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Abstract  28 

This study describes the competitive sorption of Cu(II), Ni(II), Pb(II) and Cd(II) onto grape stalks wastes (GS) in 29 

ternary mixtures in a continuous bed up-flow system. The characteristic breakthrough profile was observed for 30 

just one of the metals while the other two suffered overshoots. The elution profile showed that (i) lead is not 31 

overshot in any mixture, (ii) copper overshoots when lead occurs in the ternary mixture and (iii) cadmium and 32 

nickel exhibit intense overshoots when either lead or copper are present. A kinetic model based in the 33 

Homogeneous Surface Diffusion Model (HSDM) was developed to describe the sorption profile of each metal in 34 

the mixtures. To simulate the breakthrough curves, the Extended Langmuir Model (MEL) has been incorporated 35 

into the HSDM to describe the equilibrium. The values of the Langmuir affinity constant, b, were found to 36 

follow the next ranking: Pb (54.5± 0.2)>>Cu (15.2±0.3)>>Cd (9.4±0.1)>Ni (8.1±0.2). These constants 37 

successfully explain the competence that leads to the observed overshoots in the mixtures. The model 38 

successfully fits metal sorption kinetics and elution profile in the mixtures. A study of the model sensitivity was 39 

carried out to know how the uncertainty in the experimental data and the model parameters affect the uncertainty 40 

in the output of the model. This analysis highlighted the relevance of good estimation of Kmax, b and  besides 41 

the need of gathering high quality experimental data for an accurate determination of the model parameters.     42 

 43 

Keywords: Homogeneous Surface Diffusion Model, metals, overshoot, grape stalks, packed column, sensitivity 44 
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1. Introduction 57 

Toxic metal pollution is a worldwide environmental problem; their immutable nature, high mobility and toxicity 58 

to live organisms have made them a priority in environmental management. When water is polluted with 59 

potentially toxic metals, it can be detrimental and even lethal to living organisms. Moreover, their discharge over 60 

land enables them to be sorbed by various components in soil and then re-adsorbed via crops into the animal and 61 

human food chains (Swati and Hait 2017) 62 

There are many industrial sources of metal pollution, including manufacturing processes such as smelting and 63 

refining, electricity generation and nuclear power, tanneries, battery manufacturing and textile activities, but also 64 

natural pollution sources such as it is the case of the acid mine drainage are relevant (Akcil and Koldas 2006; 65 

Nguyen et al. 2015) . The increasing harshness in the regulations related to environmental discharges of 66 

potentially toxic metals to the environment makes this kind of pollutants priority substances to be kept under 67 

control. Among the most frequently found in industrial operations or in mining drainage are Cu(II), Ni(II), Pb(II) 68 

and Cd(II). All of them are recognized as hazardous pollutants and their environmental release and dispersion 69 

has to be strictly controlled.  70 

Lead is the oldest known toxic metal and exposure to this metal can mainly occur through drinking water, 71 

smoking or even due to various industrial processes like smelting, through battery recycling. As it does not have 72 

any biological function, even at low levels, it can affect multiple clinical functions. Its most prominent effect is 73 

on the oxidative stress mechanism, wherein antioxidants like glutathione within the cell protect from cellular 74 

damage induced by the reactive oxygen species (Iyer et al. 2015). Cu is well known as a promoter of oxidative 75 

damage in conditions of increased levels in the liver and brain. The best known disorder associated to Cu 76 

dyshomeostasis is Wilson's disease, an autosomal recessive disorder linked to the Cu translocase expressed in 77 

hepatocytes (Boveris et al. 2012). Cu toxicity has been linked to cancer progression, cardiovascular disease, 78 

atherosclerosis, diabetes and especially to neurological disorders (Jomova and Valko 2011). Nickel above critical 79 

level can provoke serious lung and kidney problems aside from gastrointestinal distress, pulmonary fibrosis, skin 80 

dermatitis (Borba et al. 2006) and is suspected to be a potential human carcinogen (Chiou et al. 2015). Cadmium 81 

has been classified by U.S. Environmental Protection Agency as a probable human carcinogen and exposure to it 82 

can seriously threat human health. Chronic exposure to cadmium results in kidney dysfunction and high levels of 83 

exposure will result in death (Fu and Wang 2011).  84 

Different methods to remove potentially toxic metals from aqueous solutions exist nowadays. Among them, the 85 

most widely used are based in precipitation, coagulation/flocculation, ion exchange, reverse osmosis, nano-86 
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filtration, solvent extraction and adsorption (Femina Carolin et al. 2017). The main drawbacks of the 87 

aforementioned technologies derive from the high implementation and operation costs, especially when the 88 

concentration of the target metal is below 100 mg L-1. To overcome the problem of the exploitation costs when it 89 

comes to detoxification of effluents polluted with toxic metals, many researchers have explored the use of 90 

natural, readily available materials as biosorbents. Biosorbents are prepared from either waste/abundant 91 

materials or using low-cost cultivation techniques, thus decreasing the process cost and making the process eco-92 

friendly (Vijayaraghavan and Balasubramanian 2015). Among the different potential sources of these materials, 93 

agro-industrial activities act as a vast, reliable and constant source of natural resources potentially useful for the 94 

removal of metals from polluted streams (Chao et al. 2014; Esfandiar et al. 2014; Ghasemi et al. 2014; Moyo et 95 

al. 2015; Simate and Ndlovu 2015). That is the case of a special sub-group in the agro-industrial by-products; the 96 

lignocellulosic wastes. These kind of materials, mostly formed by cellulose, hemicellulose and lignin (Abdolali 97 

et al. 2014) have demonstrated good sorption capacity for different metals. This is the case of the removal of Pb 98 

by olive stones (Blázquez et al. 2014), Cd, Pb and Zn by agave bagasse (Velazquez-Jimenez et al. 2013), Cr(VI) 99 

by exhausted coffee wastes (Fiol et al. 2008) and grape stalks (Escudero et al. 2009; Fiol et al. 2006), Cu by 100 

yohimbe bark (Escudero et al. 2008), pine cone shell (Martín-Lara et al. 2016) and sawdust (Djeribi and 101 

Hamdaoui 2008; Larous and Menia 2012).  102 

Despite sorption onto natural biomaterials has demonstrated to be an effective method to detoxify metal polluted 103 

streams, just few authors have tackled one of the most realistic scenarios relevant to industrial implementation of 104 

this technology: multimetal solution and operation in continuous bed up-flow process (in analogy to the current 105 

use and exploitation of commercial ion exchangers). The multi-element scenario is of major concern, since real 106 

polluted streams involve multimetal “cocktails” where competitive sorption interactions may take place. For 107 

example, the sorption of Cu(II) and Pb(II) from their binary mixtures using pine cone shell in a continuous bed 108 

up-flow process has been explored (Martín-Lara et al. 2016), being reported a higher selectivity for Pb(II) over 109 

Cu(II) ions. The sorption behaviour of bone char in a continuous bed up-flow system in binary mixtures Cd/Cu 110 

and Cu/Zn has also been reported (Ko et al. 2005). Also, the competitive adsorption of Cu(II) and Ni(II) onto a 111 

marine algae, Sargassum filipendula has been previously explored (Kleinübing et al. 2011). The authors reported 112 

a preferential sorption of Cu(II) over Ni(II) that concluded in the displacement of Ni(II) and the subsequent 113 

formation of a marked overshoot in the outlet stream.  114 

Previous studies put into evidence that sorption of Cu(II), Ni(II), Pb(II) and Cd(II) onto grape stalks wastes in 115 

binary mixtures in a continuous bed up-flow system is a competitive process. This competition is observed 116 
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through an overshoot in the breakthrough curve, i.e., a sudden increase above the input concentration to decrease 117 

later to its inlet stream concentration level. The overshoot effect is strongly dependent on the selectivity of the 118 

sorbent through the different sorbates, the sorption mechanism and on the operational conditions imposed. If the 119 

operational condition is the one that minimizes the mass transfer resistances of one of the sorbates, it is expected 120 

a pronounced overshooting when the optimal operational conditions of the other sorbates are different from the 121 

one of interest (Barros, 2013). In equimolar multimetal solutions, the overshot metals are those whose interaction 122 

with the sorbent are weaker in a process that involves the replacement from their coordinating positions by a 123 

metal through which the sorbent shows a higher affinity.  124 

In this paper, we investigate the use of a GS-based sorbent for the removal of Cu(II), Ni(II), Pb(II) and Cd(II) in 125 

all their possible ternary mixtures and in a fixed bed up-flow system. A model based on the Homogeneous 126 

Surface Diffusion Model has been developed to describe competitive sorption of the four metal ions in all their 127 

possible ternary mixtures.  A study of the model sensitivity was carried out to know how the uncertainty in the 128 

experimental data and the model parameters affect the uncertainty in the output of the model.  129 

 130 

2. Experimental 131 

2.1 Materials, Reagents and Instrumentation 132 

Grape stalks (GS) wastes (by product generated in industrial wine production) were supplied by a wine 133 

manufacturer from Castilla la Mancha region (Spain). The material was rinsed three times with distilled water, 134 

dried in an oven at 110 oC until constant weight, cut and sieved for a particle size of 0.25-0.50 mm. Stock 135 

solutions of Cu(II), Ni(II), Pb(II) and Cd(II) (1000 mg L-1) were prepared by dissolving appropriate amounts of 136 

CuCl2·2H2O, NiCl2·6H2O, PbCl2, CdCl2·2·1/2H2O in high purity water (Milli-Q, Millipore Corp.). The stock 137 

solutions were further mixed and diluted to obtain 0.2 mM concentration on each metal.  138 

Metal concentration in solution was analysed by Flame Atomic Absorption Spectroscopy (FAAS) using a Varian 139 

SpectrAA 220FS coupled to an automatic dilutor Varian SIPS and an autosampler Varian SPS3. The metals 140 

were nebulized in a concentric pneumatic system and atomized in an air-acetylene flame. Lead, cadmium, 141 

copper and nickel hollow cathode lamps were used as light sources for the selective detection of the metals and 142 

standard solutions of 1000 mg L-1 were used for FAAS calibration. Measurement of pH was performed using a 143 

pHmeter PHM 250 (Meterlab). 144 

 145 
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2.2 Metal Sorption from Ternary Mixtures  146 

Mixtures Cu(II)-Ni(II)-Cd(II), Cu(II)-Pb(II)-Cd(II), Cu(II)-Pb(II)-Ni(II) and Pb(II)-Ni(II)-Cd(II) were prepared 147 

mixing appropriate volumes of single stock solutions and diluting with Milli-Q water. The pH of the different 148 

ternary mixtures prepared was adjusted to 5.2 by adding negligible amounts of concentrated NaOH.  149 

GS wastes were soaked in Milli-Q water in a ratio 20:1 (water V (mL):GS mass (g)) under continuous magnetic 150 

stirring for 48 hours to allow both: free swell up of the material prior to column filling and removal of the finest 151 

particles that might cause clogging of the GS bed, tubes and valves.  152 

The experiments were performed in a borosilicate column (Omifit, 10 cm length x 1 cm inner diameter) filled 153 

with 0.5 g of GS. Glass beads were placed in the bottom of the column to act as diffuser and help in the 154 

homogenization of the stream right before getting in contact with the GS bed. The column was operated in up-155 

flow mode. A peristaltic pump (Gilson Minipuls) was attached to the bottom of the column and was programmed 156 

to deliver a constant flow rate of 30.0 mL h-1. The different ternary mixture solutions were pumped upwards and 157 

sampling was carried out automatically using an autosampler (Gilson FC203B) programmed to collect 5.5 mL of 158 

the outlet stream in time intervals of 30 minutes. The samples eluted from the column were immediately 159 

acidified adding 5 µL of concentrated nitric acid (HNO3 suprapur, Panreac) and stored until analysis by Flame 160 

Atomic Absorption Spectrometry.  161 

Characteristic breakthrough curves for each one of the metals forming the ternary mixtures were obtained by 162 

plotting the eluted concentration as a function of time. Each experiment was carried out in duplicate and the 163 

average results are presented. 164 

 165 

2.3. Calculation of the Bed Porosity 166 

The characteristic bed porosity (ε) was calculated right before the sorption experiments. Water was pumped 167 

throughout all the tubes to ensure that all the channels were primed. When the liquid reached the bottom of the 168 

sorbent bed, time was set to 0 and the required time to fill up the column was recorded. The void volume Vv 169 

(mL) was calculated according to the expression: 170 

  𝑉𝑣 = 𝑄𝑣 𝑡 (1) 

being Qv the volumetric flow (mL min-1), and t (min) the time required to fill up the column bed with water. The 171 

porosity was calculated through the equation: 172 

𝜀 =
𝑉𝑣

𝑉𝑐

 (2) 

where Vc (mL) is the volume of the sorbent bed in the column.  173 
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2.4. Calculation of the Sorbed Amount in the Bed   174 

The accumulated amount of copper, nickel, lead and cadmium in the column (𝑞̅(𝑡), mmol g-1) was calculated 175 

from the data of the concentration in the outlet stream as a function of time.  176 

𝑞̅(𝑡) =
𝐶𝐹𝑄𝑣

1000 𝑚
∫ (1 −

𝐶(𝑡)|𝑧=𝑙

𝐶𝐹

)
𝑡

0

𝑑𝑡 (3) 

 177 

In the aforementioned equation, m is the dry mass of GS (g), CF is the feeding concentration (mmol L-1), Qv is 178 

the volumetric flow rate (mL min-1), and 𝐶(𝑡)|𝑧=𝑙 is the outlet metal concentration (mmol L-1). The integral part 179 

of the equation was numerically solved using the trapeze method.  180 

 181 

2.5. Quality Assurance  182 

To assure the accuracy, reliability and reproducibility of the raw data, the sorption assays were run in duplicate 183 

and average values are reported. All the chemicals (AR grade) were purchased from reliable suppliers with 184 

certified quality. All the glassware and plastic material was previously soaked in 0.1 M HNO3, rinsed thoroughly 185 

with Milli-Q water and dried in an oven at 85 ˚C. Calibration was performed in the range 0.1-50 mg·L-1 using a 186 

Cu(II), Ni(II), Pb(II) and Cd(II) mixture prepared from individual solutions of certified standards. The accuracy 187 

was checked assessing the relative standard deviation (RSD) of each sample analysis. Typical values of the RSD 188 

for the target metals were below 5% in the samples and lower than 2.5 % in the standard solutions.   189 

 190 

2.6 Modelling of Sorption Process 191 

2.6.1 Equilibrium Models  192 

The sorption equilibrium isotherm of each metal in the ternary mixtures was described according to the Modified 193 

Extended Langmuir (MEL) (Choy et al. 2000; Ghaedi et al. 2014; Kurniawan et al. 2012; Muhammad et al. 194 

2011; Park et al. 2012; Valderrama et al. 2010; Xia et al. 2014), based on the mechanism of direct competition 195 

for adsorption sites, and whose mathematical expression is: 196 

𝑞𝑒,𝑖 =
𝐾𝑚𝑎𝑥,𝑖 𝑏𝑖 (

𝐶𝑒,𝑖

𝜂𝑖
) 

1 + ∑ 𝑏𝑖(
𝐶𝑒,𝑖

𝜂𝑖 
)𝑛

𝑗=1

 (4) 

The development of Eq. (4) for the three metals competing in the ternary mixture, gives a set of equations:  197 

 198 
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𝑞𝑒,1 =
𝐾𝑚𝑎𝑥,1𝑏1(𝐶𝑒,1/𝜂1)

1 + 𝑏1(𝐶𝑒,1/𝜂1) + 𝑏2(𝐶𝑒,2/𝜂2) + 𝑏3(𝐶𝑒,3/𝜂3)
 (5) 

𝑞𝑒,2 =
𝐾𝑚𝑎𝑥,2𝑏2(𝐶𝑒,2/𝜂2)

1 + 𝑏1(𝐶𝑒,1/𝜂1) + 𝑏2(𝐶𝑒,2/𝜂2) + 𝑏3(𝐶𝑒,3/𝜂3)
 (6) 

𝑞𝑒,3 =
𝐾𝑚𝑎𝑥,3𝑏3(𝐶𝑒,3/𝜂3)

1 + 𝑏1(𝐶𝑒,1/𝜂1) + 𝑏2(𝐶𝑒,2/𝜂2) + 𝑏3(𝐶𝑒,3/𝜂3)
 (7) 

where qe,i are the equilibrium solid-phase concentration (mmol g-1), Kmax,i are the MEL constants (L mg-1), i are 199 

the Langmuir correction coefficients, and bi the Langmuir isotherm constants (L mmol-1). The Langmuir 200 

correction coefficient (eta) represents the competitive effect between components of the mixture. 201 

 202 

2.6.2 Fixed-bed Model 203 

In the process of adsorption in continuous bed up-flow systems, the following physicochemical processes should 204 

be considered:  205 

i) The mechanisms of mass transport in the liquid phase are convection/advection, axial and radial dispersion. 206 

ii) Film diffusion from the liquid to the solid phase.  207 

iii) Pore diffusion (diffusion in the liquid to fill the wells of the particle). 208 

iv) Adsorption/desorption on the sorbent sites. 209 

v) Surface diffusion (spreading of the transferred solutes on the surface of the pores). 210 

Incorporating all these phenomena in a model is complex due to the large number of parameters that should be 211 

determined (radial and axial dispersion coefficients, mass transfer, pore diffusion, surface adsorption and 212 

desorption of each sorbate, etc.). Moreover, these parameters cannot be determined with experiments on an 213 

adsorption column and the effects of these processes on the breakthrough curves are very similar.  214 

Therefore, to describe the processes occurring inside the particles, simplified models such as the Homogeneous 215 

Surface Diffusion Model (HSDM) (Lee and McKay 2004; Valderrama et al. 2010) or Pore Diffusion Model 216 

(PDM) (Ko et al. 2001; Traylor et al. 2014; Liu 2010) have been proposed. In these models, pore and surface 217 

diffusion are assimilated into a single effective diffusion. To describe the mass transport in the column, it is 218 

common to postulate that all cross-sections are homogeneous and the radial movement and axial dispersion 219 

could be neglected. 220 

In this work, the sorption of Cu(II), Ni(II), Pb(II) and Cd(II) in the ternary mixtures was assessed and modelled 221 

according to the Homogeneous Surface Diffusion Model (HSDM) (Ko et al. 2004). The hypothesis in which the 222 

HSDM model relies are the following (Richard et al. 2010):   223 
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(1) Fluid moves in one-dimensional regime under plug-flow conditions 224 

(2) The particles behave as a pseudo-homogeneous medium wherein the pollutant diffuses. 225 

(3) External mass-transfer limitation is accounted for. 226 

(4) Adsorption equilibrium prevails at the fluid-solid external surface 227 

In accordance with these assumptions and mass transport mechanisms, the following set of mathematical 228 

equations can be derived. The mass balance for each component i of the bulk liquid phase in the column is 229 

expressed by the following equation:  230 

𝜕𝐶𝑖

𝜕𝑡
= −𝜈

𝜕𝐶𝑖

𝜕𝑧
− 𝜌 (

1 − 𝜀

𝜀
)

𝜕𝑞𝑖

𝜕𝑡
 (8) 

where  is the linear flow rate in the column, z is the bed depth, t is the service time,  is the particle density of 231 

grape stalks,  is the porosity of the bed, Ci is the liquid-phase concentration and qi is the solid-phase 232 

concentration. 233 

Since the rate of accumulation of solute in the solid surface is equal to the rate of transfer of solute across the 234 

liquid film, the mass balance through the stagnant liquid film for each component i is: 235 

𝜌
𝜕𝑞𝑖

𝜕𝑡
=

3𝑘𝑓,𝑖

𝑅
(𝐶𝑖 − 𝐶𝑠,𝑖) (9) 

where kf,i is the external film transport coefficient, R is the particle radius and Cs,i is the liquid-phase 236 

concentration at the particle surface. 237 

Substituting (9) into (8) results in: 238 

𝜕𝐶𝑖

𝜕𝑡
= −𝜈

𝜕𝐶𝑖

𝜕𝑧
− (

1 − 𝜀

𝜀
)

3𝑘𝑓,𝑖

𝑅
(𝐶𝑖 − 𝐶𝑠,𝑖) (10) 

For spherical sorbent particles using surface diffusion as the major intraparticle transport mechanism, the ternary 239 

Fickian diffusion equations are: 240 

𝜕𝑞𝑖

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 ∑ 𝐷𝑠,𝑖𝑗

𝜕𝑞𝑗

𝜕𝑟

3

𝑗=1

) (11) 

where r is the position inside the particle, Ds,ij are the multicomponent diffusion coefficients in the solid phase.  241 

In ternary mixtures, the cross-term diffusivities, Ds,12, Ds,13, Ds,21, Ds,23, Ds,31 and Ds,32 give the measure of the 242 

flux of one solute that is provoked by the concentration gradient of a second solute. Assuming that the effect of 243 

these cross-term diffusivities is small, and therefore their contributions to the overall diffusion is negligible, the 244 

above equations can be simplified to Eq. (12): 245 

𝜕𝑞𝑖

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝐷𝑠,𝑖𝑖

𝜕𝑞𝑖

𝜕𝑟
) (12) 
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with the boundary conditions at the center and surface of the particle, 246 

𝜕𝑞𝑖

𝜕𝑟
|

𝑟=0
= 0, 𝑡 ≥ 0 (13) 

𝐷𝑠,𝑖𝑖

𝜕𝑞𝑖

𝜕𝑟
|

𝑟=𝑅
=

𝑘𝑓,𝑖

𝜌
(𝐶𝑖 − 𝐶𝑠,𝑖), 𝑡 ≥ 0 (14) 

and the initial condition 247 

𝑞𝑖 = 0, 𝑡 = 0 and 0 ≤ 𝑟 ≤ 𝑅 (15) 

𝐶𝑖 = 0, 𝑡 = 0 and 𝑧 > 0 (16) 

with the boundary condition at the input column flow, 248 

𝐶𝑖 = 𝐶𝐹,𝑖 , 𝑡 ≥ 0, 𝑧 = 0 (17) 

The coupling equation between the solid and liquid concentration is the equilibrium isotherm. Therefore, Cs,i can 249 

be calculated assuming equilibrium at the particle surface. In ternary metal sorption systems: 250 

𝐶𝑠,𝑖 = 𝑓𝑖
−1(𝑞𝑒,1, 𝑞𝑒,2, 𝑞𝑒,3) (18) 

where 𝑓𝑖
−1 is the inverse of Eqs. (5), (6) and (7), respectively, qe1 and qe2 and qe3 are q1(R), q2(R) and q3(R) 251 

calculated in Eq. (8). 252 

The simulation model -based on the incorporation of the Modified Extended Langmuir (MEL) into the kinetic 253 

HSDM- was written in Matlab R2013 and used for breakthrough curves prediction in the ternary systems. The 254 

numerical solutions of the system of partial differential equations (Eqs. 10, 12) with the boundary and initial 255 

conditions (Eqs. 14-17) were solved by using a finite difference method. Equation (10), which represents the 256 

mass balance of each component, has been solved by applying a forward difference scheme. Equation (12), that 257 

represents the surface diffusion in the solid phase, has been solved by using the Crank–Nicolson method (Ko et 258 

al. 2003). The parameters of the model were determined by minimizing the Sum of Square Residuals (SSR) (Eq. 259 

19). 260 

𝑆𝑆𝑅 = ∑ ∑ (𝐶𝑖(𝑡𝑗, 𝐿) − 𝐶𝑖,𝑒𝑥𝑝(𝑡𝑗))
2

𝑁

𝑗=1

𝑛

𝑖=1

 (19) 

𝑀𝑆𝑆𝑅 = 𝑆𝑆𝑅/𝑛𝑁 (20) 

where n is the number of metal ions, and N the number of experimental data; Ci is the concentration at time tj in 261 

the outlet flow calculated by the model, and Ci,exp is the experimental concentration at time tj. Minimization of 262 

the SSR was carried out by using genetic algorithm (GA) (ga function) and the fmincon function of the 263 

Optimization Toolbox from Matlab 2013 package. The first function was used to obtain a first estimation of the 264 

parameters values and the later to refine the results. The fmincon of Matlab is a function to find minimum of 265 
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constrained nonlinear multivariable function and the different optimization algorithms. In the work presented in 266 

this manuscript we used the algorithm “interior-point”.  267 

 268 

3. Results and Discussion 269 

3.1 Metal Sorption from Ternary Mixtures 270 

Breakthrough curves were obtained by plotting the outlet stream concentration (Ci) versus time (t). Experimental 271 

sorption data (symbols) of the different ternary mixtures of Pb(II), Cu(II), Cd(II) and Ni(II) are presented in 272 

Figure 1. The breakthrough profile shows that in all the ternary systems, just one of the metals exhibits the 273 

regular sigmoidal shape. The concentration of the other two metals in the outlet stream always exceeds the 274 

feeding concentration, leading to the formation of overshoots in their breakthrough curves. The overshoot 275 

phenomenon appears when the sorbent reaches its maximum sorption capacity. From this moment the metal ions 276 

with weaker interactions are displaced from the sorbent binding sites and pushed off the column. The results 277 

presented in Figure 1 reveal that lead is not overshot in presence of the other two metals in the ternary mixture 278 

and copper is only overshot when lead is present in the mixture. Cadmium and nickel overshoot to a greater or 279 

lesser extent depending on the other metals. These results are in agreement with the rank of affinity sorbent-280 

sorbate (grape stalks-metal) reported in our previous work (Escudero et al. 2013) and by other authors using 281 

natural adsorbents (Bayo 2012; Kleinübing et al. 2011). The sorbent-metal affinity can be justified by the degree 282 

of complexation exhibited by metals with the binding groups of the sorbent bearing a –COOH group. According 283 

to this type of interaction, the degree of complexation reported by Nurchi et al. (2010) follows the ranking: Al, 284 

Pb>Cu>Cd>Co, Mn, Ni, Zn.  285 

The experimental conditions used in the model for breakthrough prediction are depicted in Table 1. The 286 

parameters derived from the optimization of the HSDM (external mass transfer coefficient (kf,i), diffusion 287 

coefficient (De,ii), MEL constant (Kmax,i), the Langmuir affinity constant (bi) and the Langmuir correction 288 

coefficient (i)) are presented in Table 2a. The sum of squares residuals (SSR) and mean sum of square residuals 289 

(MSSR) obtained from the optimization of the model can be found in Table 2b. The data obtained in single metal 290 

solutions under the same experimental conditions have been included for comparison sake in Table 2c.  291 

Diffusion and mass transfer coefficient values have the same order of magnitude with those found in our 292 

previous study regarding single (Table 2c) and binary mixtures (Escudero et al. 2013), and are also in agreement 293 

with those reported by other authors when studying copper biosorption by an algae composite biosorbent in a 294 

similar sorption system (Vilar et al. 2008). The values of the Langmuir affinity constant, b, from higher to lower, 295 
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were found to be: Pb (54.5± 0.2)>>Cu (15.2±0.3)>>Cd (9.4±0.1)>Ni (8.1±0.2). These values successfully 296 

explain the overshoots observed in the ternary mixtures. Remarkable are the low values of SSR and MSSR, 297 

indicating the excellent fitting of the model to the experimental results.  298 

The data provided by the model by using the constant values presented in Table 2a are superimposed to the 299 

experimental data (line) in Figure 1. As seen in the figure, the model describes very well both: (i) the sorption 300 

process followed by each component on the ternary mixture; and (ii) the mass transfer wave observed when 301 

plotting the amount of metal ions sorbed as a function of the radius of the particle and the axial position of the 302 

column (bed height) (Video provided as supplementary material). 303 

The time-course profile of the metal sorbed amount in the different ternary mixtures is depicted in Figure 2. As 304 

seen, the three metal ions are progressively sorbed showing a similar slope until the sorbent capacity is close to 305 

achieve its maximum. From this moment, two of the metals (according to their affinity constant) are pushed off 306 

leading to the observed overshoot in the outlet effluent and their concentration in the solid phase progressively 307 

decreases.  308 

The goodness of the model to describe the sorbed amount at equilibrium for each one of the metals in the ternary 309 

mixtures (qe,i) was assessed plotting the actual sorbed amount against the predicted by the model (Figure 3). As 310 

observed in the figure, all the data are distributed on the bisecting first quadrant (slope 1.007 and R2 =0.996), 311 

showing that the model provides an excellent prediction of the sorption equilibrium for all the metals, 312 

irrespective of whether the metal suffers overshoot or not.    313 

 314 

3.2 Model Sensitivity Analysis 315 

The sensitivity of the model to the different parameters was assessed. The parameters (summarized below) are 316 

either a characteristic of the mass transfer process or related to the sorption equilibrium.  317 

- Ds0 (cm2 s-1), the effective diffusivity 318 

- kf (cm s-1), external film transport coefficient 319 

- Kmax (mmol g-1): MEL constant 320 

- b (L mmol-1): Langmuir isotherm constant 321 

- η: Langmuir correction coefficient 322 

After fitting a model, it is possible to make predictions. Therefore, it is paramount to assess the performance of 323 

these predictions by evaluating the risk of inaccurate outputs. The sensitivity of the model was assessed by two 324 

different approaches:  The effect on the model output when varying the model parameters and when 325 
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experimental data are perturbed. The process of studying the sensitivity of the model with respect to the variation 326 

of its parameters (kf,i, Ds,ii, Kmax,i, bi and i) consisted in introducing a ± 5% variation in one of the input 327 

parameters while keeping the rest constant, and observing the resulting influence on model predictions. This 328 

influence was estimated by calculating the variation of the error (SSRj and VRj (Eq. 21)) as a measure of the 329 

difference between experimental and calculated values (Table 3). 330 

𝑉𝑅𝑗 =
𝑆𝑆𝑅𝑗 − 𝑆𝑆𝑅

𝑆𝑆𝑅
100 (21) 

where SSR values are the ones presented in Table 2b and SSRj is the average calculated value resulting from the 331 

introduction of the ± 5% variation above mentioned. Results presented in Table 3 put into evidence that the 332 

model is very sensitive to the variation of Kmax,i as evidenced by the VRj values higher than 5%. As seen, these 333 

values vary between 8.7 and 126.8%. The other two parameters to which the model is sensitive are bi and i. The 334 

VRj corresponding to these two parameters are higher than 5% except in the case of the ternary mixture Cu-Ni-335 

Cd. Conversely, the model exhibits low sensitivity towards Ds,ii and kf,i with values of VRj lower than 3.3%. 336 

These results highlight the importance of getting good estimates of Kmax,i, bi and i.  337 

The sensitivity of the model towards experimental errors was studied by introducing a certain variation (± 2.5%), 338 

following a normal distribution, in each of the experimental data points. A total of 10 simulations were 339 

considered and the corresponding parameters of the model were calculated by following the procedure indicated 340 

in section 2.3.2. The mean (𝑥̅) and the standard deviation (s) of each of the parameters values are presented in 341 

Table 4.  342 

The results presented in Table 4 show that the effect of the experimental data perturbation is very low on the 343 

estimation of the parameters of Pb-Ni-Cd and Cu-Ni-Cd ternary mixtures. In the former mixture the standard 344 

deviation values present variations lower than 2.5% of the mean value. In the latest, variations are lower than 345 

5%, except in the case of Ds,ii (4.6-12.0%). Variation of bi is always lower than 2.5% and Kmax,i and i lower than 346 

7.2% in all ternary mixtures. The higher variations are found for kf,i and Ds,ii whose percentage of variation goes 347 

from 12 to 61% and from 15 to 48% in the ternary mixtures Cu-Pb-Ni and Cu-Pb-Cd, respectively. These results 348 

put into evidence that little perturbations of the experimental data result in high variations of kf,i and Ds,ii.  349 

Therefore, ensuring good quality experimental data is essential to get an accurate determination of model 350 

parameters.  351 

 352 

 353 

 354 
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Conclusions 355 

Sorption of Cu(II), Ni(II), Pb(II) and Cd(II) from ternary mixtures onto grape stalks under continuous bed up-356 

flow conditions is a competitive process.  In all the mixtures, the sorption of the metal with higher affinity for the 357 

sorbent followed the expected sigmoidal trend while the other two metals showed overshoots. Lead did not 358 

experience overshoots in any of the studied ternary systems; copper was only overshoot when lead was present 359 

while cadmium and nickel suffered intense overshoots when either, lead or copper were present in the mixture. 360 

A kinetic model based on a Homogeneous Surface Diffusion Model was successfully developed to describe the 361 

dynamics of metal sorption onto grape stalks in all the ternary mixtures. Despite the complexity that involves the 362 

sorption of three metal ions with the formation of two simultaneous overshoots, the model was capable to fit the 363 

overall process. The sensitivity analysis of the model highlighted the high relevance of getting good estimates of 364 

Kmax,i, bi and i, and the need of gathering high quality experimental data for an accurate determination of the 365 

model parameters.     366 
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Table 1. Experimental parameters used in the model for prediction of metal ions 

breakthrough curves.    

 

 

Interstitial velocity (m·s-1) 1. 061x10-4 

   Grape stalks density (Kg·m3) 92.33 

   Bed height (m)  6.7x10-2 

   Particle radius (m) 3.75x10-4 

   Metal solution density (Kg·m3) 998.2 

   Metal solution viscosity (Kg·m-1·s-1) 1.002x10-3 
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Table 2. Results of model prediction for metal sorption onto grape stalks from ternary 

mixtures: (a) model parameters, (b) sum of squares residuals (SSR) and mean sum of squares 

residual (MSSR). Data obtained in single solutions has been also included for comparison 

sake, (c). 
 

 

(a) 
 

Parameter 

Metal Co-ion  kf,i (cm·s-1)  Ds,ii (cm2·s-1) Kmax,i (mmol·g-1)  bi (L·mmol-1) ηi 

 

Ni-Cd 2.78 x10-4 0.29 x10-8 0.17 15.00 0.29 

Cu Pb-Cd 2.36 x10-4 0.77 x10-8 0.15 14.98 0.52 

 

Pb-Ni 1.70 x10-4 8.39 x10-8 0.11 15.52 0.44 

 

Cu-Cd 2.33 x10-4 1.82 x10-8 0.28 8.04 2.86 

Ni Cu-Pb 8.09 x10-4 72.3 x10-8 1.36 8.30 33.42 

 

Pb-Cd 5.05 x10-4 1.25 x10-8 0.39 8.05 4.85 

 Cu-Ni 2.12 x10-4 1.35 x10-8 0.18 9.53 1.37 

Cd Cu-Pb 3.60 x10-4 1.98 x10-8 0.18 9.29 1.78 

 Pb-Ni 2.85 x10-4 3.67 x10-8 0.19 9.54 2.02 

  Cu-Cd 6.18x10-4 1.37 x10-8 0.27 54.49 1.97 

Pb Cu-Ni 15.2 x10-4 0.36 x10-8 0.35 54.76 2.85 

 Ni-Cd 4.12 x10-4 2.98 x10-8 0.21 54.40 1.21 
 

(b) 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Ternary system SSR MSSR 

Cu - Ni - Cd 6.69 x10-3 6.03 x10-5 

Cu - Pb - Ni 4.58 x10-3 4.59 x10-5 

Cu - Pb - Cd 8.24 x10-3 7.85 x10-5 

Pb - Ni - Cd 5.33 x10-3 4.68 x10-5 

Metal Kf (cm·s-1) Ds (cm2·s-1) Qmax (mmol·g-1) b (L·mmol-1) 

Cu 5.08 x10-4 2.49 x10-8 0.24 15.1 

Ni 3.71 x10-4 3.43 x10-8 0.26 8.02 

Cd 4.91 x10-4 2.71 x10-8 0.23 9.54 

Pb 5.34 x10-4 2.01 x10-8 0.18 54.4 



Table 3.  Results of sensitivity analysis. SSRi and VR values of model parameters 

 

  

Cu-Ni-Cd Cu-Pb-Ni Cu-Pb-Cd Pb-Ni-Cd 

  

SSRj VRj SSRj VRj SSRj VRj SSRj VRj 

Cu 

𝑘𝑓,𝑖 6.70x10-3 0.16 4.43x10-3 3.24 8.37x10-3 1.54 

  𝐷𝑠,𝑖𝑖  6.71x10-3 0.23 4.58x10-3 0.01 8.25x10-3 0.06 

  𝐾𝑚𝑎𝑥,𝑖 9.92x10-3 48.20 7.42x10-3 61.95 1.19x10-2 43.93 

  𝑏𝑖 6.97x10-3 4.23 5.13X10-3 11.98 8.93x10-3 8.30 

  𝜂𝑖  6.92x10-3 3.44 5.20x10-3 13.56 8.83x10-3 7.11 

  

Ni 

𝑘𝑓,𝑖 6.71x10-3 0.25 4.55x10-3 0.67 

  

5.37x10-3 0.69 

𝐷𝑠,𝑖𝑖  6.68x10-3 0.21 4.58x10-3 0.09 

  

5.34x10-3 0.09 

𝐾𝑚𝑎𝑥,𝑖 7.27x10-3 8.72 6.77x10-3 47.86 

  

6.23x10-3 16.96 

𝑏𝑖 7.02x10-3 4.99 6.42x10-3 40.10 

  

5.95x10-3 11.60 

𝜂𝑖  7.03x10-3 5.08 6.61x10-3 44.39 

  

6.00x10-3 12.61 

Cd 

𝑘𝑓,𝑖 6.71x10-3 0.34 

  

8.25x10-3 0.01 5.30x10-3 0.55 

𝐷𝑠,𝑖𝑖  6.68x10-3 0.17 

  

8.34x10-3 1.06 5.34x10-3 0.23 

𝐾𝑚𝑎𝑥,𝑖 8.20x10-3 22.57 

  

9.90x10-3 20.06 7.87x10-3 47.64 

𝑏𝑖 7.13x10-3 6.52 

  

8.68x10-3 5.22 6.15x10-3 15.34 

𝜂𝑖  7.10x10-3 6.13 

  

8.61x10-3 4.41 6.07x10-3 13.87 

Pb 

𝑘𝑓,𝑖 

  

4.57x10-3 0.31 8.21x10-3 0.48 5.33x10-3 0.09 

𝐷𝑠,𝑖𝑖  
  

4.57x10-3 0.11 8.25x10-3 0.07 5.33x10-3 0.04 

𝐾𝑚𝑎𝑥,𝑖 
  

6.48x10-3 41.44 1.12x10-2 35.86 1.21x10-2 126.75 

𝑏𝑖 
  

5.61x10-3 22.40 9.25x10-3 12.11 5.88x10-3 10.39 

𝜂𝑖  
  

5.58x10-3 21.95 9.16x10-3 11.02 5.83X10-3 9.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 Table 4. Results of model sensitivity towards experimental errors. 

 

  

Cu-Ni-Cd Cu-Pb-Ni 

𝑥̅ ± 𝑠 

Cu-Pb-Cd Pb-Ni-Cd 

  

 
𝑥̅ ± 𝑠 𝑥̅ ± 𝑠 𝑥̅ ± 𝑠 

Cu 

𝑘𝑓,𝑖  (2.764 ± 0.017) x 10-4 (1.577 ± 0.188) x 10-4 (2.306 ± 0.729) x 10-4 

 𝐷𝑠,𝑖𝑖 (0.272 ± 0.017) x 10-8 (7.166 ± 4.217) x 10-8 (0.785 ± 0.227) x 10-8 

 𝐾𝑚𝑎𝑥,𝑖 0.171 ± 0.003 0.111 ± 0.008 0.143 ± 0.009 

 𝑏𝑖 15.008 ± 0.008 15.478 ± 0.193 15.044 ± 0.055 

 𝜂𝑖  0.280 ± 0.014 0.344 ± 0.016 0.405 ± 0.019 

 

Ni 

𝑘𝑓,𝑖  (2.376 ± 0.071) x 10-4 (9.240 ± 1.430) x 10-4 

 
(5.270 ± 0.025) x 10-4 

𝐷𝑠,𝑖𝑖 (1.768 ± 0.082) x 10- (56.260 ± 34.673) x 10-8 

 
(1.178 ± 0.006) x 10-8 

𝐾𝑚𝑎𝑥,𝑖 0.284 ± 0.007 1.301 ± 0.044 

 
0.443 ± 0.002 

𝑏𝑖 8.041 ± 0.010 8.499 ± 0.202 

 
8.053 ± 0.007 

𝜂𝑖  2.851 ± 0.028 32.369 ± 0.814 

 
5.706 ± 0.004 

Cd 

𝑘𝑓,𝑖  (2.101 ± 0.053) x 10-4 

 
(2.719 ± 0.548) x 10-4 (2.991 ± 0.052) x 10-4 

𝐷𝑠,𝑖𝑖 (1.338 ± 0.174) x 10-8 

 
(2.174 ± 0.344) x 10-8 (3.856 ± 0.078) x 10-8 

𝐾𝑚𝑎𝑥,𝑖 0.180 ± 0.005 

 
0.182 ± 0.013 0.184 ± 0.001 

𝑏𝑖 9.528 ± 0.013 

 
9.377 ± 0.128 9.537 ± 0.004 

𝜂𝑖  1.353 ± 0.050 

 
1.707 ± 0.035 2.011 ± 0.015 

Pb 

𝑘𝑓,𝑖  

 
(15.148 ± 0.162) x 10-4 (4.881 ± 2.046) x 10-4 (4.368 ± 0.087) x 10-4 

𝐷𝑠,𝑖𝑖 
 

(0.551 ± 0.255) x 10-8 (1.243 ± 0.600) x 10-8 (2.769 ± 0.082) x 10-8 

𝐾𝑚𝑎𝑥,𝑖 
 

0.390 ± 0.019 0.288 ± 0.015 0.216 ± 0.000 

𝑏𝑖 
 

54.809 ± 0.138 54.429 ± 0.029 54.412 ± 0.027 

𝜂𝑖  
 

2.711 ± 0.016 1.735 ± 0.014 1.293 ± 0.009 

 



Figure 1. Experimental data and predictive breakthrough curves for metal sorption onto GS 

from ternary systems: a) Cu-Ni-Cd, b) Cu-Pb-Cd, c) Cu-Pb-Ni, d) Pb-Ni-Cd. Flow rate:  30 

mL·h-1; feeding metal concentration: 0.2 mM;  pH: 5.2;  sorbent mass: 0.5 g; particle size: 0.25-

0.50 mm. 
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Figure 2. Metal sorption onto grape stalks from ternary systems as a function of time: a) Cu-

Ni-Cd, b) Cu-Pb-Cd, c) Cu-Pb-Ni, d) Pb-Ni-Cd. Flow rate: 30 mL·h-1; feeding metal 

concentration: 0.2 mM; pH: 5.2; sorbent mass: 0.5 g; particle size: 0.25–0.50 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

20181614121086420
t (h)

0.05

0.1

0.15

0.2

0.5

0.3

0.35

0.4

0.45

0.25

q
 (

m
m

o
lg

-1
)

0.05

0.1

0.15

0.2

0.5

0.3

0.35

0.4

0.45

0.25

q
 (

m
m

o
lg

-1
)

0.05

0.1

0.15

0.2

0.5

0.3

0.35

0.4

0.45

0.25

q
 (

m
m

o
lg

-1
)

0.05

0.1

0.15

0.2

0.5

0.3

0.35

0.4

0.45

0.25

q
 (

m
m

o
lg

-1
)

20181614121086420
t (h)

20181614121086420
t (h)

20181614121086420
t (h)

(a) (b)

(c)
(d)



Figure 3. Experimental and calculated values of the sorbed amount of each metal ion  at 

equilibrium  
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