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Abstract 

Amoebic gill disease (AGD) and sea lice are two of the most significant disease 

issues facing the Norwegian Atlantic salmon aquaculture industry.  Although both 

diseases respond to various extents, to freshwater treatment, the chemistry, 

interactions and efficacy of treatment can be variable.  These variations can have 

significant impacts upon the success and failure of treatment and costs to the 

production cycle. Although it is known that soft freshwater is most effective in bathing 

of Atlantic salmon with AGD and that most of the freshwaters in Norway fall into the 

soft category, the low alkalinity and buffering capacity of such waters may impact on 

the pH and metal toxicity of the water source in use.  Similarly dissolved organic 

carbon can be beneficial in treatment, although sequestration of metal ions can be 

reversed as the water pH drops due to high densities of fish and accumulations of 

carbon dioxide.  Alternative treatments such as the use of oxidative disinfectants 

such as hydrogen peroxide used for AGD and sea lice control may have potential 

although the interactions in seawater with organic loads and dissolved organic 

carbon are unclear.  Similarly the use of oxidative disinfectants in freshwater will 

depend upon the water chemistry and interactions with treatment chemicals, fish and 

water organic content.  The logistics of treating large biomasses of Atlantic salmon 

on marine farms is challenging.  The use of well boats offers potential although 

maintaining water quality during treatments is essential for both AGD and sea lice 

treatments to optimize fish welfare and treatment efficacy.  

 

Keywords: Bath treatments; Water chemistry; AGD; Paramoeba perurans; sea lice 
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1. Introduction  

Since 2010, there has been a sharp increase in the number of amoebic gill disease 

(AGD) outbreaks in Western Europe with Ireland, Scotland (including the Shetland 

Isles) and the western coast of Norway being affected.  In Norway outbreaks 

increased from 5 in 2012 to 56 in 2013 with a progressive advance northwards of the 

outbreaks in successive years.  AGD is caused by the amoeba Paramoeba perurans, 

first identified as the cosmopolitan agent of AGD by Young et al., (2007).  Prior to 

this, Paramoeba perurans had been identified as a potential pathogen in Norwegian 

salmon, found coincidentally with other causes of gill disease (Steinum et al., 2008), 

a feature often noted in Irish outbreaks (Birmingham and Mulchay, 2006).  The 

pathology and immunology associated with (Neo)Paramoba sp. has been well 

described and subject to several reviews (Powell et al., 2008;  Nowak et al., 2014). In 

short, infection of the gill with Paramoba perurans leads to a hyperplastic epithelial 

response of the gill accompanied by mixed inflammatory and immunological 

responses (the literature is often conflicting see reports by Bridle et al., 2006; 

Morrison et al., 2006; Pennachi et al., 2014; Nowak et al., 2014) and an acute 

systemic hypertension occurring in Atlantic salmon (Leef et al., 2005; 2007).  The 

primary treatments for AGD are in the form of freshwater baths although in Europe 

some success using hydrogen peroxide bath treatments have been reported.    

 

The treatment of Atlantic salmon using large-scale baths for the control of parasites 

is not a new concept using freshwater bath treatments for the treatment of AGD and, 

the control of salmon lice (Lepeophtheirus salmonis).  Recently, the use of short-term 

bath treatments of Atlantic salmon during the marine phase of the production cycle 

has increased drastically in Norway.  For example, the use of hydrogen peroxide 

alone has tripled from 2538 tonnes in 2012 to 8262 tonnes in 2013 (www.fhi.no).  

The increased occurrence of Amoebic Gill Disease (AGD) and infections with 

resistant/multi-resistant strains of sea-lice has caused this development. If this 

treatment strategy is to be developed and applied in the industry, a number of issues 

concerning water quality on fish welfare and treatment efficiency needs to be 

addressed, and knowledge-gaps identified.  
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Subjecting seawater (SW, hyperosmotic) adapted teleost fish to a procedure 

combining abrupt transfer to a hypo-osmotic freshwater (FW) environment at high 

fish densities, crowding and handling is a procedure likely to cause a degree of 

stress in the fish. Maintaining fish in these conditions also cause metabolite 

accumulation (CO2/ammonia/ammonium) in the water with subsequent water quality 

changes that may further aggravate this stress. Thus, a fundamental knowledge 

about the effects of FW treatment on stress and physiology alone, and combined with 

water quality changes is needed to ensure fish welfare and optimal treatment effect. 

Treatment efficacy may also be influenced by the chemical composition of freshwater 

used.  This review aims to summarize current knowledge on the subject.  

 

2. Norwegian freshwater quality 

2.1 Chemistry of natural water sources 

Norwegian surface waters are characterized by being of low alkalinity and soft, i.e. 

having a low bicarbonate buffering capacity and consequently low Ca2+ and Mg2+ 

content (Henriksen et al., 1989; Skjelkvåle et al., 2007; Kristensen et al., 2009) (Fig. 

1). High precipitation rates and low evaporation due to the temperate climate, 

combined with acidic and weathering-resistant bedrock give rise to this chemical 

composition of the surface waters.  Water pH is therefore also naturally low in many 

sites (Fig. 1), with additional reductions caused by acidification in the southern and 

south-western regions (Skjelkvåle et al., 2005).  Two major concerns arise from a low 

buffering capacity and/or pH, namely a strong further pH decrease when CO2 

accumulates in the water and an increased gill permeability caused by low Ca2+ 

saturation of ion channels in the gills (Evans et al., 2005).  The first may cause 

mobilization of metal ions (if present) (Fivelstad et al., 2003a), while the latter results 

in increased susceptibility to metals (Leivestad et al., 1980).  Low pH increases the 

efflux of Na+ and Cl- across the gill surface due to an osmotic gradient of about 350 

mOsm L-1 between the fish and the freshwater environment (Fig. 1).  This problem is 

exacerbated by H+ ions competing for gill binding sites with Ca2+ (Pagenkopf, 1983; 

Wilson, 2012).  Additionally, metals such as Al may be mobilized to gill reactive forms 

(http://www.hydrolearth-syst-sci-discuss.net/4/3317/2007/hessd-4-3317-2007.pdf). 
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Total organic carbon (TOC) levels are, in general, relatively high in Norwegian water 

sources with a high degree of variability (Fig. 2).  Fulvic acids in TOC of humic origin 

contribute to the low water pH in Norway (Lydersen et al., 2002), and also contribute 

to transport of associated metals.  Metals bound to humic substances are generally 

less bioavailable than low molecular weight metal species (also denoted free metal 

ions), and elevated TOC may thus serve to protect fish from harmful effects of metals 

provided remobilization is not enhanced by decreased pH (Rosseland and Staurnes, 

1994; Andren et al., 2006), and/or increased ionic strength (Bjerknes et al., 2003; 

Teien et al., 2006a) in the water.  

 

Water chemistry is important in the health and physiological integrity of Atlantic 

salmon when stressed by other pathogens such as sea lice with the main focus 

studies to date being acidification of freshwater and its associated implication with 

the mobility of toxic metal ion species such as Al3+ (Finstad et al., 2007; 2012) (Fig. 

3).  In particular the episodic and fluctuating effects of acidified freshwater enhances 

the stress effects and reduced survival of post-smolts infected with sealice (Finstad et 

al., 2012).  Thus, not all freshwater sources can be deemed suitable or optimal for 

the treatment of Atlantic salmon in a parasite control regime.  

 

2.2 Metabolite accumulation: effects on water chemistry 

Dissolved oxygen levels in the treatment water must be maintained by addition of 

oxygen gas, and it is vital to maintain levels above 80% saturation.  In the following 

discussion on metabolites, adequate oxygenation is assumed. 

 

Carbon dioxide (CO2) is generated as the end product of aerobic metabolism in a 

theoretical molar ratio of 1-0.7 to consumed oxygen.  In practice, and in an 

aquaculture setting, about 1.1 g CO2 is produced for each mg O2 consumed 

(Fivelstad and Binde, 1994).  The solubility of CO2 in water and body fluids is very 

high due to reaction with water and generation of HCO3
- and H+ (the bicarbonate 

buffering system). Reactions of the bicarbonate system is described (simplified) 

below (Equation 1)  

CO2  H2CO3  H+ HCO3- 2H+ + CO3
2-            (1) 
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The amount of CO2 dissolved in water or blood is through the generation of H+; a 

strong determinant of pH.  While solubility is high (30 times more soluble than O2), 

the gas tension of CO2(g) is low in equilibrium conditions due to low atmospheric 

partial pressure (~0,04%, 0,04 kPa).  However, the relative amount of excreted CO2 

that is converted to HCO3
- in water is strongly dependent on pH.  The pKa of the first 

equilibrium-reaction of the bicarbonate system (Equation 1) is about 6.4.  This means 

that a balance between CO2(g), which is the primary concern, and HCO3
- vary 

substantially in the low range of pH and buffering capacity values observed. In closed 

aquaculture transport/treatment systems this has to be accounted for when 

determining safe biomass/treatment durations. 

 

Gaseous CO2 accumulation over time in closed treatment systems causes pH 

depression through H+/HCO3
- generation and elevated CO2(g) tension, termed 

hypercapnia.  External hypercapnia forces blood CO2(g) and HCO3
- levels to increase 

in order to maintain excretion by diffusion across the gills (Wood and Jackson, 1980; 

Perry and Gilmore, 2006).  Where proliferative gill disease occurs, the accumulation 

of CO2(g) in the blood is already increased due to diffusion limited CO2 excretion (see 

Powell and Perry, 1999; Powell, 2006; 2007), thus under conditions of hypercapnia, 

the resulting respiratory acidosis (drop in blood pH due to accumulations of CO2(g)) is 

even further enhanced.  The rate of CO2 accumulation is dependent on water volume 

to biomass ratio, and the metabolic rate of the fish.  Metabolic rate depends on 

temperature, fish size and the state (stress, active swimming) of the fish. For practical 

purposes, a maximal metabolic rate at a given temperature and fish size should be 

assumed in bath treatments to provide a safety factor when calculating biomass 

loading.  Equations given in Thorarensen and Farrell (2011) are recommended used 

for this purpose.  

 

Atlantic salmon is ammonitelic, i.e. excreting the bulk of nitrogenous waste from 

deamination of proteins as ammonia (NH3(g)).  A pH dependent equilibrium exists 

between NH3 and ionized ammonium NH4
+ with a pKa of about 9,2 (Emerson et al., 

1975).  NH3 is equilibrated between body compartments while NH4
+ is distributed 
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according to pH (Randall and Wright, 1995). The gills are the main site of ammonium 

and ammonia excretion (Evans, 2005; Terjesen, 2008).  Ammonia is excreted 

through passive diffusion, and ammonium by NH4
+/Na+ exchange (Randall and 

Wright, 1995). The two forms are collectively measured in water as total ammonia 

nitrogen (TAN) and NH3/NH4
+ ratio calculated as a function of pH and temperature 

(Emerson et al., 1975).  Unionized NH3 is regarded as the main toxic form of the two, 

and toxicity is therefore highly pH dependent (Thorarensen and Farrell, 2011).  The 

primary toxic effect is regarded to be disruption of oxidative metabolism and draining 

of energy stores in the brain. Acute responses include disruption of enzyme activity, 

reduced swimming capacity, increased gill irrigation rate and osmoregulatory 

disturbances, while chronic exposure reduces growth and disease resistance 

(reviewed by Thorarensen and Farrell, 2011).  Recommended safe levels for 

salmonids range from 12 to 30 µg NH3-N L-1 (Thorarensen and Farrell, 2011).  In 

closed transport or treatment systems, pH depression will help detoxify ammonia. 

The main concern arises if aeration is applied to remove CO2 such that unionised 

ammonia build-up may cause problems, and if sudden shifts to a higher pH occur, 

i.e. is seawater is added to the treatment/transport water.  Equations in Thorarensen 

and Farrell (2011) may provide the tools to calculate TAN accumulation.  However, 

the risk of abrupt pH changes must be also taken into account to determine risk for 

toxic effects. 

 

3. Amoebic Gill Disease 

Amoebic Gill Disease (AGD) of marine Atlantic salmon is caused by the amoeba 

Paramoeba perurans.  Paramoeba perurans appears to be a facultative parasite of 

fish, having been identified to infect a number of different marine and euryhaline 

species (Nowak et al., 2002) including rainbow trout (Oncorhynchus mykiss), brown 

trout (Salmo trutta) (Leef et al., 2005), chinook salmon (O. tsawyschta) (Zilberg and 

Munday 2006), turbot (Psetta maxima)(Dykova et al., 1995), Ballan wrasse (Labrus 

bergylta) (Karlsbakk et al., 2013), sharpsnout sea bream (Diplodus 

puntazzo)(Dykova and Novoa, 2001), seabass (Dicentrachus labrax)(Dykova and 

Novoa 2001; Santos et al., 2010), ayu (Plecoglossus altivelis) (Crosbie et al., 2010), 

blue warehou (Seriolella brama) (Adams et al., 2008), lumpfish (Cyclopterus 
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lumpus)(L. Andersen pers. comm).   It is speculated to have a relatively simple 

lifecycle, although this has yet to be confirmed.  The impact of this pathogen has 

been seen in Tasmania, Australia since the late 1980s where cost estimates of 10-

15% of the value of production being attributed to its control.  However, the agent 

Paramoeba perurans and indeed AGD has been recognized and diagnosed in many 

other countries besides Australia including Chile (Bustos et al., 2011); Ireland, Japan, 

New Zealand, Norway, USA, Scotland and Spain (Nowak et al., 2002; Young et al., 

2007; 2008; Steinum et al., 2008; Nylund et al., 2008). 

 

The pathology of AGD specifically (Powell et al., 2008) and related infectious and 

non-infectious gill disorders have been widely reviewed in the past (Mitchell and 

Rodger, 2011; Rodger et al., 2010).  Specific to AGD is the interaction of the gill 

epithelium with Paramoeba perurans whereby attachment of the parasite, results in 

acute cellular necrosis (Powell et al., 2008) and filamental epithelial cell hyperplasia 

giving rise to a compensatory plaque of tissue infiltrated with inflammatory immune 

cells and specifically eosinophils (Lovy et al., 2006) that essentially prevents further 

damage to the gill.  The filamental hyperplasia, reduces the functional gill surface 

area and the associated accumulation in mucus production causes inhibition of 

carbon dioxide excretion across the gill leading to a persistent respiratory acidosis 

(Powell et al., 2000) or increases in circulating total CO2 levels (Leef et al., 2005; 

Table 1). However, respiratory disturbances are only part of the pathology.  In 

Australian Atlantic salmon, an acute cardiovascular compromise occurs whereby 

systemic hypertension develops causing to circulatory collapse (Powell et al., 2002; 

Leef et al., 2005; 2007) and finally death – particularly in fish susceptible to stress 

(eg. triploid fish, Powell et al., 2008).  Indeed, AGD resistence (as determined by gill 

score of the severity of gill damage) and survival are not related to systemic antibody 

responses (Taylor et al., 2009a).  

 

This means that assessment of the success of treatments for AGD can either focus 

upon: 

1. The presence or absence of the parasite  

2. The presence or absence of gill lesions 
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3. Fish survival, mortality or other indicators of performance such as appetite or 

growth 

In reality, all three approaches make for a holistic assessment of treatment success.  

In recent years tools have been developed to assess the presence or absence of 

Paramoeba perurans using real-time PCR of gill swabs or tissue samples (Young et 

al., 2008). This test has since been commercialized by a number of diagnostic 

companies.  Although exquisitely sensitive; good correlations between actual 

amoeba numbers, pathology caused and treatment success have not been 

established. 

 

3.1 Approaches to control of AGD – practical limitations 

In commercial farm situations the number of fish to be treated (upto 200 000 

individuals), size of the fish to be treated (0.2-7.0 kg), and location of net pens pose 

significant logistical limitations.  The experience from sea lice treatments have given 

Norwegian farmers extensive experience in handling cage-based bath treatments 

although the time and expense for treatment of large numbers of Atlantic salmon 

impose significant constraints upon the frequency, speed and success for treating an 

entire AGD affected site.  Important with any form of bathing treatments, cages of 

Atlantic salmon need to be confined either by tarpaulin, cage skirt or else transferred 

to a vessel such as a well boat for treatment.  This imposes a handling effect, 

resulting in acute stress on the fish with the implications to water quality (see 

discussion above) and fish welfare (see discussion below).  Some treatments are 

likely to be relatively less stressful than other, although even a cage skirt (open at the 

bottom but enclosing the water at the surface of the cage) can have significant 

effects on water circulation, oxygenation and stress effects on the fish (Stein et al., 

2012).  Indeed other studies have suggested that the oxygenation of any treatment is 

likely to be a constraint to bath treating Atlantic salmon under commercial conditions 

(Treasurer et al., 2000). 

Current treatment practices are to either treat at cage-side or else to remove the 

cage (or fish) from the main production site to a designated treatment site.  In 

Australia, a country with extensive experience of this practice, cages are towed to a 

treatment barge prior to treatment.  This handling of fish means that feeding is 
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stopped 24h prior to scheduled treatment, and fish are not fed again until after 

treatment and replacement of the cage onto the production site.  In some cases this 

may represent a non-feeding period of over 48h with the associated loss of growth.  

The other implication of this treatment strategy is that typically one cage at a time is 

treated and then the clean cage is replaced alongside a potentially heavily infected 

cage.  The risk of cross contamination and a re-infection is therefore magnified.  

Indeed the epidemiology and infection risk associated with the movement of cages, 

treatment and use of fallowing have been explored (Douglas-Helders et al., 2004) 

and although clear benefits were seen by placing newly bathed fish onto virgin and 

partly fallowed sites, the occurrence of AGD was delayed and not prevented – 

subsequently this practice has been all but abandoned in Australia, citing the lack of 

non-AGD affected sites or available sites to allow fallowing to occur.  

 

3.2 Freshwater treatment of AGD 

In Australia, the treatment of choice for the control of AGD is freshwater bathing.  

This treatment was quickly identified as the primary control option in the early 1990s.  

Subsequently, the efficacy of such treatments was characterized (Parsons et al., 

2001a and b) and a demonstrated positive physiological effect on the fish shown 

(Powell et al., 2001).  The effects of treatment on re-infection showed that although 

gill lesions (hyperplastic patches) were removed, amoebic re-colonisation of the gill 

occurred quickly with amoeba numbers equalling pre-treatment levels in as few as 10 

days with the most aggressive infections at the height of the Tasmanian summer 

(Clark et al., 2003).  

 

The process of freshwater bathing involves the filling of a large plastic tarpaulin 

(approximately 1 ML) with water piped to the bathing site.  Under the tarpaulin is a 

clean net cage.  Fish to be treated are transferred (typically by air-lift pump) to the 

freshwater filled tarpaulin and maintained for 3-4 h with additional oxygenation.  

Oxygen levels are targeted at 120-150% air saturation.  Following the bathing period 

the tarpaulin is removed by winch and the fish fall into the awaiting cage.  The 

process takes approximately 1 working day to complete. 
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Amoebae isolated from the gills of AGD affected salmon (specific diagnostics for 

Paramoeba perurans were not available at the time) were used in a number of short-

term, in vitro bioassays that allowed determination of some of the key chemical 

characteristics that favoured survival or killed gill amoebae.  Isolated gill amoebae 

showed resilience to freshwater treatment where the Na+ concentration was 

increased, however, the effects of increased concentrations of Mg2+ and Ca2+ ions 

significantly promoted survival over 3 hours of freshwater exposure.  Even when Na+ 

concentrations were relatively high (250 mg L-1), low Ca2+ concentrations (10 mg L-1) 

were as effective as unionized freshwater after 3 hours of freshwater exposure 

(Powell and Clark, 2003).  This suggested that soft freshwater sources were more 

favourable for the control of AGD in bathing compared to hard water sources.  This 

was confirmed under field conditions where artificially softened freshwater (ion 

exchange with Na+) (Roberts and Powell, 2003a) and the selection of soft freshwater 

sources produced increased efficacy of bathing and a 113 degree day (13% increase 

in the inter-bath interval) delay in subsequent bathing (Powell et al., 2005).  Other 

approaches of removing Ca2+ from freshwater and seawater were also examined 

using the ionic chelator Calgon TTM although at effective concentrations (6 mg L-1 per 

mg L-1 of hardness) to soften hard water (225 mg L-1 CaCO3 equivalents) the 

resultant discharge of phosphate and cost would be prohibitive under commercial 

conditions (Powell et al., 2005). 

 

Dissolved organic carbon (in the form of humic and tannic acid) has been shown to 

enhance the efficacy of freshwater at killing Paramoebae (Green et al., 2005).  In 

combination with different concentrations of Ca2+, a combination of soft water with 

high concentrations of organic acids resulted in the best conditions for killing 

amoebae in freshwater both in vitro as well as in an experimental freshwater bath 

(Green et al., 2005).  The effects of DOC also resulted in the decrease in the number 

of hyperplastic gill lesions following the bath.  The mechanism by which this effect 

acts is unclear but it is possible that the organic acids (tannic and humic) resulted in 

chelation of divalent cations so enhancing the efficacy of the freshwater treatment.  

Alternatively, the organic acid load may have had a direct toxic effect on the 

amoebae (Green et al., 2005). 
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The effects of combining freshwater with oxidative disinfectants have been 

investigated with some limited success.  It was found that chloramine-T and 

hydrogen peroxide both enhanced the efficacy of freshwater baths, although the 

benefits were small (Powell and Clark, 2002).  However, the variability in treatment 

success may have been as a result of different water qualities.  Combined treatments 

offer the advantage of ensuring that amoebae are killed once removed from the gills 

of affected fish so reducing the chance of re-infection once the bath is ended. 

 

3.3 Oxidative disinfectants for AGD control in seawater 

Alternatives to freshwater bathing have included the investigation of a number of 

oxidative disinfectants.  In general, most oxidative disinfectants work through the 

release of reactive oxygen or chlorine species thus destabilizing or permeating cell 

membranes.  Two main oxidative disinfectants have been the focus of significant 

investigation for the control of AGD:  Chlorine-based Chloramine-T (n-sodium-n-

chloroparatoluenesulphonamide) and oxygen-based hydrogen peroxide (H2O2).   

Chloramine-T, hydrogen peroxide and chlorine dioxide were all toxic in vitro to 

isolated gill amoebae from AGD-affected salmon primarily Neoparamoeba 

pemaquidensis (Howard and Carson, 1993; Powell and Clark, 2002; 2003) and 

specifically hydrogen peroxide with Paramoeba perurans (Adams et al., 2012).  

Preliminary tests with fish suggested that AGD was reduced when added to enhance 

the efficacy of freshwater baths (Powell and Clark, 2002).   

 

In vitro and medium scale treatment investigations with chloramine-T demonstrated 

that chloramine-T was acutely toxic to isolated gill amoebae (Powell and Clark, 

2003).  In small scale field studies, exposure of AGD affected Atlantic salmon to 

chloramine-T at 10 mg L-1 for 1 hour in seawater were moderately successful with 

significant reductions in gill amoeba numbers (Harris et al., 2004; Harris et al., 2005).  

Furthermore, treatment of Chinook salmon (Onchorynchus tsawhytcha) smolts was 

also successful at removing gill amoebae with minimal adverse effects, although 

AGD in this species is not believed to be a significant health issue (Powell personal 

observations).  However, the toxicity of chloramine-T to Atlantic salmon smolt is 

enhanced in seawater and further enhanced when oxygen levels are increased to 
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200% air saturation (Powell and Harris, 2004).  Moreover, attempts to upscale 

chloramine-T treatment to commercial operations proved challenging with mixed 

results and have not been developed further (Powell personal observations). 

 

Hydrogen peroxide has been tested in salt water laboratory bath treatments of AGD 

affected Atlantic salmon smolts at 10 and 15oC with post-treatment survival 

dependent upon exposure duration.  Toxicity increased with exposure time at both 

temperatures at concentrations exceeding 1000 mg L-1.  However, total gill amoebae 

counts were not significantly reduced compared to untreated controls and the 

variability between fish was high (Powell et al., 2005).  More recently this approach 

has been re-examined suggestion that at 12oC hydrogen peroxide (1250 mg L-1) for 

15 min reduced the number of gill lesions (Adams et al., 2012).  However, as with the 

previous study (Powell et al., 2003) the results were variable with slightly longer 

durations of exposure resulted in a highly variable efficacy (Adams et al., 2012).  

Observations from hydrogen peroxide treatments in Norway against AGD indicate a 

similar result with the persistence of lesions and varied efficacy against controlling 

AGD (T.A. Mo unpublished report 2014). 

 

Oxidative disinfectants (such as chloramine-T and hydrogen peroxide) have a 

number of well documented patho-physiological effects on healthy and damaged gill 

tissue of salmonids in both fresh (Powell and Perry, 1995; 1997a, b and c) and 

marine conditions (Powell and Harris, 2004).  In general, the effects of acute 

oxidative disinfectant exposure include an acute congestion of the gill filament and 

central venous sinus, most typically as a result of an increased vascular pressure 

caused by elevated cardiac output or intra-branchial pressure increased due to 

adrenergic responses induced by the release of adrenalin and noradrenalin.  The gill 

lamellar epithelium is often either crenated or denuded, often associated with 

epithelial cell necrosis.  The consequences of this in freshwater is a net influx of 

water (and efflux of plasma electrolytes), increased vascular volume, haemolysis and 

eventual cardiovascular collapse due to increase vascular viscosity and ultimately 

haemostasis.  Under marine conditions, haemo-concentration occurs with an 

apparent efflux of water, and potential influx of Na+ and Cl-, an associated hyper-
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natriuremia and ultimately electrolytic imbalance resulting in death.  Sublethal effects 

of oxidative disinfectants result in permeablisation of epithelial cell membranes and 

trans-cellular efflux (freshwater) or potentially influx (seawater) of Na+ and Cl- ions.  

This process results in acid-base disturbances (Powell and Perry, 1997d;1998).  

These ionic disturbances are often manifest in hypertrophy of chloride and 

mitochondrial rich cells in the gill (Powell and Harris, 2004). 

 

4. Sea lice 

The issue of sea lice infestation of farmed Atlantic salmon (primarily by 

Lepeophtheirus salmonis in the Northern hemisphere and Caligus rogercresseyi in 

the Southern hemishere) has been a constant challenge for commercial farm 

production of the species for many decades.  The primary issue is that the salmon is 

infected by a free swimming phototactic nauplius stage that moults and attaches onto 

a host as the attached chalimus stage, after successive moults, the motile 

copepodite stages and adult stages move over the epithelial surface of the salmon 

grazing upon the skin and mucus.  The subsequent result is acute erosive lesions 

leading to osmoregualtory stress.  Although much has been discussed regarding the 

immune responses to infestation, control measures still rely mostly on chemical de 

lousing and disinfection to control the level of infestation of fish on commercial farms.  

 

4.1 Approaches to control of sea lice – practical limitations 

Sealice control under commercial farm conditions in some countries is highly 

regulated.  Typically the number of gravid female lice is the primary treatment trigger 

and the issue of surveillance and accurate enumeration has recently been in focus 

(Heuch et al., 2011; Revie et al., 2007).  Of particular importance, as with bathing fish 

for AGD treatments, cages of Atlantic salmon need to be confined either by tarpaulin, 

cage skirt or else transferred to a vessel such as a well boat for treatment.  The 

consequent handling effects result in acute stress on the fish (see discussion below) 

with implications for water quality (see discussion above).  Some treatments are likely 

to be relatively less stressful than other, although even a cage skirt as discussed 

above. 
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4.2 Freshwater treatment of sea lice 

Exposure of sea louse infested Atlantic salmon to salinities below 29 ppt results in 

the gradual loss of sea lice.  Lepeophtheirus salmonis is rapidly killed in freshwater 

(Connors et al., 2008), and the survival of free-swimming copepodids was severely 

compromised at salinities below 29 ppt, irrespective of their attachment to a host 

(Bricknell et al., 2006).  However, earlier work by Stone et al. indicated that short 

duration (3 h) bath exposure was likely ineffective treatment for controlling sea lice 

(Stone et al., 2002).  Little work has been undertaken with respect to commercial 

treatments for sea lice with freshwater where the water chemistry and its implications 

have been examined.  However, it should suffice that similar constraints of water 

quality and chemistry as those discussed above should remain valid.  

 

Recent studies to assess the potential for using freshwater to remove attached sea 

lice from infected Atlantic salmon under commercial conditions using well-boats have 

been undertaken.  Exposing lice infected salmon to freshwater in laboratory-scale 

tests resulted in a significant reduction of both mature male and female 

Lepeophtheirus salmonis after 3 h.  In parallel in vitro bioassays using freshwater, 

after 1 hour of exposure to freshwater, 10% of mature females but 90.9% of mature 

males were dead (P. Reynolds unpublished).  Further studies under commercial 

conditions using well-boats assess the potential for using freshwater under 

commercial-scale scenarios with initially a total biomass of 15 tonnes and 

subsequently 110 tonnes of fish were exposed to freshwater.  These studies showed 

that a significant biomass of Atlantic salmon (up to 110 T) could be successfully 

deloused with freshwater (Fig. 4). The reductions in attached stages recorded 

immediately after the fish were pumped from the cage and before exposure to 

freshwater for study two can be attributed to mechanical action (e.g. physical contact 

from crowding, contact with the inner surface of the pipes used to pump the fish and 

contact with the grading platform). The percentage reductions recorded for chalimus, 

pre-adult and mature female stages were 77%, 30% and 14% respectively, giving a 

total reduction for all stages of 39%. These data mirror previous observations where 

transferring fish from one cage to another or crowding the fish resulted in reduction of 

up to 40% of sea lice compared to pre-count levels of infestation. It appears that the 



16 
 

chalimus stages are more likely to be removed from salmon than the other later 

developed stages. This may be partially explained due to the site of attachment as 

pre-adults and particularly mature female lice seem to preferentially choose 

attachment sites on areas where they are subjected to less mechanical and/or 

environmental perturbations (behind the dorsal, pectoral and anal fins). It may also 

be partially attributed to the fact that the later developed stages are more robust and 

can withstand greater mechanical stressors compared to chalimus stages. 

 

During freshwater bathing treatments for sea lice, initial oxygen concentrations 

equivalent to air saturation of 124.0% were achieved at the start of the bath 

treatment, and declined to 84.0% at which point oxygen was added and levels 

increased to 101.0% quickly thereafter for the 3 h duration of the treatment. However, 

pH levels steadily decreased to 6.08 during the exposure period and CO2 

concentrations of between 16.0 and 17.0 mg L-1 at the end of the treatment. The 

recommended safe limits for CO2 used for the Norwegian production of Atlantic 

salmon smolts is 15 mg L−1 (Fivelstad, 2013) provided dissolved oxygen 

concentrations are high. However, constant fish respiration can raise carbon dioxide 

levels high enough to interfere with oxygen intake by fish, in addition to lowering the 

pH of the water. Maintaining a sufficient pH and minimising the pH effects of CO2 in 

solution requires buffering or neutralisation of the acidic protons.  Since many 

Norwegian freshwaters have low alkalinity (approximately 70% have less than 100 

µM Fig 1), a potential option to prevent fluctuations in pH is to add sodium hydroxide 

(NaOH) to neutralise the acidity. Available commercially as a 50% (by weight) 

saturated solution, it is commonly used to titrate the acidity in the water at smolt 

facilities which use recirculation systems to help maintain safe pH levels throughout 

production. Alternately, the addition of buffering agent such as calcium carbonate or 

hydroxide as a lime slurry could be used.   

 

Application of NaOH to maintain pH when freshwater treating a large biomass of 

salmon in a commercial well boat showed that initially there was a small decrease in 

pH in both wells once fish transfer had been complete and prior to the addition of 

NaOH. The addition of NaOH approximately I.5 h after the fish had been transferred 

http://en.wikipedia.org/wiki/Saturated_solution
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to both wells at a rate of 0.25 L h-1. The decline in pH slowed after the addition the 

decrease in pH continued however, despite increases in the rate at which NaOH was 

added.  Although the titration of the pH was affective under commercial conditions, 

further investigation is required to elucidate flow rates and how much to add to 

maintain safe levels throughout a desired treatment period of approximately three 

hours. 

 

4.3 Oxidative disinfectants for control of sea lice in seawater 

Among a number of chemical treatments for sealice (for example see reviews by 

Torrisen et al., 2013; Burridge et al., 2010; Robertson et al., 2009), hydrogen 

peroxide has been identified as a potential disinfectant (Toovey et al., 2000; 

Treasurer and Grant, 1997; Johnson et al., 1993). Primarily, hydrogen peroxide is 

believed to act by either killing the copepod directly through oxidation of cell 

membranes, or else causing it to detach from the skin surface (Torrisen et al., 2013).  

Although having a relatively narrow window of safety, treatments up to 1500 mg L-1 

for up to 20 min (depending upon temperature) are reported.  The challenge remains 

to introduce, distribute and mix sufficient quantities of chemical into a bath treatment 

and eliminate the residual peroxide following the treatment, to prevent overdosing the 

salmon.  Thus it is generally considered more effective against the motile stages of 

the parasite rather than the attached chalimus stages.  However, recently the 

success of using hydrogen peroxide has been questions with evidence of resistance 

developing in sea louse populations  Treasurer et al., 2000) and limited success of 

this treatment option with other species besides Lepeophtheirus salmonis such as 

against Caligus rogercresseyi in Chile (Bravo et al., 2010). 

 

5. Implications for fish welfare 

Atlantic salmon are a euryhaline species and post-smoltification exhibit a high 

capacity for ion and osmoregulation.  The transfer of AGD affected post-smolt 

salmon into freshwater results in an acute net efflux of Na+ and Cl- ions that peaks at 

2 h post-transfer and is quickly reduced by 3 h exposure (Roberts and Powell, 

2003b).  The net titrateable alkalinity flux was significant for both AGD affected and 

non-affected salmon with AGD affected fish having a larger net titrateable alkalinity 
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efflux (Roberts and Powell, 2003b).  Up to a gill score of 2 (according to the Taylor et 

al., 2009b criteria) ionic disturbances associated with AGD are relatively minor (Fig. 

4).  However, with more severe AGD, more severe disturbances occur with increases 

in blood sodium being pronounced (Table 1).  A hypo-osmotic challenge under these 

conditions, where ion-regulatory capacity of the gill may be compromised, may result 

in significant osmotic stress for the fish during treatment.  However, one of the 

favourable effects of freshwater bathing is the enhanced break-up of the hyperplastic 

gill lesions (Roberts and Powell, 2003a) and physiological disturbances caused by 

AGD including respiratory acidosis and accumulations of CO2 (Table 1) are reduced 

(Powell et al., 2001).  Additionally, hyperoxic freshwater bathing also reduced the 

systemic hypertension in AGD–affected Atlantic salmon (Powell et al., 2002). 

 

Despite acute short-term physiological effects of freshwater treatments for treating 

AGD and de lousing of sea lice there may be advantages compared to current 

chemical methods (e.g. H2O2) used in the industry at present. Results from blood 

analysis undertaken during a pilot-scale freshwater delousing study indicated that 

handling in freshwater resulted in minor physiological disturbances consistent with a 

stress response with an elevation in blood glucose, CO2 and reduction in blood pH 

(Table 2).  Further handling and replacement of fish back into seawater resulted in an 

increase in blood Na+ concentrations consistent with acute hyperosmolality stress.   

 

6. Conclusions 

Freshwater treatments of Atlantic salmon smolts affected by AGD and sea lice 

(although the beneficial effects are still under investigation) are effective and 

generally pose low risk to overall fish health with a widely accepted large margin of 

safety, despite some short term physiological effects.  However, there are a number 

of potential risks and large gaps in the knowledgebase surrounding bath treatments 

for this disease.  Despite the work carried out so far as presented in this review and 

summarized in a number of reports (Powell and Clark, 2002, Powell et al., 2005; 

Powell et al., 2007), the water characteristics of Norwegian freshwater sources have 

not been previously considered prior to undertaking bath treatments.  Similarly, the 

scale of Norwegian production and logistics of handling and treating large volumes of 
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fish has not been taken into account in attributing  best practice for freshwater or 

H2O2 bathing AGD and, to a limited extent, sea lice treatments.  In particular, the 

interactions between dissolved organic carbon (DOC) and particulate organic carbon 

(POC) and both divalent cations (e.g. Ca2+ and Mg2+) and metal ions such as Fe2+ 

Cu2+ and Al3+ have not been investigated with respect to the effects on Paramoeba 

perurans, efficacy of treatment and lesion resolution post-treatment and physiological 

effects in the fish.  Additionally, interactions between the water chemistry, effects of 

organic load, fish biomass, temperature, salinity, oxygenation status and treatment 

chemicals such as H2O2 are poorly understood.  Interactions between these 

parameters may account for the variation in efficacy of treatments and apparent 

toxicity often observed with oxidative disinfection.  In this respect it is imperative that 

these factors be investigated with respect to each other so leading to improvements 

in bath efficacy, treatment safety, and fish welfare. 

 

7. Recommendations 

1. Water sources for freshwater bathing target optimal water chemistry and 

quality (summarized in Table 3).  These parameters should include low Ca2+ 

and Na2+ content (characteristically soft waters) with a moderate pH optimally 

approximating 6.5.  The water source would benefit from a high dissolved 

organic carbon content although it is recognized that the interactions of metal 

ions, divalent base metal ions (e.g. Ca2+ and Mg2+) are unknown at pH values 

characteristic of bathing operations.  Water sources with high alkalinity should 

be targeted although these often are buffered mostly by CaCO3 and thus the 

risk is increases in the Ca2+ concentration.  Alternatives may include the use of 

other buffering/neutralizing agents added to the bath water (e.g. NaOH, 

Na2CO3, NaHCO3) although these have not been tested on a commercial 

scale.  The use of carbonate based buffers would require the use of an active 

degassing process to facilitate the stripping of CO2 produced in the buffering 

process.  

2. It is recommended that all water sources used for commercial bathing of 

Atlantic salmon should be analysed as close to the time of use (for bathing) for 

water chemistry characteristics.  Many of the historical analyses may be 
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changed over time depending upon catchment use, seasonal and annual 

fluctuations in rainfall etc. 

3. Aversive action with fresh water treatments are rarely required based upon the 

experiences in Tasmania although large drops in pH and oxygen saturation 

would be clear indicators of failed handling of fish during the treatment.  It 

should also be noted that the more severe the AGD score, the greater the risk 

of respiratory compromise in the fish and resultant treatment-related mortality. 

4. The continued investigation of water quality and chemistry parameters and 

their interactions in freshwater treatment baths to optimize treatment efficacy 

and identify constraints for the control of AGD.   

5. Use of existing information and the further investigation of water chemistry 

interactions in treatment efficacy to further develop an “industry best practice” 

for AGD treatments for the control of gill health on Norwegian sea farms. 

6. The incorporation of farm site and environmental data into best practice AGD 

treatment including preceding environmental characteristics (e.g. algal blooms, 

jellyfish, freshwater runoff, DOC, temperature, salinity etc). 

7. The up-skilling and further training of farm personnel in the diagnosis of AGD, 

scoring of gill lesions, handling of fish and monitoring of water quality and fish 

welfare during treatment baths. 

8. The development of novel, alternatives to freshwater bathing (e.g. In-feed 

treatments) that could be used in conjunction with topical treatment of the 

sustainable control of AGD. 
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Figure legends 

Figure 1.  Range (± min/max) of Ca2+ (A), Na+ (B), concentrations pH (C) , alkalinity 

(D), total organic carbon (TOC) (E) and total Al concentrations (F) in Norwegian fresh 

waters. Adapted from Kristensen et al. (2009). 

 

Figure 2. Gill bound aluminium concentrations (± 1 SD) with respect to salinity in 

Atlantic salmon. Adapted from Åtland et al. (2012). 

 

Figure 3.  Relationship between percentage of AGD lesioned gill filaments and 

plasma osmolality of Atlantic salmon over an 11 day AGD-challenge. (Pearson 

correlation coefficient  0.482, P value <0.01; y = 365.43 + x1.40, r2 = 0.230) 

 

Figure 4 Average number of chalimus, pre-adult, mature female stages and all 

counted stages of L. salmonis per fish recorded prior to treatment, immediately after 

pumping and after exposure to freshwater. Values represent means ± S.D. Mean 

values which do not share a letter were found to be significantly different by ANOVA 

and by Tukey`s multiple range test. 
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Fig 1 
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Fig 2. 
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Fig 3. 
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Fig 4. 
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Table 1.  Mean ± SEM with sample size (n) of caudal blood values for fork length (FL cm), mean gill score, blood Na+, K+,  

total CO2 content, glucose and HCO3
- (mM), hematocrit (%), pH and PCO2 (kPa) corrected for temperature (15oC) of Atlantic 

salmon smolts acutely affect by AGD (days post-infection, dpi) at 34 ppt salinity.  Superscripts indicate significant differences 

relative to controls. 

                
 (n) FL Score1  Na+ K+ TCO2 HCO3

- Glucose Hct pH  PCO2  
 
7 dpi (5) 28.7 3.60b  161.8ab 4.7 5.00a 3.75a 6.8  25.5 6.821a  0.769 
 
  ± 0.7 ± 0.20  ± 1.8 ± 0.4 ± 0.00 ± 0.22 ± 1.3  ± 1.4 ± 0.019 ± 0.010 
 
18 dpi (8) 29.4 4.75b  175.9b 4.5 6.25b 5.24b 5.9  25.5 6.865b  0.873 

 
± 0.7 ± 0.25  ± 2.4 ± 0.1 ±0.36 ± 0.26 ± 0.4  ± 2.2 ± 0.019 ± 0.024 

  
Control  (6) 29.5 0.00a  155.0a 4.4 5.17ab 3.57ab 5.4  26.7 6.742c  0.825 
 
  ± 0.9 ± 0.00  ± 2.0 ± 0.2 ± 0.17 ± 0.23 ± 0.2  ± 2.7 ± 0.015 ± 0.032 
1 based on Taylor et al. (2009) 
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Table 2.  Mean (± SEM) blood parameters as measured by iSTAT demonstrating the effects of a single handling (1x) after 15 

min and 1 h into a freshwater bath, or double handling (2x) where fish were transferred back to seawater after 15 min or 1 h in 

freshwater on adult marine Lepeophtheirus salmonis infested Atlantic salmon.  Values with differing superscripts indicate 

significant differences from pre- treatment values. 

Treatment 
Na+ 

mM 

K+ 

mM 

TCO2 

mM 

Glucose 

mg/L 

Hct 

% 
pH 

PCO2 

kPa 

HCO3
- 

mM 

Hb 

g/100mL 

Pre 155.1a 4.06 9.6 78.9a 26.9a 7.353a 1.094a 9.11 9.14 

 

(± 0.7) (± 0.24) (± 0.4) (± 2.2) (± 1.0) (± 0.033) (± 0.002) (± 0.37) 

 

(0.34) 

 

1h 1x handling  152.6a 3.56 10.6 97.4b 27.4a 7.213b 1.086b 9.72 9.30 

 

(0.6) (0.18) (0.9) (3.8) (0.9) (0.045) (0.003) (0.81) 

 

(0.30) 

 

1h 2xhandling  162.4b 4.16 10.8 96.6b 27.6a 7.202b 1.085b 9.94 9.42 

 

(2.5) (0.30) (0.8) (4.4) (1.9) (0.018) (0.001) (0.70) 

 

(0.63) 

 

15 min 1x 

handling 
158.6a 3.02 10.2 91.4b 31.6b 7.119b 1.080b 9.18 10.76 

 

(0.7) (0.37) (0.5) (3.0) (0.8) (0.019) (0.001) (0.38) 

 

(0.28) 

 

15 min 2x 

handling 
166.4b 4.24 9.0 89.0a 31.0a 7.145b 1.082b 8.14 10.54 

 

(1.3) (0.72) (0.7) (3.5) (0.8) (0.038) (0.002) (0.61) 

 

(0.27) 

 

ANOVA F 19.267 H 7.452 H 4.44 F 6.777 F 3.617 F 8.798 F 8.775 F 1.335 F 3.600 

df 4,29 4 4 4,29 4,29 4,29 4,29 4,29 4,29 

P value <0.001 0.114 0.350 <0.001 0.019 <0.001 <0.001 0.284 0.019 
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Table 3.  Recommended values and limits for water chemistry of freshwater baths 

for the treatment of AGD affected Atlantic salmon with gill scores < 31 and the 

percentile of Norwegian waters with the appropriate characteristics. Blank boxes 

mean no action can be expected to be taken.  

Parameters Prior to 
bathing 

%ile 
of  
waters 

During bathing Aversive 
action options 

Conductivity < 500 µS cm-1 0-100 < 1000 µS cm-1 Add low 
conductivity water 
to treatment 
Continue 
treatment 
monitoring closely 

pH 6.0-6.7 19-80 6.0-6.8 Increase buffer 
capacity if possible 
Continue 
treatment 
monitoring closely 
Terminate 
treatment 

ORP2 FW3 40-100 mV 
SW3 140-170 mV 

 < 350 mV4 Terminate 
treatment 
immediately 

TOC/DOC < 3 mg L-1 0-70 If possible sample for 
later analysis 

 

Ca2+ concentration < 10 mg L-1 0-100 If possible sample for 
later analysis 

 

Na2+ concentration < 10 mg L-1 0-90   

O2 saturation 90-110%  90-110% Increase oxygen 
input and 
solubilisation 

CO2 concentration < 5 mg L-1  < 25 mg L-1 Actively de-gas 
using compressed 
air 
Continue 
treatment 
monitoring closely 
Terminate 
treatment 

Water 
characteristics 

Freshwater < 5ppt 
salinity 

 Freshwater < 5ppt 
salinity 

 

1 The gill score is likely to have a direct effect upon the resultant mortality associated with a treatment 

bath.  With a higher gill score, the risks of respiratory compromise and cardiovascular collapse is 

increased. 

2 Recommended monitoring continuously when using H2O2 treatments as an indicator of oxidative 

toxicity.  This can be used in combination with Total Residual Oxidation measurements using 

spectrophotometric analysis. 

3 Values will vary between different water sources and decision s and actions should be dependent 

upon and relative to baseline values 

4 Critical value based upon data from Harris et al. (2004). 


	Forside Akseptert versjon Elsevier
	AGD treatment review Powell Kristensen Reynolds MPO 16.12.14 v3 (002)



