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Abstract 

Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose 

radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is 

still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize 

effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global 

transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and 

quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes 

(DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is 

acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were 

determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian 

ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker 

at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global 

transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, 

respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the 

majority of differences was dose-specific. No GO functions were identified at low or medium doses, but 

repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response 

to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity 

pathway analysis further showed that 15 mGy radiation affected DEGs associated with cellular signaling and 

immune response; 70 mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy 

production; and 280 mGy radiation affected pathways related to cell cycle regulation and DNA repair, 

mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this 

study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of 

oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common 

MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially 

indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma 

glucose displayed an apparent increase with increasing radiation doses, although the results were not 

significantly different from the control. These findings suggested that sublethal doses of gamma radiation may 

cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The 
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current study predicted multiple MoA for gamma radiation and may aid future impact assessment of 

environmental radioactivity in fish. 
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1. Introduction 

Due to the highly penetrative photons (gamma ray) and interactions (ionization and excitation) with water  

molecules, high-energy gamma radiation emitted from radionuclides such as cobalt-60 (60Co) may induce the 

formation of reactive free radicals and pose risk to living organisms. While the majority of toxicological 

studies has been performed to understand the health effects of gamma radiation on man and other mammals, 

relatively little is known about other environmentally important species, such as fish. Moreover, most of the 

current toxicity data have been generated based on high-dose radiation studies, which raises a question on 

whether knowledge from high-dose studies can be extrapolated to low-dose, or vice versa. The answer is likely 

to be negative, as the dose-response relationship usually appears to be non-linear and difficult to establish for 

low-dose radiation, potentially due to the dynamics between the compensatory mechanisms against 

radiation-caused damages in an organism. Therefore, more mechanistic studies with focus on the molecular 

and cellular responses are needed to better understand the low-dose effects of gamma radiation on 

non-mammalian species. 

Although not being as detailed for mammalian species, the biological effects of gamma radiation have been 

documented for fish species at different biological levels. At the individual level, gamma radiation may affect 

the survival, development, reproduction and behavior of fish (Sazykina and Kryshev, 2003; Geiger et al., 2006; 

Ocalewicz et al., 2009; Epperly et al., 2012; Rhee et al., 2012). At the cellular level, gamma radiation has been 

found to cause programmed cell death (Lyng et al., 2004), chromosomal aberrations and mutations (Ocalewicz 

et al., 2009; Ocalewicz et al., 2010). At the molecular level, gamma radiation has been widely recognized to 

induce free radical formation mainly through ionization and excitation of water molecules. Free radicals such 
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as reactive oxygen species (ROS) may subsequently lead to cellular oxidative stress, DNA damage and many 

downstream effects (Olsvik et al., 2010). Nuclear DNA damage has for a long time been thought as a major 

effect of gamma radiation, but it has now been realized that damage of mitochondrial DNA, disturbance of 

oxidative phosphorylation (OXPHOS) (O'Dowd et al., 2009; Kam and Banati, 2013), perturbations of genomic 

stability (Lorimore et al., 2003; Shimada and Shima, 2004) and bystander effects (O'Dowd et al., 2006; 

Mothersill et al., 2007; Salbu et al., 2008) are also highly relevant. Up to now, the underlying mechanisms of 

these effects have not been fully understood. 

Advanced genomic tools have brought new insights into the hazard assessment of environmental 

radionuclides and radioactivity. Toxicogenomics (OMICS) approaches such as RNA-sequencing, 

genome-wide DNA microarrays, proteomics and metabolomics in combination with rapidly developed 

bioinformatics solutions allow more in-depth studies on global molecular responses in an organism after 

exposure to environmental stressors. Such broad-content approaches have greatly facilitated the 

characterization potential modes of action (MoA) of a stressor (Roy et al., 2009). The OMICS tools have been 

widely employed to study the effects of gamma radiation on humans and other mammalian species (Nose et al., 

2013), but have not been used to the same degree in non-mammalian species such as fish (O'Dowd et al., 2009; 

Jaafar et al., 2013).   

Being more focused on the environmental relevance, the present study used Atlantic salmon (Salmo salar), a 

widely spread and commercially important fish species across Europe, as a model to study the short-term 

effects of low-dose external gamma radiation. Atlantic salmon were exposed to sublethal doses (15, 70 and 

280 mGy) of external gamma radiation emitted from a cobalt-60 (60Co) source for 48 h. The hepatic  

responses in fish were studied using 60,000-feature (60 k) custom oligonucleotide salmonid microarrays 

supported by targeted biostatistical and bioinformatics analyses. The objectives of this study were to: 1) 

identify short-term hepatic effects of gamma radiation at the transcriptional level; 2) characterize potential 

MoAs of gamma radiation in Atlantic salmon to inform future radiation studies. 

 

 

2 Materials and methods 

2.1 Exposure and sampling 
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The gamma irradiation experiment was conducted at the FIGARO experimental facility (Norderås, Norway) of 

Norwegian University of Life Sciences (NMBU, Ås, Norway). Atlantic salmon juveniles (parr) were 

maintained at the Fish Laboratory of NMBU and transported to the FIGARO irradiation facility 7 days prior to 

the exposure studies to allow sufficient acclimatization. Feeding stopped two days before the exposure to 

avoid potential alteration of metabolic rate in fish and change of water variables. External gamma radiation 

was emitted from a 60Co source. The radiation doses were controlled by distances from the 60Co source. For 

each treatment, six fish were exposed in a dark exposure chamber (30 L, fish loading approx. 3 g/L) supplied 

with circulated lake water (Maridalsvannet, Norway) and air pumps. Three gamma doses were tested during 

one exposure experiment, their total doses were 15 mGy (approx. 0.3 mGy/h, referred to as Low), 70 mGy 

(approx. 1.5 mGy/h, referred to as Medium) and 280 mGy (approx. 5.8 mGy/h, referred to as High). These 

gamma doses were considered to be sublethal doses in fish and environmentally relevant at contamination sites 

(UNSCEAR, 1996; Benova et al., 2006; Jaafar et al., 2013). 

After 48 h exposure, fish were immediately sacrificed by cephalic concussion. The morphology of test fish, 

such as skin color, mucus quality, gill shape and color were briefly checked. Blood samples were taken for 

measurement of plasma glucose levels using an i-STAT® portable analyzer (Abbott Point of Care Inc., 

Princeton, NJ, USA) with EC8+ cassette (Abbot, East Windsor, USA). Tissue samples were collected and 

snap-frozen in liquid nitrogen and stored at -80 oC until further analysis. The fish experiment was approved by 

the local representative of the Norwegian Animal Research Authority (NARA ID: 3026). All operations 

strictly followed the Norwegian Welfare Act and Research Animal Legislation. 

Exposure conditions, such as pH, temperature and conductivity of the test water were monitored throughout 

the experiment. Water samples were collected after the exposure to measure the concentrations of major 

cations (Ca, Mg, Na, K and Al), anions (NO3-, SO4
2- and Cl-) and total organic carbon (TOC), as described 

previously (Song et al., 2012). 

 

2.2 Microarray analysis 

Total RNA was isolated from 20-30 mg frozen liver using RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) 

as described previously (Song et al., 2012). The microarray gene expression analysis was performed according 

to Agilent’s standard protocol “One-Color Microarray-Based Gene Expression Analysis, version 6.5” using a 
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custom salmonid oligonucleotide (60-mer) microarray (Gene Expression Omnibus, GEO platform accession 

number: GPL18864) manufactured by Agilent (Agilent Technologies, Santa Clara, CA, USA). Four biological 

replicates per exposure dose and control were used for microarray analysis. 

Raw data extracted from microarray scan images (Feature Extraction software v10.7, Agilent Technologies) 

was corrected for background signal, flagged for low quality and missing features, normalized (quantile) and 

log2 transformed using GeneSpring GX v11.0 software (Agilent Technologies). Raw and normalized data have 

been deposited at GEO (accession number: GSE59035). Statistical determination of differentially expressed 

genes (DEGs) was performed using one-way analysis of variance (ANOVA). A fold change cut-off of 1.5 was 

applied to DEGs used for downstream analyses. Major patterns of global transcriptional response were 

visualized using k-means clustering implemented in GeneSpring (Agilent). To further differentiate dose-related 

DEGs, a Tukey HSD posthoc test was performed. 

A Cytoscape v2.8 (Smoot et al., 2011) application Bingo v2.4 (Maere et al., 2005) was used for functional 

enrichment of Gene Ontology (GO) functions. Significant enrichment of GOs was determined using a 

hypergeometric test followed by Benjamini–Hochberg false discovery rate (FDR) correction. Furthermore, 

Salmo salar DEGs were mapped to mammalian orthologs by a modified Inparanoid algorithm (Ostlund et al., 

2010) to perform gene network and pathway analyses in IPA (Ingenuity®Systems, www.ingenuity.com), as 

described previously (Song et al., in press). Venn diagram analysis was performed using Venny 

(bioinfogp.cnb.csic.es/tools/venny/index.html). Significant differences were considered at the p<0.05 level in all 

statistical tests. 

 

2.3 Quantitative rtPCR verification 

Twelve genes encoding proteins representative of important regulators in several pathways were verified by 

quantitative real-time reverse transcription polymerase chain reaction (qPCR). Briefly, a High Capacity cDNA 

Archive Kit (Applied Biosystems, Foster City, California, USA) was used to synthesize complementary DNA 

(cDNA) from 2 μg total RNA (6 biological replicates). Five ng cDNA template per replicate was amplified in 

a 20 μL reaction containing 400 nM forward/reverse primers (Invitrogen™,Carlsbad, California, USA) and 

PerfeCTa® SYBR® Green FastMix® (Quanta BioSciencesTM, Gaithersburg, MD, USA) on a BioRad  CFX 

384 platform (Bio-Rad Laboratories, Hercules, CA, USA) with 2 technical replicates. A web-based Primer3 

http://www.ingenuity.com/
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v0.4 program (frodo.wi.mit.edu/primer3) was used to design Salmo salar primer sequences (Table 1). Optimal 

annealing temperature was obtained prior to the formal analysis for each primer pair. Non-template controls 

(NTCs) and no-reverse-transcriptase controls (NRCs) were also included in the amplification and melting 

curves were determined for all samples. Standard curve was made based on 50, 10, 2 and 0.4 ng of pooled 

cDNA template from all samples. The relative starting quantity of cDNA template was calculated based on the 

standard curve, amplification efficiency and threshold cycle (Cq) value using the ΔCq implemented in CFX 

manager 3.1 data processing software (Bio-Rad). The calculated expression value was normalized to the 

geometric mean of two reference genes, 18S ribosomal RNA (18S) and translation elongation factor 1 alpha b 

(EF1Ab) using the ΔΔCq method. Fold change was calculated by comparing the normalized relative 

expression value to that in the control. All statistical analyses were then performed in Graphpad Prism v5.0 

(Graphpad Software, Inc., San Diego, CA, USA). Outliers were removed using the ROUT test implemented in 

the Graphpad software. One-way ANOVA and Tukey’s post-hoc tests were performed to determine differential 

gene expression between exposed and control groups. Data that failed to meet the assumption of normal 

distribution and equal variance were analysed using Kruskal-Wallis non-parametric test followed by a Dunn’s 

post-hoc test. A p-value of 0.05 was applied to all tests. 

 

Table 1. Primer sequences, Genbank accession numbers and annealing temperatures used for quantitative real-time rtPCR 

Gene 
Genbank 

accession 
Forward primer (5’-3’) Reverse primer (5’-3’) 

Annealing 

temp. (ºC) 

18S ribosomal RNA 

(18S) 
AJ427629 TGTGCCGCTAGAGGTGAAATT GCAAATGCTTTCGCTTTCG 59.1 

BCL2-associated X 

protein (BAX) 
EG801847 ATTGGAAATGAGCTGGATGG GCCGACAGGCAAAGTAGAAG 59.4 

Caspase 6A 

(CASP6A) 
DQ008068 TGAGCCACGGAGAGAACGA CCCACCAGGCTCTTACACTTG 64.5 

Cytochrome c oxidase 

subunit VIb 

polypeptide 1 

(COX6B1) 

BT125515 GACAATGCTTGGCACATACG TGTCAGCAGATGCAGAGTCC 59.1 

Cytochrome c-1 

(CYC1) 
BT057115 CAGGTGGTCTGTGCTGAAGA TTGAGAAGACCCCCATCAAG 60 

Translation elongation 

factor 1 alpha b 
AF321836 TGCCCCTCCAGGATGTCTAC CACGGCCCACAGGTACTG 59.1 

http://frodo.wi.mit.edu/primer3
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(EF1Ab) 

Growth arrest and 

DNA-damage-inducib

le gamma 

(GADD45G) 

EG905871 GAGAGCCGCAGTGTGTATGA CCTCCACAGGGTAATCCAGA 59.4 

Matrix 

metallopeptidase 23 

(MMP23) 

BT072316 GAGCACCATGATCTGGGAGT AAGCCTGCCAAAAAGAGACA 60 

Tumor protein TP53 

(P53) 
BT072559 ACAGGAGCGACTCGGACTAA GTCCGTCCCTATTGACTCCA 65 

Proliferating cell 

nuclear antigen 

(PCNA) 

BT046966 CAGGGATCCATCCTGAAGAA GTCCTCATTCCCAGCACACT 59.4 

Peroxiredoxin 1 

(PRDX1) 
BT047146 TTCTTCTTCTACCCGCTGGA CTGGTCCTCCTTCAGCACTC 60 

RAD51 recombinase 

(RAD51) 
NM_001140555 GGTCCAAAGAGCTGGACAAG ACGTCACTCCCAACAAGTCC 63.4 

Retinoblastoma 1 

(RB1) 
NM_001173615 CCATGTACGCCATATGCAAG TGCAGGATGTTCGTCTTCAG 62.5 

Copper-zinc 

superoxide dismutase 

(SOD) 

BG936553 CCACGTCCATGCCTTTGG TCAGCTGCTGCAGTCACGTT 61.6 

 

 

3 Results 

3.1 General exposure variables 

The test media had temperature of 10.1±0.4 oC, conductivity of 3.6±0.3 mS/m and pH of 7.1 throughout the 

experiment. No significant differences were found in TOC, ion or anion concentrations after exposure (Table 

2). No mortality or visual morphological changes were observed in the test fish after 48 h irradiation. Test fish 

had an average length of 12±0.3 cm and a weight of 15.4±0.8 g. No significant differences were found 

between fish sizes. The plasma glucose levels were 6.4±4.8 mM (Control), 7.0±6.4 mM (Low), 7.3±4.2 mM 

(Medium) and 7.8±5.8 mM (High) after 48 h exposure. An apparent increase of glucose concentration was 

observed, however, the changes were not found to be significantly different from the control with the  

statistical cutoff used. 
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Table 2. Variables in the test water after 48 h gamma radiation exposure. 

Treatment TOC (mg/l) Cl- (mg/l) NO3- (mg/l) SO4
2- (mg/l) Na (mg/l) Mg (mg/l) Al (µg/l) K (mg/l) Ca (mg/l) 

Control 5.16 1.99 0.15 2.59 1.87 0.60 92 0.96 3.10 

Low (15 mGy) 5.21 2.00 0.15 2.59 1.76 0.61 94 0.72 3.25 

Medium (70 mGy) 5.16 1.99 0.15 2.59 1.73 0.61 92 0.80 3.28 

High (280 mGy) 5.21 2.00 0.15 2.59 1.83 0.60 92 0.86 3.16 

 

3.2 Global transcriptional changes 

As many as 2241 gene transcripts were found to be differentially regulated (one-way ANOVA) across 

treatment groups compared to the control after exposure to gamma radiation. The DEGs were filtered by their 

expression level (fold change≥1.5) to minimize potential noise from marginally responsive genes. The 

remaining 1617 DEGs were then used for k-means clustering analysis to predict major response patterns. The 

k-means clustering revealed four major patterns of global transcriptional changes (Figure 1), in which the 

expression of approx. 38% DEGs increased with increasing the radiation dose (cluster 1), approx. 15% 

decreased with increasing the radiation dose (cluster 2). The remaining genes (cluster 3 and 4) had fluctuating 

response patterns from Low to High, representing roughly 15% and 32% of filtered DEGs, respectively. 
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Figure 1. K-means clustering of hepatic differentially expressed genes (DEGs) in Atlantic salmon (Salmo salar) 

after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. 

 

The ANOVA posthoc test identified that totally 222 (121 up-regulated, 101 down-regulated), 495 (259 up-, 

236 down-) and 909 (403 up-, 506 down-) DEGs were regulated by Low, Medium and High gamma radiation 

exposure, respectively. The number of DEGs generally increased with increasing radiation dose. The Venn 

diagram analysis (Figure 2) showed that only 22 up- and 12 down-regulated DEGs were commonly regulated 

by all gamma doses, whereas high numbers of DEGs were uniquely regulated by different gamma doses. The 

complete DEG list can be found in Appendices (Table A1). 
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Figure 2. Venn diagram analysis of hepatic differentially expressed genes (DEGs) in Atlantic salmon (Salmo 

salar) after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. 

 

3.3 Functional enrichment analysis 

The biological functions of DEGs were predicted first by linking genes to associated GO terms. The GO 

functional enrichment analysis showed that no significant enrichment was identified in Low or Medium 

gamma treatment, whereas 56 GO terms were found to be significantly overrepresented in the High gamma 

exposure group. Among these, 8 GOs were associated with up-regulated DEGs and 48 were associated with 

down-regulated DEGs. The overrepresented GOs were mainly involved in 6 biological process (BP) categories 

(Figure 3). The majority of overrepresented biological processes were related to down-regulated genes. 

Up-regulated DEGs by High gamma were also related to molecular functions (MF) such as nucleoside kinase 

activity and ligase activity. Down-regulated DEGs were associated with molecular functions such as 

macromolecule binding, nuclease activity, transferase activity, structural molecular activity, hydrolase activity, 

and affected cellular components (CC) such as protein complex, cytoplasm, Ribosome, chromosome and 

extracellular part. Completed list of overrepresented GOs can be found in Appendices (Table A2). 
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Figure 3. Major functional categories of hepatic overrepresented Gene Ontology (GO) biological processes 

that were regulated in Atlantic salmon (Salmo salar) after 48 h exposure to 280 mGy (total) gamma radiation. 

 

To utilize existing information on well-curated mammalian protein-protein interactions and pathways as a 

reference to understand the fish data, Salmo salar DEGs were mapped to mammalian orthologs. 

Approximately 57.4% (Low gamma), 56.9% (Medium gamma) and 59.7% (High gamma) DEGs were 

successfully mapped (see Appendices Table A3 for full list). Gene network analysis was conducted first to 

obtain an overview of gene clusters according to their functions (Figure 4). The results showed that the number 

and complexity of gene networks increased with increasing the gamma dose. Fish exposed to the Low gamma 

resulted in differential regulation of gene networks related to transportation of molecules, protein-protein 

communications and development, disorders of connective tissues and carbohydrate metabolic processes. Four 

major gene networks related to development and morphology, carbohydrate and lipid metabolism, cell 

signaling, gene expression and posttranslational modifications and hematological system were identified in 

fish exposed to Medium gamma. High gamma regulated six predominant gene networks functioning in 
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development, hereditary processes, cellular function and maintenance, neurological functions, cell signaling, 

hematological system and various metabolic processes. Functions such as development, carbohydrate 

metabolism and cell signaling were predicted to be commonly affected by different radiation doses. 

 

 

Figure 4. Top hepatic gene networks that were regulated in Atlantic salmon (Salmo salar) after 48 h exposure 

to 15, 70 and 280 mGy (total) gamma radiation. Major network functions (nodes) and common genes (next to 

edges) between different networks were presented. 

 

Enrichment of toxicity and canonical pathways were then determined to obtain more in-depth understanding 

of DEGs predicted to be involved in specific toxicological and biological processes. Venn diagram analysis 

(Figure 5) clearly showed that most of the toxicity pathways regulated were dependent on the gamma doses, 

with Low gamma affected inorganic phosphate homeostasis, Medium gamma modulated DEGs associated 

with the mitochondrial membrane potential, fatty acid metabolism, nuclear receptor signaling and hypoxia 

responses, and High gamma affected DEGS associated with DNA damage response, antioxidant response, 
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mitochondrial dysfunction and cell death. Two pathways related to cell cycle regulation and cardiovascular 

disorders were common between Medium and High gamma. No toxicity pathway was found to be commonly 

regulated by all radiation doses. Complete lists of toxicity pathways regulated by different radiation doses can 

be found in Appendices (Table A4). 

 

 

 

Figure 5. Venn diagram analysis of toxicity and canonical (in brackets) pathways that were affected in the liver 

of Atlantic salmon (Salmo salar) after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. Detailed 

lists of the toxicity pathways were also presented. 

 

The majority of the enriched canonical pathways were affected in a dose-dependent manner (Figure 5). 

Totally 17, 30 and 17 canonical pathways were uniquely regulated by Low, Medium and High gamma, 

respectively. Only clathrin-mediated endocytosis signaling pathway was found to be common for all 

treatments. Medium and High gamma treatments tended to have more common pathways (9 pathways) 

compared to only one pathway between Low and Medium (4-aminobutyrate degradation I). Although few 

similar pathways were identified across different exposure doses, these pathways grouped into a few higher 

functional categories, such as protein metabolism, nuclear receptor signaling, neurotransmitters and other 

nervous system signaling, intracellular and second messenger signaling, immune response, hormones 
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biosynthesis, energy production, DNA metabolism, cellular growth, proliferation and development, cell cycle 

regulation and DNA repair and cancer signaling. Low gamma mainly regulated DEGs in canonical pathways 

involved in the immune functions (e.g. eicosanoid signaling and prostanoid biosynthesis), energy-associated 

metabolic processes (e.g. 3-phosphoinositide degradation) and protein metabolism (e.g. histidine degradation 

III). Medium gamma mainly affected pathways related to immune response (e.g. role of NFAT in regulation of 

the immune response), cancer signaling (e.g. glioma signaling) and cell cycle regulation and DNA repair (e.g. 

mitotic roles of polo-like kinase). High gamma dose regulated DEGs associated with functions such as cell 

cycle regulation and DNA repair (e.g. P53 signaling), energy production (e.g. mitochondrial dysfunction) and 

immune response (e.g. antigen presentation pathway). A selection of ecotoxicologically relevant canonical 

pathways and associated DEGs was shown in Table 3. Complete lists of canonical pathways regulated by 

different radiation doses can be found in Appendices (Table A5).  

 

Table 3. A selection of potential ecotoxicologically relevant canonical pathways and supporting hepatic differentially expressed gene 

transcripts (DEGs) in Atlantic salmon (Salmo salar) after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. Up-regulated: ↑; 

down-regulated: ↓.  

Functional category Canonical Pathways p-value Ratio Supporting DEGsa 

15 mGy     

Cellular growth, proliferation and 

development 

Inhibition of matrix metalloproteases 1.07E-03 7.50E-02 MMP23B↑, MMP2↑, LRP1↑ 

Immune response 
Eicosanoid signaling 4.07E-02 2.47E-02 RARRES3↑, PTGDS↑ 

Prostanoid biosynthesis 4.57E-02 6.67E-02 PTGDS↑ 

70 mGy     

Immune response 

Role of NFAT in regulation of the 

immune response 

1.51E-02 3.02E-02 BLNK↑, PIK3R1↓, GNG2↓, 

MS4A2↓, GNG3↑, RCAN2↓ 

IL-8 signaling 2.24E-02 2.88E-02 ITGB2↓, PIK3R1↓, GNG2↓, 

RAC1↓, GNG3↑, IQGAP1↓ 

CTLA4 signaling in cytotoxic T 

lymphocytes 

2.29E-02 4.08E-02 PPP2R5D↑, PIK3R1↓, 

AP1B1↑, AP2A2↑ 

Neurotransmitters and other 

nervous system signaling 
GABA receptor signaling 2.19E-03 7.14E-02 

SLC6A11↑, GABARAP↑, 

AP1B1↑, AP2A2↑ 

Nuclear receptor signaling TR/RXR activation 1.74E-02 4.17E-02 
SLC2A1↑, PIK3R1↓, 

NCOA4↑, RCAN2↓ 

280 mGy     
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Cell cycle regulation and DNA 

repair 

P53 signaling 4.07E-03 7.29E-02 CASP6↑, RB1↓, CCND2↓, 

THBS1↑, RRM2B↓, 

CCND1↓, FAS↓ 

Role of BRCA1 in DNA damage 

response 

4.07E-02 6.15E-02 RB1↓, RBL2↓, FAM175A↓, 

BRCC3↑ 

Energy production Mitochondrial dysfunction 1.95E-02 4.17E-02 

NDUFA4↓, COX7A2↓, 

MAPK10↓, MT-CO3↓, 

PSENEN↓, NDUFB10↑, 

MAOA↓, COX6A2↓ 

Immune response 

Leukocyte extravasation signaling 2.88E-02 4.35E-02 ITGB2↓, MMP23B↑, CRKL↑, 

ACTN2↓, ACTB↑, SIPA1↑, 

CD44↓, MAPK10↓, RAC1↓ 

Antigen presentation pathway 4.57E-02 7.50E-02 HLA-B↓, HLA-DPB1↓, 

MR1↓ 

CXCR4 signaling 4.90E-02 4.12E-02 GNG2↓, GNB5↑, MAPK10↓, 

RAC1↓, LYN↓, GNAZ↓, 

MYL1↑ 

Common between 70 & 280 mGy     

Cell cycle regulation and DNA 

repair 

GADD45 signaling 8.71E-03 1.30E-01 CCND2↓, CCND1↓, CCNB1↓ 

Cell cycle: G1/S checkpoint regulation 1.10E-02 7.46E-02 RB1↓, RBL2↓, CCND2↓, 

RPL5↓, CCND1↓ 

Cyclins and cell cycle regulation 3.02E-02 5.56E-02 RB1↓, CCND2↓, PPP2R5D↑, 

CCND1↓, CCNB1↓ 

Energy production Fatty acid β-oxidation I 2.69E-02 6.67E-02 SLC27A2↑, SDS↑, HADHA↓ 

a Full descriptions of gene symbols can be found in Appendices (Table A3). 

b Data presented was from 280 mGy gamma radiation treatment. 

 

3.4 Quantitative qrtPCR verification 

A selection of genes encoding proteins involved in a few key toxicological functions, such as antioxidant 

defense (peroxiredoxin 1 (PRDX1) and copper-zinc superoxide dismutase (SOD)), cell cycle regulation and 

DNA repair (growth arrest and DNA-damage-inducible gamma (GADD45G), proliferating cell nuclear 

antigen (PCNA), retinoblastoma 1 (RB1), tumor protein TP53 (P53) and RAD51 recombinase (RAD51)), 

apoptosis (BCL2-associated X protein (BAX), caspase 6A (CASP6A)), mitochondrial electron transport chain 

(cytochrome c oxidase subunit VIb polypeptide 1 (COX6B1) and cytochrome c-1 (CYC1)) and extracellular 

matrix degradation (matrix metallopeptidase 23 (MMP23)). Among these, six DEGs (CASP6A, SOD, PRDX1, 
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MMP23, CYC1 and RB1) were verified to be significantly affected by different gamma doses using qPCR 

(Figure 6), although slight differences in both magnitude of expression and statistical significance were 

observed for some of the treatment groups (e.g. PRDX1 and MMP23 in 15 mGy gamma treatment). Four 

genes (P53, GADD45G, COX6B1 and BAX) were identified by qPCR, but not in the microarray analysis, to be 

significantly affected. Some differences in response patterns were also observed between the two types of gene 

expression (of P53 and BAX). Two genes (PCNA and RAD51) were not identified to be significantly expressed 

by either microarray or qPCR, but still had similar response patterns (i.e. magnitude and direction of 

regulation). 
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Figure 6. A comparison of hepatic gene expression responses in Atlantic salmon (Salmo salar) after 48 h 

exposure to 15, 70 and 280 mGy (total) gamma radiation measured by microarray (N=4) and quantitative 

qrtPCR (N=4-6). * Denotes significant difference from the corresponding control.  

 

4. Discussion 

Fish were generally considered to be fairly resistant to radiation compared to other vertebrate species (Ulsh et 

al., 2003). Although little toxicity data on gamma radiation aree available for Atlantic salmon so far, reports on 

other fish species such as Danio rerio (Jaafar et al., 2013) or Poecilia reticulate (Benova et al., 2006) showed 

that the acute 50% lethal dose (LD50, 4-24 h) of gamma radiation could be much higher (10-31 Gy) than the 

test doses (0.015-0.28 Gy) used in the current study. The plasma glucose level, which is usually considered to 

be a general stress parameter, was slightly increased with increasing gamma doses. However, this increase was 

not statistically significant. The glucose level in salmon was generally within the upper range expected for 

non-stressed fish (Kroglund et al., 2001). Although all test gamma doses in the present study were sublethal 

and considered to be relatively low, dramatic dose-related stress responses at the transcriptional level were still 

observed. These changes indicated that gene expressions could be used as sensitive endpoints to evaluate the 

effect of radiation at environmentally realistic exposure levels. To better interpret the gene expression data for 

non-model fish species such as Atlantic salmon, the current study mainly employed an ortholog mapping 

approach to link salmon DEGs towards well-characterized human and mammalian toxicological knowledge. 

Although limitations such as loss of information during ortholog mapping and differences in toxicological 

functions between fish and mammals may limit the value of this approach for certain toxicological responses, 

information on several responses to gamma radiation may still be derived for generating hypothesis on which 

MoAs are the most relevant in fish. Since fish were exposed to radiation only for a short term (48 h), the 

current transcriptomic data likely reflected a balance between stress-induced negative signaling pathways and 

activated hepatic defense mechanisms in salmon. 

 

4.1 Transcriptional responses to 15 mGy radiation 

Based on the gene network analysis, as low as 15 mGy gamma radiation may affect genes encoding proteins 

involved in several transport, developmental, signal transduction and metabolic processes. Pathway analysis 
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further showed a few toxicologically relevant canonical pathways associated with extracellular communication 

and inflammatory response such as inhibition of matrix metalloproteases (MMPs) and eicosanoid signaling 

were differentially regulated. The matrix metalloproteases (MMPs), which can usually be activated in 

extracellular space by environmental stressors such as X-ray (150 Gy/h, Araya et al., 2001), gamma radiation 

(289 Gy/h, Park et al., 2006) and metals (Cammarota et al., 2006), may be involved in various signaling 

processes such as cell growth, differentiation, migration, proliferation, polarization, release of apoptotic 

ligands, chemokine/cytokine-induced inflammation and carcinogenesis in mammalian species (van Lint and 

Libert, 2007; Hojilla et al., 2008; Tsang et al., 2010; Naba et al., 2012). The regulation of MMP may be at the 

transcription level, enzyme activation level or dynamic inhibition of enzymatic activity by tissue inhibitors of 

metalloproteinases (TIMPs) (Mauviel et al., 1993; Ries and Petrides, 1995). Since no TIMPs were found to be 

induced (data not shown), it was likely that the MMP functions were activated after radiation exposure. This 

was supported by the transcriptional up-regulation of key genes such as MMP23B, MMP2 and  the gene 

enoding low density lipoprotein receptor-related protein 1 (LRP1) in this pathway. The toxicological role of 

MMP activation has not been well-characterized in fish yet, but it has been shown in several types of human 

and mammalian cells that the expression of MMP genes or enzymes such as MMP2 was elevated after 

radiation exposure (Sawaya et al., 1994; Zhao et al., 1999; Zhao et al., 2000; Araya et al., 2001). The MOA for 

MMP activation by radiation was probably due to the ability of ROS to act as messenger molecules to 

influence the normal signal transduction (Belkhiri et al., 1997; Siwik et al., 2001; Zhao et al., 2004), or due to 

the radiation-induced chemokine signaling during acute inflammatory response (Chadzinska et al., 2008; 

Castillo-Briceno et al., 2010). The latter was also supported by the differential regulation of eicosanoid 

signaling pathway, which plays major roles in signal transductions for mediating complex biological functions 

such as inflammation, vascular permeability, allergic reactions and induction of carcinogenesis (Candido and 

Hagemann, 2013; Claudiano Gda et al., 2013).  

 

4.2 Transcriptional responses to 70 mGy radiation 

More complex gene networks were found in the 70 mGy gamma exposed fish compared to that in the 15 

mGy gamma group. Clusters of DEGs co-functioning in the organ development, morphology, carbohydrate 

and lipid metabolism, transcriptional regulation and cellular signal transduction were successfully 
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characterized using mammalian protein-protein interactions as a reference. Specific biological functions 

affected by Medium gamma were further revealed by pathway analyses. The enriched pathways were mainly 

related to mitochondrial functions and DNA repair processes. 

The mitochondrion has been considered as an important target of ionizing radiation toxicity. The causal 

relationship between radiation exposure and mitochondrial dysfunction has been well-documented for 

mammalian species (Kam and Banati, 2013). A number of pathways related to the reduction of mitochondrial 

membrane potential were affected by the 70 mGy gamma exposure in the present study. Supporting DEGs in 

these pathways such as oxidation regulator gene encoding CDGSH iron sulfur domain 1 protein (CISD1) and 

non-selective cation channel regulator gene transient receptor potential cation channel subfamily V member 1 

(TRPV1) were found to be repressed after exposure to medium gamma. It has been widely accepted that 

dissipation of mitochondrial membrane potential and subsequent uncoupling of oxidative phosphorylation may 

lead to the loss of aerobic energy supply or even cell death (Joshi and Bakowska, 2011). Reduced 

mitochondrial membrane potential has also been reported in other fish species, such as rainbow trout 

(Onchorhynchus mykiss), after exposed to 0.5 and 5 Gy gamma radiation (O'Dowd et al., 2006). Two potential 

mechanisms may be involved in the disturbance of mitochondrial transmembrane potential by gamma 

radiation. It is likely that gamma radiation-induced ROS generation may cause damages to the mitochondrial 

inner membrane and ion channel proteins (Strassle et al., 1987; Leanza et al., 2014), thus leading to the loss of 

membrane functions and reduced membrane potential. Another mechanism may be a potential compensatory 

action to control the endogenous ROS production in the mitochondrial electron transport chain (ETC). Recent 

studies suggested that self-uncoupling (reduction of membrane potential) processes may be triggered by excess 

ROS in the mitochondrion in order to reduce further ROS formation through redox reactions in the ETC 

(Mailloux and Harper, 2011; Shabalina, 2011; Mailloux and Harper, 2012). In addition to the loss of 

mitochondrial membrane potential, the enrichment of a toxicity pathway related to the fatty acid metabolism 

may also provide some clue on the perturbation of mitochondrial energetic functions by gamma radiation. A 

few DEGs in this pathway were found to play key roles in the fatty acid beta-oxidation, potentially indicating 

elevated energy demand in fish in response to radiation stress. 

Another type of transcriptional responses to 70 mGy gamma was predicted to be related to the cell cycle 

regulation and DNA repair. Canonical pathways that served in the cell cycle checkpoint functions, such as 
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mitotic roles of polo-like kinase, cyclins and cell cycle regulation, cell cycle: G1/S checkpoint and GADD45 

signaling were found to be affected. A few down-regulated DEGs were found to be commonly present in these 

pathways, such as genes encoding cyclin-dependent kinase 1 (CDK1) and cyclin B1 (CCNB1). Provided that 

the transcriptional changes are reflected in the protein activity changes, this indicates hampered progression of 

mitosis and potential activation of DNA repair (Clarke and Allan, 2009; Zhang et al., 2011). Based on these 

findings, it can be deduced that DNA damage may have occurred after 48 h exposure to 70 mGy gamma 

radiation. DNA damage has been considered as a primary MoA of ionizing radiation. Previous studies have 

revealed that both direct DNA damage through ionization of DNA molecules and indirect damage through 

ROS may take place following radiation exposure (Jarvis and Knowles, 2003; Simon et al., 2011; Guo et al., 

2013). It has also been suggested that ROS may also be involved in various biological processes as messenger 

molecules and directly stimulate the mitogenic pathways, regulate the CDKs and phosphorylation of RB in 

G1-phase, and control the S-phase entry directly in order to activate DNA repair mechanisms and maintain 

genomic stability (Burhans and Heintz, 2009). 

 

4.3 Transcriptional responses to 280 mGy radiation 

The global transcriptional changes after 280 mGy gamma radiation exposure seemed to be more complex 

compared to those in the lower gamma dose treatments. Gene Ontology-based functional analysis revealed a 

few cellular components related to DEGs, such as protein complex, ribosome and chromosome. Potential 

interactions of radiation with macromolecules were further shown by enriched GO molecular functions, such 

as macromolecule binding, nuclease activity, transferase activity, structural molecular activity and hydrolase 

activity. These transcriptional changes may be a consequence of direct effect of radiation on macromolecular 

structures which subsequently changes the functions of these molecules, or indirectly through ROS induced 

oxidative stress which damaged the molecules. Ortholog-based approaches further identified pathways related 

to DEGs regulated by 280 mGy gamma. Although multiple pathways were found to be enriched, they may still 

be grouped into a few functional categories, such as macromolecule metabolism, oxidative stress response, cell 

cycle regulation and DNA repair, energy production and metabolism and immune response. A few important 

functions such as oxidative stress response were identified by both GO and pathway analysis. Interestingly, 

DEGs associated with oxidative stress response were found to be mainly repressed by gamma radiation (e.g. 
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peroxiredoxin-1), indicating that antioxidant defense may be reduced after radiation exposure. The reason for 

this was not clear, but previous studies have suggested that excessive oxidative stress or cross-talks of 

signaling pathways may be linked to the reduction of antioxidant defense activities (Srinivasan et al., 2007; 

Liu et al., 2008; Ahmad et al., 2013). It has also been reported that apoptosis in murine hepatocytes may be 

involved in the cleavage of antioxidant enzymes (Franklin et al., 2003). These evidences may provide some 

hints on the potential repression of antioxidant genes after radiation exposure. 

Besides pathways involved in the cell cycle control which has been observed in the 70 mGy gamma 

treatment, the predicted activation of tumor protein P53 signaling pathway by 280 mGy gamma radiation may 

provide another evidence to support the potential DNA damage caused by gamma radiation. The P53 gene has 

been considered as an exposure biomarker of ionizing radiation and may act as an upstream regulator for a 

number of downstream toxicological functions, such as cell cycle arrest, DNA single- and double-strand break 

repair, apoptosis and protein degradation (Schwartz and Rotter, 1998). Although P53 was not significantly 

regulated when considering the microarray data, it was found to be differentially regulated by both Low and 

High gamma treatments using qPCR. Similar findings on the induction of P53 gene has been observed in 

Atlantic salmon exposed to 75 mGy gamma radiation for 5 h (Olsvik et al., 2010). As direct downstream 

targets of P53, genes encoding proteins that regulate anti-angiogenesis (e.g. thrombospondin 1 (TSP1)) (Zhou 

et al., 2009), apoptosis (e.g. tumor necrosis factor receptor superfamily member 6 (FAS), BAX and CASP6) 

(Embree-Ku et al., 2002), cell cycle regulation (e.g. GADD45 and RB1) (Amundson et al., 1998) were also 

found to be differentially expressed (Figure 7-A). The repression of DEGs linked to cell cycle regulation may 

either indicate reduced cell progression or abnormal regulations of DNA damage checkpoints in the cell cycle, 

which may potentially lead to insufficient or even wrongly repaired DNA following DNA damage. When 

focusing on the P53-dependent apoptosis pathways, interesting patterns of response were observed. Genes that 

play important roles in the extrinsic (death receptor) apoptotic signaling (e.g. genes encoding Fas cell surface 

death receptor (Fas)) and intrinsic (mitochondrial) apoptosis signaling protein (BAX) were found to be 

down-regulated after High gamma dose exposure, whereas the downstream effector caspase, the caspase 6A 

gene was up-regulated. It seemed that apoptosis was potentially induced, however, not through major signaling 

pathways (i.e. intrinsic and extrinsic apoptosis). The transcriptional induction of the gene encoding caspase 6 
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by gamma radiation has also been observed previously in Atlantic salmon after 5 h exposure to 75 mGy 

gamma radiation (Olsvik et al., 2010). 

 

 

Figure 7. Canonical pathways that were affected by 280 mGy gamma radiation. A. Tumor protein P53 

signaling pathway; B. Mitochondrial dysfunction pathway with focus on electron transport chain (ETC). 

Colored molecules are differentially expressed gene transcripts (DEGs) identified in the present study. Red: 

up-regulated; Green: down-regulated (Modified from Ingenuity Pathway Analysis 

www.ingenuity.com/products/ipa). Complete descriptions of gene symbols can be found in Appendices (Table 

A3). 

 

Changes of gene expression in the mitochondrion were also observed in fish exposed to 280 mGy radiation 

(Figure 7B). Several DEGs involved in mitochondrial ETC complex I such as genes enoding NADH 

dehydrogenase 1 alpha subcomplex 4 (NDUFA4), complex IV such as, cytochrome c oxidase subunit 3 

(COX3), cytochrome c oxidase subunit VIa (COX6A) and cytochrome c oxidase subunit VIIa (COX7A), and 

complex V such as ATP5I were found to be repressed by radiation. No DEGs related to ETC complex II and 

http://www.ingenuity.com/products/ipa
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III were identified. The suppressive action of ionizing radiation on ETC activity and associated ATP synthesis 

has been observed in a number of mammalian species (reviewed in Sweet et al., 2012), whereas knowledge on 

fish species is still limited. A recent study on rainbow trout reported the regulation of ETC complex II and III 

enzymes, and genes such as those encoding cytochrome c subunit Vb (CCVb), cytochrome c oxidase I (COX1), 

ATPase subunit 6 (ATP6) and NADH dehydrogenase subunit 1 (ND1) were affected by as low as 0.1 Gy 

gamma radiation (O'Dowd et al., 2009). The mechanisms underlying the down-regulation of ETC genes after 

High gamma exposure may be similar to that discussed earlier for Medium gamma treatment. 

Immune functions may have also been affected by High gamma treatment in the present study, as 5 

immune-related canonical pathways were found to be significantly enriched. Among these, the antigen 

presentation pathway may be an important one, as the antigen presentation is important for development of 

both innate and adaptive immunity (Watts, 2004). A few DEGs enriched in this pathway, including genes 

encoding major histocompatibility complex class I B (HLA-B), major histocompatibility complex class II DP 

beta 1 (HLA-DPB1), major histocompatibility complex class I-related (MR1) proteins were found to be 

down-regulated after the exposure. The repression of antigen presentation has been shown in Atlantic salmon 

under disease conditions (Fast et al., 2005; Young et al., 2008). In mammals, a study on nitric oxide radicals 

showed that the antigen presentation was inhibited similarly to that mediated by ROS in A20 mouse B 

lymphoma cells (Lemaire et al., 2009). Another study reported that ethanol-induced oxidative stress 

suppressed the generation of peptides for antigen presentation in human VL-17A cells (Osna et al., 2007). The 

repression of antigen presentation has also been considered to contribute to the immunodeficiency diseases in 

human (Hampton and Stanton, 2010). 

The suppressive actions of gamma radiation on the immune functions have been observed in rainbow trout 

(Knowles, 1992) and zebrafish (Traver et al., 2004), however, the underlying mechanisms have not been fully 

understood yet. One possible mechanism may be that under radiation-induced oxidative stress, the immune 

activity was reduced by certain compensatory mechanisms, in order to control the production of excess ROS 

from the immune cells, such as the macrophages (Warnatsch et al., 2013). It has also been suggested that free 

radicals such as ROS and reactive nitrogen species (RNS) may regulate the immune response by acting as 

signal molecules (Pani et al., 2000; Al-Huseini et al., 2013; Gostner et al., 2013). 
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4.4 Potential toxicological mechanisms and future directions 

Based on the hepatic transcriptional responses, the toxicological mechanisms of gamma radiation at sublethal 

doses may be deduced (Figure 8). Potential MoAs of gamma radiation may possibly include the induction of 

oxidative stress, DNA damage and uncoupling of oxidative phosphorylation. These MoAs may lead to diverse 

downstream responses such as macromolecular oxidation and degradation (e.g. protein ubiquitination 

pathway), immune responses, cell cycle regulation and DNA repair (e.g. p53 signaling pathway), reduction of 

ATP production and activation of apoptosis. Potential cancer signaling may also be activated as a result of 

DNA based on mammalian models, but whether this is also the case in fish still needs to be further 

investigated.  

 

 

Figure 8. Putative toxicological mechanisms of low-dose gamma radiation in the liver of Atlantic salmon 

(Salmo salar) after short-term exposure. 

 

5 Conclusions 
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To conclude, the present hepatic transcriptional study successfully characterized predicted key stress responses 

in Atlantic salmon at the molecular level after short-term exposure to sublethal doses of gamma radiation. 

Dose-dependent transcriptional changes were identified and their functions predicted. Potential modes of 

action of gamma radiation, such as induction of oxidative stress, DNA damage and uncoupling of oxidative 

phosphorylation were proposed and diverse downstream responses were linked to these MoAs. This study was 

not able to directly link the molecular responses to adversity at higher organismal levels due to the short 

exposure duration and low exposure levels. However, the current findings have substantially enriched the 

understanding of acute stress responses in fish exposed to environmentally relevant doses of gamma radiation 

and served as a preliminary approach for generating hypotheses. Further research will be focused on 

development of adverse outcome pathway (AOP) by linking the molecular initiating events caused by gamma 

radiation to adverse outcomes at the individual and population levels, Successful implementation of such 

conceptual framework is envisioned to facilitate the hazard and risk assessment for environmental 

radioactivity in the future. 
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Appendices 

Table A1. Differentially expressed genes (DEGs) that were regulated in the liver of Atlantic salmon (Salmo 

salar) after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. 

 

Table A2. Overrepresented Gene Ontology (GOs) functions that were regulated in the liver of Atlantic salmon 

(Salmo salar) after 48 h exposure to 280 mGy (total) gamma radiation. 

 

Table A3. Mapped mammalian orthologs of differentially expressed genes (DEGs) that were regulated in the 

liver of Atlantic salmon (Salmo salar) after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. 

 

Table A4. Toxicity pathways that were significantly affected in the liver of Atlantic salmon (Salmo salar) after 

48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. 

 

Table A5. Canonical pathways that were significantly affected in the liver of Atlantic salmon (Salmo salar) 

after 48 h exposure to 15, 70 and 280 mGy (total) gamma radiation. 
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