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A B S T R A C T

The freshwater cyanobacterium Cylindrospermopsis raciborskii was investigated for carotenoid composition.
Besides β-carotene, echinenone and (9/9′Z)-echinenone a carotenoid glycoside was found to be the main
component. This compound was isolated and subsequently acetylated for structural elucidation. The acetyl
derivative was fully characterized by UV–vis, ECD, NMR and HRMS techniques. The detailed 1H and 13C NMR
chemical shift assignment of the major carotenoid supported the unequivocal identification of (2′S)-2-hydro-
xymyxol 2′-α-L-fucoside.

1. Introduction

In natural product research many organisms and taxonomic groups
are under investigation as a potent source for isolating bioactive me-
tabolites and compounds of unique structures. One of the most pro-
mising groups is the ancient photoautotroph cyanobacteria possessing
an interesting metabolite profile because of their long evolutionary
history (Gademann and Portmann, 2008; Vasas et al., 2010).

Numerous cyanobacterial species are used as human or animal food
and food supplements. Although the most popular edible genera are the
Spirulina, Nostoc and Aphanizomenon, there are several species which
are capable to multiply in natural conditions to pose huge masses and
blooms. These species are good natural sources for investigating and
exploring special metabolites such as alkaloids, peptides, terpenoids
and other bioactive compounds. Cyanobacteria can also produce car-
otenoids. Besides the common β-carotene some special keto carotenoids
(e.g. echinenone) and unique acyclic (e.g. oscillol, Hertzberg and
Liaaen-Jensen, 1966) or monocyclic derivatives (e.g. myxol) can also be
found in these species, as well as carotenoid glycosides (Takaichi and
Mochimaru, 2007). The carbohydrate moieties, however, have not been
identified in most of the cases, the characteristic carotenoid glycosides
in cyanobacteria are frequently named as myxoxanthophyll and

oscilloxanthin leaving the sugar part unclarified. (Takaichi et al., 2001).
The biological role of these glycosides is still unknown, but the in-
vestigation of their exact structures can help to uncover their bio-
synthesis and possible functions in cyanobacteria. Herein we describe
the isolation and structure identification of a myxol glycoside deriva-
tive in Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba
Raju (C. raciborskii), a nitrogen-fixing filamentous cyanobacterial spe-
cies, which spread in the last decades and caused huge blooms world-
wide.

C. raciborskii has become a well-studied species due to its unusual
physiology, distribution and metabolism (Antunes et al., 2015). C. ra-
ciborskii was first observed in the island of Java, Indonesia in
1899–1900 and identified by Woloszynska and considered as a tropical
species (Padisák, 1997). To this date, the presence of C. raciborskii has
been reported in an increasing number of countries around the globe,
both in the Northern and Southern hemispheres. The species multiply
and represent a large biomass portion in rivers, shallow water bodies,
lakes and reservoirs under optimal conditions (Moreira et al., 2011).
Moreover, in several reported cases this species were identified as
harmful organism due to the production of well-defined toxic com-
pounds like cylindrospermopsin (CYN; Ohtani et al., 1992), paralytic
shellfish poisoning (PSP) toxins (Lagos et al., 1999), and partly
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identified neurotoxic incidents (Vehovszky et al., 2013; Svirčev et al.,
2016).

Some physiological studies elucidate partly the adaptation of C.
raciborskii to a wider range of light intensities, and its influence in
photosynthetic activity (O’Brien et al., 2009). Moreover, carotenoid and
phycobilin concentrations, as well as photosynthetic activities, were
significantly higher than those of other bloom forming cyanobacterial
species (Wu et al., 2009).

A heavy and rather unusual C. raciborskii bloom was detected early
November 2012 in the Eastern part of Hungary (Fancsika pond), re-
sulting strong discoloration of the water. Instead of the well-known
cyanobacterial pale green-bluish discoloration, the water turned to
orange color which suggested uncommon pigments or uncommon
pigment concentration in the water. (supplement Fig. S1.)

2. Material and methods

2.1. Reagents and standards

Analytical grade chemicals were used throughout the experiments.
All solvents used in high-performance liquid chromatography (me-
thanol, water, acetone and tert-butyl methyl ether) were of HPLC grade.
All reagents and solvents were purchased from Scharlab Ma-gyarország
Kft., Debrecen, Hungary. Organic solutions were dried over anhydrous
Na2SO4 and concentrated in vacuum at 40 °C (bath temperature).
Authentic reference samples (β-carotene, β-cryptoxanthin, echinenone)
were taken from our in-house collection.

2.2. Cyanobacterial (Blue-green algae) material

A Hungarian Cylindrospermopsis raciborskii (C. raciborskii) (the cya-
nobacterial strains, were isolated from Fancsika pond, Debrecen and
kept into BGSD-collection as C. raciborskii BGSD-2012) was investigated
in our study for carotenoid composition. Environmental samples from
Fancsika pond were collected from the water while blooming (deep
orange colorization by the dens cyanobacterial filaments was observed)
on the November 2, 2012 (supplement Fig. S1). The bloom-forming
cyanobacterial cells were harvested by a 5 μm membrane filter and the
species identified by their morphological characteristics (using an in-
verted microscope, LEICA DMIL). The bloom sample and also the la-
boratory isolate of the bloom forming cyanobacteria were filtered and
lyophilized for further analysis. The Cylindrospermopsis raciborskii strain
was isolated from the environmental sample and grown in liquid, ni-
trogen free medium of BG-10. The cultures were kept in glass flasks
thermostatically maintained at 28 °C and illuminated with cool white
fluorescent light (80 μmol·photons m−2 s−1). Aeration and mixing was
achieved by bubbling with sterile air. For collecting dry mass, samples
were centrifuged (10,000g, 5 min, Beckman Avanti), and the pellets
were lyophilized in dark (CHRIST-ALPHA 1-2 LDplus).

2.3. Phylogenetic analysis of C. raciborskii BGSD-2012

DNA isolation, PCR and sequencing of C. raciborskii strain Hungary
(Fancsika) were conducted according to Ballot et al. (2016). The se-
quence was deposited in the European Nucleotide Archive (ENA) under
the accession nr LT854187.

The phylogenetic analysis of the 16S rRNA sequence of C. raciborskii
strain Hungary (Fancsika) was conducted using the Seqassem software
package (version 07/2008) (Hepperle, 2017). The Align MS Windows-
based manual sequence alignment editor (version 08/2016) (Hepperle,
2017) was used to obtain DNA sequence alignments, which were then
corrected manually. Segments with highly variable and ambiguous re-
gions and gaps making proper alignment impossible were excluded
from further analyses. A 16S rRNA gene set containing1277 positions
was used, and Gloeobacter violaceus PCC 7421 (AF132790) was em-
ployed as an outgroup in the 16S rRNA gene tree. The 16S rRNA

sequences from 24 additional Nostocales sequences, derived from
GenBank, were included in the 16S rRNA analyses.

A phylogenetic tree for the 16S rRNA gene was constructed using
the maximum likelihood (ML) algorithm in Mega v. 7 (Kumar et al.,
2016) (supplement Fig. S1.). The evolutionary substitution model
T92 + G + I was found to be the best-fitting evolutionary model for
the 16S rRNA gene and used for the calculation of the ML tree. ML
analyses were performed with 1000 bootstrap replicates using Mega v.7
(Kumar et al., 2016).

2.4. Carotenoid extraction, isolation, derivatization

The freeze-dried cyanobacterium C. raciborskii (5.0 g) was sonicated
in methanol-acetone 3:7 mixture (100 mL) for 5 min, and it was let to
settle for an hour. After decantation the same extraction procedure was
repeated for four times. Continuing the extraction, the remained freeze-
dried material was mixed with methanol and kept for overnight. The
extracts were combined and the solvent was evaporated.

The crude extract was subjected to open column chromatography
(OCC) on a glass column (d: 60 mm) packed with calcium carbonate
(Biogal, Debrecen, Hungary) using hexane as eluent, or was partitioned
in aqueous methanol (15% H2O) − hexane solvent system. The pig-
ment present in the lower, polar phase was purified by OCC on modified
silica gel (Kieselgel 60, particle size 0.063–0.200 mm, Merck,
Darmstadt, Germany). (Nagy et al., 2009.)

Saponification of the pigments was executed in ether with 30%
KOH/MeOH at room temperature in dark. (Deli et al., 1996.) Compo-
sition of the crude or saponified extracts, and that of the fractions ob-
tained during chromatography was determined by HPLC.

Thin layer chromatography was performed on TLC Silica gel 60 F254
on Al sheets (Merck, Germany). Preparative layer chromatography was
executed on PLC Silica gel 60 F254 1 mm on glass plate (Merck,
Germany).

Acetylation: 20 mg of the isolated carotenoid glycoside was acety-
lated in 1 mL of dry pyridine using 0.5 mL of acetic anhydride. The
reaction was stirred for overnight, few drops of water were added and
5 min later the mixture was diluted by 50 mL diethyl ether and washed
with 3 × 20 mL of brine. The organic phase was evaporated and pur-
ified on a calcium carbonate column using toluene as eluent.
Crystallization from toluene:hexane resulted in 7 mg of the acetylated
product, with a purity of 95% (HPLC).

Silylation: 5 mg of the isolated carotenoid glycoside was dissolved
in 1 mL of dry dichloromethane and 3 mg of hexamethyldisilazane and
1 mg of ammonium thiocyanate were added (Jadhav et al., 2007). The
reaction was stirred overnight, TLC in hexane:acetone 1:1 indicated the
completion of the reaction. The mixture was diluted by 50 mL diethyl
ether and washed with 20 mL of brine. The organic phase was evapo-
rated and the crude compound was used as a sample for MS studies.

2.5. HPLC conditions

The HPLC analyses were performed with a DionexP680 quaternary
analytical pump, a Dionex PDA 100 UV/vis detector (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) with Chromeleon 6.8 software and
a column temperature control module. Chromatograms were developed
on a 250 × 4.6 mm stainless steel YMC C30, 3 mm (YMC Europe GmbH,
Dinslaken, Germany) endcapped column, with 1.00 mL/min flow rate,
at 22 °C. Eluents were (A) MeOH/TBME/H2O = 81/15/4 v/v%, (B)
MeOH/TBME/H2O = 6/90/4 v/v%. The gradient program was the
following: 0–45 min from 100% A to 100% B (in linear steps). The
chromatograms were registered at 450 nm wavelength.

HPLC–MS analyses were performed with an Agilent 6350 Accurate-
Mass Q-TOF LC/MS, data acquisition was performed by Agilent
MassHunter Qualitative Analysis B.04.00. For LC-(APCI)MS the positive
ion mode was used, with TIC, scanning range 200–1500 m/z, corona
voltage 2.6 kV, fragmentor voltage 150 V, skimmer 60 V, Oct 1RF Vpp
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750 V. The flow rate of the dried nitrogen as nebulizer gas was 240 L/h
and the vaporizer temperature was 400 °C.

2.6. Identification of carotenoids by HRMS, UV–vis and NMR spectroscopy

Carotenoids were identified on the basis of their UV–vis spectra
(λmax, spectral fine structure% III/II, and cis peak intensity% AB/AII),
retention times in HPLC, and by spiking with authentic standards.
Molecular masses were determined by LC–MS. For the identification of
the carotenoid glycoside HRMS, ECD and NMR spectra were also ap-
plied.

HRMS analyses were performed on an LTQ FT Ultra (Thermo Fisher
Scientific, Bremen, Germany) system. The ionization method was APCI
operated in positive ion mode. The samples were dissolved in methanol.
Data acquisition and analysis were accomplished with Xcalibur soft-
ware version 2.0 (Thermo Fisher Scientific).

UV-VIS spectra were taken with a Jasco V-550 UV/VIS multi-
wavelength Spectrophotometer (Jasco Applied Sciences (UK) Ltd.,
Droxford, United Kingdom). Samples were dissolved in hexane or
MeOH and the applied wavelength range was 250–600 nm. ECD spectra
were recorded at room temperature with a J-810 spectropolarimeter
(JASCO International Co. Ltd, Japan).

NMR spectra in CDCl3 were recorded with a Bruker Avance III
Ascend 500 spectrometer (500.12/125.4 MHz for 1H/13C, respectively)
at 25 °C. The 13C and 1H NMR assignments were made on the basis of
1D (1H, 13C APT) and 2D (COSY, HSQC, HMBC) experiments. All
spectra were acquired using standard Bruker software. Chemical shifts
were referenced to the residual solvent signals. The 1D and 2D data
were processed using the programs MestReC 4.9.9.6. and ACD/NMR
Processor 12.01.

3. Results and discussion

3.1. Isolation

After extraction of the freeze-dried cyanobacterium C. raciborskii
(1.0 g) the extract was divided into two parts. One half was saponified
with KOH/MeOH, and both the saponified material and the original
extract were examined by HPLC. The chromatograms obtained for both
samples were found to be similar, the saponified extract was choosen to
establish the carotenoid composition: besides β-carotene (20.3%),
echinenone (18.9%) and (9/9′Z)-echinenone (10.3%), an unknown

carotenoid (40.4%) was found to be the main component. (Fig. 1.) The
molar extinction coefficients of each carotenoid at 450 nm wavelength
were assumed to be the same.

From the original extract, which also contained chlorophylls, the
major carotenoid was separated in the most polar fraction by CaCO3

column chromatography using hexane as eluent. Following workup and
removal of the solvent the saponified extract was not completely so-
luble in toluene, the precipitate proved to be the same material as the
major and unknown component gained by chromatography of the crude
extract. The obtained major carotenoid was examined by NMR and MS,
but no conclusive data were obtained, as this compound must have
been partially decomposed during the measurements. However, the 1H
NMR spectrum indicated, that the unknown material contains a sugar
(monosaccharide) moiety. For further structure elucidation studies the
major carotenoid had to be derivatized. As the chemical modification
requires higher amounts of starting material, large-scale extraction was
necessary.

The crude extract obtained from 5.0 g freeze-dried C. raciborskii was
partitioned in aqueous-methanol hexane solvent system. Because of the
possible water solubility of the major carotenoid component, the lower
methanolic hypophase was evaporated instead of the usual workup to
avoid the contact with high amounts of water (Meyer et al., 1995).

The carotenoid composition of both phases were examined by
HPLC. In the hypophase the unknown material enriched in high purity
(78%), while the epiphase contained all the other components in-
cluding chlorophylls (supplement Fig. S2.). The epiphase was saponi-
fied, which resulted in the disappearance of chlorophylls (supplement
Fig. S3.). The remaining pigments were separated by OCC on CaCO3

with a mixture of hexane/toluene (8:2) and gave five fractions con-
taining carotenoids with different polarities. From these fractions β-
cryptoxanthin (λmax: 450, 478 in hexane, %III/II: 44, Mr: 552) (Fraction
2), echinenone (λmax: 462 in hexane, Mr: 550) (Fraction 3), (9/9′Z)-
echinenone (λmax: 353, 456 in hexane, % AB/AII: 10, Mr: 550) (Fraction
4), β-carotene (λmax: 450, 478 in hexane, %III/II: 38, Mr: 536) and it’s
(9Z)-isomer (λmax: 341, 445, 473 in hexane, %III/II: 42, % AB/AII: 12
Mr: 536) (Fraction 5) were identified by their UV–vis spectra, mass
spectra, HPLC retention times (Turcsi et al., 2016) and by co-chroma-
tography with authentic samples.

The hypophase was subjected to chromatography on modified silica
gel (Nagy et al., 2009.) using toluene: diethyl ether: methanol
100:25:20 as eluent. Three fractions were observed: a green fraction
containing chlorophylls followed by an orange fraction of less polar

Fig. 1. HPLC chromatogram of the crude extract (A), and that of the saponified extract (B).
(A): Peak 4: major carotenoid, peak 6–7: chlorophylls, peak 9: β-cryptoxanthin, peak 10: echinenone, peak 11: (9/9′Z)-echinenone, peak 12: β-carotene, peak 13: (9Z)-β-carotene.
(B): Peak 2: major carotenoid (40.4%), peak 4: β-cryptoxanthin (1.1%), peak 5: echinenone (18.9%), peak 6: (9/9′Z)-echinenone (10.3%), peak 7: β-carotene (20.3%), peak 8: (9Z)-β-
carotene (2.2%).
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carotenoids and a third polar red fraction containing the major car-
otenoid glycoside. This latter fraction was subsequently purified by
preparative layer chromatography, it was dissolved in dichloromethane
and methanol (9:1), and precipitated with hexane yielding 42 mg of the
major carotenoid in 99.9% purity. (supplement Fig. S4.)

The obtained crystalline material was derivatized by acetylation and
silylation. The acetyl and silyl derivatives could be obtained in pure
forms (supplement Fig. S5.), and provided appropriate spectra.

3.2. Structure elucidation of the acetylated derivative

The UV–vis spectrum of the acetylated compound in methanol
showed absorption maxima at 295, 365, 447, 473, and 504 nm wave-
lengths, the spectral fine structure of %III/II was 63. (Fig. 2.) It suggests
that the major carotenoid contains 12 conjugated double bonds with
one conjugated β-end group, and it is a derivative of β,ψ-carotene.
(Takaichi and Shimada, 1992).

The 1H NMR spectra of the sugar moiety and the end groups were
identical with that of 2,3,2″,3″,4″-penta-O-acetyl-2-hydroxymyxol-2′-
fucoside published by Iwai et al. (Iwai et al., 2008). Beside the 13C APT
and 1H NMR spectra, on the basis of COSY, HSQC and HMBC spectra
(supplement Fig. S6-S10.) all the 1H and 13C chemical shifts were as-
signed (Table 1.). The 3J1″,2″ coupling constant (3.9 Hz) shows that the
configuration of the glycosidic bond is α. The other 3J HeH coupling
constants of the sugar moiety confirmed the L-galacto configuration
(Foss et al., 1986; Izumi, 1971).

In the β-end group, the H-2 and H-3 hydrogens are in axial positions
(3J2,3 = 10.9 Hz), i.e. the two acetylated hydroxyl groups have a trans
geometry. The tertiary hydroxyl group on C-1′ was not acetylated, as it
is visible from the number of acetyl C]O signals in the 13C spectrum, as
well as the 1H signal of the free OH at 2.48 ppm.

The ECD spectrum in MeOH showed a broad positive Cotton effect
(CE) at 360 nm with a shoulder at 345 nm, a separated positive band
with maxima at 287 and 299 nm, a broad negative ECD band at 256 nm
and positive CE below 235 nm (supplement Fig. S11.). This ECD pattern
was found congruent with that of phleixanthophyll pentaacetate having
(2′S) absolute configuration and near mirror image of the ECD of
plectaniaxanthin diester with (2′R) absolute configuration measured in
EPA (Rønneberg et al., 1985). Moreover, the ECD pattern was quite
different from that of (3R,2′S)-myxoxanthophyll tetraacetate, which
had an additional chirality center at C-3 (Rønneberg et al., 1985). Ac-
cording to these correlations, it is the allylic C-2′ chirality center that
determines primarily the ECD pattern, and thus the absolute config-
uration of C-2′ could be assigned as (S). However, the ECD data cannot
be used for the configurational assignment of the C-2 and C-3 chirality
centers. The ECD data showed significant solvent-dependence. In n-
hexane, the 0.3 μM solution showed two intense ECD bands with op-
posite signs in the 400–700 nm region indicating aggregate formation
and supramolecular origin of the ECD transitions. The ECD spectra

Fig. 2. UV–vis spectrum of (2R,3R,2′S)-2-hydroxymyxol 2′-α-L-fucoside pentaacetate (in
MeOH) (λmax: 295, 365, 447, 473, 504 nm).

Table 1
1H and 13C NMR chemical shifts for (2R,3R,2′S)-2-hydroxymyxol 2′-α-L-fucoside pen-
taacetate (in CDCl3, 500.12/125.4 MHz for1H/13C).

H δ 1H (J) δ 13C C

β-end group 1 – 40.59 ppm 1
2 d 5.04 ppm (10.9 Hz) 77.17 ppm 2
3 ddd 5.13 ppm (6.8 Hz;

9.5 Hz; 10.5 Hz)
68.83 ppm 3

4 eq dd 2.62 ppm (6.5 Hz;
17.6 Hz)

37.51 ppm 4

4 ax dd 2.24 ppm (9.8 Hz;
17.4 Hz)

5 – 124.92 ppm 5
6 – 136.92 ppm 6
7 d 6.01 ppm (16.0 Hz) 124.41 ppm 7
8 d 6.11 ppm (16.0 Hz) 139.65 ppm 8
16 s 1.08 ppm 22.66 ppm 16
17 s 1.00 ppm 25.63 ppm 17
18 s 1.70 ppm 21.01 ppm 18

polyene chain 10 d 6.17 ppm (11.4 Hz) 131.95 ppm 10
9, 13,
9′, 13′

– 136.63 ppm
136.57 ppm
135.82 ppm
135.27 ppm

9, 13,
9′, 13′

12, 12′ m 6.36–6.41 ppm 139.02 ppm,
138.47 ppm

12, 12′

10′
14,14′

m 6.25–6.29 ppm 133.34 ppm
133.26 ppm
132.85 ppm
130.38 ppm
130.22 ppm

10′
14,14′
15,15′

15,15′
11, 11′

m 6.55–6.66 ppm

124.85 ppm,
124.10 ppm

11, 11′

19 s 1.97 ppm 12.85 ppm
12.82 ppm
12.78 ppm
12.76 ppm

19, 19′
20, 20′

20 s 1.98 ppm
20′ s 1.98 ppm
19′ s 1.99 ppm

ψ-end group 18′ s 1.92 ppm 12.93 ppm 18′
17′ s 1.19 ppm 24.41 ppm 17′
16′ s 1.16 ppm 25.71 ppm 16′
8′ m 6.36–6.41 ppm 138.00 ppm 8′
7′ m 6.55–6.66 ppm 125.00 ppm 7′
6′ d 6.20 ppm (10.9 Hz) 133.49 ppm 6′
5′ – 133.63 ppm 5′
4′ d 6.34 ppm (15.6 Hz) 139.30 ppm 4′
3′ dd 5.63 ppm (8.8 Hz;

15.6 Hz)
124.29 ppm 3′

2′ d 3.75 ppm (8.8 Hz) 90.16 ppm 2′
1′ – 72.99 ppm 1′
OH s 2.48 ppm –

sugar moiety 1" d 5.16 ppm (3.9 Hz) 98.30 ppm 1"
2" dd 5.20 ppm (3.7 Hz;

10.8 Hz)
68.46 ppm 2"

3" dd 5.33 ppm (3.2 Hz;
10.7 Hz)

68.35 ppm 3"

4" d 5.30 ppm (2.8 Hz) 71.19 ppm 4"
5" m 4.14–4.21 ppm 64.93 ppm 5"
6" s 0.99 ppm 15.46 ppm 6"
Ac-Me s 2.15 ppm

2.09 ppm
2.08 ppm
2.03 ppm
1.98 ppm

21.08 ppm
20.95 ppm
20.72 ppm
20.63 ppm

Ac-Me

Ac-CO – 170.66 ppm
170.63 ppm
170.59 ppm

Ac-CO

(continued on next page)
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measured in acetonitrile or chloroform were also markedly different
from that recorded in methanol (supplement Fig. S11.).

In natural myxol glycosides found in cyanobacteria, the C-3 con-
figuration was determined to be R (in 4-ketomyxoxanthophylls it is S)
because of the biosynthetic pathway (Takaichi and Mochimaru, 2007).
Assuming the same absolute configuration in our compound, the die-
quatorial position of O-acetyl groups determines the absolute config-
uration of C-2 and C-3, which are R,R, respectively.

In the high-resolution full-MS spectrum of the acetylated compound
the m/z at 957.53669 corresponds to (M+H)+, m/z of 979.51776 is for
(M+Na)+, and the signal at m/z 667.43547 shows the loss of the
triacetyl fucose moiety as an in-source fragment (lacking the OH
function in position 2′). The silyl derivative gave m/z 1179.72050 (M
+H)+ and 799.53313 (M-trisilyl fucose)+, which indicates that all the
hydroxyl groups (the tertiary included) were silylated. (supplement Fig.
S12-S13.)

4. Conclusions

Nostoxanthin, caloxanthin, and zeaxanthin were absent, whereas
the major carotenoid in cyanobacterium Cylindrospermopsis raciborskii
was identified as (2R,3R,2′S)-2-hydroxymyxol 2′-α-L-fucoside on the
basis of UV/Vis, ECD, NMR and mass spectra of its acetylated deriva-
tive. Its semi-systematic name is (2R,3R,2′S)-2′-(α-L-fucopyranosyloxy)-
3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-2,3,1′-triol.

Although the same compound was previously found as one of the
carotenoid component in the thermophilic cyanobacterial species
Thermosynechococcus elongatus (Iwai et al., 2008), this glycoside is the
major carotenoid in C. raciborskii. Our results suggest that the biomass
of this cyanobacterial species would be an economically justified nat-
ural source for the production and purification of this unique compound
for the industrial approaches.

In addition the presence of this hydrophilic antioxidant pigment
suggests another explanation why this cyanobacterial species could
spread and adapt efficiently and can built huge biomass in different
aquatic habitats.
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