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Abstract

The microsporidian Loma morbua infects Adantic
cod (Gadus morbua) in the wild and in culture and
results in the formation of xenomas within the gill
filaments, heart and spleen. Given the importance
of the two former organs to metabolic capacity and
thermal tolerance, the cardiorespiratory perfor-
mance of cod with a naturally acquired infection of
Loma was measured during an acute temperature
increase (2 °C h™") from 10 °C to the fish’s criti-
cal thermal maximum (CTy,,). In addition, oxy-
gen consumption and swimming performance were
measured during two successive critical swimming
speed (U tests at 10 °C. While Loma infection
had a negative impact on cod cardiac function at
warm temperatures, and on metabolic capacity in
both the CTyx and U, tests (i.e. a reduction of
30-40%), it appears that the Atantic cod can lar-
gely compensate for these Loma-induced cardiore-
spiratory limitations. For example, (i) CTypu
(21.0 £ 03 °C) and U, (~1.75BLs™") were
very comparable to those reported in previous stud-
ies using uninfected fish from the same founder
population; and (ii) our data suggest that tissue
oxygen extraction, and potentially the capacity for
anaerobic metabolism, is enhanced in fish infected
with this microsporidian.
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Introduction

Microsporidial diseases pose significant challenges
to the development of marine fish aquaculture, spe-
cifically in the North Atantic (Murchelano,
Despres-Patanjo & Ziskowski 1986; Bricknell,
Bron & Bowden 2006; Kahn 2009), the North
Pacific (Brown, Kent & Adamson 2010) and more
recently the Red Sea (Abdel-Ghaffar ez 2/ 2011).
Of particular significance is the infection of gadoid
fishes [e.g. Adlantic cod (Gadus morbua)] with the
microsporidian  Loma morhua; this species s
recently identified separately from Loma branchialis
(Brown e al. 2010). Microsporidian xenomas are
characterized by their distinct morphology, with
those produced by Loma sp. having a well-defined
and characteristic thick granular amorphous wall
and various developmental stages of the parasite
(Lom & Dykova 2005). It is believed from data on
related species (Loma salmonae) that the naive host
ingests spores that enter the host through the gut,
that the sporoplasm is injected into a host cell that
migrates to the heart and enters a merogony-like
phase and finally that the parasite utilizes macro-
phage-mediated transport to the gill where endo-
thelial and pillar cells hypertrophy to form
xenomas (Sanchez, Speare & Markham 2000; San-
chez er al. 2001a; Rodriguez-Tovar et al. 2003).
However, L. morhua xenomas regularly occur in
the heart as well as in the gills and other organs
(Murchelano ez al. 1986). Infection with Loma
leads to a reduced body condition, a decrease in
energy stores (liver somatic index), and mild anae-
mia and leukaemia (Khan 2005). In salmonids,
such as rainbow (Oncorhynchus mykiss) and brook

&
0
(7})
©
0
2
&
£
2
L

Journal of



http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

© 2015 The Authors
Journal of Fish Diseases
Published by John Wiley
& Sons Ltd.

Journal of Fish Diseases 2016, 39, 189-204

M D Powell & A K Gamperl Effects of Loma morhua infection

trout (Salvelinus fontinalis) that are infected with
Loma salmonae, decreases in specific growth rate are
correlated with increases in routine and maximum
metabolic rate, and reductions in routine but not
maximum metabolic rate, respectively (Powell ez al.
2005): the metabolic cost of the disease is largely
attributed to changes in branchial O, permeability
(Powell, Speare & Becker 2006).

The thermal biology of Adantic cod has
received considerable attention over the past dec-
ade (e.g. see Drinkwater 2005; Gollock ez al.
2006; Perez-Casanova et al. 2008a,b; Hori ez al.
2012). Although cod prefer cooler waters (8—
15 °C; Pettersen & Steffansen 2003), local tem-
peratures may fluctuate significantly on a seasonal
and diurnal basis, and cod in the wild and in cul-
ture may not be able to escape acutely elevated
water temperatures as high as 20 °C (Gollock
et al. 2006; Righton er al. 2010). Given that it is
widely recognized that limitations in metabolic
scope and cardiac output are a key determinant of
the upper thermal limits of fishes (Farrell 2002;
Farrell et al. 2009; Gamperl, Swafford & Rodnick
2011; Keen & Gamperl 2012; Sandblom ez al.
2014), that Loma infections impact fish metabo-
lism (Powell e al. 2005) and that this parasite
forms xenomas in the cod heart and gills, it might
be expected that infection with this microsporidi-
an constrains the upper temperature that infected
cod can tolerate and/or reduces the capacity of
individuals to perform other important physiologi-
cally (and metabolically) demanding functions
such as swimming. Thus, we measured the follow-
ing: (i) the cardiorespiratory physiology (oxygen
consumption and cardiac performance) of adult,
10 °C acclimated, cod with varying severities of
L. morhua infection when acutely exposed to
increasing temperatures up to their critical thermal
maximum (CT,,,); and (ii) oxygen consumption
in this same population of cod when they were
subjected to two consecutive critical swimming

speed (U, tests.

Materials and methods
Experimental animals

All experiments were carried out in accordance
with the guidelines of the Canadian Council on
Animal Care and approved by the Institutional
Animal Care committee of Memorial University
of Newfoundland (protocol number 11-25 KG)
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and the Norwegian Animal Welfare Authority
(FDU). The Atlantic cod G. morhua L. used in
this  study  (mean  body  mass = SEM,
509.1 + 12.3; total length 37.1 4+ 0.2 cmy;
N = 42) were raised and maintained at the Dr.
Joe Brown Aquatic Research Building (JBARB;
Ocean Sciences Centre, Memorial University of
Newfoundland) in a 3000-L tank supplied with
10-11 °C for
6 months prior to experimentation. The fish were
fed daily with a commercial cod diet (EWOS)
under a photoperiod of 8 hours light: 16 hours
dark.

aerated sea water at at least

Critical thermal maximum experiment

Surgical procedures. Fish were individually netted
and anaesthetized in sea water containing
100 mg L™ MS-222 (tricaine methane sulpho-
nate) until ventilatory movements ceased. The fish
were then weighed and measured before being
transferred to a surgical table where their gills
were constantly irrigated with oxygenated, and
chilled, sea containing ~ MS-222
(0.5 mg L™Y). To allow for the direct measure-
ment of cardiac function (cardiac output Q; heart
rate fi; and stroke volume H), a 2PS Tran-
sonic'™ blood flow probe (Transonic Systems) was

water

implanted around the ventral aorta using a
method modified from Thorarensen, Gallaugher
& Farrell (1996) and Gollock et al. (2006). In
brief, the left operculum and underlying gills were
elevated and secured in this position with umbili-
cal tape, before a small 5-7 mm incision was
made at the base of the junction between the sec-
ond and third gill arches. The ventral aorta was
then located and cleared of the surrounding con-
nective tissue by careful dissection, and the flow
probe was placed around the ventral aorta anterior
to the intact pericardium. Finally, the cable from
the flow probe was secured to the skin using 1-0
silk at positions immediately posterior to the oper-
culum, just above the lateral line behind the left
pectoral fin, and in between the first and second
dorsal fin. A PE50 (Clay Adams Inc.) cannula,
with a 45-degree bend approximately 2 cm
from its tip, was also sutured at the upper
edge of the opercular cavity for measurements
of ventilation frequency. This cannula was then
secured to the skin with 1-0 silk sutures using
the same attachment points as for the flow
probe cable.
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Following surgery, the fish were transferred to
6.5-L tubular clear acrylic respirometers supplied
with flush and recirculating pumps (EHEIM
GmbH & Co. KG) and left to recover overnight
(typically 2024 h) with the pumps in the ‘flush’
mode. These respirometers were submerged in a
‘water table’ supplied with temperature-controlled
(10 °C), and acrated, sea water from a large
(~300 L) reservoir; the temperature in the reser-
voir controlled using a custom-designed heater/
chiller (Technical Services, Memorial University

of Newfoundland).

Experimental protocol. To begin the experiment,
cardiac output Q, ventilation frequency (Vf) and
oxygen consumption (MO,) were measured at
10.0 °C. The fish were then challenged with an
increase in temperature of 2 °C h™" until loss of
equilibrium [i.e. they reached their critical thermal
(CTma], with  cardiorespiratory
parameters and MO, measured at every 2 °C

maximum

increase in temperature. This protocol was chosen
to be consistent with previous studies that have
assessed  temperature-dependent  cardiovascular
limits and the relative contributions of stroke vol-
ume (Hsy) and heart rate (ffj) to increases in Q
with temperature in various fishes (Gollock ez /.
2006; Mendonca & Gamperl 2010; Gamperl
et al. 2011; Keen & Gamperl 2012). After the
fish lost equilibrium, water temperature was rap-
idly decreased to 10 °C, and the fish was removed
from the respirometer and immediately killed in

10 °C sea water containing 0.3 g L™' MS-222.

Data  collection. Oxygen consumption measure-
ments (in mg O, kg71 h™!) were made using a
laptop computer running AutoResp® software
(v2.1.0; Loligo Systems) that was interfaced with a
fibre-optic oxygen meter (model OXY-4 mini)
and associated with precalibrated dipping probe
(PreSens) and Loligos DAQ 4 and TEMP-4
modules. To make MO, measurements, the Aut-
oResp® software switched between the ‘Aushing’
and ‘recirculatingg EHIEM pumps for 8 min
(making the respirometer a closed circuit), and
began recording water oxygen levels after a 2-min
wait period.

Cardiac output (Q, in volts) was recorded by
connecting the flow probe leads to a Transonic
T206 flow meter, whereas Vi (in min~!) was
measured by attaching the opercular cannula to a

Gould Statham  (Model P23-10)

pressure
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transducer. This transducer was calibrated daily
against a static water column. Signals from the
Transonic flow meter and pressure transducers
were amplified and filtered using a data acquisi-
tion system (MP100A-CE; BIOPAC Systems,
Inc.) and universal interface module (UIM100C;
BIOPAC Systems Inc.) connected to a laptop
computer running AcqKnowledge® software (ver-
sion 3.8.2; BIOPAC Systems, Inc.). As Transonic
flow probes are temperature sensitive, and the
characteristic of this relationship varies between
probes, the temperature—flow relationship for each
probe was measured at different flow rates (5—
25 mL min~') over the temperature range used
in the experiment using Transonic calibration
tubing, a high precision peristaltic pump, a foam-
lined chamber, and saline with a haematocrit of
15-20%. These relationships were then used to
correct i vivo flow rates (Q) at various tempera-
tures. Measurements of MO,, Q, fiy and V; were
made for 10 min, just prior to the temperature
being increased.

From the above data, the following parameters
were calculated:

Cardiac stroke volume (Hsy,in mL) = Q/f;

Arterio-Venous oxygen difference (C,0,
— C,0,,in mg O, mL™" blood)
=MO,/Q

Perfusion conductance ratio (in mL blood

min kg 'mg O;') = Q/MO,

Swimming performance

To examine the effect of Loma sp. infection upon
swimming performance, infected cod were initially
placed in a custom-built (Technical Services,
Memorial University of Newfoundland) 81-L
Blazka-type swim tunnel filled with aerated sea
water maintained at 10 °C, and with water veloc-
ity set to approximately 0.5 BL s~'. This speed
allowed the fish to maintain their orientation and
position, without having to swim actively. At the
end of a 24-h acclimation period, the swim tunnel
was closed and oxygen consumption was measured
over a 20-min period using a dipping probe that
was inserted into the swim tunnel. This dipping
probe was connected to a Fibox 3 oxygen meter
(PreSens, Precision sensing GmbH) interfaced with
a portable computer, and the output recorded using
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Oxyview® software (LCDPST3-v2.01; PreSens).
The water velocity was then increased in steps
equivalent to 0.2 BL s~ ', with each step comprised
of equivalent (10 min) flush and measurement
periods. The water velocity was increased undil the
fish was unable to move away from the grid at the
back of the swim chamber, at which point the
velocity was reduced to 0.5 BL s~ ' and the fish to
allowed to recover. Oxygen consumption measure-
ments were also made after 30 and 60 min of
recovery at ~0.5 BL s™', and the fish was subse-
quently given a 2nd swim test (without measuring
oxygen consumption) prior to being killed in
0.3 g L' of MS-222.

From these data, the following parameters were
calculated:

Critical swimming velocity, ( Uwi)

= Ur + [U(#/#)]

where Ur is the last velocity at which the fish
completed the entire period (20 min), U; is the
water velocity increment (0.2 BL s™"), # is the
time to fatigue and #% is the duration of each
velocity step.

Gross cost of transport (GCOT,in mg kg™ 'm™")
= (MO2)/((U; % L) * 36)

where MO,; is the oxygen consumption at a given
velocity (U}) and L is the length of the fish.

Standard oxygen consumption (MOjandard)
was derived from a semi-log plot of swimming
speed vs. log MO,, and using the derived linear
regression to extrapolate back to 0 BL s™'. Rou-
tine oxygen consumption was that measured in
fish that were resting quietly in the swim tunnel
at 0.5 BLs™'. Maximum oxygen consumption
(MOjma) was the highest oxygen consumption
that each individual fish achieved, and metabolic
scope was calculated by subtracting standard oxy-
gen consumption from MOy,

Determination of the level of Loma morbhua
infection

After the fish were killed, the second gill arch on
the left side was removed and fixed in 10% neu-
tral buffered formalin for histological examination
and confirmation of Loma sp. infection and the
second gill arch on the right side was removed
and placed in phosphate-buffered saline (PBS) for

branchial xenoma quantification. The fish was

192

then quickly dissected, and the whole heart was
carefully removed to prevent damage to the
atrium or bulbus arteriosus. After rinsing the heart
in saline, it was blotted dry and weighed, the
atrium and ventricle were weighed separately, and
the ventricle measured for length (1), width
(W) and height (Vi) as described by Powell,
Nowak & Adams (2002) and Powell, Burke &
Dahle (2011, 2012). The chambers of the heart
were then fixed in 10% neutral buffered formalin
for  histological ~examination and xenoma
quantification.

The filaments on the second gill arch on the
right side were subsequently separated from the
arch, and 40-80 individual filaments were then
digitally photographed (at 10x magnification
including an internal scale) and the number of
visible xenomas recorded. The
were also digitally photographed, and the number

fixed ventricles

of visible xenomas on the ventricle surface
recorded.
Formalin-fixed gills and hearts were then

embedded in paraffin wax and sectioned at 3—
5 um, stained with haematoxylin and eosin and
examined using an Olympus BX51 microscope
with an Olympus DP71 camera (Olympus Life
and Material Sciences, Europa Gmbh) using
Cell*B image software (Olympus Soft Imaging
Solutions Gmbh).

Cardiac measurements and morphometrics

From measurements of the heart and its cham-
bers, the following parameters were calculated:

Cardiac, Ventricular and Atrial somatic indices;
CSI, VSI and ASI, respectively.

CSI = heart mass/fish mass; VSI = ventricular
mass/fish mass; ASI = atrial mass/fish mass.

% contribution to heart mass (%V, %A): %
V = ventricular mass/heart mass; %A = atrial
mass/heart mass.

Ventricular shape ratios (L:W, L:H, H:W): L:
W = V/V; LLH = Vi/Vips H'W = Viy/ Wy

Statistical analyses

The data for MO,, Q, fy, Hsy, arterial-venous
(AV) oxygen difference, perfusion conductance,
Vy, and GCOT were all analysed using a one-way
repeated-measures analysis of variance (RM ANO-
VA). Where the data

were not normally
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Figure 1 Images of gill filaments from
Adlantic cod that were lightly (a) and
heavily (b) infected with Loma morhua.
The white ‘spots’ are xenomas. Histological
sections of Loma morhua xenomas in the
gills of lightly infected (c) and heavily
infected (d) Atlantic cod (bar = 500 pum)
showing limited (e) and extensive (f)
filamental epithelial hyperplasia and
mononuclear infiltration (*)

(bar = 100 pm). Xenomas were also
located in the gill arch at the base of the
gill filaments (g, bar = 500 pm), where
extensive inflammatory infiltration (*) and
spongious hyperplasia (S) were associated
with localized haemorrhage and xenoma
disruption (h) (bar = 100 pm). Arrows

indicate xenomas.

distributed, Freidman’s RM ANOVAs on ranks
were conducted. Individual differences were iden-
tified using either Student—Newman—Keuls or Tu-
key’s post hoc analyses. The routine metabolic
rate of cod scales allometrically with body mass
with a slope of 0.8-0.85 (Post & Lee 1996; Killen
et al. 2007). However, we report isometrically
scaled metabolic rate data for comparison with
previous studies on cardiorespiratory function in
cod (Gollock et al. 2006; and Petersen & Gam-
perl 2010). Furthermore, the range of fish masses
was small, and thus, the error in using isometric
scaling was minimal. Pearson product-moment
correlations were used to examine the relationship
between the measured and derived parameters and
the number of xenomas per filament or on the
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surface of the heart. Comparisons between data
collected in this study and those reported in Gol-
lock et al. (2006) and Petersen & Gamperl
(2010) were performed using unpaired #tests. All
analyses were performed using SigmaPlot 10.0
and SigmaStat 3.5 (Systat Software Inc.) graphical
and statistical software. All values in the text,
tables and figures are means + 1 standard error

(SE).

Results

All of the fish used in this study were infected
with L. morhua as determined by the presence of
xenomas on the gills (Fig. 1a,b) and heart

(Fig. 2a,b). However, the number, size and
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infection varied considerably
between individuals, with some fish having few
pathological signs of infection (Fig. lc,e), whereas

severity of the

others showed extensive xenoma formation and
branchial hyperplasia; the latter often associated
with the filament tips and with fusion of gill
lamellae (Fig. 1d,f;h). The level of infection in the
gill ranged from 0.6 to 26.8 xenomas per filament
(7.6 £+ 1.1, median 5.5), whereas in the heart the
number of xenomas ranged from 0 to 35
(5.9 £ 1.30, median 3.00) and they had an aver-
age density of 14.8 4 3.3 xenomas g~ ventricle
(median 7.0; range of 0— 91.9) as determined by
external examination. The xenomas in the fila-
ments, both in the lamellae and at the base of the
filaments on the gill arch, showed a characteristic
amorphous external layer, contained numerous
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Figure 2 Image of lightly (a) and heavily
infected (b) Atlantic cod ventricles showing
white xenomas. Histological sections
showing Loma morhua xenomas in the
atrium (c), ventricle (d) and bulbus
arteriosus (e) of the heart, with an
accompanied fibrocytic and granulomatous
inflammatory reaction (bar = 200 pm).
Endocardial (f) and epicardial (g) and
bulbus arteriosus endothelial (h) xenomas
with limited inflammatory reaction

(bar = 50 um). Arrows indicate xenomas.

small spores, and were often associated with a
fibrocytic or granulomatous tissue reaction
(Fig. 1g). In the heart, xenomas were observed in

and  bulbus

(Fig. 2c—e). Some of these were surrounded by an

the atrium, ventricle arteriosus
amorphous eosinophilic coat and a notable granu-
lomatous reaction (Fig. 2c—e), whereas those asso-
ciated with the endo- and epicardium generally
showed no apparent inflammatory reaction
(Fig. 2f-h). As a population, the density of bran-

chial xenomas was not predictive of cardiac xeno-

ma density (Pearson correlation
coefficient = 0.130, P value = 0.417). The only
significant  correlation  between morphological

parameters and the number of xenomas or xeno-
ma density was a negative correlation between
condition factor (K) and cardiac xenoma density
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Table 1 Pearson correlation coefficients and P values for the
relationships between heart-somatic and morphological parame-
ters, and (1) the mean number of branchial xenomas per fila-
ment and (2) the total number of visible cardiac xenomas per
g ventricle mass in the Atantic cod population used in the

study

Gill xenomas Cardiac xenomas

filament™" g~ ventricle
Parameter Pearson P value Pearson P value
K —0.081 0.615 —-0.522 <0.001
THM —-0.137 0.393 —0.242 0.122
TVM —0.023 0.888 —0.196 0.214
TAM -0.107 0.504 —0.259 0.098
CSl —0.101 0.530 0.085 0.591
'Sl 0.062 0.698 0.171 0.278
ASI —0.090 0.575 —0.098 0.538
%V —0.097 0.548 —0.231 0.141
%A —0.053 0.741 -0.167 0.290
VL 0.105 0.512 0.0205 0.897
Vv —0.088 0.584 0.018 0.908
Vi —0.026 0.871 —0.0643 0.686
Lw 0.112 0.487 —0.026 0.870
L:H 0.119 0.459 0.057 0.719
H:W —0.069 0.670 0.193 0.222

K represents condition index; THM, TVM and TAM are total heart,
ventricle and atrial masses; CSI, VSI and ASI are cardio-, ventricular-
and atrial-somatic indices; %V and %A are the relative proportion of
cardiac mass contributed by ventricle and atrium, respectively; Vi, Wiy
and Vj; are ventricular length, width and height, respectively; and L:W/,
L:H, H:W are ratios between the various measurements.

(Pearson correlation coefficient = —0.522, P value
<0.001) (Table 1).

CT ax experiment

Oxygen consumption increased as temperature
rose and reached a maximum value at 18 °C that
was approximately twofold higher than measured
at 10 °C (73.5 £ 3.5 mg O, kg ' h™") (Freid-
man RM ANOVA on ranks X*s = 102.8, P value
<0.001) (Fig. 3a). Similarly, there were significant
temperature-induced increases in cardiac output
(Q, by 1.45-fold; from 21.5 £ 1.1 at 10 °C to
31.1 + 2.4 mL kg™ ' min~" at 20 °C; Fig. 3b),
heart rate (fy, by 1.7-fold; from 46.8 & 0.9 at
10 °C to 80.1 + 2.3 beats min~ ' ar 20 °C;
Fig. 3c) and the AV difference in blood oxygen
content (by 1.45-fold; from 3.7 & 0.30 at 10 °C
to 5.4 £ 0.5 at 20 °C; Fig. 3f) [Freidman RM
ANOVA on ranks (@ X25 = 38.8, P wvalue
<0.001: fi; X’s = 113.7, P < 0.001: C,0,-C,Oy;
X5 =33.1, P value <0.001)] (Fig. 3f). In con-
(Hsy; Fig. 3d)
decreased slightly with temperature (by 14%; from
0.46 £ 0.03 at 10 °C to 0.40 £ 0.03 mL at

trast, cardiac stroke volume
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20 °C), and the perfusion convection requirement
decreased significantly with temperature (by 30%;
from 0.30 & 0.02 at 10 °C to 0.21 &£ 0.02 at
20 °G; Fig. 3g) (Freidman RM ANOVA on ranks
Hyy;  X’s =244, P<0.001: MO,/Q
X°s = 31.3, P value < 0.001). Finally, ventilation
frequency (V}) increased significantly with increas-
ing temperature (by 1.6-fold; from 40.2 £+ 1.4
at 10 °C to 63.0 & 1.7 ventilations min~"' at
20 °C; Fig. 3¢) (RM ANOVA F 1o = 83.4, P
value <0.001).

There was no significant correlation between
the number of branchial xenomas and oxygen
consumption at most temperatures. However,
there was a strong negative correlation between
these two parameters at 18 °C (Pearson correla-
—0.58, P =10.002) (Fig. 4a).

Cardiac output was not significantly correlated

tion coefficient

with either branchial xenomas per filament or
cardiac xenoma density at any of the tempera-
tures (data not shown), and there were no sig-
between heart and
branchial xenomas per filament. Cardiac stroke

nificant  correlations rate
volume and Q. were also both negatively, but
marginally (ie. 0.01 > P <0.05),
with cardiac xenoma density (H,,; Pearson corre-
lation coefficient = —0.36, P value = 0.093: Q;
Pearson  correlation  coefficient = —0.37, P
value = 0.093) (Fig. 4b,d). However, heart rate
was positively correlated with cardiac xenoma
density at all temperatures from 10 to 18 °C
(Fig. 40).

The mean critical thermal maximum (CTy.y)
for this group of cod was 21.0 £ 0.3 °C. Upon

reaching this upper temperature limit, all cardiore-

correlated

spiratory variables with the exception of Hsy (i.c.
Q. fi1, and V) were substandially lower as com-
pared with values recorded at 20 °C (Fig. 3b—e).
There was a large degree of variation in the values
of these parameters at CT,,., and thus, there
were no statistically significant  correlations
between CT,,. and either branchial xenomas
coefficient = 0.017, P
value = 0.94) or cardiac xenoma density at this

coeffi-

(Pearson  correlation

temperature (Pearson correlation
cient = 0.141, P value = 0.492) (Fig. 5).

Compared with the data presented by Gollock
et al. (2006) for uninfected fish of the same stock
origin, CT ., was only approximately 1 °C lower
(21 vs. 22.2 °C; 3 = —6.11, P value = <0.001).
This result was despite maximal MO, and Q
(MOy; 83 =—6.900, P value =<0.001: @
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Figure 3 Oxygen consumption (a), cardiac output (b), heart rate (c), cardiac stroke volume (d), ventilation rate (e), arterial-venous
blood O, content difference (f) and perfusion convection requirement (Q/MO,) (g) of Loma-infected Atlantic cod acutely exposed

to increasing temperature at 2 °C h™'. Points (temperatures) without a letter in common are significantly different at P < 0.05.

The open symbol represents values observed just after the fish reached their CTyy,y. Values are means + 1 SE.
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gill filament; and between (b) stroke volume, (c) cardiac frequency at temperatures ranging from 10 to 18 °C and (d) cardiac output

and cardiac xenoma density in Atlantic cod infected with Loma morhua and used in the CTyy,, experiment.

153 = —4.86, P =<0.001) being 30 and 40%
lower, respectively, in this study. Resting
(53 = —2.49, P value = 0.018) and maximum
Hsy (53 = —6.11, P value <0.001) were also
lower in the infected cod, and this was compen-
sated for by an increase in resting heart rate (by
60%; #3 = 5.75, P value <0.001) but not maxi-
mum ff; (53 = 1.123, P value = 0.270). Neither
resting (55 = 1.123, P value = 0.270) nor maxi-
mal (53 = 1.123, P value = 0.270) perfusion con-
ductance ratios (Q/MO,) statistically
significant from those calculated from Gollock
et al. (2006). However, Q/MO, was different
between rest and maximal values for Loma-
infected fish (50 = 3.182, P value = 0.003)
(Table 2). Similarly, while there were no signifi-
cant differences between this study and Gollock
et al. (2006) with regard to AV difference at rest
(53 = —0.261, P value = 0.796), the maximal
value for AV difference for Loma-infected fish was
higher than that derived from Gollock ez al.

were
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(2006) (#33 = 1.827, P value = 0.077) and the
resting and maximal values for AV difference were
only significantly different for Loma-infected fish
(59 = —3.403, P value = 0.001) (Table 2).

Swimming performance

Oxygen consumption increased significantly with
water velocity and reached a maximum value
(approximately  twofold resting  values) at
1.5 BL s7' (RM ANOVA F g = 13.82, P value
<0.001). This swimming speed was approximately
0.2 BLs™' below the cod’s critical swimming
velocity (1.71 BL sl Fig. 6). After a 1-h recov-
ery interval at 0.5 BL s™', oxygen consumption
had, on average, only decreased to 77.1% of max-
imum. Nevertheless, the U determined in the
second U, trial was 1.76 BL s™'. Gross cost of
transport decreased with swimming velocity up to
the critical swimming speed (U;,) (Freidman RM
ANOVA on ranks X*¢ = 68.981, P value <0.001)
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(Fig. 6). There were no significant correlations . .
Discussion

between, standard, resting (i.e. at 0.5 BL s or
maximum oxygen consumption, U, or Ugip,
and either gill xenomas per filament or cardiac xe-
noma density.

In comparison with data presented in Petersen &
Gamperl (2010) for uninfected cod from the same
founder population, maximal MO,
(183.24 + 10.31 as compared to 234.60 £ 21.20;
b, = —2.444, P value = 0.023) and metabolic
scope (9551 £ 11.97 as  compared to
152.10 £ 20.70; #9 = —2.463, P value = 0.023)
were significantly lower. In contrast, there were no
significance differences between U, (£, = —0.227,
P value = 0.822), standard MO, (9 = 1.993, P
value = 0.061) or routine MO, (, = 0.542, P
value = 0.593) between the two studies (Table 3).
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The Atantic cod population used in this study
was naturally infected with the microsporidian
L. morbua. Nonetheless, the fish exhibited variable
levels of infection, with all fish having branchial
xenomas and cardiac xenomas as revealed through
histological examination, but not external ventric-
ular xenomas. The degree of host tissue inflamma-
tory responses also varied greatly between
individuals with some fish exhibiting xenomas
with apparently little or no inflammatory reaction,
as compared to others where extensive branchial
hyperplasia or fibrocytic and granulomatous reac-
tions were observed. Extensive hyperplastic and
granulomatous reactions, and the associated infil-
tration of mononuclear cells, are characteristic of
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Table 2 Comparison of oxygen consumption (MO,, mg O, kg™ h™"), metabolic scope (the difference between resting and maxi-
mal MO,), cardiac output (Q, mL min ! kgfl), the arterial-venous blood O, content difference, the perfusion conductance ratio
(Q/MOy), heart rate (ff5, beats min~") and stroke volume (Hsy, mL kgfl) between the present study and those reported in Gollock
et al. (2006). Both of these studies used adult cod reared from the same broodstock and a warming rate of 2 °C h'. Resting values
are those recorded at 10 °C, whereas maximal values represent the highest values recorded prior to each fish reaching its critical ther-
mal maximum (CTyy,,) which are those observed just after the fish lost equilibrium

Present study

Gollock et al. (2006)

CTMax CTMax

Resting Maximal (21.0 £ 0.3* °C) Resting Maximal (222 £ 0.2°C)
MO, 733 £ 35 146.2 + 4.9%% 82.2 4+ 3.7 210.8 + 7.2%
Metabolic Scope 72.93 + 4.26 128.6 + 3.5
Q 215 + 1.1 31.1 & 2.4%# 23.4 + 3.7 215+ 0.8 526 + 2.8* 284 + 35
QMO, 0.30 + 0.02 0.21 + 0.02% 0.26 + 0.02 0.25 + 0.02
Ca0,-CvO, 3.69 + 0.28 5.67 + 0.51%% 3.82 +0.28 401 + 0.51
fiy 46.8 + 0.9% 80.1 + 2.3* 57.5 4 4.7% 36.3 + 1.7 71.8 + 3.6" 374 + 49
Hsy 0.46 + 0.03* 0.40 + 0.03* 0.40 + 0.06 0.60 + 0.04 0.76 £ 0.05  0.80 + 0.08

Asterisks (¥) indicate significant differences between the present study and that presented by or calculated from Gollock er al. (2006), whereas ¥ repre-
sents differences at 2> 0.05 < 0.1 and * represent significant differences between resting and maximal values within each study at P < 0.05. All data

are means + 1 SE.
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. . Z 80
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c 005 =
velocities at 10 °C. The vertical line 8 40 4 S
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. . . 20 A
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. . . . e} ]
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common are significantly different 04 06 08 10 12 14 16 18 20
(P> 0.05). Values are means + 1 SE. Swim velocity (BLs™")
Table 3 Comparison of standard (MOjgandarat)s  routine Loma sp. infections where xenomas have ruptured

(MOgz0utine) and maximum oxygen consumption (MOjpa0),
metabolic scope and critical swimming speed (U.;) (BL s
between the present study and the equivalent parameters mea-
sured by Petersen & Gamperl (2010) in cod from the same
founder population.. Asterisks indicate significant differences
between the two studies. Metabolic parameters are reported in
mg O, kg™' h™", and all values are means + SE

Present study  Petersen & Gamperl (2010)

MOastandard 90.6 + 9.3 64.3 + 8.8

MO2routine 90.0 + 9.6° 825+ 7.7°
MO2max 183.2 + 10.3* 2346 + 212
Metabolic Scope  96.5 + 12.0* 152.1 + 20.7
Uerit 1.71 + 0.08 1.74 + 0.06

*Based upon O, consumption measurements at 0.5 BL s~ .
"Based upon O, consumption measurements at 0.25 BL s~ .
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and the spores released (Speare et al 1998;
Sanchez et al. 2000, 2001a,c; Sanchez, Speare &
Markham 2001b; Lovy et al 2004, 2006). The
presence of spores and xenomas within the
hyperplastic and granulomatous inflammatory tis-
sue supports the suggestion of other authors
(Rodriguez-Tovar et al. 2003) that autoinfection
is characteristic with L. morbua.

Infection with L. morhua had an adverse effect
on the fish, as indicated by the significant negative
relationship between the number of cardiac xeno-
mas and body condition. This response has been
reported previously for Adantic cod (Khan 2005)
and fish infected with other parasites such as
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Anguillicolla crassus in eels (Anguilla rostrata; Fens-
ke, Secor & Wilberg 2010) and Ichthyophonus ho-
feri in Adantic herring (Clupea harengus; Kramer-
Schadt, Holst & Skagen 2010), and 7richodina
sp., Gyrodactylus sp. and Glugea stephani in winter
flounder (Pleuronectes americanus, Barker, Cone &
Burt 2002; Khan 2004). However, care should be
exercised when using condition index as the sole
indicator of parasitism or fish health (Morton &
Routledge 2006). With regard to Loma infections,
it has been suggested that there is a metabolic cost
related to osmoregulatory disturbances that occur
at the time of rupture of the xenomas and the
release or infective spores (Powell ez al 20006).
However, it is difficult to consistently establish a
relationship  between  condition  factor and
MOsgandard 0f MO ouine post-infection [e.g. see
present study vs. Petersen & Gamperl (2010);
Powell et al. 2005], and thus, alternate explana-
tions for the loss of body mass with parasite infec-
tion must be considered. One possibility is that
Loma infection results in decreased appetite/food
consumption. This would be consistent with what
was observed by Khan (2005) for cod, and for
rainbow trout (Oncorbynchus mykiss) infected with
Cryptobia salmositica (Chin er al. 2004) and short-
finned eel (Anguilla australis) infected with various
internal parasites (Wang et a/. 20006).

The CTyax and U values (21.0 °C and
1.71 BL s for Loma-infected Atlantic cod were
slightly lower and higher, respectively, than those
reported for non-parasitized fish from the same
parental stock [22.2 °C, Gollock et al. 2006;
1.50 BL s, &  Gamperl (2010)
(Tables 2 and 3)]. This was very surprising given
that the fish used in the present study had lower
maximal MO, values in the CTyx and U,
experiments (by 30-40%; Tables 2 and 3), that
Hgy and Q were significantly compromised in
Loma-infected fish (Fig. 5a and Table 2) and that
a negative correlation was observed between bran-
chial xenoma density and oxygen consumption at
18 °C (Fig. 4a). These results suggest that Atlan-
tic cod can largely compensate for the negative

Petersen

effects of Loma infection on their cardiac function
and metabolic capacity. With regard to the effects
of L. morhua infection on Hsy, it is evident that
our cod partially compensated by elevating resting
heart rate (by ~30%; see Table 2). However, max-
imum f; was not significantly greater in this study
than reported in Gollock ez al (2006), and thus,
maximum Q was still approximately 40% lower.
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As there was no change in the ventricle’s shape
(i.e. its dimensions or their ratios; Table 1), as has
been reported for a number of disease states
including systemic hypertension (Powell ez al.
2002) and haemolytic anaemia in Adantic halibut
Hippoglossus hippoglossus (Powell ez al. 2012), it is
unlikely that remodelling of the ventricle affected
systolic function (i.e. ejection of blood from the
heart). However, it is possible that the presence of
xenomas in the myocardium resulted in a change
in the elastic properties of the heart chambers and
thus limited myocardial stretch and end-diastolic
volume. Indeed, such an impact on myocardial
properties has been suggested for other parasites
that infect the heart such as Stephanostomum tenue
(McGladdery er al. 1990) and Kudoa thyrsites (Ka-
bata & Whitaker 1988).

With regard to how infected cod could reach
CTyax and U, values comparable to those of
uninfected individuals despite a 40% decrease in
maximum cardiac output, it appears that there are
a number of possible explanations. First, based on
the reported increase in AV O, difference (54%)
and lower perfusion conductance ratio (30%) in
L. morhua-infected cod when exposed to elevated
temperature, and that C,0, — C,0, was higher in
fish from this study vs. Gollock et al (2006)
under MO, conditions (by 42%; P = 0.077),
it appears that tissues from cod infected with this
parasite are more efficient at extracting O, from
the blood. Interestingly, a very similar response is
observed when cod (Petersen & Gamper] 2010)
and rainbow trout (Moytka Norin & Gamperl
unpubl.) are acclimated to chronic hypoxia (i.e.
>8 weeks of exposure to waters with ~40% O,
saturation). Acclimation to these conditions results
in reduced (compromised) cardiac function, but
values for Mo, and aerobic scope that are not
different from normoxic-acclimated individuals
when swum at 100% O, saturation or given a
CTyax test, respectively; that is, these fish can
consume more oxygen per ml of blood pumped.
Collectively, these data suggest that cod with
L. morhua experience systemic hypoxaemia and
that this results in tissue-level modifications that
enhance the fish’s MO, capacity despite reduced
cardiac function. We did not look at tissue-level
changes in this study. However, it is difficult to
speculate about what alterations might have medi-
ated the improvement in O, extraction. Hypoxia
acclimation for prolonged periods does not lead
to increased heart myoglobin levels (Driedzic,



© 2015 The Authors
Journal of Fish Diseases
Published by John Wiley
& Sons Ltd.

Journal of Fish Diseases 2016, 39, 189-204

M D Powell & A K Gamperl Effects of Loma morhua infection

Gesser & Johansen 1985; Hall er 2/ 2009), and
the effect of hypoxic acclimation on muscle capil-
lary density is variable (Johnston & Bernard
1982, 1984; Johnston, Bernard & Maloiy 1983;
Sanger, Kim & Adam 1990). Further, we are not
aware of any studies that have looked at the effects
of this type of parasitic infection or chronic
hypoxia on mitochondrial density, distribution or
function, and chronic hypoxia does not lead to an
increase in COX 1 mRNA expression in the cod
heart or liver (Hall ez 2/ 2009).

Second, the Atlantic cod has significant capacity
for lactate production/anaerobic metabolism as
shown in Nelson ef 2/ (2002) and Dutil ez 4l
(2007) and indicated by the fact that metabolic
rate had only returned to 77% of MO, values
by 1h after U,y. Thus, it is probable that
L. morhua-infected cod relied more on anaerobic
metabolism during the CTyy,, and U, chal-
lenges. Indeed, there are several lines of evidence
that would support such a hypothesis. Nelson
et al. (2002) demonstrated that some populations
of Atlantic cod have been selected for, or condi-
tioned to, support exercise performance through
an enhancement of their use of anaerobic metabo-
lism (i.e. there are intraspecific differences in
anaerobic potential). Zhao er al. (2012) reported
that hypoxia-acclimated juvenile qingbo (Spinibar-
bus sinensis) have significantly higher resting and
post-exercise levels of plasma lactate than fish
exposed to control (normoxic) conditions. Given
that MO,,,..x was 30% lower in this study than
measured in cod from Gollock et 2/ (2006) and
Petersen & Gamperl (2010) despite similar values
for CT 1o and Uy, it is highly likely that anaer-
obic metabolism was used to make up the deficit
in energy requirements during these two metaboli-
cally demanding challenges.

Finally, there was a significant negative correla-
tion between cardiac xenoma density and condi-
tion factor, and studies have shown that food
deprivation/starvation has an influence on the
metabolism and swimming performance of Atlan-
tic cod (Martinez et al. 2003, 2004; Lapointe,
Guderley & Dutil 2006). These effects include a
decrease in U, an increase in MO, ... and
metabolic scope but increased the cost of trans-
port, a reduction in the swimming speed at which
burst-coast swimming begins and in the number
of these movements utilized, and a diminished
reliance on white muscle during swimming that
results in less lactate production/accumulation.

201

However, it is unlikely that the condition of the
fish used in this study contributed to the differ-
ences in metabolic capacity as compared to Gol-
lock et al. (2006) and Petersen & Gamperl
(2010). The average condition factor for fish used
in this study was 0.99 £ 0.01, and the lowest
condition factor recorded in this population was
0.77. This mean K value is higher than that of
the fish used in Petersen & Gamper]l (2010)
(normoxic acclimated 0.94 4 0.013;
acclimated 0.86 £ 0.03) and equivalent to, or
greater than, that reported for the ‘fed” cod (0.81—
0.92) in the studies performed by Guderley and
her colleagues (Martinez et al. 2003, 2004; Lapo-
inte et al. 2006; Sylvestre et al. 2007).

hypoxic

Summary and perspectives

In this study, we showed that L. morhua infection
of the heart and gills reduces the cardiac perfor-
mance and maximum oxygen consumption of
Atlantic cod, but does not diminish this species’
upper thermal tolerance (CTyp,) or Ui These
results are surprising given the critical importance
of heart function and metabolic scope to these
real-world challenges (Farrell 2009; Farrell ez al.
2009; Petersen & Gamperl 2010; Gamperl er 4l
2011). However, they provide another distinct
example of the plasticity inherent in the fish’s car-
diorespiratory physiology, and how this allows this
taxum to maintain function under conditions of
prolonged oxygen limitation. With regard to the
effect of L. morhua infection on cod cardiorespira-
tory function, there are several similarities with
respect to how this species responds to long-term
hypoxic acclimation (Petersen & Gamperl 2010).
For example, under both conditions, there is a
reduction in Hgy that is partially compensated for
by an increase in ffy, and the fish improves oxygen
extraction efficiency to make up for the deficit in
cardiac function. The difference in the two stud-
ies, however, is the extent to which this increase
in CaO, — CvO, can maintain the scope for oxy-
gen consumption. In hypoxic-acclimated fish
swum in 100% O, saturated water, it would be
expected that the blood leaving the gills would be
fully saturated and thus that there is sufficient blood
oxygen carrying capacity which can be utilized
(drawn down) to maintain MO,,,., and metabolic
scope. In contrast, Loma infection results in the for-
mation of xenomas in the gills and the fusion of gill
lamellae, and anaemia (Khan 2005), and likely
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results in insufficient blood oxygen carrying capac-
ity to allow improved oxygen extraction to meet
metabolic demands. Thus, we suggest that this con-
stant state of hypoxaemia promotes an increase in
the capacity of Loma-infected cod to produce
energy (ATP) through anaerobic metabolism and
that it is the combination of improved oxygen
extraction efficiency and enhanced capacity for lac-
tate production that allows them to achieve compa-
rable CTypx and U, values as measured in
uninfected fish. Clearly, this is a hypothesis that
warrants further investigation, as are the mecha-
nisms that result in reduced Hsy and enhanced oxy-
gen extraction efficiency in both L. morbua-
infected and hypoxic-acclimated cod (Petersen &
Gamperl 2010) and rainbow trout (Moytka Norin
& Gamperl, unpubl.).
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