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Abstract 

Charophytes are benthic algae with a complex morphology and high phenotypic plasticity. 

This has led to ambiguities in species delineation. However, until now genetic studies on 

Chara have been based on samples collected from a restricted geographical range or only 

included a restricted number of taxa. This may have hindered a general interpretation of the 30 

results. We applied barcoding of matK, a rapidly evolving coding section of the plastid 

genome, in 324 Chara samples collected from 19 countries, in order to test whether the 

distribution of barcode haplotypes among individuals was consistent with species boundaries 

as they are currently understood. The phylogenetic tree grouped the 324 Chara individuals, 

which according to commonly used identification keys represented 29 species, into 12 well-35 

defined groups (i.e. monophyletic morphospecies or groups of morphospecies). Considerable 

morphological variation occurred within genetically homogeneous groups. This included 

traits which are commonly used for Chara species determination, such as the length and 

number of spine cells, the length of stipulodes and bract cells, cortication (tylacanthous, 

isostichous, aulacanthous, and absent cortication), as well as sex differentiation. However, 40 

there were also substantial genetic differences among morphologically similar species (e.g. C. 

virgata – C. globularis – C. connivens). No morphological trait consistently reflected genetic 

differences. This indicates that morphological traits for specific taxa indeed may serve as 

diagnostic tools for species delimitation, but that they are not generally suitable for inferring 

genetic differentiation or phylogenetic relationships. We propose that i) C. virgata and C. 45 

strigosa, ii) C. liljebladii, C. horrida and C. baltica, and iii) C. hispida, C. rudis and C. 

polyacantha are conspecific. Our data also indicate that C. gymnophylla should be divided 

into tylacanthous forms (which are closely related to C. contraria) and aulacanthous forms 

(which are related to C. vulgaris).  

50 
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Introduction 

Charophytes, defined as the extant and fossil members of the order Charales plus the 

members of the extinct orders Sycidiales and Moellerinales (Schneider et al., 2015a), are 

algae with a complex morphology. Species delineation of charophytes is commonly based on 

morphological traits of the plant thallus. There is, however, considerable overlap in 55 

morphological characteristics used to discriminate species such that uncertainties occur in 

charophyte species delineation (Boegle et al., 2007; 2010a, 2010b). In addition, different flora 

treatments differ in their description of one and the same species (see e.g. description of C. 

hispida in Wood & Imahori (1965), Moore (1986) and Krause (1997)). Indeed, Proctor (1975) 

pointed out that “almost no regional studies from Eurasia involving [the C. hispida L.] 60 

complex agree upon the exact number of species to be recognized or how they are to be 

distinguished”. In spite of these uncertainties, many Chara species are reported to have 

become rare in recent decades (Baastrup-Spohr et al., 2013), they are red-listed in many 

countries (e.g. Sjøtun et al., 2010; Auderset Joye & Schwarzer, 2012) and they are also 

frequently used as indicators for ecological status assessment of rivers and lakes (e.g. Stelzer 65 

et al., 2005; Penning et al., 2008). Thus, accurate identification of charophyte species is not 

only critical for understanding their diversity but also for ecosystem assessment. Information 

about which morphological traits reflect genetic differences may thus be important for 

ecosystem management.  

The most extensive study that compared genetic and morphological characteristics of Chara 70 

was done by Mannschreck (2003), who used AFLP (Amplified Fragment Length 

Polymorphism, a genetic fingerprinting technique) to study 213 individuals belonging to 13 

Chara species from Sweden, Germany, Poland, France and Mexico. She was able to 

discriminate all species except two pairs: C. baltica-C. intermedia, and C. virgata-C. strigosa. 

Subsequent detailed AFLP studies on the C. baltica-C. intermedia pair, together with several 75 

closely related species, partly differed in which species they were able to separate from each 

other (Boegle et al., 2007, 2010a, 2010b; Urbaniak & Combik, 2013). This may be explained 

with the different and restricted geographical range from where individuals in each of these 

studies originated. Indeed, the most recent AFLP studies (Boegle et al., 2010a; Urbaniak & 

Combik, 2013) indicated that a continuum may exist within taxa included in this cluster, 80 

rather than discreet entities. This is consistent with a recent study by Schneider et al. (2015b), 

who, based on barcoding three DNA markers in 91 Chara samples belonging to 14 different 

taxa, showed that eight European taxa within the C. baltica-intermedia-complex were 
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identical, and only samples from South-America differed in one base-pair from all other 

samples in this cluster. 85 

However, AFLP and barcoding studies on Chara so far have been based on samples collected 

from a restricted geographical range, or included a restricted number of taxa. Consequently, 

there is a risk that genetic or morphological variation of taxa has been underestimated, with 

implications for interpretation of morphospecies. We also lack knowledge about the relative 

variation within and among taxa, i.e. whether some morphologically homogeneous taxa are 90 

more genetically variable than others, or whether some genetically homogeneous taxa have 

greater morphological variation than others. In order to fill this knowledge gap, we assembled 

324 samples of the genus Chara collected from 19 countries, most of them in Europe, but also 

from North- and South America, Asia, and Africa. Less than 30 % of the samples have been 

used in a previous study (Schneider et al., 2015b), while the remaining samples are reported 95 

for the first time. According to commonly used determination keys, our samples were 

identified as representing 29 species of the genus Chara (Table S1 in the supplementary 

material). We applied barcoding of matK, a plastid-encoded protein-coding gene, in order to 

test if the distribution of barcode haplotypes among individuals is consistent with species 

boundaries as they are currently understood. MatK is one of the most rapidly evolving coding 100 

sections of the plastid genome (Hilu & Liang, 1997), is recommended as one of two 

barcoding regions for plants (CBOL Plant Working Group, 2009) and has recently been 

shown to match well with other commonly used genetic markers in Chara (Schneider et al., 

2015b).  

105 

Material and Methods 

Taxon sampling  

The study included 327 individuals (324 from the genus Chara, two Lamprothamnium and 

one Nitellopsis) from 15 countries in Europe, as well as Argentina, Canada, Egypt and Nepal 

(Table S1). 319 samples were either collected fresh and dried in silica gel shortly after 110 

sampling, or from herbaria that are stored at the Norwegian Institute for Water Research, the 

Natural History Museum (University of Oslo, Norway), or the University of Rostock, 

Germany. Earlier studies indicated that herbarium specimen and silica gel dried samples were 

equally suitable for genetic analyses of Chara (Schneider et al., 2015b). Voucher specimens 

exist for all samples (see Table S1). Eight charophyte matK sequences (six from the genus 115 

Chara, one Lamprothamnium and one Nitellopsis) were obtained from GenBank. 



5 

Taxonomy 

Many Chara taxa have been variously recognized as species, varieties, or forms, and there is 

little consensus about appropriate rank among different flora treatments. The two most widely 120 

applied taxonomic concepts are those of Wood & Imahori (1965) and Krause (1997). While 

the former authors belong to the school of “lumpers” (lumping taxa into broad categories), the 

latter is a so-called “splitter” (creating many narrowly defined categories). For example, 

Wood & Imahori (1965) discriminate 19 species world-wide within the genus Chara, whereas 

Krause (1997) recognizes 29 species in Europe alone. In order to be consistent, and to provide 125 

data that are as taxonomically informative as possible, our species delineation generally 

followed that of Krause (1997), with the following exceptions: i) C. aculeolata was 

differentiated by its longer spines and stouter appearance from C. intermedia, because there is 

an ongoing debate as to whether or not these two taxa should be separated; Krause (1997) 

recognized C. aculeolata as “form” within C. intermedia; ii) for the same reason, C. liljebladii 130 

was differentiated by its larger size from C. baltica; Wood & Imahori (1965) recognized this 

taxon as C. hispida var. baltica f. liljebladii; iii) C. arcadiensis is a tentative name for a 

hitherto undescribed taxon; it morphologically resembles C. contraria, but is dioecious; using 

Krause (1997) and Wood & Imahori’s (1965) keys led to C. contraria, but then mismatched 

with the species description as monoecious; iv) C. calveraensis, C. corfuensis, and C. 135 

longifolia were determined using Wood & Imahori (1965) because the taxa are not listed in 

Krause (1997)(C. calveraensis and C. longifolia are described from outside Europe, and the 

treatment put forth by Krause (1997) only deals with European taxa; the reason why Krause 

did not list C. corfuensis is unknown); Wood & Imahori (1965) recognized these taxa as C. 

vulgaris var. vulgaris f. calveraensis, C. hispida var. hispida f. corfuensis, and C. 140 

hornemannii f. longifolia, respectively; however, we gave these taxa species rank in order to 

be consistent with Krause’s (1997) taxonomic concept. 

Following these principles, our samples were tentatively identified, using the morphological 

traits described below, as representing 29 species of the genus Chara (Table S1). The number 

of individuals sampled per species ranged from 1 – 38 (Table S1). The material used in this 145 

study contains specimens from Wood & Imahori’s (1965) subsections Agardhia, Braunia, 

Chara, Desvauxia, Grovesia, Hartmania, and Wallmania (Table S1). 



6 

Morphological traits of Chara 

The plant thallus of Chara consists of a stem with elongate single-celled multinucleate 150 

internodes separated by multicellular nodes. Branchlets (also called branches), with a similar 

modular structure to the axis, arise from the nodes (see Fig. 1 for an illustration of typical 

morphological traits of Chara). In most, but not all, Chara species the internode and branchlet 

cells are overlaid by a one cell thick layer of lateral cells termed cortex. The stem cortex can 

be i) haplostichous (number of cortex cell rows corresponds to the number of branchlets), 155 

diplostichous (twice as many cortex cell rows as the number of branchlets), or triplostichous 

(three times as many cortex cell rows as the number of branchlets), and ii) aulacanthous 

(secondary cortex cell rows more prominent, spines on thinner cortex cells), tylacanthous 

(primary cortex cell rows more prominent, spines on thicker cortex cells), or isostichous 

(primary and secondary cortex cells equally prominent). At the axial nodes, stipulodes form a 160 

(often double) ring subtending the branchlets. In most Chara species the branchlets have a 

simplified cortex, and bract cells arise at the branchlet nodes (Fig. 1). Gametangia develop at 

branchlet nodes. Charophytes can be monoecious (antheridia and oogonia on the same plant) 

or dioecious (antheridia and oogonia on different plants).  

165 

DNA extraction, primers, amplification, and sequencing 

The genetic analyses presented in this study were performed by three different working 

groups: a) Norwegian Institute for Water Research, b) University of Rostock, c) Canadian 

Centre for DNA Barcoding (CCDB). Accordingly, three different DNA extraction methods, 

sets of primers, and methods for PCR amplification were used. The primers designed by each 170 

working group are summarized in Table 1.  

a) Chara material was incubated for 5 minutes at 100 °C with 600 µL sodium phosphate

buffer (pH 8) in 1.5 ml Eppendorf tubes, and then transferred to a 2 ml cryopreservation tube 

with 0.5 g zirconium beads and 100 µl 25% sodium dodecyl sulfate added. DNA was then 

extracted according to the protocol in Hagman et al. (2015). PCR amplification was 175 

performed on a CFX 96 Realtime System (BIORAD, Oslo, Norway) using iProof™ HF 

Master Mix (BIORAD). PCR was performed with a denaturation step: 98 ºC (30 s), followed 

by 35 cycles of 98 ºC (10 s), 62 ºC (20 s), and 72 ºC (20 s) with a final elongation step of 72 

ºC for 5 min. For each PCR product, both strands were sequenced on an ABI 3130 XL genetic 

analyzer using the BigDye terminator V.3.1 cycle sequencing kit (Applied Biosystems, 180 
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Applera Deutschland GmbH, Darmstadt, Germany) according to the manufacturer’s 

instructions. 

b) Total genomic DNA was extracted from silica-dried material using the standard DNeasy

Plant Mini Kit (Quiagen, Hilden, Germany). PCR was performed with an initial five-minute 

94 °C denaturation step and one minute each of denaturation (94 °C), annealing (55 °C), and 185 

polymerisation (72 °C) for 15 cycles, followed by one minute each of denaturation (94 C), 

annealing (52 °C), and polymerisation (72 °C) for 20 cycles before the final elongation step 

(10 min). Sequencing was carried out using an Applied Biosystems 3130xl Genetic Analyzer 

with sequencing primers identical to primers used for PCR reactions. 

c) Total genomic DNA was extracted from Chara material as described in Schneider et al.190 

(2015b). Amplification and sequencing of the matK region was conducted following the 

protocols of the CCDB, as detailed and described in Kuzmina et al. (2012). Sequence 

chromatograms were proofed, edited, and contigs assembled using the program CodonCode 

Aligner version 2.0.6 (CodonCode Co, USA). Contigs were aligned using the MUSCLE 

multiple sequence alignment algorithm (Edgar, 2004) as implemented in CodonCode Aligner. 195 

Phylogenetic analyses 

Barcode data were quality-controlled iteratively throughout data collection to detect potential 

contamination, misidentification, and alignment error. Voucher specimens of problematic 

samples were re-examined resulting in the correction of misidentified taxa. Sequences were 200 

aligned using Align (version 03/2007) MS Windows-based manual sequence alignment editor 

(SequentiX - Digital DNA Processing, Klein Raden Germany) to obtain a DNA sequence 

alignment, which was then corrected manually. Segments with highly variable and ambiguous 

regions and gaps making proper alignment impossible were excluded from the analyses. A 

matK set containing 518 positions was used. Chara longifolia (AY170444), Chara connivens 205 

(AY170442), Chara globularis (AY170443), Chara polyacantha (AY170445), Chara 

vulgaris (DQ229102 and NC00803) and Lamprothamnium macropogon (AY170446) were 

obtained from GenBank and included in the study. Nitellopsis obtusa (AY170447), was 

employed as outgroup taxon. Evolutionary substitution models were evaluated in MEGA 

version 6 (Tamura et al., 2013) and GTR+G was selected as best-fitting evolutionary model. 210 

A Bayesian analysis was conducted in BEAST 1.82 (Drummond et al., 2012). A relaxed 

lognormal clock model and a coalescent constant size tree prior (Kingman, 1982) were used. 
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The Monte Carlo Markov chains (MCMC) were set to run three times for 10 million 

generations each, logging tree parameters every 1,000 generations. Chain mixing and 

convergence were checked in Tracer v.1.6 (Rambaut et al., 2014) to confirm that the 215 

estimated sample size (ESS) values for all parameters were >200. The posterior distribution of 

trees from the three runs were combined after removal of a proportion of each run as burn-in 

using logCombiner v1.82, a maximum clade credibility (MCC) tree was calculated in 

TreeAnnotator v1.82 and visualized in FigTree 1.4.0 (Rambaut, 2012). We also analyzed our 

data using the maximum likelihood (ML) and neighbor joining algorithms in MEGA version 220 

6 (Tamura et al., 2013), and the results are given in Figs. S1 and S2. In the trees, we defined 

clusters as “monophyletic morphospecies or group of morphospecies”. 

Results and discussion 

Consistency between barcode haplotypes and morphological species boundaries 225 

BI analysis of the matK locus separated the 324 Chara individuals into 11 well-defined 

groups which were supported by posterior probabilities >= 0.9% (Fig. 2). A 12th group was 

formed by our samples of C. connivens, which was, however, not monophyletic to a sample 

of the same species obtained from GenBank. With the exception of C. connivens, gene 

sequence similarities of the Chara individuals within each of the 12 groups generally were 230 

above 99% (Table S2). The same 12 groups as in the BI tree were recovered using ML and NJ 

(Figs. S1 and S2), and only few differences with respect to support of groups occurred. Also, 

two individuals of the charophyte genus Lamprothamnium formed a separate group. For 

better overview, the results are presented as summarized tree (Fig. 2). Complete trees are 

given in Figs. S1 and S2. The names we use for labelling the groups refer to the oldest 235 

described species in each group. 

C. hispida-cluster

The first group (labelled C. hispida-cluster; Fig. 2) is a large cluster containing 142 

individuals which have traditionally been assigned to 10 different taxa (C. aculeolata, C. 240 

baltica, C. calveraensis, C. corfuensis, C. hispida, C. horrida, C. intermedia, C. liljebladii, C. 

polyacantha, C. rudis). They originate from 11 different countries in Europe (from Norway in 

the North to Greece in the South, and from Ukraine in the East to Spain in the West), in 

addition to Argentina. There was little genetic variation within the 142 individuals in the C. 
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hispida-cluster (Fig. 2, Table S2). BI divided the C. hispida-cluster into two subgroups (Fig. 245 

2). These were, however, not consistent with morphological species boundaries or with 

geographic origin (Fig. S1, Table S1), and we are not aware of ecological differences (e.g. 

different habitat types) between the two sub-groups either. Morphological variation among 

the individuals that formed the C. hispida-cluster was considerable, ranging from short to 

elongated spines, stipulodes and bract cells, from single to fasciculate spines, as well as from 250 

aulacanthous to isostichous and tylacanthous cortication. Also, C. baltica, C. liljebladii and C. 

horrida are brackish water species, while the other taxa in this cluster occur in freshwater 

(Krause, 1997). However, the individuals that formed the C. hispida-cluster all were 

monoecious and diplostichous with corticated stem and branchlets, spines were present on the 

stem cortex, they had two well-developed rows of stipulodes, and the stem was moderately 255 

stout to stout (internode diameter > ~0.9 mm).  

Our results for the C. hispida-cluster are consistent with those of Schneider et al. (2015b), and 

enhance their reliability by including almost three times as many samples that originated from 

a wider geographical range. They are also consistent with AFLP studies (Boegle et al., 2010a; 

Urbaniak & Combik, 2013) that indicated a continuum may exist within taxa included in this 260 

cluster rather than discreet entities. Our results support Wood & Imahori (1965), who 

assumed a close phylogenetic relationship among the taxa included in the C. hispida-cluster. 

In contrast to Wood & Imahori (1965), our results indicate that C. calveraensis also is part of 

the C. hispida-cluster (Fig. 2).  

265 

C. contraria-cluster

A second cluster (labelled C. contraria-cluster; Fig. 2) contained 47 individuals which have 

traditionally been assigned to seven different taxa (C. arcadiensis, C. contraria, C. denudata, 

C. filiformis, C. gymnophylla, C. imperfecta, C. ohridana). They originate from 9 different

countries in Europe (from Norway in the North to Greece in the Southeast and Ireland in the 270 

West), in addition to Nepal and Canada. Most individuals had identical sequences on the 518 

positions of the matK gene. However, a sample of C. gymnophylla from Nepal, and a group 

containing three individuals of C. contraria from Germany and one from Greece differed by 

one basepair from the other samples in this group, respectively (Figs. S1 and S2). Although 

the three individuals from Germany were partly ecorticated, the individual from Greece had 275 

normal cortication, such that the subgroup did not reflect consistent morphological differences 
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to the other C. contraria samples. In general, there was considerable morphological variation 

among the individuals that formed the C. contraria-cluster. The samples that were identified 

as C. arcadiensis and C. imperfecta were dioecious, while all other individuals were 

monoecious. Individuals that were identified as C. filiformis had extremely short branchlets, 280 

while branchlets of the other specimens were of normal length. C. gymnophylla had 

ecorticated branchlets, C. ohridana and C. imperfecta were entirely ecorticated, while the 

other specimens had a normally developed cortex. Among the samples that were identified as 

C. contraria were some individuals with a poorly developed cortex, some with elongated

spines (determined as C. contraria var. hispidula), but most resembled the typical C. 285 

contraria (Krause, 1997). The only morphological traits that were shared by all individuals of 

the C. contraria-cluster were the two well-developed rows of stipulodes, and the slender to 

moderately stout stem (internode diameter roughly < 0.9 mm). The individuals that had a 

corticated stem were all diplostichous and tylacanthous (but the spines were of varying 

length). To our knowledge, no other published information exists with respect to genetic 290 

differentiation of taxa within the C. contraria-cluster, but Corillion (1957) suggested a close 

relationship among C. contraria, C. denudata and C. filiformis, based on culturing 

experiments. Wood & Imahori (1965) grouped all taxa that were included in the C. contraria-

cluster into C. vulgaris. Our data thus only partly support their view, since the taxa that 

formed the C. contraria-cluster indeed were closely related with each other, but not with C. 295 

vulgaris which formed a separate cluster. Instead, the species that formed the C. contraria-

cluster were most closely related to the C. hispida-cluster (Figs. 2, S1, S2). 

C. aspera-cluster

A third cluster (labelled C. aspera-cluster) consisted of 39 individuals which have 300 

traditionally been assigned to two different species (C. aspera, C. galioides). They originate 

from seven countries in Europe (from Norway in the North to Greece in the Southeast and 

Spain in the Southwest). While all individuals of C. aspera and two individuals of C. 

galioides from Greece had identical sequences on the 518 positions of the matK gene, the 

samples of C. galioides from France and from Spain each formed their own subgroup (Fig. 2). 305 

C. aspera and C. galioides are known to be morphologically similar to each other. The only

consistent difference is the larger diameter of the antheridium of C. galioides (Wood & 

Imahori, 1965; Krause, 1997), although C. galioides often also has a wider stem diameter than 

C. aspera (Flor-Arnau et al., 2006). Both taxa are dioecious, slender to moderately stout (axis
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diameter < ~0.9 mm), triplostichous, have two well-developed rows of stipulodes, and spines 310 

and stipulodes are acute. 

Mannschreck (2003) was able to separate C. aspera from C. galioides by AFLP. However, 

her samples of C. galioides all were from France. In fact, the five individuals of C. galioides 

from France we have in our dataset were taken from the same herbarium sheets which also 

were used by Mannschreck (2003). Our results agree with Mannschreck (2003) in that the 315 

French specimens of C. galioides indeed are genetically different from C. aspera. However, 

the samples from Spain and Greece show that polyphyletic clades of C. galioides exist, and 

that C. galioides is not consistently separated from C. aspera (Fig. 2). Our results partly 

support Wood and Imahori (1965) who assumed a close phylogenetic relationship between C. 

aspera and C. galioides. However, they regarded them as forms of C. globularis, which 320 

according to our results is not the case. 

C. canescens - C. tenuispina

A fourth cluster consisted of 14 individuals of C. canescens originating from Sweden, Spain, 

and Greece. Only the sample from Greece differed in one basepair from the other C. 325 

canescens samples. C. canescens is generally differentiated by its haplostichous cortex from 

all other Chara species, and has species rank both in Wood and Imahori (1965) and Krause 

(1997). Our data support the status of C. canescens as a well-defined species, both genetically 

and morphologically. 

Another cluster consisted of two individuals of C. tenuispina from Germany. C. tenuispina is 330 

triplostichous, monoecious, and has long and slender spine cells. Our results support Krause 

(1997) who gave this taxon species rank, but not Wood & Imahori (1965) who regarded C. 

tenuispina as variety of C. globularis. 

C. vulgaris-cluster335 

A sixth cluster (labelled C. vulgaris-cluster) contained 23 individuals which have traditionally 

been assigned to two species (C. gymnophylla, C. vulgaris). They originate from six countries 

in Europe (from Sweden in the North to Greece in the Southeast and the UK in the West), in 

addition to Egypt. There was little genetic variation among the individuals that formed the C. 

vulgaris-cluster, but the two samples of C. gymnophylla (both collected in Greece) formed a 340 
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subgroup. C. gymnophylla morphologically differed from the C. vulgaris samples by their 

entirely ecorticated branchlets (note: upper parts of C. vulgaris branchlets may also be 

ecorticated). Because the differences in matK sequence between C. vulgaris and C. 

gymnophylla were small (Figs. S1 and S2), and our samples of aulacanthous C. gymnophylla 

originated from one country only, we advocate analyzing more samples to determine if C. 345 

gymnophylla is generally separated from C. vulgaris.  

Samples MB8 and MB56 were originally determined as C. contraria. Their morphology was 

intermediate between C. vulgaris and C. contraria, since the samples were tylacanthous 

(which is indicative of C. contraria; MB8: isostichous to slightly tylacanthous), and had 

elongated bract cells (which is typical for C. vulgaris). However, the same combination of 350 

morphological traits was found in some individuals that genetically clustered to C. contraria. 

Problems of differentiation between C. vulgaris and C. contraria have been reported before 

(Mannschreck, 2003), but have traditionally been solved by assigning tylacanthous forms to 

C. contraria (Wood & Imahori, 1965; Krause, 1997). Our results carefully indicate that

tylacanthous forms that genetically cluster to C. vulgaris may exist. 355 

Our results also indicate that C. gymnophylla consists of two genetically separate groups (Fig. 

2). Neither Wood & Imahori (1965) nor Krause (1997) differentiated between tyla- and 

aulacanthous forms of C. gymnophylla. In our samples, the two aulacanthous individuals of C. 

gymnophylla from Greece clustered to C. vulgaris, while the tylacanthous individual from 

Nepal clustered to C. contraria (Fig. 2). Taken together, our understanding of C. contraria, C. 360 

vulgaris and C. gymnophylla is that C. contraria generally is tylacanthous, while C. vulgaris 

mainly is aulacanthous. In addition, C. vulgaris generally has elongated bract cells. A typical 

C. vulgaris is slender to moderately stout (axis diameter < ~0.9 mm), but exceptions occurred

among our samples. Tylacanthous individuals with ecorticated branchlets belong to C. 

contraria (C. contraria var. gymnophylla), while aulacanthous individuals with ecorticated 365 

branchlets are closely related to C. vulgaris (C. vulgaris var. gymnophylla). Regrettably, 

tylacanthous individuals of C. vulgaris may also exist. These individuals can to our 

knowledge not morphologically be differentiated from C. contraria (but we have not analyzed 

oospore morphology, which may be useful for Chara species determination; Urbaniak and 

Blazencic, 2012). 370 

C. tomentosa – C. globularis – C. connivens
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A well-defined cluster consisted of 9 individuals of C. tomentosa from five countries in 

Europe. They shared identical sequences on the matK gene. C. tomentosa is a large, robust 

plant with inflated bract cells. It is the type species of the genus Chara (Wood and Imahori, 375 

1965) and has species rank both in Wood & Imahori (1965) and Krause (1997). Our data 

support the status of C. tomentosa as one of the few species where little doubt exists with 

respect to species delineation. 

The next cluster was formed by 17 individuals of C. globularis collected from six countries in 

Europe. There was little genetic variation among the C. globularis individuals, and no 380 

consistent morphological differences were apparent among them. C. globularis is often 

difficult to separate from C. virgata, and intermediate forms exist that have morphological 

traits of C. globularis (no spines or papillae on the cortex) and C. virgata (elongated upper 

row of stipulodes). Our results clearly separate C. globularis from C. virgata, and assign 

specimens without spines but with (usually only slightly) elongated upper stipulodes to C. 385 

globularis (samples IW 5a, IW 13, MB 62, MB 69). Our results do not support Wood & 

Imahori (1965), who assigned strains with elongated upper stipulodes to C. virgata but 

instead included strains with papillar spines in C. globularis. We agree with Krause (1997) 

that C. globularis does not have spines, but extend Krause’s description of this species to also 

include specimens with (slightly) elongated upper stipulodes. 390 

Our samples of C. connivens consisted of three genetically homogenous individuals collected 

from Sweden, but their monophyly with sample AY170442 of the same species obtained from 

GenBank (originating from Northeastern Spain; Sanders et al., 2003) could not be established 

(Fig. 2). More samples are necessary to determine if this is due to a misidentification, a 

sequencing error, or if C. connivens consists of two closely related taxa. C. connivens is 395 

morphologically similar to C. globularis, and the former differs from the later by its incurved 

branchlets (C. globularis: straight or only slightly incurved), and its dioecious sex (C. 

globularis: monoecious; Krause, 1997). Wood & Imahori (1965) even recognize mon- and 

dioecious forms of both C. globularis and C. connivens, and use the incurved branchlets as 

the only differentiation between these two species. That incurved branchlets generally reflect 400 

genetic differences between Chara species seems highly unlikely, because they can be 

induced by high light conditions (Schneider et al., 2006; 2015c). Nevertheless, this trait seems 

useful for differentiating C. connivens from C. globularis. 
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C. strigosa-virgata-cluster405 

Another cluster (labelled C. strigosa-virgata-cluster) consisted of 23 specimens belonging to 

C. virgata (17; from five countries in Europe) and C. strigosa (5; from three countries in

Europe). Sample AY170443 obtained from Genbank (originating from Eastern Germany; 

Sanders et al., 2003) clearly has been misidentified (registered as C. globularis). All samples 

shared identical sequences on the matK gene in spite of conspicuous morphological 410 

differences in spine cells and stipulodes (C. virgata: only the upper row of stipulodes is well 

developed, spine cells are rudimentary; C. strigosa: two well-developed rows of stipulodes, 

spine cells are elongate and fasciculate). Our results are consistent with Schneider et al. 

(2015b) and Mannschreck (2003), and enhance their reliability by including more samples 

from a larger geographic area. To our knowledge, our results are at odds with all existing 415 

Chara determination literature, which either treats them as different species, or, in case of 

Wood & Imahori (1965), relates C. strigosa to C. aspera, which is clearly not the case (Fig. 

2). 

C. longifolia – C. baueri – Lamprothamnium sp.420 

C. longifolia (both our sample and AY170444 obtained from GenBank (Sanders et al., 2003)

originate from Canada) and C. baueri (two samples from Germany), each formed their own 

cluster. Wood and Imahori (1965) list C. longifolia as C. hornemannii f. longifolia. Our 

sample did not completely match the description of Wood & Imahori (1965), but was 

intermediate between C. hornemannii f. hornemannii, f. nordhoffiae and f. longifolia (axis 425 

stout, branchlets ecorticate and shorter than internode length, spines absent, one row of 

elongated stipulodes). C. baueri also had ecorticated branchlets and only one row of 

stipulodes. This species has long been regarded as extinct, and has only recently been 

rediscovered in few localities in Germany and Poland (Pukacz et al., 2012). Krause (1997) 

and Wood & Imahori (1965) agree on the status of C. baueri as a separate species, and our 430 

data support their assumption. However, we have no data on C. braunii, which, according to 

Krause (1997) may be closely related to C. baueri. Our results support the assumption of 

Wood and Imahori (1965) that C. longifolia and C. baueri would be phylogenetically quite 

distinct from other Chara species. C. baueri may even be closer related to the genus 

Lamprothamnium than to Chara (Fig. 2). Earlier studies based on 18S rDNA sequences 435 

(Meiers et al., 1999), AFLP (Mannschreck, 2003) and multi-gene sequences (Pérez et al., 
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2014) placed Lamprothamnium within the genus Chara. Our results support these findings 

(Fig. 2). 

What may explain morphological variation within homogenous genetic groups? 440 

Many algal species are known to exhibit substantial intraspecific morphological variation, 

either as a result of genetically controlled polymorphism or environmentally induced 

plasticity (see Leliaert et al., 2014 for a review). Also in Chara, phenotypic plasticity may be 

environmentally induced, e.g. by light intensity, water temperature, nutrient concentrations, 

salinity and wave exposure (Blindow and Schuette, 2007; Bociag et al., 2013; Sato et al., 445 

2014; Schneider et al. 2015c). These environmental factors affect morphological traits like 

shoot and branchlet length, branchlet curvature, formation of sex organs, and plant branching 

pattern. Corillion (1957) has shown that culturing conditions may impact shoot and branchlet 

cortication and the length of stipulodes in Chara. However, an impact of environmental 

factors on the number and length of spines and the number of stipulodes has to our knowledge 450 

not yet been demonstrated. Growth and morphology of the marine green alga Ulva is 

influenced by epiphytic bacteria, which may result in anything from “pincushion” 

morphology via tubes to foliaceous growth (Provasoli & Pintner, 1980; Marshall et al., 2006). 

Although, to our knowledge, a possible impact of bacteria on Chara has not yet been tested, 

we suspect that the environment may influence Chara morphology to a greater extent than 455 

hitherto demonstrated.  

Heritable phenotypic modifications in the absence of differences in plant barcodes may also 

be caused by epigenetic variation, such as DNA methylation (Cubas et al., 1999; Zhang et al., 

2013), or polyploidy (Schranz & Osborn, 2004). Indeed, variability in chromosome numbers 

has been reported not only within Chara species (Prasad & Verma, 1985), but even in 460 

different cells of a single Chara individual (Chaudhary & Dash, 1991). Likewise, DNA 

methylation may differ among individuals of the same Chara species (Kunachowicz et al., 

2001).  

Lastly, in clades where speciation has been very recent, barcode sequences may be shared 

among related taxa (Hollingsworth et al., 2011). Thus, the matK marker we used in our study 465 

may have been too conservative, and other loci or genetic fingerprinting techniques may have 

provided a better resolution. However, matK has recently been shown to agree well with 

results based on rbcL and ITS2 in Chara (Schneider et al., 2015b). Likewise, Schaible et al. 
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(2009) found a good agreement among AFLP, rbcL and SNP markers for different 

populations of C. canescens. Also in our study, barcoding results were consistent with 470 

previous studies using AFLP. Although additional markers, e.g. the ribosomal marker 18S 

rRNA, may have improved resolution, it seems unlikely that major differences between matK 

and other commonly used markers would have occurred in our dataset.  

Which morphological traits reflect genetic variation? 475 

Generally, there was little genetic but substantial morphological variation within most of the 

clusters in our study. The morphological variation included traits which are commonly used 

for Chara species determination, like the length and number of spine cells (C. hispida-cluster, 

C. strigosa-virgata), the length of stipulodes and bract cells (C. hispida-cluster, C. strigosa-

virgata), cortication (tylacanthous, isostichous, aulacanthous, and even absent cortication; C. 480 

hispida-cluster, C. contraria-cluster), as well as sex differentiation (monoecious – dioecious; 

C. contraria-cluster). In addition, the usefulness of traits to morphologically differentiate

among the clusters was not consistent across all clusters. For example, the C. hispida-cluster 

included tyla- and aulacanthous individuals, while C. contraria and C. vulgaris could, with 

few exceptions, be differentiated by using this morphological trait. Likewise, the C. 485 

contraria-cluster contained monoecious and dioecious individuals, while this trait indeed 

seemed useful for differentiating C. connivens from C. globularis, and also for differentiating 

C. tenuispina from C. aspera. Identical barcoding sequences for monoecious and dioecious

individuals have previously been shown for C. canescens and C. altaica (Kato et al., 2010; C. 

altaica is a taxon described from Japan which Wood & Imahori (1965) would consider to be a 490 

monoecious strain of C. canescens). Even traits which have been shown to be influenced by 

the environment, may in some cases be useful for species differentiation (C. connivens may 

be differentiated by its incurved branchlets from C. globularis, even though incurved 

branchlets in Chara may be caused by high light conditions; Schneider et al., 2015c). 

These examples reflect that morphological traits for specific taxa indeed may serve as 495 

diagnostic tools for species delimitation, but that they are not generally suitable for inferring 

genetic differentiation. When two lineages separate, they may eventually become 

morphologically distinct. These morphological differences may then serve as diagnostic tool 

for species delimitation. In other instances, however, the same morphological variation may 

occur as polymorphism or environmentally induced plasticity within one species. For this 500 
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reason, we discourage the description of new Chara species based exclusively on 

morphological differences like partial or total loss of cortication, sex differentiation, or the 

number and length of spine cells, bract cells and stipulodes. 

With the obvious exception of ecorticated forms, stem cortication (haplo-diplo-triplostichous) 

was consistent within each cluster and may therefore be useful for species delineation. Here, 505 

the determining factor was the main type of cortication. Individual Chara plants may well be 

irregularly corticated, i.e. some parts may appear diplo-, and others triplostichous. According 

to our results, however, cortication is not phylogenetically informative, because the 

triplostichous species within the C. aspera-cluster were polyphyletic to the triplostichous C. 

globularis, C. connivens, and C. strigosa-virgata-cluster (Fig. 2). 510 

Consequences for species delineation in Chara 

Because speciation is a process and not a single event in time, uncertainty about species 

boundaries is inevitable in recently diverged lineages (Leliaert et al., 2014). This explains 

why some species boundaries remain obscure, in spite of the increasing amount of available 515 

genetic information. Algal species are generally viewed as separately evolving 

metapopulation lines (Leliaert et al., 2014). When two lineages separate, they will eventually 

acquire genetic differences. These differences often can first be detected with high-resolution 

methods like e.g. AFLP (Roy et al., 2010; Bog et al., 2015), while more conservative markers 

like rbcL in the earlier phase of speciation are likely to be similar between the lineages. For 520 

the taxa in our dataset, neither AFLP, nor matK, rbcL or ITS2 sequences were able to 

discriminate between C. virgata and C. strigosa (Fig. 2; Mannschreck, 2003; Schneider et al., 

2015b). This indicates that, if C. strigosa and C. virgata indeed should “evolve separately”, 

then the separation must have occurred relatively recent. It therefore indicates that C. virgata 

and C. strigosa may be regarded as varieties within one species, which may or may not 525 

eventually evolve into separate species. 

The situation is more complicated for the C. hispida-cluster. Here, AFLP studies partly 

differed in which species they were able to separate from each other (Boegle et al., 2007; 

2010a, 2010b; Urbaniak & Combik, 2013). Data from some of these studies indicated a 

continuum may exist among the taxa included in the C. hispida-cluster (Boegle et al., 2010a; 530 

Urbaniak & Combik, 2013). Together with almost identical matK, rbcL and ITS2 sequences 

(this study; Schneider et al., 2015b), this suggests a recent and ongoing speciation among the 
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taxa included in the C. hispida-cluster. Specifically, not even AFLP could differentiate among 

C. liljebladii, C. horrida and C. baltica (Boegle et al., 2010b), and not among C. hispida, C.

rudis and C. polyacantha either (Urbaniak & Combik, 2013). In contrast, several studies were 535 

indeed able to separate different taxa between these sub-clusters from each other 

(Mannschreck, 2003; Boegle et al., 2007, 2010a, 2010b; Urbaniak & Combik, 2013). These 

same studies disagreed about the differentiation between C. intermedia and C. baltica. In 

summary, we conclude that i) all taxa within the C. hispida-cluster are closely related with 

each other, ii) C. liljebladii, C. horrida and C. baltica on the one hand (= C. baltica s.l.), as 540 

well as C. hispida, C. rudis and C. polyacantha on the other hand (= C. hispida s.l.) likely are 

conspecific, iii) C. baltica s.l. and C. hispida s.l. likely are products of relatively recent 

speciation, but iv) for the other taxa in the C. hispida-cluster more high resolution genetic 

analyses are needed before conclusions with respect to species status can be drawn. The same 

is true for the other unresolved taxa in our study. However, our results indicate that all taxa 545 

within a cluster are phylogenetically closely related with each other. 

Our data also indicate that C. gymnophylla should be divided into tylacanthous forms (which 

are closely related to C. contraria), and aulacanthous forms (which are related to C. vulgaris; 

Fig. 2). We propose to tentatively name them C. contraria var. gymnophylla, and C. vulgaris 

var. gymnophylla, respectively. However, more samples than the three we had in our dataset 550 

are necessary before conclusions with respect to species status should be drawn. 

Conclusions 

Our results show considerable morphological variation within genetically homogeneous 

groups (e.g. C. hispida-cluster, C. contraria-cluster, C. strigosa-virgata). In addition, species 555 

within genetically homogeneous groups partly prefer different habitat types (C. baltica, C. 

horrida and C. liljebladii are brackish water species, while the other species in the C. hispida-

cluster typically occur in freshwater; C. virgata typically occurs in calcium-poor habitats, 

while C. strigosa typically occurs in calcium-rich habitats (Rey-Boissezon & Auderset Joye, 

2015); note, however, that Torn et al. (2015) also found C. strigosa in low-alkalinity 560 

habitats). On the other hand, our results also show substantial genetic differences among 

morphologically similar species (e.g. C. virgata - C. globularis - C. connivens). No 

morphological trait consistently reflected genetic differences or differences in habitat. 
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This seems to indicate that different OTUs (operational taxonomic units) may be useful, 

depending on the aim of a study: a) for conservation of genetic diversity, taxa within 565 

genetically homogeneous groups may be combined; b) for bioindication purposes, e.g. 

ecological status assessment according to the Water Framework Directive, taxa which prefer 

different habitats should be separated from each other, because they may have bioindicative 

value irrespective whether or not they are phylogenetically closely related; and c) for 

protection of habitat types, e.g. according to the Habitats Directive, taxa which have similar 570 

ecosystem functions may be lumped. Little information is available with respect to ecosystem 

function of different Chara species, and we encourage studies that aim to quantify e.g. the 

influence of different charophyte species on ecosystem carbon and phosphorus balances 

(Kufel et al., 2013), as food or habitat for other organisms (Schmieder et al., 2006), as well as 

for bioremediation of pollutants (Schneider & Nizzetto, 2013). However, while different 575 

OTUs may be useful for different purposes, the decision whether or not a taxon should have 

species rank should be based on phylogenetic criteria. Our results indicate that all taxa within 

a cluster are phylogenetically closely related with each other and may be viewed as belonging 

to a macro-species sensu Wood & Imahori (1965). Regrettably, our results also indicate that 

morphology of Chara species may not be used for inferring phylogenetic distance. 580 
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Figure captions 

Fig. 1. Schematic drawing of a monoecious diplostichous tylacanthous Chara specimen with 745 

single spines (e.g. C. contraria). For the sake of clarity, we use “bract cells” as a collective 

term for “bract cells, bractlets and bracteoles” throughout the manuscript (see e.g. Wood & 

Imahori (1965) for a detailed description). 
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27 

Fig. 2. Phylogenetic relationships of 327 charophyte samples inferred through Bayesian 750 

analyses of 518 bp of the matK gene. Bayesian inference posterior probability values above 

0.5 are shown at the nodes in the tree. Outgroup Nitella obtusa AY170447 is not shown in the 

tree. For better overview, sample IDs are indicated only for those samples where a species is 

represented by only one sample in a branch; in all other cases the number of individuals is 

given. The bar indicates 2% sequence divergence. * C. virgata includes sample AY170443 755 

obtained from GenBank, which clearly was misidentified. 

760 

Table 1. Primers used in this study; numbers refer to different working groups: a) Norwegian 

Institute for Water Research, b) University of Rostock, c) Canadian Centre for DNA 

Barcoding (CCDB) 

765 

a F-matk-Chara AGAATGAGCTTAAACAAGGAT 

R-matk-Chara ACGATTTGAACATCCACTATAATA 

Chara-matK-BT2F DATATGGCAACAYCAAAAGAC 

Chara-matk-BT2R ATACAGACCATGCAGCYTT 

b matKF2 AATGAGCTTAAACAAGGATTC 

matKR1a CGTCCATGTAGATCTAATACTAG 

c Chara_matKF2 GAACGAATCCGTGATAAAAGC 

Chara_matKR2 CTTCGGCCTTTCAAAAAGAA 

Table 1. Primers used in this study; numbers refer to different working groups: a) Norwegian 

Institute for Water Research, b) University of Rostock, c) Canadian Centre for DNA 

Barcoding (CCDB). 
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Supplementary material 

Table S1. List of 327 individuals (324 from the genus Chara, two Lamprothamnium and one 

Nitellopsis) used in the present study. NHM = Natural History Museum, University of Oslo, 

Norway; NIVA = Norwegian Institute for Water Research; Uni Rostock = University of 775 

Rostock, Germany. 

Table S2. Gene sequence similarities [%] among and within the 12 Chara groups, based on 

518 positions of the matK gene. 

780 

Fig. S1. Bootstrapped condensed maximum likelihood tree of matK sequence from 327 

charophyte samples. Note that branch length is not related to genetic similarity. 

785 

Fig. S2. Neighbor joining tree of matK sequence from 327 charophyte samples. The scale bar 

indicates the estimated number of nucleotide substitutions per site. 
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Identification Identification Identification Identification Identification Identification Identification 

C. aculeolata M2 2008 Norway NIVA Kütz. in Rchb. 1832 Hartmania 

C. aculeolata MB19 2005 Germany NIVA 

C. aculeolata T3 2012 Norway NHM 

C. aculeolata T38 2007 Norway NHM 

C. aculeolata T39 2010 Norway NHM 

C. arcadiensis MB27 2005 Greece NIVA tentative name for a hitherto undescribed taxon 

C. aspera CS31 2012 France Uni Rostock Willd. 1809 Grovesia 

C. aspera DH1b 2011 UK Uni Rostock 

C. aspera GJ51 2009 Sweden Uni Rostock 

C. aspera GJ53 2009 Sweden Uni Rostock 

C. aspera M8 2008 Norway NIVA 

C. aspera MB10 2000 Germany NIVA 

C. aspera MB11 2001 Germany NIVA 

C. aspera MB12 2001 Germany NIVA 

C. aspera MB13 2001 Germany NIVA 

C. aspera MB14 2000 Germany NIVA 

C. aspera MB15 2000 Germany NIVA 

C. aspera MB23 2005 Sweden NIVA 

C. aspera MB67 2005 UK NIVA 

C. aspera MB73 2001 France NIVA 

C. aspera MB75 2001 France NIVA 

C. aspera MB76 2001 France NIVA 

C. aspera T49 2011 Norway NHM 

C. baltica BH07 2005 Germany Uni Rostock Bruzelius 1824 Hartmania 

C. baltica BH09 2005 Germany Uni Rostock 

C. baltica DH3b 2011 UK Uni Rostock 

C. baltica GJ96 2009 Sweden Uni Rostock 

C. baltica GJ98 2009 Sweden Uni Rostock 

C. baltica MB32 2004 France NIVA 

C. baltica MB33 2004 France NIVA 

C. baltica MB34 2004 France NIVA 

C. baltica MB37 2004 Germany NIVA 

Table 1



C. baltica MB39 2005 Greece NIVA 

C. baltica MB42 2002 Sweden NIVA 

C. baltica MB43 2002 Sweden NIVA 

C. baltica MB47 2002 Sweden NIVA 

C. baltica MB54 2001 France NIVA 

C. baltica MB74 2001 France NIVA 

C. baltica NS02 2009 UK Uni Rostock 

C. baltica NS18 2010 UK Uni Rostock 

C. baltica NS21 2010 UK Uni Rostock 

C. baltica NS22 2010 UK Uni Rostock 

C. baltica T35 2010 Norway NHM 

C. baltica VS01 2013 Germany Uni Rostock 

C. baueri S29 2011 Germany NIVA A. Br. 1847 Braunia 

C. baueri S31 2008 Germany NIVA 

C. calveraensis 47 2012 Argentinia NIVA R.D.W. 1965 Chara 

C. calveraensis 48 2012 Argentinia NIVA 

C. canescens MB21 2005 Greece NIVA Desv. et Loisel. in Loisel. 1810 Desvauxia 

C. canescens SR47 2010 Spain Uni Rostock 

C. canescens SR49 2010 Spain Uni Rostock 

C. canescens SR51 2010 Spain Uni Rostock 

C. canescens SR52 2010 Spain Uni Rostock 

C. canescens SR53 2010 Spain Uni Rostock 

C. canescens SR54 2010 Spain Uni Rostock 

C. canescens SR55 2010 Spain Uni Rostock 

C. canescens SR56 2010 Spain Uni Rostock 

C. canescens SR70 2010 Spain Uni Rostock 

C. canescens SR71 2010 Spain Uni Rostock 

C. canescens SR72 2010 Spain Uni Rostock 

C. canescens SV20 2003 Sweden Uni Rostock 

C. canescens SV22 2003 Sweden Uni Rostock 

C. connivens AY170442 Salzm. ex A. Braun 1835 Grovesia 

C. connivens GJ31 2009 Sweden Uni Rostock 

C. connivens GJ37 2009 Sweden Uni Rostock 

C. connivens GJ38 2009 Sweden Uni Rostock 



C. contraria 10AD10c 2010 Germany Uni Rostock A. Br. ex Kütz. 1845 s. str. Chara 

C. contraria 10AD10e 2010 Germany Uni Rostock 

C. contraria 10AD22b 2010 Germany Uni Rostock 

C. contraria 12AD18e 2012 Germany Uni Rostock 

C. contraria 12AD21a 2012 Germany Uni Rostock 

C. contraria 12AD21b_f 2012 Germany Uni Rostock 

C. contraria 12AD2a 2012 Germany Uni Rostock 

C. contraria 12AD2c 2012 Germany Uni Rostock 

C. contraria 12AD4d 2012 Germany Uni Rostock 

C. contraria AH2 2013 Germany Uni Rostock 

C. contraria CS29 2012 France Uni Rostock 

C. contraria CS34 2012 France Uni Rostock 

C. contraria DH5d 2011 UK Uni Rostock 

C. contraria M12 2008 Norway NIVA 

C. contraria M17 2008 Norway NIVA 

C. contraria M21 2008 Norway NIVA 

C. contraria M25 2008 Norway NIVA 

C. contraria M38 1997 Norway NIVA 

C. contraria M9 2008 Norway NIVA 

C. contraria MB22 2005 Greece NIVA 

C. contraria MB55 2001 France NIVA 

C. contraria MB58 2001 France NIVA 

C. contraria MB70 2000 Austria NIVA 

C. contraria MB82 2000 Germany NIVA 

C. contraria MB84 2000 Germany NIVA 

C. contraria MB88 2000 Germany NIVA 

C. contraria NS27 2010 UK Uni Rostock 

C. contraria S54 2006 Canada NIVA 

C. contraria S63 2013 Norway NIVA 

C. contraria S65 2013 Norway NIVA 

C. contraria T50 2011 Norway NHM 

C. contraria T51 2009 Norway NHM 

C. contraria TK82 2009 Sweden Uni Rostock 

C. contraria TK86 2009 Sweden Uni Rostock 



C. contraria TK88 2009 Sweden Uni Rostock 

C. corfuensis S55 2006 Greece NIVA (J. Gr. Ex Fil.) R.D.W. 1965 Hartmania 

C. denudata DJ20 2012 Germany Uni Rostock A. Braun 1847 Chara 

C. denudata DJ21 2012 Germany Uni Rostock 

C. denudata DJ22 2012 Germany Uni Rostock 

C. denudata KW04 2010 Ireland Uni Rostock 

C. filiformis TK67 2009 Sweden Uni Rostock Hertzsch 1855 Chara 

C. filiformis TK69 2009 Sweden Uni Rostock 

C. filiformis TK70 2009 Sweden Uni Rostock 

C. galioides MB77 2001 France NIVA De Candolle 1813 Grovesia 

C. galioides MB78 2001 France NIVA 

C. galioides MB79 2001 France NIVA 

C. galioides MB80 2001 France NIVA 

C. galioides MB81 2001 France NIVA 

C. galioides SR12_1 2010 Spain Uni Rostock 

C. galioides SR40 2010 Spain Uni Rostock 

C. galioides SR41 2010 Spain Uni Rostock 

C. galioides SR44 2010 Spain Uni Rostock 

C. galioides SR57 2010 Spain Uni Rostock 

C. galioides SR59 2010 Spain Uni Rostock 

C. galioides SR61 2010 Spain Uni Rostock 

C. galioides SR62 2010 Spain Uni Rostock 

C. galioides SR64 2010 Spain Uni Rostock 

C. galioides SR65 2010 Spain Uni Rostock 

C. galioides SR67 2010 Spain Uni Rostock 

C. galioides SR76 2010 Spain Uni Rostock 

C. galioides SR77 2010 Spain Uni Rostock 

C. galioides SR78 2010 Spain Uni Rostock 

C. galioides SR79 2010 Spain Uni Rostock 

C. galioides UW13 2009 Greece Uni Rostock 

C. galioides UW15 2009 Greece Uni Rostock 

C. globularis 16 2009 Macedonia NIVA Thuillier 1799 Grovesia 

C. globularis 17 2009 Macedonia NIVA 

C. globularis AH1 2012 Germany Uni Rostock 



C. globularis AH3 2013 Germany Uni Rostock 

C. globularis DH6a 2011 UK Uni Rostock 

C. globularis DH7c 2011 UK Uni Rostock 

C. globularis GJ29 2009 Sweden Uni Rostock 

C. globularis GJ30 2009 Sweden Uni Rostock 

C. globularis IW13 2012 Germany Uni Rostock 

C. globularis IW5a 2012 Germany Uni Rostock 

C. globularis IW5b 2012 Germany Uni Rostock 

C. globularis MB28 2005 Sweden NIVA 

C. globularis MB29 2005 Sweden NIVA 

C. globularis MB60 2001 France NIVA 

C. globularis MB62 2001 France NIVA 

C. globularis MB69 2000 Germany NIVA 

C. globularis T83 2011 Norway NHM 

C. "globularis" AY170443 
misidentified in Genbank, the sample really is C. 
virgata 

C. gymnophylla 22 2009 Nepal NIVA A. Braun 1835 Chara 

C. gymnophylla MB17 2005 Greece NIVA 

C. gymnophylla MB20 2005 Greece NIVA 

C. hispida 49 2012 Germany NIVA (L.) Hartm. 1820 Hartmania 

C. hispida CS11 2012 Switzerland Uni Rostock 

C. hispida CS14 2012 Switzerland Uni Rostock 

C. hispida CS20 2012 Switzerland Uni Rostock 

C. hispida CS24 2012 Switzerland Uni Rostock 

C. hispida DH2b 2011 UK Uni Rostock 

C. hispida DH4a 2011 UK Uni Rostock 

C. hispida IW2 2012 Germany Uni Rostock 

C. hispida MB87 2001 Germany NIVA 

C. hispida MB6 2004 Germany NIVA 

C. hispida MB68 2004 Germany NIVA 

C. hispida NS15 2010 UK Uni Rostock 

C. hispida NS16 2010 UK Uni Rostock 

C. hispida NS17 2010 UK Uni Rostock 

C. hispida NS20 2010 UK Uni Rostock 

C. hispida NS28 2010 UK Uni Rostock 



C. hispida S56 2001 Germany NIVA 

C. hispida S71 2010 Italy NIVA 

C. hispida SR13_2 2010 Spain Uni Rostock 

C. hispida T1 2005 Norway NHM 

C. hispida T10 2012 Norway NHM 

C. hispida T11 2002 Norway NHM 

C. hispida T13 2011 Norway NHM 

C. hispida T14 2011 Norway NHM 

C. hispida T15 1995 Norway NHM 

C. hispida T16 2003 Norway NHM 

C. hispida T17 2010 Norway NHM 

C. hispida T18 2009 Norway NHM 

C. hispida T19 2010 Norway NHM 

C. hispida T2 2003 Norway NHM 

C. hispida T20 2010 Norway NHM 

C. hispida T21 2002 Norway NHM 

C. hispida T5 2012 Norway NHM 

C. hispida T6 2012 Norway NHM 

C. hispida T9 2012 Norway NHM 

C. hispida TK48 2009 Sweden Uni Rostock 

C. hispida TK49 2009 Sweden Uni Rostock 

C. hispida TK50 2009 Sweden Uni Rostock 

C. hispida UW16 2012 Germany Uni Rostock 

C. horrida GJ86 2009 Sweden Uni Rostock Wahlst. 1862 Hartmania 

C. horrida HT07 2005 Sweden Uni Rostock 

C. horrida HT09 2005 Sweden Uni Rostock 

C. horrida MB35 2005 Sweden NIVA 

C. imperfecta 24 2010 Macedonia NIVA A. Braun in Durieu de Maisonneuve Chara 

C. intermedia 35 2012 Poland NIVA A. Br. in Br., Rab. and Stiz. 1859 Hartmania 

C. intermedia CS18 2012 Switzerland Uni Rostock 

C. intermedia CS25 2012 France Uni Rostock 

C. intermedia CS27 2012 France Uni Rostock 

C. intermedia CS36 2012 Switzerland Uni Rostock 

C. intermedia IM04 2005 Sweden Uni Rostock 



C. intermedia IM05 2005 Sweden Uni Rostock 

C. intermedia IM06 2005 Sweden Uni Rostock 

C. intermedia IM07 2005 Sweden Uni Rostock 

C. intermedia IW11 2012 Germany Uni Rostock 

C. intermedia MB86 2001 Germany NIVA 

C. intermedia MB2 2004 Germany NIVA 

C. intermedia MB25 2004 Germany NIVA 

C. intermedia MB26 2004 Germany NIVA 

C. intermedia MB38 2005 Sweden NIVA 

C. intermedia MB4 2004 Germany NIVA 

C. intermedia MB85 2003 Sweden NIVA 

C. intermedia OB01 2011 Ukraine Uni Rostock 

C. intermedia S30 2005 Greece NIVA 

C. intermedia S75 2013 Italy NIVA 

C. intermedia S77 2013 Italy NIVA 

C. intermedia TK31 2009 Sweden Uni Rostock 

C. intermedia TK33 2009 Sweden Uni Rostock 

C. intermedia TK35 2009 Sweden Uni Rostock 

C. liljebladii LS01 2013 Germany Uni Rostock Wallmann 1853 Hartmania 

C. liljebladii LS02 2013 Germany Uni Rostock 

C. liljebladii LS03 2013 Germany Uni Rostock 

C. liljebladii LS05 2013 Germany Uni Rostock 

C. longifolia AY170444 (Rob.) R.D.W. 1965 Wallmania 

C. longifolia S51 2006 Canada NIVA 

C. ohridana 19 2009 Macedonia NIVA Kostic 1936 

(not listed, 
but must be 
Chara) 

C. ohridana 23 2010 Macedonia NIVA 

C. polyacantha 37 2012 Poland NIVA A. Br. in Br., Rab. and Stiz. 1859 Hartmania 

C. polyacantha 38 2012 Poland NIVA 

C. polyacantha 4 2008 Spain NIVA 

C. polyacantha 5 2008 Spain NIVA 

C. polyacantha AY170445 

C. polyacantha MB3 2004 Germany NIVA 



C. polyacantha MB36 2005 Sweden NIVA 

C. polyacantha MB9 2006 Germany NIVA 

C. polyacantha NS24 2010 UK Uni Rostock 

C. polyacantha S32 2010 Germany NIVA 

C. polyacantha S66 2009 Italy NIVA 

C. polyacantha S68 2010 Italy NIVA 

C. polyacantha S69 2009 Italy NIVA 

C. polyacantha S70 2009 Italy NIVA 

C. polyacantha S79 2013 Italy NIVA 

C. polyacantha T22 2008 Norway NHM 

C. polyacantha TK102 2009 Sweden Uni Rostock 

C. polyacantha TK107 2009 Sweden Uni Rostock 

C. polyacantha TK108 2009 Sweden Uni Rostock 

C. rudis 28 2010 Norway NIVA A. Br. in Leonhardi 1882 Hartmania 

C. rudis M1 2008 Norway NIVA 

C. rudis M11 2008 Norway NIVA 

C. rudis M3 2008 Norway NIVA 

C. rudis M6 2008 Norway NIVA 

C. rudis NS19 2009 UK Uni Rostock 

C. rudis T24 2010 Norway NHM 

C. rudis T25 2010 Norway NHM 

C. rudis T26 2010 Norway NHM 

C. rudis T27 2009 Norway NHM 

C. rudis T28 2008 Norway NHM 

C. rudis T29 2008 Norway NHM 

C. rudis T30 2008 Norway NHM 

C. rudis T31 2011 Norway NHM 

C. rudis T32 2011 Norway NHM 

C. rudis T33 2011 Norway NHM 

C. rudis T34 2011 Norway NHM 

C. rudis T4 2012 Norway NHM 

C. rudis T7 2012 Norway NHM 

C. rudis T8 2012 Norway NHM 

C. rudis TK11 2009 Sweden Uni Rostock 



C. rudis TK13 2009 Sweden Uni Rostock   

C. rudis TK18 2009 Sweden Uni Rostock     

C. strigosa KR12_11 2011 Germany Uni Rostock A. Braun 1847 Grovesia 

C. strigosa M7 2008 Norway NIVA   

C. strigosa MB49 1996 Austria NIVA   

C. strigosa S59 2013 Norway NIVA   

C. strigosa T46 2011 Norway NHM     

C. tenuispina UW3 2013 Germany Uni Rostock A. Braun 1835 Grovesia 

C. tenuispina UW5 2013 Germany Uni Rostock     

C. tomentosa CS21 2012 Switzerland Uni Rostock L. 1753 Chara 

C. tomentosa GJ01 2009 Sweden Uni Rostock   

C. tomentosa GJ05 2009 Sweden Uni Rostock   

C. tomentosa M19 2008 Norway NIVA   

C. tomentosa MB18 2005 Sweden NIVA   

C. tomentosa MB7  2004 Germany NIVA   

C. tomentosa S18 2009 Macedonia NIVA   

C. tomentosa T40 2010 Norway NHM   

C. tomentosa T41 2011 Norway NHM     

C. virgata 10 2009 UK NIVA Kütz. 1834 Grovesia 

C. virgata 39 2012 Finland NIVA   

C. virgata 50 2012 Germany NIVA   

C. virgata GJ41 2009 Sweden Uni Rostock   

C. virgata GJ43 2009 Sweden Uni Rostock   

C. virgata MB40 2005 Sweden NIVA   

C. virgata S12 2009 Norway NIVA   

C. virgata S57 2012 Norway NIVA   

C. virgata S64 2013 Norway NIVA   

C. virgata T43 2011 Norway NHM   

C. virgata T44 2010 Norway NHM   

C. virgata T45 2008 Norway NHM   

C. virgata T78 1936 Norway NHM   

C. virgata T79 1992 Norway NHM   

C. virgata T84 1996 Norway NHM   

C. virgata T86 1929 Norway NHM   



C. virgata T88 2006 Norway NHM 

C. vulgaris CS28 2012 France Uni Rostock L. 1753 Chara 

C. vulgaris DQ229102 

C. vulgaris GJ75 2009 Sweden Uni Rostock 

C. vulgaris GJ76 2009 Sweden Uni Rostock 

C. vulgaris GJ77 2009 Sweden Uni Rostock 

C. vulgaris MB16 2005 Greece NIVA 

C. vulgaris MB30 2006 Greece NIVA 

C. vulgaris MB31 2006 Greece NIVA 

C. vulgaris MB50 2001 France NIVA 

C. vulgaris MB53 2001 France NIVA 

C. vulgaris MB56 2001 France NIVA 

C. vulgaris MB59 2001 France NIVA 

C. vulgaris MB8 2006 Germany NIVA 

C. vulgaris MB83 2000 Germany NIVA 

C. vulgaris NC00803 

C. vulgaris NS13 2010 UK Uni Rostock 

C. vulgaris NS23 2010 UK Uni Rostock 

C. vulgaris NS25 2010 UK Uni Rostock 

C. vulgaris NS26 2010 UK Uni Rostock 

C. vulgaris S14 2009 Poland NIVA 

C. vulgaris S58 2013 Egypt NIVA 

Lamprothamnium 
macropogon AY170446 (A. Br.) R.D.W. 1965 

Lamprothamnium papulosum MB52 2001 France NIVA Wallroth (J. Groves) 1916 

Nitellopsis obtusa AY170447 (Desvaux in Loisel.) J. Groves 1919 
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