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Abstract 

Northern landscapes accumulate carbon in vegetation and soils while rivers transport significant 

amounts of land-derived carbon to coastal areas. Here, we quantify carbon sources and sinks in main 

ecosystems (forests, peatlands, mountains, agricultural areas, lakes) in Norway for 1990-2008, and 

compare riverine carbon transport with terrestrial carbon accumulation in Norway’s four major 

discharge areas. Mean annual carbon accumulation (6.0 ± 0.9 Tg C; 19 g C m-2) in terrestrial 

ecosystems balanced 40% of national greenhouse gas emissions. The area-normalized terrestrial sink 

strength declined in the following order (in g C m-2 yr-1): tree biomass (40±3) >peatlands (19±15) 

>forest soils (9±1) >>lakes (2±1) >mountains (0.5±0.3), while agricultural soils were sources of 

carbon (-36±74). The most precise estimate in the carbon balance was for tree biomass, because of the 

underlying forest inventory data. Poor data on land management and soil type in agricultural soils, and 

on (former) drainage and peatland type resulted in high uncertainty in carbon loss and uptake estimates 

in agricultural soils and peatlands, which impacted the uncertainty in total terrestrial carbon 

accumulation. Also, carbon losses from disturbance in organic soil types were poorly constrained. 

Riverine coastal inputs of land-derived organic carbon (OC) were 1.0 ± 0.1 Tg C yr-1 (3.0 g C m-2 yr-1), 

with highest area-specific riverine export in western (4.5 g C m-2 yr-1) and lowest (1.7 g C m-2 yr-1) in 

subarctic Norway. In west and middle Norway, river OC export was approximately equal to carbon 

accumulation in soils and wetlands, while it was 50% of soil and wetland carbon accumulation in 

southeast and subarctic Norway. Lateral aquatic transport of carbon is not explicitly accounted for in 

forest soil carbon accumulation estimates, although aquatic fluxes represent a climate-dependent 

carbon loss from soil carbon pools. The lack of methods that adequately account for lateral fluxes in 

carbon balances adds considerable uncertainty to soil carbon sink estimates. Climate warming and 

associated changes in precipitation may result in substantial alterations of terrestrial and aquatic 

carbon fluxes, with uncertain implications for the terrestrial carbon sink of northern landscapes.  

 

Keywords: carbon balance; aquatic carbon transport; drainage basins; terrestrial carbon sink; forest 

biomass; forest soil model; river; peatland; lake; agriculture; uncertainty; boreal landscape; subarctic 

landscape
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Introduction 

Terrestrial ecosystems play an important role in mitigating climate change by absorbing a substantial 

part of global fossil fuel emissions. The size and location of the terrestrial CO2 sink are under debate 

while its future strength is uncertain (Schimel 2007). A global carbon balance showed that the land 

sink between 2000 and 2006 was 2.7 Pg C yr-1 (Canadell et al. 2007). This was similar to the global 

carbon uptake in forest of 2.5 Pg C yr-1 estimated by Pan et al. (2011), although Canadell et al. (2007) 

estimated the land sink as the residual of the balance of CO2 emissions from fossil fuels and land use 

change, and atmospheric and oceanic CO2 uptake. A more recent analysis suggests that carbon uptake 

in land and ocean is not diminishing, while mechanisms and locations responsible for carbon uptake 

need better identification (Ballantyne et al. 2012). 

Very often, land and oceans are treated separately in analyses of (global) carbon budgets. 

Aquatic systems, if considered at all, have often been described as part of the terrestrial landscape 

rather than as conduits and active processors of carbon between land and ocean (Battin et al. 2009). 

Recent estimates of aquatic systems as channels for carbon processing and transport indicate that 

losses of land-derived carbon from surface waters from CO2 evasion and sedimentation could be in the 

same order of magnitude as net carbon fluxes between atmosphere and land, i.e. 0.9 to 2.0 Pg C yr-1 

(Cole et al. 2007; Tranvik et al. 2009).  

A recent estimate of the European carbon budget was corrected for lateral fluxes of carbon, 

including riverine transport and international transport of wood products, where the size of the lateral 

transport was similar to total carbon uptake in forests (Ciais et al. 2008). Riverine carbon export 

equalled approximately 50% of the soil carbon sink in European forest (Luyssaert et al. 2010). The 

implications of a sizable export of aquatic carbon for the terrestrial carbon sink are not immediately 

obvious. Positive relations between precipitation and catchment dissolved organic carbon (DOC) 

export (Raike et al. 2012), and between precipitation and soil carbon density (Post et al. 1982) are 

well-documented, and could imply that wetter climates promote both riverine carbon export and soil 

carbon accumulation. Soil carbon models usually do not explicitly take vertical and lateral transport of 

carbon into account but consider soil carbon accumulation primarily as a function of litter 

decomposition influenced by chemical composition and temperature (Liski et al. 2005; Sitch et al. 
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2003; White et al. 2000; Ågren et al. 2007b) although there are exceptions (Kleja et al. 2008; 

Michalzik et al. 2003).  

Regional scale carbon balances where both terrestrial and aquatic carbon fluxes were 

estimated include the 3025 km2 forested Öreälven catchment (Jonsson et al. 2007), the 4000 km2 

subarctic Lake Torneträsk catchment (Christensen et al. 2007) in northern Sweden, and the 6400 km2 

Northern Highlands Lake District in the northern US (Buffam et al. 2011). Here, terrestrially fixed 

carbon was estimated based on eddy covariance techniques that quantify net ecosystem exchange 

(NEE) of carbon, and thus do not differentiate between carbon uptake in soils and biomass. In such 

cases, the correction of net ecosystem carbon uptake with aquatic export is straightforward (Randerson 

et al. 2002), and the terrestrial carbon sink was reduced by 6 to 19% when aquatic carbon export was 

included. However, none of these studies quantified the soil carbon sink, and thus no insights in the 

possible role of aquatic carbon export for soil carbon sequestration were provided. Climate factors – 

temperature, precipitation - that drive soil carbon accumulation (Post et al. 1982) also drive lateral 

flows of carbon (Hope et al. 1994), and climatic effects on aquatic carbon export may counteract or 

balance climatic effects on soil carbon sequestration.  

  Regional carbon balances in northern landscapes are determined to a large extent by the 

presence of forest, but also peatlands, mountains, lake sediments and agricultural lands can contribute 

significantly to carbon uptake and losses at the regional scale (Kortelainen et al. 2004; Maljanen et al. 

2010; Yu 2012). Here, we aim to estimate a carbon balance for Norway between 1990 and 2008, 

taking into account all major ecosystems (forests, peatlands, mountains, lakes, agricultural lands), and 

include all key terrestrial and aquatic carbon fluxes and their uncertainties. Secondly, we aim to 

evaluate the relative importance of terrestrial and aquatic carbon fluxes along climatic and productivity 

gradients under a uniform and consistent framework by comparing these in Norway’s four main 

drainage areas. A comparison of terrestrial and aquatic fluxes will contribute to a better understanding 

of terrestrial and aquatic linkages in the carbon cycle and to further integration of aquatic carbon 

fluxes in estimations of terrestrial carbon accumulation.  
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Materials and methods 

Study area  

Mainland Norway (excluding the arctic islands Svalbard and Jan Mayen) has a surface area of 324,000  

km2, where the main land cover types in declining order of area are mountains, forest, peatlands, 

surface waters and agricultural areas (Table 1, Figure 1). Less than 2% of the land area in Norway is 

developed, i.e. roads and buildings. Because of its elongation northwards and the mountainous areas in 

the south, Norway has strong climate and associated vegetation gradients from maritime mild 

temperate in the south (nemoral vegetation zone) and southwest to continental subarctic in inland 

valleys (boreal vegetation zone) to polar tundra above the treeline and subarctic climate furthest north 

(alpine vegetation zone) (Moen 1987). The four main drainage areas of Norway are Skagerrak in the 

southeast, the North Sea in the southwest, the Norwegian Sea in middle Norway, and the Barents Sea 

in the north.  

 

Calculation method and uncertainty analysis 

For the terrestrial ecosystems, a carbon balance was calculated for the different land cover categories 

and summed to give the total (equation 1 in Table 3). For forests, carbon uptake was calculated by 

region and then summed to all forested area. Regions were delineated according to county, climate and 

data availability (see below). For all other land cover categories, carbon uptake was not differentiated 

according to region. Aquatic organic carbon (OC) fluxes were calculated according to drainage area 

and then summed for Norway. In the comparison of terrestrial and aquatic fluxes in each drainage 

basin, forest carbon fluxes were summed according to the drainage areas to which they belonged. 

Some drainage basins divided a forest region in two, and here the forest carbon fluxes attributed to 

each drainage basin by assuming area-normalized carbon uptake (Table 1).  

Uncertainties in the carbon balance of Norway and its components were calculated in two 

steps. First, uncertainties in a specific carbon flux were calculated by considering sources of error in 

the individual variables included in the equations (Table 3). Second, these uncertainties were used to 

calculate total uncertainties in the carbon balance for forest, and for all of Norway. A normal 

distribution was attributed to each component as default, expressed as relative standard errors, except 
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where specified (see below). Each constituent of the carbon balance was either a product of variables 

and/or a sum of variables. Where constituents of the carbon balance had normal distributions, we used 

the following rules to calculate uncertainty in products or sums of variables, as recommended in IPCC 

guidelines for greenhouse gas inventories (IPCC 2006): Uncertainties in products were calculated as 

the root of the squared sum of relative uncertainties in the variables, while uncertainties in sums were 

calculated as the root of the squared sum of absolute uncertainties. For calculations of uncertainty with 

other error distributions, and for all of Norway, we used a Monte Carlo method with the Excel add-on 

Crystall Ball (Oracle Crystall Ball, Fusion Edition, release 11.1.2.0.00).  

 

Forest biomass  

The method and data for the calculation of the forest carbon balance are described in (De Wit et al. 

2006). In short, data from the National Forest Inventory (NFI) and municipal statistics of commercial 

round wood removals provide standing living biomass and harvested volume, respectively, which in 

turn are used to calculate litter inputs for a soil model.   

Forested Norway was divided into eight regions taking into account differences in climate 

(mean annual temperature, input variable to the soil model) and data availability (Table 1). The forest 

carbon balance was calculated by subtracting carbon pools in 1990 from carbon pools in 2008 

(Equation 2 in Table 3). Regions 1 to 6 are below the coniferous forest limit, with data collected in a 

uniform design, in three repeated samplings, for the period 1990 to 2008 (Tomter et al. 2010). In 

region 7 (northernmost county of Finnmark) and 8 (forest above the coniferous forest limit in region 1 

to 6), data collection started in 2005. Living biomass (above- and belowground) in region 1 to 6 and 8 

was calculated with single tree allometric equations for Norway spruce, Scots pine and deciduous trees 

(mostly birch) (Marklund 1988; Petersson & Ståhl 2006) (Equation 3 in Table 3). Biomass in region 7 

was calculated by converting growing stock with biomass expansion factors (Lehtonen et al. 2004) 

(Equation 4 in Table 3). The growing stock in 2008 in region 7 was 15.0 million m3, distributed as 

30% pine-dominated forest and 70% birch-dominated forest (S. Tomter, Norwegian Forest and 

Landscape Institute, pers. comm). Forest birch biomass in 1990 in region 7 and 8 was constructed 

using the estimated 11% increase in birch biomass growth between 1990 and 2008 in 50% of region 7 
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(Tommervik et al. 2009). Biomass in pine forest in 1990 in region 7 was calculated using 2006 

biomass estimate, assuming a constant annual increment of 1.3% and natural mortality of 15% 

between 1990 and 2008 (S. Tomter, pers. comm). Biomass and annual increment  in 1990 and 2008 in 

region 8 were estimated using the biomass estimate from 2006 ( based on 4 years of the 5-year 

inventory cycle (2005-2008)), and assuming a constant annual increment between 1990 and 2008 

while taking into account natural mortality (20% for coniferous, 25% for birch: S. Tomter, , pers. 

comm).  

Ground vegetation biomass (bryophytes, lichens, herbs and grasses and dwarf shrubs) and litter 

production was estimated for each NFI plot using empirical models relating aboveground ground 

vegetation biomass to vegetation type and stand age (Muukkonen & Mäkipää 2006) (Equation 5 in 

Table 3). Belowground biomass was estimated as a fixed proportion of aboveground biomass and 

biomass turnover factors were associated with all above- and belowground biomass components 

(Peltoniemi et al. 2004).  

 For mountain forest ground vegetation biomass, a time series for 1990 to 2008 was constructed 

using the same procedure as for growing stock, assuming that the temporal development for ground 

vegetation biomass was similar as for stem volume. Because of missing NFI data in region 7, we used 

the relative temporal change in ground vegetation biomass in birch forest reported for 50% of region 7 

(Tommervik et al. 2009). 

Uncertainty in the variables in the equations for carbon pools were based on reported 

uncertainty where available and otherwise on expert judgement. Uncertainty in the conversion factors 

(CF) was calculated from the standard deviations in the conversion factors reported for each biomass 

component (Lehtonen et al. 2004; Marklund 1988). Uncertainty for the whole tree biomass was 

calculated by mass-weighing each biomass compartment to the whole tree, resulting in 2.2%, 1.7% 

and 3.0% for pine, spruce and birch respectively. Standard deviations in the CF for biomass 

components in ground vegetation were based on those reported for the ground vegetation model 

parameters (Muukkonen & Mäkipää 2006), resulting in 18%, 23% and 34% for pine, spruce and birch 

forest respectively. Uncertainty in forest and ground vegetation biomass in each region was weighted 

according to proportion of dominating vegetation type.  
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Uncertainty in measurements of diameter and height in individual trees in the Austrian NFI, 

which uses similar methods as the Norwegian NFI, was found to be 1% and 3% for coniferous trees, 

respectively, resulting in an uncertainty of 11% for volume of individual trees (Berger et al. 2014). 

The authors concluded that uncertainty in volume of individual trees were negligible for stock 

estimates of nationwide assessments. We set the uncertainty related to volume estimates for region 1 

to 6, and for region 8 in 2008, at a maximum of 1%. We assume that these uncertainties were threefold 

larger (3%) for the 1990 input values in region 8, where measurements were not available. For region 

7, biomass in 2008 was estimated from regional volume estimates where uncertainty is estimated to be 

ca 5% (S. Tomter, pers. comm). Similar to biomass in region 8 in 1990, we assume a threefold 

increase in uncertainty for the 1990 biomass in region 8. Uncertainty in stand age is substantially 

larger than in volume, but data on the uncertainty were not available. We assumed a 10% uncertainty 

in all cases except for 1990 and 2008 for region 7, and for 1990 in region 8 in 1990 where we set 

uncertainty at 25%. 

 

Forest soils 

The forest soil carbon sink in each region was estimated using the Yasso model (Liski et al. 2005), 

using annual litter flow and mean annual temperature as inputs. Yasso is designed to process data 

derived from forest inventories and simulates the forest soil carbon stock down to 1 m depth on a 

yearly time step (Liski et al. 2005). The balance between litter inputs and decomposition (the only 

process responsible for carbon loss from soil organic matter (SOM) in Yasso) drives soil carbon 

accumulation. Litter flow is divided in non-woody (foliage and fine roots), fine woody (branches, 

coarse roots, bark) and coarse woody (stem and stumps) litter. Three SOM compartments are 

simulated, i.e. undecomposed, quickly decomposable and slowly decomposable SOM. Decomposition 

and transition of OM from one OM compartment to the next is described by process rates. 

Temperature sensitivity and litter quality dependency of process rates were calibrated on litter bag 

studies with widely varying litter quality and under varying climate. Process rates were calibrated to 

give a correct soil carbon pool for a forest stand in Sweden, where key ecosystem carbon pools and 
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fluxes were measured and used as input to Yasso (Liski et al. 2005). We used the standard parameters 

in Yasso for spruce, pine and birch litter.  

Annual litter flows were calculated as the sum of litter from living biomass, ground 

vegetation, natural mortality and harvest residues. Turnover factors (species-specific, for each biomass 

compartment) for living biomass are given in De Wit et al. (2006). Natural mortality was estimated as 

a fixed percentage of annual increment (region 1 to 6: 6% and 10% , region 8: 20% and 25%, in 

coniferous and deciduous forest, respectively), as in De Wit et al. (2006). Unrecovered fellings were 

calculated as 6% and 10% of the volume of the commercial round wood removals of coniferous and 

deciduous trees, respectively, as in De Wit et al. (2006). Harvest residues were estimated by 

subtracting ‘biomass associated with fellings’ from biomass of stem and bark.  

A steady state soil carbon pool in 1990 (i.e. litter inputs equal decomposition carbon losses) 

was not likely given the estimation of an active, non-steady state soil carbon pool for southeast 

Norway in 1990 in De Wit et al. (2006). This agrees with the reasoning from Liski et al. (2006) and 

Ågren et al. (2007b) where an increased growing stock is associated with increased litter input, which 

– given a constant climate – results in a positive SOM accumulation rate. We estimated the initial soil 

carbon pool by reducing the estimated steady state soil carbon pool in 1990, with the percentage 

difference in 1990 soil pool calculated using litter input time series starting in 1960. The litter input 

series was calculated from national NFI statistics, which document an increase in national growing 

stock since 1919 (Granhus et al. 2012) (see (Supplementary information (SI 1)). The 1990 soil carbon 

pools was calculated using the litter inputs time series starting in 1960, and a steady-state 1990 soil 

carbon pool was calculated using the 1990 litter inputs in the time series. The %-difference between 

the (non-steady state) soil carbon pool and the steady state soil in 1990 was assumed to indicate the 

non-steady state forest soil carbon pool in all regions, and was 79%, 72% and 60% in spruce-

dominated, pine-dominated and birch-dominated forest, respectively.  

The uncertainty of the soil carbon sink was related to litter flow inputs, decomposition rates 

and initialization. The uncertainties in these components are difficult to quantify but they are 

considerably higher than uncertainties in growing stock estimates, as these are based on systematic, 

large-scale measurements in the NFI. Thus, we choose to set high uncertainty intervals for the 
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components where little quantitative information was available. Uncertainty in harvest residues, 

natural losses and ground vegetation biomass (Peltoniemi et al. 2006) were set at 25%, 30% and 25% 

respectively. Uncertainty in litter from standing biomass was set at 25% (non-woody litter), 15% (fine 

woody litter) and 10% (coarse woody litter), in agreement with the associated increasing uncertainty in 

the allometric equations (Marklund 1988). By region, this resulted in an uncertainty of 11 to 20% in 

litter inputs. Uncertainty in decomposition rates was set at 10%, which is within uncertainty intervals 

given by Liski et al. (2005). The uncertainty related to the initialization was set at 25% (De Wit et al. 

2006).  

 

Peatlands 

Uptake of carbon in peatlands in Norway was calculated separately for drained and undisturbed 

peatlands. Undisturbed peatland were separated into boreal and subarctic bogs. Peatland carbon 

accumulation rates in undisturbed peatlands and carbon losses from disturbed peatlands were taken 

from literature and multiplied with area for their respective peatland type (Equation 6 in Table 3).  

Peatland area and type have not been assessed in great detail in Norway. The Norwegian 

Forest Inventory supplies a number of 4.7% of treeless peatlands (>30 cm organic layer) while Moen 

et al. (2011) assessed that circa 8% of Norway is covered by peatlands (>30 cm organic layer), 

including cultivated and drained peatlands, forest on organic soils (>30 cm organic layer), and wooded 

mire (Table 2). The areas defined as ‘peatlands’ by Moen thus belong partly to other land cover types 

than the NFI classification of ‘peatlands’. Circa 15-30% of all peatlands has been drained for 

cultivation and forest growth in the 20th century, most actively until the 1960s (Johansen 1997). This 

practice was less common in treeless peatlands than in forests, suggesting that drainage of treeless 

peatlands was at the lower end of the indicated interval of 15-30%. We use the lower end of the 

interval, i.e. 15%, to calculate area of drained peatlands (170 km2) in Norway except for Finnmark 

(subarctic Norway). In Finnmark, we assume that no draining occurred due to low population and land 

use pressures.   

The dominating type of peatlands at lower elevation in Norway are bogs (acidic, and nutrient-

poor, mostly rain-water fed, and deeper), while fens (more alkaline, fed by groundwater, shallower) 
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are more common at higher elevation and latitude (A. Moen, NTNU, pers.comm.). A field-survey 

based estimate for mean depth of Norwegian boreal peatlands is 1.7 m (A. Moen, NTNU, pers. 

comm), higher than the mean estimate of boreal and subarctic peatlands in Fennoscandia of 1.1 m, 

given by Gorham (1991). In southeast and middle Norway, the dominating peatlands are typical raised 

bogs, an ombrotrophic peatland type (Moen et al. 2011). Atlantic raised bogs (blanket bogs) are found 

at the westernmost coast of western and northern Norway. Their limited surface area does not justify a 

separate treatment in our approach. In northern Norway, arctic-alpine shallow fens dominate the 

peatlands, with relatively low contents of organic matter and considerable mixing with mineral parent 

material (Moen & Øien 2011).  

To estimate carbon accumulation rates for Norwegian peatlands, we used published data on 

measured carbon balances from representative undisturbed boreal and subarctic peatlands (Table 4). 

Only a few full carbon balances for northern peatlands exist (i.e. Nilsson et al. (2008), Roulet et al. 

(2007), Olefeldt et al. (2012)) where the net ecosystem carbon balance (NECB) is calculated as the 

sum of net ecosystem exchange (NEE) corrected for CH4 emissions and DOC export (Yu 2012). 

Several other studies (i.e. Sagerfors et al. (2008), Lund et al. (2007), Aurela et al. (2007), Aurela et al. 

(2009), Aurela et al. (2004) ) measured only NEE and we chose to estimate CH4 emissions and DOC 

export for these ecosystems in order to extend the basis for a robust estimate of carbon accumulation 

rates for Norwegian peatlands. A separate rate was estimated for subarctic peatlands as these appear to 

be less productive and have lower carbon stores (Lund et al. 2010; Turunen et al. 2002). Methane 

emissions were estimated by attributing measured rates to those sites for which they were most 

representative. The DOC export was estimated by calculating discharge for each site by correcting 

precipitation for evapotranspiration, and multiplying discharge by a default DOC concentration (i.e. 

the ratio of DOC export per mm discharge from the studies with the full carbon balance). The ratios 

were attributed to those sites for which they were most representative, while the uncertainties in the 

rates were derived from the full carbon balances (see notes under Table 4).  

For drained peatlands, a longer-term estimate of losses of 30 g C m-2 yr-1 was given by 

Armentano and Menges (1986), between the IPCC mean emission factors for boreal and temperate 

drained forest land of 39 and 26 g C m-2 yr-1, respectively (IPCC 2014). We set the relative uncertainty 
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equal to the peat accumulation rate in undisturbed peatlands. Losses from cultivated peatlands are 

treated under the ‘agricultural areas’.  

 

Agricultural areas 

Carbon emissions from agricultural soils depend on soil and management type (Maljanen et al. 2010). 

65% of all agricultural land in Norway is temporary or permanent grassland and the remainder is 

arable land (primarily cereal and oil seed crops, and potatoes). Approximately 70% of the grasslands is 

fully cultivated (including plowing) while the remainder is surface-cultivated (Rognstad & Steinset 

2012). Agricultural areas in Norway have been classified into mineral and organic soil types, which 

cover 10.18 and 0.83 thousand km2, respectively (Grønlund et al. 2008b). Combined statistics on soil 

type and land use are not available. We assume that cultivation of arable crops (35% of all agricultural 

land) is restricted to mineral soil types and distribute the remaining 65% grasslands proportionally 

over the remaining mineral and organic soil types (Table 5).  

Carbon emissions from cultivated soils are highly variable. We use the carbon emission factor 

(590 ±290 g C m-2 yr-1) for cultivated boreal drained inland organic grassland soils in the IPCC 

Wetlands Supplement (IPCC 2014). Conversion from tillage to no-tillage management usually reduces 

carbon emission rates from agricultural soils (West & Post 2002). Paustian et al. (2000) showed an up 

to two times longer residence of SOM under no-till compared with intensive tillage. Based on this, we 

assume that carbon emissions from the surface-cultivated grasslands on organic soils are 50% of the 

carbon emissions from fully cultivated grassland soils. For mineral soils, we do not differentiate 

according to cultivation practice because of lacking land-use specific carbon emission factors. A 

model study by Andren et al. (2008) indicated that mineral soil types were close to balance in Swedish 

agriculture, and we set the carbon loss rate for mineral soils to zero. The uncertainty in the loss rate for 

mineral soils was assumed to be proportional to the uncertainty in the loss rates for organic soils, and 

was calculated as the ratio of mineral and organic soil density multiplied by the uncertainty in the loss 

rate for fully cultivated organic grassland soils (Table 5). Mineral and organic agricultural soil types in 

Norway have estimated mean soil carbon densities of 15 and 56 kg m-2 (Grønlund et al. 2008b). 
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Mean annual change in soil carbon storage in cultivated soils was calculated by cultivation 

type and soil type and summed (Equation 7 in Table 3). Changes in biomass were not considered, as 

agricultural crops and grass cultivated in Norway are not considered long-term sinks of carbon. 

 

Mountains 

Mountain areas were defined as high elevation areas with little or no vegetation, consisting of four 

NFI land cover types, i.e. other wooded land (OWL) (circa 10% of the total), bare rock and shallow 

soils, , wooded mire and Calluna heath (Table 2). Few data are available for carbon pools and changes 

therein in mountainous regions in Norway. NFI statistics provided growing stock per region for OWL 

between 2005 and 2008, i.e. <0.5% (region 1-3, 6), ~1% (region 4, 5) and 5% (region 8) of forest 

growing stock. Increased vegetation cover in mountainous areas occurs as a consequence of reduced 

summer farming and grazing pressure (Bryn 2008), suggesting in increase in biomass. Tree biomass in 

mountainous regions were estimated on the NFI statistics shown above, while ground vegetation 

biomass was assumed to be similar to tree biomass (mosses, bushes and shrubs are a common form of 

mountain vegetation in the tundra ecotone, see for instance Tommervik et al. (2009)). Biomass 

increase was estimated assuming a similar %-increase as forest biomass in region 7 (northern 

Norway), i.e. 0.01%, with an uncertainty interval of 50% (Equation 8 in Table 2). Changes in soil 

organic matter were considered as too uncertain to allow a meaningful contribution to the calculated 

carbon balance. 

 

Lake sedimentation 

No nation-wide data on lake carbon sediments and sedimentation rates exist for Norway. We applied a 

Finnish model for lake carbon sediment pools (Kortelainen et al. 2004), developed for Finnish lakes in 

the Nordic Lake survey database sampled in 1995 (Henriksen et al. 1998). Here, the lake sediment 

carbon pool is quantitatively related to lake area, % agricultural area, and concentrations of dissolved 

total iron and dissolved nitrate. The Nordic lake database includes lakes from Finland, Sweden and 

Norway; selected using stratified random sampling and thus considered representative for the Nordic 

countries. Data collection with regard to catchment, lake and water chemistry was uniform across the 
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survey. Finland and Norway have similar climate, vegetation and geology suggesting that the relations 

found for Finland may also apply to Norway. We used the model to estimate sediments in circa 1000 

Norwegian lakes, resulting in a mean lake sediment carbon density of 17.8±8.2 kg C m-2. The 

estimated annual lake carbon sedimentation rates was 1.8 g C m-2 lake yr-1, assuming a linear 

development of the lake sediment stocks since the last Ice Age (10 000 years ago). Uncertainty in lake 

sediment pools and sedimentation rates was set at 50%, i.e. roughly the standard deviation of the lake 

sediment pools (Equation 9 in Table 2).  

 

Aquatic carbon fluxes  

Aquatic fluxes of carbon were separated into riverine transport of total organic carbon (TOC) and 

dissolved inorganic carbon (DIC), and in evasion of CO2 from lakes and rivers.  

• TOC transport 

Riverine transport of TOC were estimated based on water chemistry and discharge from 46 major river 

outlets in Norway, monitored under the RID (Riverine Inputs and Direct Discharges) programme 

(OSPAR 2013; Skarbøvik et al. 2013) (Table 1, Table 6, Figure 1). The monitored river catchments 

cover 48% of Norway. Three drainage areas extend into Sweden, Finland and Russia. Carbon fluxes 

were corrected for this by assuming constant areal export coefficients and constant relative 

uncertainty. 

The availability of water chemistry and discharge depended on river size. In the 10 largest 

rivers, water was sampled at monthly intervals while discharge was measured (1999-2008). In 36 

smaller rivers, water was sampled annually between 1999 and 2003 and quarterly between 2004 and 

2008, while discharge was modelled with the spatially distributed version of the hydrological HBV-

model (Beldring et al. 2003). Concentrations of TOC were assumed to be equal to dissolved organic 

carbon (DOC). Concentrations of phytoplankton in Norwegian rivers are generally considered to be 

low because of low nutrient levels (Skarbøvik et al. 2009). The particulate fraction is small – on 

average, DOC in the largest rivers constitutes >95% of TOC (Austnes, unpublished data). In other 

Nordic studies of surface waters, DOC is more than 90% of TOC (Kortelainen et al. 2006; Mattsson et 

al. 2005) 
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For each river, annual flow-weighted concentrations of TOC (FWC TOC) for the years 1999-

2008 were calculated by dividing annual TOC export with annual discharge. Annual TOC export was 

summed from daily TOC export, calculated by multiplying daily discharge by daily TOC 

concentration. Daily TOC concentrations were linear interpolations of measured TOC. Mean annual 

FWC TOC and associated uncertainty was calculated for each river as the average and standard 

deviation of annual FWC TOC for 1999-2008. For each drainage area, a catchment area-weighted 

mean FWC TOC was calculated based on the individual rivers, and multiplied by mean annual 

discharge (1990-2008) to obtain riverine TOC export (1990-2008) for the entire drainage area 

(Equation 10 in Table 2). Uncertainty in river TOC export was calculated using the standard 

deviations of area-weighted mean FWC TOC and mean annual discharge. Total riverine TOC 

transport for Norway was obtained by summing per drainage area. 

• CO2 evasion 

CO2 evasion was estimated separately for lakes and rivers. For lakes, CO2 evasion rates were 

calculated the 1000 Norwegian lakes in the Nordic lake survey (Henriksen et al. 1998). The rates were 

calculated using the equation describing flux of CO2 over lake surfaces given in Jonsson et al. (2007), 

with the gas exchange velocity (k) applied in Humborg et al. (2010) (2 cm hr-1), CO2water from the 

TOC-pCO2 relationship (GLM model) for Norwegian lakes (Larsen et al. 2011) and Henry’s law, and 

CO2eq calculated using Henry’s law, a pCO2air of 360 µatm and a water temperature of 8°C. Details on 

the  methodology is found in Cole and Caraco (1998). Estimating pCO2 from DOC has been done 

elsewhere (Humborg et al. 2010; Rantakari & Kortelainen 2008; Sobek et al. 2003; Worrall & Burt 

2005). Similar to Humborg et al. (2010), median CO2 evasion rate in five lake size categories (0-0.1, 

0.1-1, 1-10, 10-100 and >100) was calculated (30.9, 28.8, 27.2, 26.7 and 27.7 g C m-2 yr-2, 

respectively) and multiplied by the total area for each lake category, to give total lake CO2 evasion. 

There was a lack of relevant data for a direct calculation of CO2 evasion in Norwegian rivers, 

and we relied on Humborg et al. (2010), a comprehensive study on river CO2 evasion from Sweden. 

The area-weighted mean river CO2 evasion rate estimate for Sweden is 1698 g C m-2 yr-2. This rate is 

probably lower in Norway because of lower forest cover and shallower soils in Norway than Sweden, 

and therefore a less abundant source of heterotrophic and autotrophic CO2 production and –transport 
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to rivers. Therefore, we calculated the CO2 evasion rate from Norwegian rivers (902 g C m-2 yr-2) by 

multiplying the ratio of CO2 evasion in Norwegian and Swedish lakes by the Swedish river CO2 

evasion rate, and multiplied the rate by river area to give total river CO2 evasion. River area (1237 

km2) was estimated as the difference between surface water area (Table 1) and total lake area (19162 

km2). The uncertainty of the CO2 evasion was estimated from the 10- and 90-percentiles for the lake 

evasion rates in each size category, which were area-weighted to give the percentiles for all lake sizes. 

The relative percentiles were applied to the overall CO2 evasion to give the uncertainty range. 

• DIC transport 

No representative data for DIC or alkalinity in Norwegian rivers are available. The only land-

representative water chemistry dataset with relevant parameters was the Norwegian lake dataset from 

the Nordic lake survey (Henriksen et al. 1998). DIC concentration was calculated from the sum of 

HCO3+CO3 (estimated from alkalinity and pH) and dissolved CO2 (see method description under ‘CO2 

evasion’) (Jonsson et al. 2007). Lake DIC was multiplied by the catchment-lake-specific normal 

discharge (1961-1990) (Beldring et al. 2002) to give lake DIC fluxes in g C m-2 yr-1. Multiplying the 

different lake DIC fluxes by the area of Norway gave a range of DIC export, of which the median was 

chosen as the DIC export for Norway. The DIC fluxes were calculated for 1990 to 2008 by 

multiplication by the ratio of 1990-2008 discharge and 1961-1990 normal discharge for Norway. The 

10- and 90-percentile of the lake DIC export, adjusted for discharge in the same way, was used as 

uncertainty range. 

The use of lake instead of river chemistry might introduce a bias to the DIC export estimate. In 

Sweden, river mouth and stream DIC was found to be systematically higher than lake DIC, which was 

attributed to increasing groundwater inputs of carbonates (Humborg et al. 2010). However, no 

systematic differences between stream order and DIC were found in headwaters in Sweden and 

Finland (Huotari et al. 2013; Olefeldt et al. 2013; Wallin et al. 2013). An opposite effect to DIC 

estimates might be the declining oversaturation of dissolved CO2 with stream order. Without 

additional data, biases in the DIC export are difficult to evaluate.
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Results 

Carbon balance of Norway 

The mean annual uptake of carbon in terrestrial ecosystems in Norway between 1990 and 2008 was 

6.0±0.9 Tg C, which equalled 40% of Norway’s mean annual greenhouse gas (GHG) emissions for the 

same period (Figure 2A). The summed riverine transport of OC and DIC was almost 25% of the 

terrestrial carbon uptake, or 1.0±0.1 and 0.3 (0.1-0.8) Tg C yr-1, respectively. It is important to note 

that the net change in the terrestrial carbon pool size is not simply found by reducing the terrestrial 

carbon uptake with the riverine OC export. Links between terrestrial carbon sequestration and lateral 

aquatic carbon transport may be conceptually clear, but methodologically it is not straightforward to 

incorporate estimates of lateral aquatic carbon transport in terrestrial carbon accumulation estimates at 

a regional scale. We will return to this issue in the discussion. Evasion of CO2 from surface waters was 

1.7 (0.6 – 4.0) Tg C yr-1, which includes CO2 from in-lake processing of OC, from autotrophic and 

heterotrophic respiration on land and from weathering processes. The largest terrestrial carbon uptake 

was in forest biomass (4.9±0.4 Tg C yr-1), followed by forest soils (1.1±0.2 Tg C yr-1). Carbon uptake 

in peatlands and carbon losses from agricultural areas almost balanced each other (0.3±0.2 and -

0.4±0.8 Tg C yr-1, respectively).  Mountains and lakes were the smallest carbon sinks (<0.1 Tg C yr-1).  

On an area basis, the most effective carbon sinks were forest biomass (40 ±3 g C m-2 yr-1) and 

peatland soils (19±15 g C m-2 yr-1), while the agricultural soils lost carbon (-36±74 g C m-2 yr-1) 

(Figure 2B). The lowest rates of carbon accumulation were found in forest soils (9±1 g C m-2 yr-1), 

lake sediments (1.8±0.9 g C m-2 yr-1) and mountain vegetation biomass (0.5±0.3 g C m-2 yr-1). 

The uncertainty in the total terrestrial carbon uptake was 16%, primarily related to the 

uncertainty in three components of the carbon balance, i.e. carbon uptake in tree biomass, peatlands 

and agricultural soils. The uncertainty in carbon loss rate was larger than the rate itself for agricultural 

soils (Table 5). The relative uncertainty was lowest in tree biomass and forest soils, followed by 

peatlands. Mountain biomass and lake sediments had similar relative uncertainty but because of their 

modestly sized sink, mountains and lakes hardly contributed to the uncertainty in carbon uptake at the 

national scale.  
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Forest carbon sink  

The uncertainty in the forest biomass sink for all of Norway was relatively small (8%) because of the 

high precision in the forest inventory data. Most of the uncertainty in the forest biomass was related to 

the allometric equations. The uncertainty at the regional level was higher than at the country level 

(Table 7). In region 7 and 8, this was primarily related to the relatively poor data quality. Uncertainty 

in allometric equations was highest for birch and lowest for spruce forest, which added to the regional 

differences in uncertainty in forest biomass. The mean annual tree biomass sink in our study was 4.90 

Tg C yr-1, less than 0.1 Tg C yr-1 higher than the reported mean annual change in tree biomass for the 

period 1990 to 2009 in Norway, i.e. 4.83 Tg yr-1, in the GHG inventory report (Miljødirektoratet 

2013). The inventory report had its own method for backcasting biomass in mountain forest and 

Finnmark in 1990 (region 7 and 8), which may account for the difference between our estimate and the 

GHG inventory estimate.  

The forest biomass carbon sink declined strongly from south to north (Table 7). South Norway 

(region 1 to 4) and high latitude and mountain forest (regions 7 and 8) represented 76% and 7%, 

respectively, of the total forest biomass sink. Most of Norway’s productive forest is in the southeast, 

as illustrated by the high tree volume density, forested area (Table 1) and annual increment (Table 7). 

On an area basis, biomass carbon uptake varied between 12 and 76 g C m-2 yr-1, with the highest rate 

found in western Norway (region 4) and the lowest in high latitude and mountain forest. In western 

Norway, only 15% of annual increments were felled, whereas elsewhere in south Norway 38% to 54% 

of annual growth was harvested (Table 7). The regional biomass sinks (in g C m-2 yr-1) were 

significantly and positively correlated with mean annual temperature (MAT) (r2= 0.88; p <0.005) 

(Table 8). Thus, the regional variation in the biomass carbon sink related to climate and harvesting 

intensity.  

Soil carbon accumulation rates were between 2.3 and 12 g C m-2 yr-1, and strongly  and 

positively correlated with the biomass sink (r2 = 0.84, p<0.01) and MAT (r2 = 0.77, p<0.05) (Table 8). 

For the national soil carbon sink, uncertainty was 15%, primarily related to initialisation of the soil 

model and secondly, to variations in litter inputs. Uncertainty in the regional soil sink varied around 

30%, except for northern Norway, where the uncertainty was larger than the sink. The relatively poor 
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data quality for the tree biomass in this region cascades down to the soil sink, as tree data drive soil 

carbon dynamics in our scheme of calculation.  

Carbon uptake in peatlands, mountains, lakes and agricultural areas 

The carbon sinks and sources of peatlands, mountains, lakes and agricultural areas were based on a 

combination of published studies with relevance for Norwegian conditions combined with what was 

available of national data. The annual change in the peatland carbon pool was calculated for 

undisturbed boreal and arctic (0.29±0.22 and 0.06±0.04 Tg C yr-1, respectively), and disturbed boreal 

peatlands (-0.05±0.04 Tg C yr-1), giving a total of 0.29±0.23 Tg C yr-1 (19.3±15.2 g C m-2 yr-1). The 

uncertainty in the carbon sink for peatlands was related to variation in the carbon accumulation rates 

of the three full carbon balances for boreal and subarctic peatlands. Norway does not report on 

unmanaged wetlands in its national GHG inventories (Miljødirektoratet 2013). 

The lake carbon sink in the sediments was modest (<0.1 Tg C yr-1), calculated using an 

estimate of the Holocene lake sedimentation rate and large uncertainty, which was a reflection of 

spatial variation in lake sediment pools estimates. Mountainous Norway was a small carbon sink (0.07 

Tg C yr-1), related to increased biomass on wooded mires. Mountains are an inhomogeneous type of 

landscape with generally little vegetation and shallow soils, except for wooded mires.The reported 

change in biomass pools on wooded mires in 2011 in the National GHG Inventory Report was 0.02 Tg 

C (Miljødirektoratet 2013). Estimates for 1990 to 2008 were not available. Agricultural areas, by 

contrast, were a large but highly uncertain source of carbon to the atmosphere (-0.40±0.80 Tg C-1). 

The main reason for the net losses from agricultural areas was subsidence of cultivated organic soils 

from cultivation. The uncertainty interval opened for the possibility that agricultural areas in Norway 

gain carbon, which was primarily related to the large uncertainty in the carbon balance of mineral 

soils. The national inventory report for GHG emissions between 1990 and 2008 estimated a mean 

annual loss from agricultural land (cropland and grassland) of 0.57 Tg C, primarily related to organic 

soils (Miljødirektoratet 2010), and the estimate was lowered to 0.48 Tg C in a subsequent inventory 

report, related to improved data quality (Miljødirektoratet 2013). 
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Aquatic organic and inorganic carbon fluxes 

Riverine transport of TOC was lowest in the Barents Sea (0.1 Tg C yr-1) and varied between 0.2 and 

0.4 Tg C yr-1 in the other drainage areas (Table 6). Area-normalized TOC export was highest in 

western Norway (4.5 g C m-2 yr-1), which was associated with highest discharge (2400 mm yr-1) while 

TOC concentrations were lower than elsewhere in Norway. The Barents Sea drainage area had the 

lowest area-specific TOC export (1.7 g C m-2 yr-1), and here mean annual discharge was below 500 

mm yr-1. Estimates of TOC export per drainage basin had uncertainty intervals between 10% and 19%, 

related to interannual variations in discharge and TOC concentrations, and to variations in TOC 

between rivers.  

Rivers contributed more to surface water CO2 evasion than lakes (1.1 and 0.5 Tg C yr-1, 

respectively), which is explained by the considerably higher river CO2 evasion rates from rivers (902 

(341-2177) g C m-2 river yr-1; lakes 28 (11-68) g C m-2 lake yr-1), which more than compensates for the 

relatively low area covered by rivers (6% of lake area). Riverine DIC transport (0.3 Tg C yr-1) equalled 

almost 20% of the CO2 evasion.  

Possibly, the sum of DIC export and CO2 evasion is overestimated because of double-counting 

dissolved CO2, as DIC and CO2 evasion both rely on pCO2 in Norwegian lakes. All DIC that derives 

from supersaturated dissolved CO2 is assumed to be exported to the coast, while some supersaturated 

dissolved CO2 evades to the atmosphere. If CO2 oversaturation is disregarded in the calculation of 

coastal DIC inputs, by assuming equilibrium between atmospheric and dissolved CO2 at the river 

mouth, the estimate of DIC export is reduced by 35% to 0.19 Tg C yr-1. However, it is unlikely that all 

excess dissolved CO2 is lost along the aquatic conduit. Moreover, groundwater is an increasingly 

important source of DIC from headwaters to coast, but hard to account for quantitatively. The 

possibility of double-counting cannot be resolved with the current data. The relatively poor suitability 

of the data for calculation of these estimates resulted in the widest uncertainty intervals of all the 

aquatic fluxes.  

Carbon fluxes per drainage area 

Area-normalized terrestrial carbon uptake (in all ecosystems except agriculture) was largest in 

southeast Norway and declined towards west, middle and subarctic Norway (Figure 1). This pattern 



 21 

was primarily related to a decline in carbon accumulation in biomass. Carbon sequestration in soils 

and peatlands varied between the drainage areas, because of a considerable proportion of peatlands in 

middle and subarctic Norway (Table 1), and because of a higher carbon sequestration rate in peatlands 

than in forest soils (Figure 2B). In subarctic Norway, carbon accumulation in peatlands dominated 

over carbon accumulation in forest soils. Riverine transport of OC varied more between drainage areas 

(1.7 to 4.5 g C m-2 yr-1) than accumulation of carbon in soils (3.7 to 6.1 g C m-2 yr-1). The riverine OC 

flux equalled 10% of the terrestrial carbon uptake in southeast Norway and 19% to 23% in the other 

drainage basins (Figure 3). In subarctic Norway, about half of what was stored in biomass annually 

was transported as OC to the Barents Sea. For the other drainage areas, this percentage varied between 

13% and 25%. In west Norway, the riverine carbon flux exceeded the combined accumulation of 

carbon in peatlands and forest soils, and was elsewhere 46% to 77% of combined forest soil and 

peatland accumulation.    



 22 

Discussion  

Carbon accumulation in boreal landscapes - forests 

Boreal landscapes in Norway are important sinks for atmospheric CO2: uptake in biomass and soils 

was equal to circa 40% of anthropogenic greenhouse gas emissions (in CO2 equivalents) in Norway 

between 1990 and 2008 (Miljødirektoratet 2010). Globally, the land carbon sink – not included 

emissions from land use change – amounts to 30% of CO2 emissions from fossil fuel and cement (Le 

Quéré et al. 2013 ).  

In Norway, forests comprise the largest carbon sink, as well as in Sweden and Finland. 

Combined annual forest carbon uptake in the Nordic countries (this study, Ågren et al. (2007b) and 

Liski et al. (2006)) around the start of the 21st century was 21 Tg C, corresponding to circa 0.3% of 

global carbon emissions from fossil fuels and cement production (Canadell et al. 2007). Expressed on 

an area basis, forest biomass in Norway accumulated 40 g C m-2 yr-1 (1990-2008) (this study). In 

Sweden, a comparable estimate is 23 (1926-2006) (Ågren et al. 2007b), and in Finland 28 (1990-1999) 

(Liski et al. 2006) g C m-2 yr-1. The soil carbon sink in these studies is 23%, 35% and 39% of the 

biomass sink, respectively. Luyssaert et al. (2010) calculated a biomass and soil carbon sink in 

European forests between 1990 and 2005 of 54 and 22 g C m-2 yr-1, respectively. Luyssaert et al’s 

estimate of the biomass sink was primarily based on forest inventory data, just like the Fennoscandian 

studies, and is therefore expected to be of similar certainty. The present rates of biomass increase in 

Scandinavia are largely a legacy of reduced logging intensity and the age-structure of the forest 

(Anton-Fernandez & Astrup 2012), suggesting that future growth rates may decline (Liski et al. 2006; 

Luyssaert et al. 2010). Old forests can still be strong carbon sinks, but less effective than younger, 

middle-age forests (Luyssaert et al. 2010; Luyssaert et al. 2008).  

Interestingly, the soil carbon sink for Europe is considerably larger than the national forest soil 

sink estimates for Fennoscandia, suggesting that present rates of soil carbon accumulation of 

temperate forests exceed those of boreal forests. However, soil carbon pools in boreal forests are 

higher than in temperate forests (Lal 2005; Post et al. 1982), implying lower Holocene soil carbon 

accumulation rates in temperate than in boreal forests. Luyssaert et al. (2010) calculated the soil 

carbon sink with a simple soil model (Nabuurs et al. 2003), somewhat comparable to the Yasso model 
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(Liski et al. 2005) and the Q-model (Ågren et al. 2007b) used in the Fennoscandian studies. These 

models describe soil carbon accumulation as driven by litter decomposition and dependent on litter 

quality, with fixed (Nabuurs) or temperature-dependent (Yasso, Q-model) decay rates. Soil carbon 

accumulation rates in European forests might be higher than in Fennoscandian forests, possibly due to 

higher levels of nitrogen deposition in Europe (de Vries et al. 2009). Nitrogen deposition, however, is 

not included as a driver of soil carbon accumulation in the aforementioned models. None of the 

models has detailed descriptions of soil-forming processes, probably because they were developed for 

processing data derived from forest inventories, with calibration of process rates based on litter bag 

studies (Hyvonen & Ågren 2001; Liski et al. 2003; Liski et al. 2005). Thus, soil carbon accumulation 

in these models was simply defined as the balance between litter production and heterotrophic 

respiration of litter and SOM, where litter quality and temperature-dependent decay rates are central 

features.  

Our approach for calculating the soil carbon sink hinges on the assumption that vegetation 

dynamics are the dominant driver of soil carbon sequestration (Liski et al. 2006), an assumption which 

is also used in global vegetation models, i.e. Sitch et al. (2008). Using temperature as a climatic driver 

of soil carbon sequestration, however, is a gross simplification of well-understood climatic effects on 

soil carbon cycling. For instance, Post (1982) suggests that precipitation is a strong positive driver of 

soil carbon accumulation in biomes. Within northern and temperate climates, soil organic matter 

accumulation is strongly and positively related to precipitation (Callesen et al. 2003; Michalzik et al. 

2001; Michalzik et al. 2003) in addition to temperature, adsorption processes and organic matter 

quality (Lundstrom et al. 2000). Whether the net effect of increased forest growth and higher 

temperatures is more soil carbon storage is under debate (Davidson & Janssens 2006; Jandl et al. 

2007; Kammer et al. 2009). Possible biases in the forest carbon soil sink estimates for Europe and 

Fennoscandia, related to the overly simplified soil models, are hard to evaluate, as few other estimates 

for soil sinks at regional scales are available. 
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Carbon accumulation in boreal landscapes - mountains, peatlands, agricultural areas, lakes 

Our estimates of ecosystem carbon sinks indicate that the other dominating ecosystems in Norway are 

far less effective carbon accumulators than forests. Mountainous Norway sequesters little carbon, 

despite covering most of Norway. The most likely process for increasing carbon stores in the 

mountains is birch forest expansion related to reduced summer farming and grazing pressure (Bryn 

2008; Speed et al. 2014), however, carbon pools in mountain forest and tundra vegetation are low 

compared with forest. De Wit et al. (2014) concluded that mountain forest expansion has limited 

potential to increase the terrestrial carbon sink in Norway.  

The net carbon accumulation in peatlands is the result of accumulation in undisturbed 

peatlands and losses of carbon from drained peatlands. The estimated overall carbon accumulation rate 

(19 g C m-2 yr-1) is somewhat lower than the long-term (29 g C m-2 yr-1) and recent (23 g C m-2 yr-1) 

carbon accumulation rate in northern peatlands (Gorham 1991). A synthesis of eddy covariance carbon 

flux studies at five northern peatland sites indicated a much higher carbon accumulation rate during 

the last decade (32 g C m-2 yr-1) than during the last 7000 years (11 g C m-2 yr-1)  (Yu 2012). Some of 

the peatland flux studies in Yu’s study were from bogs in oceanic climates with longer growing 

seasons (Ireland, Scotland), which could account for the relatively high carbon accumulation rates. 

Our estimate appears to be in reasonable agreement with other studies on peatland carbon 

accumulation.  

Agricultural soils are a significant, but highly uncertain source of atmospheric carbon. 

Subsidence of cultivated organic soils was the main driver of the agricultural carbon source, based on 

an IPCC emission factor of 570 g C m-2 yr-1 which is close to emission factors estimated for 

Norwegian cultivated peat soils (i.e., 800, 860 and 600 g C m-2 yr-1) (Grønlund et al. 2008a). 

Agricultural, cultivated organic soils cover 3% of Norway, and their importance in the national carbon 

balance is disproportionate to their size. Other studies of greenhouse gas emissions from northern 

agricultural soils also emphasize carbon losses from organic soils (Kasimir-Klemedtsson et al. 1997; 

Maljanen et al. 2010). 

The estimate for the lake carbon sink in Norway is modest compared with global estimates of 

sedimentation in lakes (Cole et al. 2007). Lake carbon sedimentation was insignificant compared with 
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transport and mineralization of terrestrial organic carbon in a large catchment in Northern Sweden 

(Jonsson et al. 2007), similar to our study. We used the mean Holocene carbon of 1.8 g C m-2 lake area 

yr-1 as an estimate of lake carbon accumulation rates, with a variation between 0.2 and 8.5 g C m-2 yr-1. 

This range is wider than measured rates of lake carbon sedimentation in boreal regions (i.e. 1.0 to 5.7 

g C m-2 lake area yr-1) (Algesten et al. 2004). Paleolimnological studies of Norwegian lakes document 

substantial variation in lake sedimentation over time (Balascio & Bradley 2012). Still, even a tripling 

of the lake carbon sink will not turn it into a significant factor in the carbon balance of Norway. It 

seems reasonable to conclude that lake sedimentation is a process of minor importance for recent 

carbon accumulation in northern landscapes, although in a longer-term perspective boreal lakes 

sequester significant amounts of carbon (Kortelainen et al. 2004).  

 

Riverine carbon export from boreal landscapes 

The river OC export estimate for Norway (3.0 g C m-2 yr-1) is firmly grounded in monitoring data, 

similar to the forest biomass carbon uptake, and therefore considered relatively certain and unlikely to 

be strongly biased. It agrees with other estimates of riverine OC export of OC from northern 

landscapes, such as from Finland to the Baltic Sea (3.5 g C m-2 yr-1) (Raike et al. 2012), while Swedish 

coastal inputs are 2.7 g C m-2 yr-1  (Humborg et al. 2010). Riverine OC transport to Arctic seas varied 

between 0.8 and 2.3 g C m-2 yr-1 (Holmes et al. 2012), on average 1.6 g C m-2 yr-1, almost equal to 

riverine OC export in subarctic Norway (1.7 g C m-2 yr-1). Ciais et al. (2008) estimated riverine OC 

export from northern Europe (>50 oN) to 2.9 g C m-2 yr-1. All estimates of riverine OC export from 

large drainage areas in boreal and arctic regions fall within a narrow range, roughly 1 to 5 g C m-2 yr-1.  

Riverine inorganic carbon export is more uncertain than the OC export. The mean DIC export 

of 1.0 g C m-2 yr-1 and its uncertainty interval (0.4-2.5 g C m-2 yr-1) falls in the range of DIC export 

reported for Northern landscapes elsewhere: Lake Pääjärvi in southern Finland (1.0 g C m-2 yr-1 

(Huotari et al. 2013)), the Krycklan catchment in northern Sweden (0.4 g C m-2 yr-1 (Wallin et al. 

2013)), the Öreälven catchment in northern Sweden (0.9 g C m-2 yr-1 (Jonsson et al. 2007)) and for all 

of Sweden (1.6 g C m-2 yr-1 (Humborg et al. 2010)). Riverine IC export from northern Europe (2.2 g C 

m-2 yr-1 (Ciais et al. 2008)) also falls within the uncertainty range, although this region includes areas 
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with more limestone than what is found in Norway. Clair et al. (1994) observed a wide range of DIC 

export from large Canadian rivers (0.04-4.19 g C m-2 yr-1), attributed to differences in sources of IC, 

i.e. bedrock and associated weathering rates, and autotrophic and heterotrophic respiration.  

The lake CO2 evasion rate (28 g C m-2 lake yr-1) is similar to the estimates for large catchments 

in mid-northern Sweden (28 g C m-2 lake yr-1 (Algesten et al. 2004)), but lower than in the Öreälven 

catchment (63 g C m-2 lake yr-1 (Jonsson et al. 2007)) and the estimate for Sweden (53 g C m-2 lake yr-1 

(Humborg et al. 2010)). The latter are within the uncertainty range of the Norwegian estimate (11-68 g 

C m-2 lake yr-1). Also for river CO2 evasion rate, the results from other studies fall within or overlap 

with the uncertainty range (902 (341-2177) g C m-2 river yr-1): 471 g C m-2 yr-1 in Jonsson et al. 

(2007), 1690 g C m-2 river yr-1 in Huotari et al. (2013) and 1455-6411 g C m-2 river yr-1 in (Wallin et 

al. 2013).  Algesten et al. (2004) applied the same evasion rate to rivers and lakes, resulting in a much 

lower rate (47 g C m-2 river yr-1). 

Cole et al. (2007) estimated that circa 50% of all headwater land-derived carbon inputs on a 

global scale are lost on its way from headwater to coast, either through CO2 evasion or by sediment 

storage. The sum of CO2 evasion and sediment storage for Norway is 2.0 Tg C yr-1, slightly higher 

than the total OC inputs to the coast, i.e. 1.7 Tg C yr-1. However, given the large uncertainty in these 

numbers, our estimates agree with Cole et al. (2007). This implies that headwater OC export in 

Norway might be higher than coastal OC inputs (6 g C m-2 yr-1 or 2 Tg C yr-1). Reported headwater 

TOC export from boreal landscapes presents a wide range, from <2 to >50 g C m-2 yr-1, with median 

exports of 7.6 and 9.6 g C m-2 yr-1 for North America and Europe, respectively (Hope et al. 1994). 

Headwater catchments in Northern Sweden and eastern Finland exported 1.5 to 10 g C m-2 yr-1 (Ågren 

et al. 2007a), and 2.3 and 15 g C m-2 yr-1 (Rantakari et al. 2010), respectively. Buffam et al. (2011) 

estimated that forested and wetland catchments exported 4 and 11 g C m-2 yr-1, respectively. 

Headwater DOC concentrations have shown wide-spread increases in northern lakes and 

rivers, including in Fennoscandia (De Wit et al. 2007; Erlandsson et al. 2008; Monteith et al. 2007; 

Vuorenmaa et al. 2006). Given the strong relation between discharge and DOC export (Clair et al. 

2013; Gielen et al. 2011; Haaland et al. 2008; Raike et al. 2012), the positive trends in headwater 

DOC, and observed and predicted increases in discharge in the Nordic countries due to climate 
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warming (Wilson et al. 2010), a future increase in headwater catchment DOC aquatic export appears 

likely, with possible impacts on soil carbon sequestration in forests soils and peatlands.  

Coastal margin sediments are the main recipient of land-derived organic matter, but the fate of 

deposited terrestrial organic matter is poorly understood (Borges et al. 2005; Hedges et al. 1997). 

Degradation of land-derived organic matter in lakes and rivers, and further transformations in coastal 

areas, can lead to highly refractory organic matter, with potentially long residence times in coastal 

sediments and deeper oceans (Dittmar & Kattner 2003; Raymond & Bauer 2001). This is especially 

true for arctic oceans, as there are very few removal mechanisms for organic matter (Dittmar & 

Kattner 2003), suggesting a long-term sink for atmospheric carbon from land-derived organic carbon.  

 

Integration of terrestrial and aquatic carbon fluxes 

A key question with regard to the role of riverine OC transport in the terrestrial cycle relates to the 

source of OC in rivers. If the OC in rivers is recently mobilized, formerly stable soil organic matter, 

aquatic OC export would reduce soil carbon stores and bring the terrestrial carbon pool from one 

(semi-) steady state to the next. If not, river OC transport represents a flux of carbon from soils in 

steady state with the carbon flux from vegetation to soils and is a fixed proportion of terrestrial 

productivity. If lateral aquatic carbon fluxes impact present rates of terrestrial carbon accumulation, it 

may not be adequately accounted for in terrestrial carbon balances (Cole et al. 2007; Luyssaert et al. 

2010).  

In the carbon balance for European forest (Luyssaert et al. 2010), river OC export equals circa 

50% of the soil carbon sink. The estimated river OC export for Norway (this study), Sweden 

(Humborg et al. 2010) and Finland (Raike et al. 2012) is 32% to 37% of the national forest soil carbon 

sinks. Luyssaert et al. (2010) state explicitly that their methods were not conclusive with regard to the 

necessity of correcting the soil carbon sink with riverine OC transport, and therefore no correction was 

done.  

Net Ecosystem Production (NEP) can be determined as the balance of all major carbon fluxes 

in and out of the ecosystem: gross primary production (GPP), ecosystem respiration (Reco) 

(autotrophic (Ra) and heterotrophic (Rh)) and lateral transport including riverine carbon transport 



 28 

(Randerson et al. 2002). This approach is common in single-site carbon balances in peatlands (Yu 

2012) and forests (Gielen et al. 2011), but few regional carbon balances follow this concept. 

Three carbon balances for several thousand km2 catchments have been reported based on 

upscaled eddy covariance measurements of vertical CO2 fluxes, to give Net Ecosystem Exchange 

(NEE), from which the lateral riverine carbon flux could be subtracted in order to quantify the 

terrestrial sink or NEP.  

The first was made by Jonsson et al. (2007) at the 3000 km2 Öreälven river basin in boreal 

Sweden. Here, headwater aquatic export of TOC was 8.6 g C m-2 yr-1 and made up 6% of headwater 

catchment NEE (139 g C m-2 yr-1). For the entire river basin, the ratio of TOC export to NEE was 3%, 

as river basin TOC export was reduced to 3.6 g C m-2 yr-1 because of in-stream and in-lake processes. 

The second was conducted by Christensen et al. (2007) at the 4000 km2 Lake Torneträsk river basin in 

subarctic Sweden. Aquatic DOC export was 2 g C m-2 yr-1 and comprised 19% of NEE (10.6 g C m-2 

yr-1). The third was carried by Buffam et al. (2011) at the 6400 km2 Northern Highlands Lake (NHL) 

District in the northern US. Here, riverine organic carbon export (5.3 g C m-2 yr-1) was 3% of 

catchment NEE (175 g C m-2 yr-1). The NHL district and the Öreälven catchment included large areas 

of productive forest, driving the relatively high NEE. For a single forest stand, Gielen et al. (2011) 

found that DOC export from a pine forest was 11% of NEP (91 g C m-2 yr-1), where NEP was 

estimated as the balance of all major carbon fluxes. None of these carbon balances supplied a separate 

estimate of the soil carbon sink. Thus, an evaluation of the relative importance of DOC export for 

catchment soil carbon accumulation is not possible. A review of five full carbon balances in northern 

peatlands showed that DOC export was on average 40% of NEP (Yu 2012). 

At the landscape scale, the simplicity of defining NEP based on theoretical fluxes contrasts 

with the complexity of measuring GPP and Reco (Luyssaert et al. 2009) and upscaling of point 

measurements of NEE. In our approach, we estimated NEP as the change in ecosystem carbon pools in 

biomass and soils, similar to Luyssaert et al. (2010). Using a consistent approach across four 

climatically contrasting drainage basins, we calculated that riverine OC export ranged from 10% to 

23% of drainage basin NEP, and 46% to 113% of soil carbon accumulation (summed for forests and 

peatlands). If we assume that an unbiased estimate of NEP with regard to lateral carbon fluxes is 
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obtained by simply subtracting riverine OC export from NEP, drainage basin NEP is reduced by 

between 10% and 23%. This is lower than the DOC flux correction of NEP in peatlands (Yu 2012), 

similar to Lake Torneträsk in northern Sweden) (Christensen et al. 2007), and much higher than the 

NHL District in northern US (Buffam et al. 2011) and Öreälven catchment (Jonsson et al. 2007). NEP 

would be reduced even more if we had used headwater OC export, instead of coastal OC inputs. As 

river OC originates from soils, we might correct the soil carbon sink by subtracting riverine OC fluxes. 

This results in a circa 50% reduction of the soil sink in southeast and subarctic Norway, and a switch 

of the soil in western Norway from sink to source of carbon. The latter appears to be an unreasonable 

result, from which it may be concluded that either 1) NEP should not be corrected by subtracting 

riverine OC fluxes, 2) the estimate for the soil sink is too low, or 3) the soil sink should be at least 

equal to the riverine OC flux to compensate for lateral losses of OC. The latter point might be 

considered as a way to contribute to validation of regional scale soil carbon sink estimates. For this, 

better estimates of headwater OC export would be extremely useful. For better quantification and 

understanding of the role of northern landscapes in the carbon cycle, there is a clear need for 

validation of soil sink estimates and tools to investigate the role of lateral carbon fluxes in soil carbon 

sequestration.  

   

The role of management for landscape carbon accumulation 

Land use and management set a strong mark on the global carbon cycle due to greenhouse gas 

emissions from deforestation (Bala et al. 2007), peatland drainage, burning and planting (Frolking et 

al. 2011) and agriculture (Schulze et al. 2009). The current increase in carbon pools in forests in the 

northern hemisphere may be largely a legacy of former land use (Goodale et al. 2002), although 

additional factors  such as nitrogen deposition (Thomas et al. 2010) and climate warming (Boisvenue 

& Running 2006) also are likely to contribute.  

Greenhouse gas balances in cultivated peatlands in the Nordic countries are strongly 

dependent on site characteristics and land-use practices (Maljanen et al. 2010). Drainage for 

cultivation and forestry has turned peatlands into significant sources of CO2. In our carbon balance, 

annual losses of carbon from cultivated organic soils in agricultural areas and from disturbed peatlands 
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were 0.40 and 0.05 Tg C, respectively, exceeding carbon accumulation in undisturbed peatlands (0.29 

Tg C). Undisturbed peatlands could become significant sources of atmospheric CO2 under higher 

temperatures (Dorrepaal et al. 2009) and drought (Mettrop et al. 2014). However, the threat from land 

use to destabilization of peatland carbon stores in boreal landscapes appears larger. Between 15 and 

30% of Norwegian peatlands may have been drained for cultivation and forestry until the 1960s 

(Johansen 1997; Maljanen et al. 2010), which is likely to have led to large losses of carbon. Little is 

known about the current carbon sink or source strength of these drained, forested peatlands in Norway, 

but other studies suggest that formerly drained peatlands continue to be carbon sources for decades 

(Armentano & Menges 1986). For cultivated organic soils in Norway, there are measurements of 

subsidence rates and CO2 effluxes (Grønlund et al. 2008a) but to what extent these rates are 

representative for various combinations of soil type and management is not clear. Quantifying 

greenhouse gas emissions taking into a combination of management system and soil type such as done 

by Andren et al. (2008) would improve the reliability of the carbon balance in Norwegian agricultural 

soils. Without improved geographic data and understanding of effects of past on current land use on 

carbon-rich soils, especially those under agricultural land use, peatlands will continue to represent a 

large source of uncertainty in the national carbon balance. 

 

Conclusions 

Terrestrial carbon accumulation and riverine transport of land-derived carbon in northern landscapes 

are significant compared with anthropogenic emissions of CO2. Terrestrial carbon uptake in Norway 

was largest in the south. Riverine carbon fluxes were similar in size compared with changes in soil 

carbon pools in forests and peatlands. Where accumulation of carbon in forest biomass and riverine 

fluxes of organic carbon are relatively well-constrained because of their empirical basis in monitoring 

databases, accumulation and losses of soil carbon continue to create considerable uncertainty in 

landscape carbon balances. This is related to inadequately validated tools for estimation of the forest 

soil carbon sink, and to the role of land use and management in agricultural and peatland areas. Future 

drivers of terrestrial carbon stores are climate and land use, which are expected to impact the 

ecosystems in northern landscapes differently. Integration of lateral and vertical carbon fluxes 
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deserves more attention, especially in cold and wet boreal landscapes of low productivity, for a better 

understanding and quantification of the terrestrial carbon cycle.  
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Figure 1 Norway – drainage basins with mean annual area-normalized fluxes of carbon in g C m-2 yr-1. 

Vertical arrows terrestrial fluxes, horizontal arrows show aquatic fluxes of organic carbon. 

B=biomass, S=soils and sediments. Included ecosystems are forest, lakes, mountains and peatlands. 

Figure 2 Carbon balance of Norway for 1990 to 2008 in Tg C yr-1 (panel A) and area-normalized per 

ecosystem in g C m-2 yr-1 (panel B). Greenhouse gas (GHG) emissions are mean emissions from 

Norway in CO2_C equivalents (Miljødirektoratet 2010) 

Figure 3 TOC export in % of terrestrial sink, biomass sink, forest and peatland sink, and forest soil 

sink for each drainage basin and summed for Norway 
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Table 1 Description of drainage areas and regions in Norway. Details on the land cover categories are given in Table 3.  
  
 

Draina-
ge area 

NFI 
Regio

n County Area MAT1 
MA
P1 forest 

Peat-
lands 

Moun-
tains OWL 

Open 
water  

culti
vated 

deve-
loped 

Nr of 
NFI plots 

Tree 
volume Spruce15 Pine15 Birch15 

name Nr  106 ha oC mm ---------------% distribution across land cover2 categories----- n m3 ha-1 vol% forest type (in 2008) 
Skager-

rak2 
16 1 to 48 2.98 3.1 754 73.2 3.0 0.5 2.3 6.8 9.4 9.2 2821 116 50 37 13 
26 5 to 79 2.38 2.5 777 73.1 3.8 0.9 2.2 6.7 8.6 8.1 2225 111 56 27 17 
36 8 to 

1010 2.10 4.8 1260 73.3 3.8 3.3 3.2 9.3 3.2 2.5 2020 108 33 44 24 
North 
Sea3 

46 11 to 
1511 2.60 5.9 2008 51.6 3.8 14.4 6.3 6.5 12.7 7.7 1834 95 29 36 35 

Norwe-
gian 
Sea4 

56 16, 1712 2.37 3.7 1200 62.3 9.3 5.2 5.7 8.6 6.5 6.2 2074 75 59 21 20 
66 18, 1913 

2.54 3.1 1290 60.7 6.5 12.6 6.2 6.6 4.9 4.0 2069 45 26 11 62 
Barents 

Sea 
76,7 2014 

4.86 -0.9 582 21.2 7.7 54.1 10.5.  6.1 0.2 0.2 1153 19 0 30 70 
unspeci

fied5 
87 all but 

2014 12.55 0.4 1366 9.0 3.2 79.0 3.6 5.1 0.1 0.0 440 25 4 7 89 
  all 32.38 1.8 1175 37.6 4.7 42.6 3.4 6.3 3.6 1.8      

 
1 Mean annual temperature (MAT) and mean annual precipitation (MAP) was 
available for each NFI plot, derived from a nationwide 1x1 km2 grid of monthly 
meteorological data from the Norwegian meteorological institute. MAT and MAP 
(1990-2008) per region was calculated by averaging MAT for all NFI plots that 
were included in a region 
1Land cover is derived from the National Forest Inventory (NFI) 2004-2008, 
based on a systematic grid of geo-referenced fixed-area permanent sample plots, 
with a grid of 3x3 km density below the coniferous forest limit, 3x9 km in the 
mountain birch area and 9x9 km the northernmost county Finnmark. 
2NFI regions 1 to 3, except Vest-Agder county (0.9 Mha)  
3 NFI region 4 and Vest-Agder, except Møre og Romsdal county (1.5 Mha)  
4 NFI regions 5 and 6 and Møre og Romsdal county  
5The mountain region was all of Norway above the coniferous forest limit, and 
attributed to drainage area by assuming homogeneous area-weighted carbon 
fluxes.    

6 Below the coniferous forest limit.  
7 Above the coniferous forest limit 
8 Østfold, Akershus, Oslo, Hedmark.  
9 Oppland, Buskerud, Vestfold counties  
10Telemark, Aust-Agder, Vest-Agder counties  
11Rogaland, Hordaland, Sogn og Fjordane, Møre og Romsdal (province nr 13 was 
merged with nr 12).  
12 Nord- and Sør-Trøndelag county  
13 Nordland and Troms county 
14 Finnmark county 
15 Forest dominated by spruce, pine and birch.  
 



Table 2 Description of land cover categories based on statistics from the Norwegian Forest Inventory 
 
  Definition 
Area category Name Crown cover Description 
Forest Productive forest >10% Potential yield (stemwood incl bark) >1 m3 ha-1 yr-1 
 Unproductive forest >10% Potential yield (stemwood incl bark) <1 m3 ha-1 yr-1 
Peatlands Peat <10% Peatland without tree cover or with less than 10% vegetated cover (shrubs, bushes) 
Lakes Lake and rivers - Water bodies 

Mountains Other wooded land 5-10% 
Mineral soil type. Low productivity: trees with potential to reach 5 m height; alternatively, cover of shrubs, bushes, 
trees >10% 

 Wooded mire 5-10% Organic soil type. Productivity as for other wooded land 
 Tundra, bare rock <10%- Bare rocks, shallow soil with or without vegetated cover (shrubs, bushes) less than 10% during any time of the 

year. 
 Calluna heath n.d. Dominance of calluna heath 
Agricultural Grazing land - Grazing land, not regularly cultivated 
 Arable land - Arable land, regularly cultivated  
Developed Other areas - Dominated by roads, asphalt, buildings and other constructed materials 

 



Table 3 Equations used in the carbon balance for Norway.  

 

Equation  

1 Terrestrial carbon balance Norway = ∑carbon uptake (forest + peatlands + mountains + agricultural areas + lakes)  

2 Forest carbon balance = ∑ (forest carbon pool2008 – forest carbon pool1990)pool
1 

3 Carbon pool tree biomassregion
2 = ∑ (d, h3 * CF4

biomass components
5)tree species

6 

4 Carbon pool tree biomassregion
2  = ∑ (volume  * CF (BEF)7

biomass components
5)tree species

6 

5 Ground vegetation biomassregion
2  = ∑ (stand age * CF2

biomass components
5)tree species

6 

6 Peatland carbon balance = ∑ carbon accumulation rate * areapeatland type
8 

7 Carbon balance agricultural areas = ∑ carbon accumulation ratecultivation type, soil type 
9 * area cultivation type, soil type 

9  

8 Mountain carbon balance = ∑ carbon accumulation rate * area 

9 Lake carbon balanceNorway = ∑ carbon sedimentation rate * area 

10 Aquatic TOC export Norway = ∑ TOC concentration * dischargedrainage area
10 

1 pool: biomass, ground vegetation, soil. 2 NFI region 1 to 8. 3 d, diameter, h, height 4 CF, conversion factor. 5 Stems, stubs, branches, foliage, roots. 

6Dominating tree species: spruce, pine and birch. 7 BEF, biomass expansion factor. 8 Undisturbed boreal and subarctic peatlands; disturbed peatlands 9 Arable 

land on mineral soil types; fully cultivated and surface-cultivated organic and mineral soil types. 10 Norway’s four major drainage areas.   

  
  



Table 4 Peatland carbon balance studies and estimates of peatland carbon accumulation rates for common Norwegian peatland types.  
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1 B OMF Sweden 2004-2005(2) Degero Stormyr 64o11.10  19o13.30E 1.2 685 448 full 23.5 3.4 52 2 -8.2 2.1 -13.0 1.4 0.029 
2 B OB Canada 1998-2004(7) Mer Bleue 45.41oN 75.48oW 6 943 391 full 21.5 39 40 41 -3.7 0.5 -14.9 3.1 0.038 
3 SA PPM Sweden 2008-2009(2) Stordalen 68.37 19.05E 0 336 227 full 44.5 16.3 50 17 -2.0 

 
-3.2 0.6 0.014 

4 B OMF Sweden 2001-2003(3) Degero Stormyr 64o11.10  19o13.30E 1.2 453 296 estimate 36.8 
 

55 7 -8 
 

-9.9 
 

 
5 B, T B Sweden 2005 (1) Fajemyr 56◦15 13◦33E 6.2 700 290 estimate 5.7 

 
21 6 -6 

 
-9.7 

 
 

6 B SF Finland 2006-2008(3) Lompolojankka 67o89.532 24o12.55E -1.4 484 317 estimate 27.3 
 

44 38 -6 
 

-10.6 
 

 
7 SA OB Finland 1997-2002(5) Kaamanen 69.14 27.3E 0.2 471 308 estimate 15.2 

 
22 20 -2 

 
-4.3 

 
 

8 B SF Finland 2004 (1) Not given 61.83 24.19E 4.2 713 466 estimate 48.9   71 0 -6   -15.6    

    
all 

 
Mean8 254 19.79 40.9 18.89 -4.6 0.69 -10.2 1.79  

       
B OB mean 29.6 23.09 51.5 23.79 -6.5 0.89 -14.5 2.49  

 
SA-PPM OB mean 23.5 18.29 29.6 13.69 -2.0 0.39 -4.0 0.79  

   
SA OB mean 15.2 11.79 21.5 9.99 -2.0 0.39 -4.3 0.79  

 
    

 
1 references  S1; Nilsson ea 2008; S2, Roulet ea 2007; S3: Olefeldt ea 2012; S4: Sagerfoss ea 2007; S5 Lund ea 2007; S6: Aurela ea 2007; S7: Aurela ea 2009; S8: Aurela ea 
2004.  
2 B, boreal; SA, subarctic, T, temperate  
3 O, oligotrophic; M, minerogenic; F, fen; b, bog; PPM, permafrost-palsamire; SF, sedge fen. 
4 estimates in italics.  
5 discharge estimated as MAP - EP: in S4, 6, 7, 8 EP is proportional to S1; in S5, EP is proportional to S2.  
6 CH4 emissions: S4= S1; S5,6,8: mean of S1+S2; S7 = S3.  
7 estimated DOC export (g C m-2yr-1) = ratio of DOC export and discharge (g C m-2yr-1 mm-1) x discharge (mm). S4, from S1; S5,6,8, from mean S1,2; S7, from S3 
8 mean is weighted on number of years in each study.  
9 stdev, standard deviation, is estimated as average of the relative standard devations from study 1-3 multiplied by the estimated mean.  



Table 5 Carbon balance for agricultural areas 
 

Land use 
 

area (million ha) 
Emission factor  
g C m-2 yr-1 

Carbon balance  
Tg C yr-1 

  
 

% area M soils O soils M soils O soils M soils O soils all 
arable land 35 0.36 0 0 (78) n.r. 0.00 (0.28) n.r. 0.00 (0.28) 
grassland, fully cultivated 45 0.46 0.06 0 (78)  570 (290) 0.00 (0.36) 0.33 (0.17) 0.33 (0.39) 
grassland, surface-cultivated 20 0.21 0.03 0 (78) 285 (145) 0.00 (0.16) 0.07 (0.04) 0.07 (0.16) 

  
1.02 0.08 

  
0.00 (0.80) 0.40 (0.17) 0.40 (0.81) 

 



Table 6 Key characteristics of river monitoring in four main drainage areas of Norway, and riverine carbon fluxes for the period 1990 to 2008.  
 

Drainage area Area in Norway total area 
Monitored 

area Nr of monitored  rivers Discharge1 TOC2 TOC flux3 DIC flux CO2 evasion 

 106 ha 106 ha % n mm yr-1 mg L-1 Tg C yr-1 g C/m2/ yr Tg C yr-1 

Skagerrak 10.70 10.94 82 10 720 (101) 3.8 (0.2) 0.29 (0.04) 2.8 (0.4)   

North Sea 4.75 4.75 26 18 2395 (419) 1.9 (0.1) 0.21 (0.04) 4.5 (0.8)   

Norwegian Sea 11.88 12.23 30 15 1312 (164) 2.4 (0.2) 0.37 (0.06) 3.1 (0.5)   

Barents Sea 4.95 7.52 55 3 477 (46) 3.6 (0.5) 0.10 (0.01) 1.7 (0.3)   

Norway 32.27 35.45 51 46 
 

  0.96 (0.08) 3.0 (0.3) 0.32 (0.14-0.81) 1.65 (0.63 – 3.99) 
1 Discharge expressed as mean annual discharge (1990-2008) and standard deviation. 2 Flow-weighted, area-weighted mean (1999-2008) and standard 
deviation 3 TOC flux and calculated from discharge and TOC with combined standard deviation 



Table 7 Mean annual forest carbon uptake in eight regions in Norway between 1990 and 2008. 

    
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 

 
    unit year East East East West Middle North Finnmark Mountains Norway 

region Forested area Mha 
 

2.18 1.74 1.54 1.34 1.47 1.54 1.03 1.13 12.18 

  MAT1 oC   3.1 2.5 4.8 5.9 3.7 3.1 -0.9 0.4   

biomass tree biomass Tg C 2008 98.7 (2.7) 80.3 (2.2) 68.5 (1.8) 56.1 (1.5) 50.3 (1.4) 34.4 (0.9) 10.6 (0.8) 14.7 (1.1) 415.9 (4.7) 

 
GV2 biomass     ’’ 

 
3.6 (2.3) 2.4 (1.9) 2.6 (2.4) 1.9 (1.3) 2.3 (1.6) 1.5 (0.4) 2.0 (1.9) 0.5 (0.0) 16.8 (4.8) 

 
tree biomass kg C m-2   4.53 4.61 4.44 4.18 3.41 2.23 1.03 1.30 3.40 

 
tree sink Tg C yr-1 1990-2008 1.10 (0.19) 0.67 (0.16) 0.96 (0.13) 0.99 (0.10) 0.40 (0.10) 0.46 (0.06) 0.13 (0.08) 0.19 (0.13) 4.90 (0.38) 

 
ground veg sink      ’’ 

 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 (0.14) 

  biomass sink g C m-2 yr-1   50 38 62 74 27 30 12 17 40 

 
      

         
annual increment Mm3 yr-1 1990-2008 7.1 5.0 3.7 3.3 2.5 1.6 0.2 0.7 23.9 

fellings 
 

    ’’ 
 

3.9 2.7 1.4 0.5 1.1 0.3 0.0 0.0 10.0 

  
Tg C yr-1 

 
1.6 1.1 0.6 0.2 0.5 0.1 0.0 0.0 4.1 

litter flow tree + GV Tg Cyr-1 1990-2008 4.4 (1.0) 3.4 (0.7) 2.9 (0.6) 2.2 (0.5) 2.7 (0.6) 1.6 (0.3) 0.6 (0.1) 0.6 (0.1) 18.5 (1.6) 

 
mortality     ’’ 

 
0.2 (0.1) 0.2 (0.1) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.0 (0.0) 0.1 (0.0) 0.9 (0.1) 

 
harvest residues     ’’ 

 
0.8 (0.2) 0.6 (0.2) 0.3 (0.1) 0.1 (0.0) 0.2 (0.1) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 2.1 (0.3) 

 
all     ’’ 

 
5.5 4.2 3.4 2.5 3.0 1.7 0.6 0.7 21.5 

  all kg C m-2 yr-1   0.25 0.24 0.22 0.18 0.20 0.11 0.06 0.06 0.18 

                          

soil sink Tg C  1990-2008 0.24 (0.07) 0.16 (0.05) 0.17 (0.05) 0.16 (0.05) 0.11 (0.03) 0.11 (0.03) 0.02 (0.03) 0.10 (0.03) 1.07 (0.12) 

  sink g C m-2 yr-1   11 9.5 11 12 7.2 7.1 2.3 8.5 8.8 
1 Mean annual temperature. 2 Ground vegetation 



  
 

Table 8 Multivariate correlations of forest carbon fluxes and forest and climate characteristics for eight regions. Bold and italic fonts indicate that pairwise 
correlations were significant at the 0.01 and 0.05 level, respectively. All forest fluxes and pools were area-normalized.  
 
  Tree sink Soil sink MAT1 MAP2 Tree biomass Litter flux Ann. Incr3 
Tree sink 1 

      Soil sink 0.84 1 
     MAT1 0.88 0.77 1 

    MAP2 0.54 0.51 0.65 1 
   Tree biomass 0.80 0.80 0.78 0.13 1 

  Litter flux 0.66 0.69 0.68 -0.05 0.97 1 
 Ann. Incr3 0.61 0.72 0.51 -0.16 0.88 0.91 1 

 
1 mean annual temperature. 2 mean annual precipitation. 3 annual increment.  
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