two stage algorithm uses a six point criterion for positive189

and negative identifications (for more information please see section 2.6 and S4).190

This algorithm showed to be effective for the suspect screening of GC-HR-TOF-MS191

data [17] however, this is the first implementation of the two stage algorithm for192

LC-HR-QTOF-MS data.193

2.4.2. UNIFI194

UNIFI is a commercially available software from Waters. This software first per-195

forms the peak picking/feature detection in the whole chromatogram employing the196

MS1 signal, without taking into account the analytes of interest. UNIFI, utilizes197

the continuous wavelet transformations (CWTs) developed by Du et al., 2006 [26].198

This algorithm (i.e. CWTs) performs the peak detection, peak modeling, and also199

the noise reduction simultaneously. Further information about the CWTs can be200

found elsewhere [15]. The next step is the grouping of ions in both the MS1 and201

MS2 spectra, which belong to a the same compound using the isotopic ratios, 2D202

feature shape (i.e. both in time and m/z domains), and the feature retention time.203

This process results in the final peak and/or unique feature list and the deconvoluted204

spectra of each individual chromatographic peak in the list. During the suspect anal-205

ysis, UNIFI employs the information such as the exact mass of: the molecular ion,206

fragments, and the potential adducts for the identification. Finally, UNIFI employs207

user defined filters to priorities the features that are more likely to be positive de-208

tections. Work-flows similar to this approach have been widely utilized for suspect209

and non-target analysis of complex samples as reviewed elsewhere [1, 8, 27].210
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211

2.4.3. Target Analysis for Screening and Quantitation (TASQTM)212

TASQ, is a commercially available software package provided by Bruker for the213

target and suspect analysis of complex samples [28]. The algorithm implemented in214

this software package uses the information provided by the analyst (i.e. the exact215

mass of molecular ion and the fragments or the molecular formula of fragments216

(which contains the information of their exact mass) in order to extract the XIC217

of the relevant fragments for the analyzed suspect. In this case this method first218

performs the peak picking in the XIC of the exact mass provided by the analyst. The219

theoretical isotopic pattern of the molecular ion in the MS1 is checked as the second220

step in the identification. Once the isotopic pattern of the molecular ion was fit, then221

the algorithm uses the XICs of the fragments provided by the user for increasing222

the confidence level in the identification. These XICs are grouped together based223

on the match in their retention times. During the final step, a score is generated224

for each peak based on the isotopic fit, mass accuracy, and XIC retention times.225

This methodology has been successfully used for the target and suspect analysis of226

environmental samples, including wastewater extracts [5].227

2.5. Target and suspect analysis228

The chromatograms of all four samples were analyzed both in target and suspect229

analysis mode (see section S3 for more information regarding the data preprocessing).230

We used NIVA MZ AnalyzerTM only in suspect analysis mode for all four samples231

(i.e. Oslo samples and Athens samples). This implied that we did not use the reten-232
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tion time information for any of 89 analytes investigated in this study for analysis233

with NIVA MZ AnalyzerTM. As a validation tool, the Oslo samples were analyzed234

via UNIFI both in target and suspect mode for the Oslo analytes (i.e. 33 analytes)235

plus the common analytes (i.e. 7 analytes). The same samples were analyzed only in236

suspect mode for the Athens and library analytes. In other words the Oslo samples237

were processed twice. First in suspect mode with all 89 analytes and a second time238

in target analysis mode only with the Oslo analytes plus the common analytes. A239

similar approach was adopted for the Athens samples where we first analyzed those240

samples in suspect mode for all 89 analytes and in the second round we analyzed241

the same samples in target mode including only the Athens analytes plus common242

analytes. This approach enabled the cross validation of the results of our suspect243

analysis for all three software.244

2.6. The identification criteria during the target and suspect analysis245

During both target and suspect analysis we employed conservative identification246

criteria, which reduced the odds of false positive detection. For the NIVA MZ AnalyzerTM
247

a suspect analyte was considered present in the sample if it met at least 6 out of248

7 criteria. These criteria consisted of peaks in the similarity matix for both the249

MS1 and MS2 spectra; the peak of the exact mass; the peak for at least 2 out 4250

XICs; and finally the retention time match for all 5 to 7 peaks. These criteria were251

established based on our preliminary assessment of the two stage algorithm for the252

LC-HR-QTOF-MS data.253

254

UNIFI used a six point criteria for positive and negative detections during the255
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suspect analysis whereas it used a seven point criteria for target analysis. These256

criteria included the isotopic fit, mass accuracy of ± 2 mDa for all the relevant ions,257

detection of at least 2 out of 4 fragments, and the XIC retention time match for those258

ions in the sample chromatogram. These XIC retention times were independent from259

the analyte retention time and only were used for the spectral deconvolution. During260

the target analysis for the Oslo analytes, the analyte retention times were compared261

to the retention times of the potential features in the sample. A retention window262

of 0.25 min was employed for the target screening, section S4 of Supporting Infor-263

mation. These settings were previously optimized for target and suspect analysis of264

wastewater samples [18].265

266

The positive detection criteria when using TASQ consisted of: a mass accuracy267

of ± 2 mDa for both the exact mass and the fragments; a good isotopic fit, which268

was represented with the ”mSigma Tolerance” parameter with a maximum of 100;269

a positive match for at least 2 out of 4 fragments; and fragment retention match, in270

order to include that fragment in the spectra of the sample peak. Also for TASQ,271

the retention time of the standards were compared to the retention times of the272

potential peaks, having a retention tolerance of 0.2 min, during the target analysis.273

This implied that for an analyte to have its presence confirmed in the sample, dur-274

ing the suspect analysis, it must have at least 6 out of 7 criteria fulfilled. For the275

target analysis TASQ matched the standard retention time to the sample peak re-276

tention time using a retention tolerance of 0.2 min. More information regarding the277

parameter settings of TASQ are provided in SI, section S4.3. A recent study of the278
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wastewater influent samples from Athens treatment plant showed the applicability279

of these parameters for our type of analysis [5].280

281

The fragments used in both TASQ and UNIFI were extracted from the mzCloud282

database [29]. For analytes where more than one source was available, we gave pri-283

ority to the average spectra recorded by Eawag. The mzCloud was selected as the284

reference database for the qualifier ions. This selection was based on the quality of285

the spectra stored in this database, the fact that this database was an independent286

database, and the ease of use [30]. We used only the annotated fragments with rel-287

atively high intensities in the average spectra of each analyte. A text file with the288

compound names, smiles, exact mass of the parent ion, and the exact mass of four289

fragments compiled and then imported into both UNIFI and TASQ. Therefore, the290

absolute intensity of the ions in the reference spectra (i.e. the mzCloud entry) was291

not considered during the identification via both UNIFI and TASQ.292

293

For the NIVA MZ AnalyzerTM library creation, the standard mixture chromatograms294

of all the analytes were submitted to the UIE module. This software also has the295

option of importing new spectra as txt/csv files. This enables the inclusion of spec-296

tra recorded in the open databases such as MassBank [31] into the local library of297

NIVA MZ AnalyzerTM.298
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3. Results and discussions299

3.1. Cross platform compatibility300

The cross platform similarity values of all 7 common analytes were three order301

of magnitudes larger than the minimum threshold of similarity, see section S5. The302

largest maximum threshold of similarity at MS1 was of 0.1627 for Carbamazepine303

recorded via Waters instrument whereas the smallest value for the maximum sim-304

ilarity threshold of 0.0072 was observed for Morphine, also recorded with Waters305

equipment, Figure 1. When looking at the MS2, the highest value of 0.071 was306

registered with Metoprolol via Waters and the lowest value of 0.0071 was observed307

for Morphine recorded with Waters. The higher variability observed in the Waters308

instrument compared to the Bruker setup, was attributed to the applied ramp in309

the collision energy of the MS2, while for the Bruker instrument a constant collision310

energy was applied for the MS2 spectra. In the case of cross platform similarity,311

this parameter ranged from 0.0083 for Citalopram to 0.1105 for Carbamazepine. In312

overall, for both MS1 and MS2, we observed a slightly lower average cross platform313

similarities compared to the similarity values within each platform, Figure 1. We314

interpreted that the observed decrease in the cross platform similarities compared315

to the maximum threshold similarities were caused by the differences in the collision316

energies and also the hardware design of the two instrumental setups. However, the317

non-parametric Kruskal-Wallies test [32] at 95% confidence interval, with p values of318

0.84 indicated that, in both MS1 and MS2, the observed differences between the cross319

platform similarity values and the maximum threshold similarities were not statis-320

tically significant. This implied that the average spectra, for the common analytes,321
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recorded by different instruments are comparable to each other. These results were322

consistent with the findings of Oberacher et al. [33] and Scheubert et al. [34], which323

suggested by using an average acquisition condition, an effective spectral weighting324

function, and dot product the cross platform compatibility can be achieved. This325

implies that these spectra can be used for suspect and/or retrospective analyses of326

samples acquired via different instruments. However, a more comprehensive evalua-327

tion of cross platform compatibility with a large pool of instruments and analytes is328

necessary for this aim and will be the subject of our near future study.329
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Figure 1: Calculated maximum threshold similarity and cross platform similarity of 7 common
analytes at (a) MS1 and (b) MS2. The similarity values are available in Table S4 in Supporting
Information. The solid line at the bottom of the figure depicts the averaged minimum threshold
of similarity whereas the dashed lines show the variability observed in the minimum threshold of
similarity.
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3.2. Suspect analysis and analyte identification330

Four wastewater samples (i.e. Oslo samples and Athens samples) were analyzed331

for 89 analytes with NIVA MZ AnalyzerTM in suspect analysis mode. The Oslo332

samples were analyzed in suspect analysis mode with UNIFI whereas the Athens333

samples were analyzed via TASQ. As a validation tool we analyzed the Oslo samples334

for Oslo analytes plus the common analytes (i.e. total of 40 analytes out of 89)335

in target analysis mode whereas for Athens samples we utilized TASQ for Athens336

analytes plus the common analytes (i.e. total of 39 analytes out of 89) also in target337

analysis mode. For the ease of discussion we are going to divide our analytes in two338

categories. The first category, herein referred to as artificial suspect analytes, are339

the analytes which their presence or absence was confirmed via target analysis in340

that sample. The second category or true suspects were the analytes that were not341

analyzed via target analysis in that sample, Tables 1 and S1. We further evaluated342

our results for false negative, false positive, potential false negative, and potential343

false positive. A false negative refers to the case where an analyte is not detected344

via suspect analysis however its presence in the sample is confirmed, employing345

target analysis. A false positive represents a case where during the suspect analysis346

a compound is detected while its absence in that sample is confirmed via target347

analysis. Potential false negative refers to cases of pure suspects, where all the348

evidence indicates the presence of an analyte in the sample, while the investigated349

software produces a negative detection. For potential false positive, we refer to a350

case where a software results in positive detection of an analyte even though all the351

evidence suggest the contrary. In cases of potential false positives and negatives, the352
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absence or presence of the analyte can not be confirmed due to the lack of retention353

time information. The presence of both artificial suspects and true suspects, enabled354

us to simulate a real life case and truly evaluate the limitations of each approach.355

3.2.1. Analysis of the artificial suspects356

NIVA MZ AnalyzerTM confidently detected 9 out of 11 artificial suspect analytes357

in one of the Oslo samples, while detecting 8 out of 10 in the second sample, Table358

1. The discrepancy in the number of positive detection in the Oslo samples was359

caused by the false negative detections of Citalopram in both samples, Morphine360

in the Oslo1 sample, and Pseudoephedrine in Oslo2 sample. For these compounds361

NIVA MZ AnalyzerTM produced a false negative, due to the fact that the detection362

requirements (i.e. the six point criterion) by the algorithm were not met, Figure363

2. The similarity matrix in both low and high collision energies clearly indicated364

the positive detection of these compounds (e.g. Citalopram, Figure 2). However,365

the qualifiers selected for them were not present. These false negative cases were366

caused by high level of background signal, thus ion suppression, which affected the367

most the selected qualifier ions for these analytes. The effect of the background368

signal on NIVA MZ AnalyzerTM has been discussed in detail in section 3.3. For369

the Athens samples, NIVA MZ AnalyzerTM detected 22 out of 23 target validate370

analytes in the Athens1 sample whereas it detected 23 out of 24 analytes in the371

Athens2 sample. For the analytes Irbesartan and Cetirizine, in the Athens sam-372

ples NIVA MZ AnalyzerTM in suspect analysis mode produced a positive detection373

while TASQ in target analysis mode resulted in their negative detections. We fur-374

ther interrogated the raw data at the expected location (i.e. the retention time)375
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of these analytes in Athens samples. Our investigation showed that both of these376

two analytes were present in the sample, Figure 3. For Irbesartan and Cetirizine,377

we interpret that TASQ faced some difficulties in spectral calibration, that resulted378

in a mass error of ∼ ± 3 mDa. Consequently, TASQ reported these two analytes379

as negative detections. Once widening the mass error window for Irbesartan and380

Cetirizine all two analytes were detected both during the suspect and target analy-381

sis. Therefore, we considered these two analytes as detected and artificial suspect in382

the Athens samples. NIVA MZ AnalyzerTM failed to detect Citalopram, D617, and383

Caffeine in the Athens samples. In this case similar to Citalopram in Oslo samples,384

the minimum requirements of the algorithm for positive detection of these two ana-385

lytes in Athens samples were not met. Therefore, NIVA MZ AnalyzerTM resulted in386

false negatives for Citalopram, D617 and Caffeine in the Athens samples. In overall,387

the NIVA MZ AnalyzerTM produced zero cases of false positives while producing few388

cases of false negative (i.e. 10 cases out of total analyzed cases of 158). This software389

showed to be a capable tool for confident detection of suspect analytes in a complex390

sample. Furthermore, since NIVA MZ AnalyzerTM does not need peak picking and391

it utilizes the whole spectrum rather than few qualifiers, during the suspect analysis,392

it has a lower potential of false positive detection.393

394

UNIFI detected 13 out of 11 artificial suspect analytes in the Oslo1 sample395

whereas it detected 10 out of 10 in the Oslo2 sample, Table 1. We observed 2396

clear cases of false positive for Hydroxycotinine and Mephedrone in Oslo1 sample.397

These analytes were detected during the suspect analysis, while were not detected in398
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target analysis mode. UNIFI did not produce any case of false negative. However, it399

showed to have some difficulties to distinguish analytes such as MDMA and Carba-400

mazepine in both samples. This software produced multiple potential peaks for these401

two analytes. Therefore, UNIFI needed retention time information in order to dis-402

tinguish these potential peaks from the actual peaks of MDMA and Carbamazepine.403

These difficulties were caused by the complexity of the background signal, which404

contained the exact mass and more than 2 qualifiers of these two analytes in mul-405

tiple locations. For the sample Oslo2, UNIFI produced results which were 100% in406

agreement between the suspect and target analysis. Besides the two false positive407

cases, UNIFI showed to be a reliable tool in suspect analysis of complex samples.408

However, depending of the complexity of the samples UNIFI may require additional409

information and further post processing.410

411

For the Athens samples, after including the two missed analytes (i.e. Irbe-412

sartan, and Cetirizine), TASQ in suspect analysis mode, detected 28 out of 25413

artificial suspect analytes in sample Athens1 and 25 out of 26 in Athens2 sam-414

ple. For Athens1 sample, TASQ resulted in 3 false positives for analytes D,L,N,O-415

Didesmethylvenlfaxine, Aliskiren, and Picaridin and 0 cases of false negative. In case416

of Athens2 sample TASQ produced only 1 case of false negative for Venlafaxine. The417

cases of false positive when performing suspect analysis with TASQ were attributed418

to the complexity of the samples. Therefore, other compounds, structurally similar419

to our analytes, were detected instead of those analytes. Similar to UNIFI, TASQ420

also detected multiple locations for analytes such as Gabapentin and Carbamazepine,421
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which indicated that this algorithm likewise to UNIFI needed retention time infor-422

mation for these analytes.423

424

NIVA MZ AnalyzerTM was the only algorithm that did not result in any false425

positives among the tested software, while producing in total 10 cases of false neg-426

ative. These false negative cases were mainly caused by the ion suppression due to427

the sample complexity. The other two approaches (i.e. UNIFI and TASQ) produced428

both cases of false positive and false negative, which was acceptable considering the429

complexity of the analyzed samples. These cases of false positive and false nega-430

tive would have been avoided during post processing where the analysts use their431

knowledge to increase the level of confidence in the identifications. During this432

study, we took the necessary precautions to avoid the introduction of background433

knowledge of the analysts into the final results in order to objectively compare the434

performances of the investigated algorithms. Our results indicate the importance of435

full spectral comparison (implemented via NIVA MZ AnalyzerTM) rather than em-436

ploying few qualifiers commonly used during suspect analysis in order to have the437

maximum level of confidence in the identification.438

3.2.2. True suspect analysis439

The NIVA MZ AnalyzerTM confidently detected 8 analytes out of 49 true sus-440

pect analytes (i.e. Athens plus Library analytes) in the Oslo1 sample. In the Oslo2441

sample this algorithm detected 7 out of 49 true suspect analytes. We analyzed442

these samples for the same 49 analytes using UNIFI. Except one case (i.e. Eprosar-443

tan in Oslo2 sample) all the positive detections with NIVA MZ AnalyzerTM were444
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Figure 2: The similarity matrix of Citalopram (a) at MS2, (b) at MS1, and (c) and (d) the XICs
for the exact mass and three qualifiers in Oslo1 sample.
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Figure 3: The similarity matrix of Cetirizine (a) at MS2, (b) at MS1, and (c) and (d) the XICs for
the exact mass and three qualifiers in Oslo1 sample.

24



also detected with UNIFI. However, there were several cases of discrepancy where445

NIVA MZ AnalyzerTM resulted in negative detection of an analyte while UNIFI de-446

tected that analyte in the same sample. We further investigated the observed differ-447

ences between NIVA MZ AnalyzerTM and UNIFI results. More detailed interrogation448

of the raw data revealed three distinct cases. Case one including analytes Mirtaza-449

pine, Valsartan, and Caffeine in Oslo1 sample and Valsartan, Caffeine, Ephedrine,450

and Atenolol acid in Oslo2 sample. For these analytes NIVA MZ AnalyzerTM was451

not able to confirm their presence in the Oslo samples due to lack of 6 positive de-452

tection criteria. These cases were similar to the Citalopram case in the artificial453

suspect analysis, Figure 2. Therefore, for these analytes the NIVA MZ AnalyzerTM
454

produced potential false negative results. The second case included analytes Clozap-455

ine, Ecgoninemethylester and para-Methoxy-N-methylamphetamine in Oslo1 sample456

and Ecgoninemethylester in the Oslo2 sample. By further examining our data, we457

concluded that UNIFI produced potential false positive results for these analytes,458

Figure 4. Finally, the third case consisted of Eprosartan. This analyte was detected459

by NIVA MZ AnalyzerTM in Oslo2 sample whereas it was not detected via UNIFI.460

We scrutinized the Oslo2 dataset and observed that spectral calibration performed461

via UNIFI for this peak was not successful, which consequently caused its lack of462

detection in that sample. Therefore it was concluded that this analyte is most likely463

present in the sample and UNIFI produced a potential false negative result for this464

analyte, Figure 5.465

466

NIVA MZ AnalyzerTM confidently detected 3 true suspect out of 50 Oslo ana-467
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lytes plus Library analytes in Athens1 sample. This method resulted in 5 positive468

detections in Athens2 sample. Analysis of the same samples using TASQ resulted in469

7 positive detections in Athens1 sample and 6 detections for Athens2 sample. By in-470

terrogating the discrepancy cases between NIVA MZ AnalyzerTM and TASQ, we ob-471

served two different categories of suspect analytes. The first category included Ecgo-472

ninemethylester, Diclofenac, Hydroxycotinine, and Buprenorphine in Athens1 sample473

and Ecgoninemethylester, Methylone, and Methylphenidate in Athens2 sample. For474

these analytes TASQ resulted in positive detections while NIVA MZ AnalyzerTM did475

not detect them. We extracted the signal to noise ratio (S/N) reported for these ana-476

lytes by TASQ and for all the mentioned analytes in both samples the S/N appeared477

to be smaller than 9. Furthermore, the results of NIVA MZ AnalyzerTM indicated478

the high level of similarity between the background signal and these analytes’ signal,479

Figure 6. Even though the background knowledge of the wastewater samples may480

suggest that these analytes are likely to be present in the samples, the data inter-481

rogation did not provide enough evidence to confirm that. Further investigation is482

needed in order to draw any type of conclusions regarding these analytes. The second483

category consisted of analytes Cocaine and 4-MEC in the Athens2 sample. These484

analytes were not detected with TASQ whereas they were confidently detected via485

NIVA MZ AnalyzerTM. For Cocaine the absolute intensity of the exact mass (i.e.486

850) was smaller than the threshold of 1250 set by TASQ, therefore this analyte487

was reported as not detected. When looking at 4-MEC the signal produced by 2488

qualifiers out of 3 were large and thus they produced broad peaks. The peak picking489

algorithm in the TASQ failed to detect these broad qualifier peaks therefore TASQ490

26



reported 4-MEC as not detected. Based on these evidence we concluded that TASQ491

produced a potential false negative for both Cocaine and 4-MEC.492

493

NIVA MZ AnalyzerTM was able to confidently detect the suspect analytes in com-494

plex samples. This algorithm did not produce any cases of potential false positives495

while resulting in 7 potential false negatives out of 198 cases. The results also indicate496

the necessity of full spectral comparison in order to produce high level of confidence497

in the identification. In the case of true suspect analysis also NIVA MZ AnalyzerTM
498

appeared to be as successful as commercially available software. In some cases this499

algorithm performed far better than both UNIFI and TASQ. UNIFI, resulted in 4500

cases of potential false positives whereas TASQ produced 7 cases of inconclusive501

outcome. These inconclusive cases are plausible to be potential false positives. In502

overall, algorithms such as NIVA MZ AnalyzerTM, which perform full spectral anal-503

ysis rather than few qualifier inspection are more likely to produce reliable results504

with a high level of confidence.

Table 2: The number of positive detections using the three algorithm investigated in this study.

Pure suspects

Samples
Softwares Oslo1 Oslo2 Athens1 Athens2

NIVA MZ AnalyzerTM 8 7 3 5
UNIFI 15 13 - -
TASQ - - 7 6

505
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Figure 6: The similarity matrix of Ecgoninemethylester (a) at MS2, (b) at MS1, and (c) and (d)
the XICs for the exact mass and three qualifiers in Athens1 sample.

3.2.3. Rates of false positive and false negative506

We compared the 3 algorithms investigated in this study in terms of rates of false507

positive and negative, Table 3. The rate of false positives was defined as the ratio of508

false positives and false positives plus true negatives whereas the rate of false negative509

was defined as the ratio of false negatives and the false negatives plus true positives510

[35]. For these calculations we used only the artificial suspect analytes. The rates511

of false positive and false negative enabled a direct comparison of these 3 algorithms512

and also provided us with indicative levels of confidence in the final identifications513

produced by each algorithm.514

515

NIVA MZ AnalyzerTM resulted in the smallest rate of false positive compared to516
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the other two methods. This algorithm produced the highest rate of false negatives517

compared to the other algorithms, Table 3. The higher rate of false negative was518

attributed to the highly conservative detection criteria used by this algorithm, which519

guarantees the highest level of confidence in the identifications. Both UNIFI and520

TASQ produced between 0.06 to 0.09 rates of false positives. This again indicated521

the importance of full spectral comparison rather than the qualifier approach. The522

performances of UNIFI and TASQ were comparable, considering the limited number523

of evaluated cases. In overall, the NIVA MZ AnalyzerTM appeared to be more robust524

compared to the other algorithms when looking at the levels of confidence in the525

identifications. Moreover, both UNIFI and TASQ require post processing in order526

to avoid cases of false positive, thus a high level of confidence in the identification.527

Table 3: The number of true positive, true negative, false positive, false negative, rate of false
positive, and rate of false negative calculated for all 3 algorithm investigated in this study.

Algorithm True + True - False + False - Rate false + Rate false -

NIVA MZ AnalyzerTM 72 88 0 10 0 0.12
UNIFI 21 59 4a 2 0.06 0.09
TASQ 51 29 5b 1-4c 0.15 0.02-0.07d

aThe number of false positives includes analytes MDMA and Carbamazepine, where the retention
time information is necessary for correct detection; bThe number of false positives includes analytes
Gabapentin and Carbamazepine, where the retention time information is necessary for correct
detection; cThis number of false negatives includes analytes Irbesartan and Cetirizine, which were
not detected due to the calibration issues; dThis rate of false negatives includes analytes Irbesartan
and Cetirizine, which were not detected due to the calibration issues.

3.3. The effect of the sample complexity and concentration on the two stage algorithm528

We examined the effect of both background complexity and analyte concentration529

on the performance of the two stage algorithm. We generated synthetic background530
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signal using real data plus noise. The procedure of the signal generation is explained531

in detail in Supporting Information, section S6. In our evaluation, we looked at532

three different levels of complexity in the background signal. These levels consisted533

of: low complexity, where there were less than ∼10% common features between the534

background signal and the analyte signals; medium complexity, where we observed535

∼ 50% similarity between the background signal and the analyte signals; and finally,536

the high complexity, in which there were ∼ 80% similarity between the background537

signal and the analyte signals, Figure S3. We carried out the identification employ-538

ing two stage algorithm for 7 common analytes at 7 signal dilution factors ranging539

from 1 to 0.01. By applying different signal dilution factors, we observed the signal540

to background ratio (S/B) varying from 158 to 0.1. The signal was defined as the541

sum of all intensities in the analyte spectra whereas the background was defined as542

the averaged sum of all the intensities in the background spectra (See section S6 in543

SI).544

545

The two stage algorithm confidently distinguished all 7 analytes from the back-546

ground signal for all three background levels of complexity at signal dilution factors547

≥ 0.25. The background complexity had a negative effect on the performances of548

two stage algorithm. For simplicity we are going to focus on two extreme cases549

Paracetamol and Morphine. These two analytes appeared to be representative for550

all 7 common analytes. Paracetamol due to its size and structure produced a limited551

number of ions in both low and high collision energies. Therefore, the two stage552

algorithm was less affected by complexity of the background signal, Figure 7. For553
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Morphine, the number of low intensity ions (i.e. small fragments) generated, par-554

ticularly at MS2, were larger than Paracetamol. Therefore, the two stage algorithm555

faced more difficulties in separating the analyte signal from the background. How-556

ever also in the case of Morphine the two stage algorithm was able to separate the557

two signals.558

559

The concentration showed to have a positive effect on the performances of two560

stage algorithm. At larger concentrations the two stage algorithm was able to sepa-561

rate the analyte signal from the background signal at all three complexity levels and562

for all 7 common analytes. At high signal dilution factors (i.e. lower concentrations)563

with high background complexity the two stage algorithm was not able to confidently564

detect the analyte signal in the background, Figure 8. The level of dissimilarity for565

the lowest concentrations of successfully detected analytes via two stage algorithm566

was reevaluated. The results of this experiment indicate that the two stage algorithm567

requires at least 10% dissimilarity between the analyte and the background signal in568

order to be able to separate the two signals from each other. We also evaluated the569

S/B of 7 common analytes at different concentration levels and background complex-570

ities. We observed a minimum S/B values of ∼ 1 required for two stage algorithm571

in order to distinguish the analyte signal from the background. For Paracetamol the572

S/B values of ∼ 1, for both low and high collision energy spectra, were reached at573

signal dilution factor of 0.1 at the highest background complexity whereas for the574

low background complexity this S/B ratios were obtained with signal dilution factors575

0.01. On the other hand, for Morphine, the S/B values of ∼ 1 were reached at higher576
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concentrations (i.e. signal dilution factor of 0.25) compared to Paracetamol for all577

three background complexity levels. Therefore, for an analyte such as Morphine with578

highly complex background higher concentrations were needed in order for two stage579

algorithm to separate the analyte signal from the background.580

581

The two stage algorithm was shown to be able to distinguish the analyte signal582

from the complex background signal. This algorithm requires S/B values of ≥ 1 for583

both low and high energy channels in order to be able to distinguish the analyte584

signal from the background. Furthermore, a minimum of 10% dissimilarity between585

the analyte signal and the background is needed for the confident identification of586

an analyte in the complex background.587

4. Conclusions588

The comparison between an alternative algorithm (i.e. two stage algorithm imple-589

mented via NIVA MZ AnalyzerTM) and two commonly used approaches (i.e. UNIFI590

and TASQ) was performed via the suspect analysis of 89 analytes in four wastewater591

influent samples. We observed cross platform similarities larger than 3 orders of592

magnitude from the minimum threshold of similarity. A slight decrease in the level593

of similarity was observed in cross platform similarities vs within platform similarity.594

However, the Kruskal-Wallies test results indicated that the differences observed were595

not statistically significant. This was indicative of the cross platform applicability596

of the data produced via different instrument for suspect/retrospective analysis for597

the instrumental setups evaluated in this study. Further research on this subject is598
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Figure 7: The similarity matrix of Paracetamol (a) at MS2, (b) at MS1, and (c) and (d) the XICs
for the exact mass and three qualifiers. These data are generated at low background complexity
and the lowest signal dilution factor (i.e. 1).

34



5 10 15 20 25 30
scan number

0

1

2

3

4

5

S
im

ila
rit

y

×10-5

High collision energy

5 10 15 20 25 30
scan number

0

0.5

1

1.5

S
im

ila
rit

y

×10-4

Low collision energy

5 10 15 20 25 30
Scan number

0

0.5

1

1.5

2

In
te

ns
ity

×104

152.07

5 10 15 20 25 30
Scan number

0

200

400

600

800

1000

In
te

ns
ity

110.06
93.03
111.05

(a) (b)

(c) (d)

Figure 8: The similarity matrix of Paracetamol (a) at MS2, (b) at MS1, and (c) and (d) the XICs
for the exact mass and three qualifiers. These data are generated at high background complexity
and the highest signal dilution factor (i.e. 0.25).

needed in order to validate a universal data acquisition procedure for LC-HR-QTOF-599

MS data.600

601

For the artificial suspect analytes, the two stage algorithm did not produced any602

cases of false positive while resulting in 10 false negatives out of total 158 artificial603

suspect cases. UNIFI and TASQ both produced ∼ 5 cases of false positives and604

between 0 to 4 cases of false negatives. For true suspects, the two stage algorithm605

again did not produced any cases of potential false positives while resulting in 7606

cases of potential false negatives. UNIFI for the pure suspects produced 4 cases of607

potential false positives and 1 case of potential false negative. TASQ for the pure608

suspects produced 7 cases of inconclusive/potential false positive and 2 cases of false609
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negative. Our direct comparison of the three approaches with the means of rate610

of false positive indicated that the two stage algorithm with a rate of false positive611

of 0 resulted in the most robust method with the highest level of confidence in the612

identifications.613

614

The evaluation of the background complexity effect on the two stage algorithm615

showed that this algorithm requires at least 10% of dissimilarity between the back-616

ground and the analyte signal. Three levels of complexity ranging from 20% dissim-617

ilarity (i.e. the highest level of complexity) to 90% dissimilarity between the analyte618

and background signal were evaluated. We also evaluated the effect of S/B ratio619

on the performances of the two stage algorithm. We observed that this algorithm620

needs ≥ 1 S/B ratios for both MS1 and MS2 in order for the algorithm to produce621

the highest level of confidence in the identification. For the conventional approaches,622

the signal to noise ratio was considered an indication of the background complexity.623

Overall, the two stage algorithm showed to be more affected by the signal suppres-624

sion compared to the conventional methods, due to its use of the full spectra. These625

evaluation enabled us to define the boundaries in which the two stage algorithm is626

capable to produce reliable results.627

628

The two stage algorithm as well as UNIFI and TASQ were capable of performing629

suspect analysis in the investigated complex samples. However, contrary to the two630

stage algorithm both UNIFI and TASQ needed fine tuning of the filters and post631

processing in order to minimize the odds of false positive detections. With UNIFI632
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and TASQ the background knowledge and the experience of the analyst plays an633

important role in increasing the level of confidence in the final identification.634

635

This study showed the cross platform compatibility of the data produced via two636

tested HR-TOF-MS instruments. This implies that generation of a universal HR637

spectral database similar to the NIST library is also possible for LC-HR-QTOF-MS638

data. However, more efforts and future studies are needed in order to establish a639

standard operational procedure (SOP) for LC-HR-QTOF-MS data acquisition.640
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