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Abstract Phytoplankton size classes (PSCs) is of great significance for exploring marine ecological and
biogeochemical processes. Remote sensing of PSCs has been successfully applied to open oceans; however,
it is still quite limited for optically complex coastal oceans. In this study, the entire continental shelf sea of
China including Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) characterized by distinctive turbid
waters and impacted by plumes of large world-class river (the Changjiang River) was taken as an example
of turbid coastal ocean for remotely sensed spatial-temporal distributions of PSCs. In situ data were col-
lected from cruises during April to June in 2014 and an improved algorithm for PSCs retrieval was proposed.
PSCs derived from GOCI (Geostationary Ocean Color Imager) images revealed that microplankton was domi-
nant in the BS, the YS, and the nearshore ECS and nanoplankton distributed widely in the entire study area,
while picoplankton mainly distributed in the offshore ECS in April, which was consistent with in situ investi-
gation and related to environmental factors. Validation indicated that the improved algorithm provided a
more accurate estimation of PSCs, with the root mean square error (RMSE) between estimated and mea-
sured size-fractionated concentrations been 0.774, 0.257, and 0.142 mg m23 for micro, nano, and picoplank-
ton, respectively. Diurnal variations of PSCs were mainly affected by tidal currents and light intensity
depending on different water types. These illustrated that remote sensed spatial distributions as well as
diurnal variations of PSCs are effective in turbid continental shelf seas of China.

1. Introduction

Phytoplankton are the fundamental component of the marine ecosystem. Complex biophysical controls
(e.g., irradiance, temperature, salinity, nutrients, and grazing) and anthropogenic impact (e.g., runoff modifi-
cation, nutrient fluxes) result in large spatial and temporal variations in phytoplankton biomass, community
structure, and functionality (Behrenfeld & Boss, 2014; Cloern, 2001; Geider et al., 1998; Lindemann & John,
2014). According to Sieburth et al. (1978), phytoplankton can be operationally divided into three phyto-
plankton size classes (i.e., microplankton, >20 lm; nanoplankton, 2–20 lm; picoplankton, <2 lm). Phyto-
plankton size structure are recognized as prime physiological parameters that can influence many marine
ecological and biogeochemical processes (Finkel et al, 2010). For example, physiology of phytoplankton,
including metabolic rates, growth rates, nutrient uptake, and sinking rate are influenced by cell size (Geider
et al., 1986; Waite et al., 1997). Several researches also suggested that size structure can result in different
photosynthetic rates and maximum quantum yields, potentially leading to different carbon fixation attrib-
utes (Hirata et al., 2009; Uitz et al., 2008). Phytoplankton cell size also influence the optical properties of the
ocean surface via light scattering and absorption (Devred et al., 2006; Yentsch & Phinney, 1989). Further-
more, shifts in PSCs can affect the relationship of phytoplankton grazers, and consequently change the
function and structure of marine food webs (Legendre & Rassoulzadegan, 1995). Therefore, size structure of
phytoplankton has been widely investigated in its role in primary production, carbon-specific photosynthe-
sis, and export production (Cerme~no et al., 2005; Hilligsøe et al., 2011; Teira et al., 2001) and utilized in estab-
lishing and improving biogeochemical models in marine system (e.g., Aumont et al., 2003; Ward et al.,
2012).

A few tools can help to obtain the PSCs, e.g., microscopy, flow cytometry, size-fractionated filtration (SFF),
and high performance liquid chromatography (HPLC), and each method has its own advantages and
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disadvantages (IOCCG, 2014, Table 2.3). Results of these approaches usually generate a ‘‘static’’ image, for
the given environmental conditions and species distributions. However, oceanic environment and phyto-
plankton distributions are dynamic in space and time. Remote sensing has been regarded as the most
important tool for acquiring the continuous observational data spatially and temporally. Hence, the demand
to develop methods for identifying PSCs in ocean using remote sensing is urgent. To estimate size-
fractionated chlorophyll-a concentration, statistical links between the total chlorophyll-a concentration and
PSCs derived from HPLC should be developed. Vidussi et al. (2001) pioneered this approach by selecting
seven diagnostic pigments to obtain the fractions of PSCs in the total chlorophyll concentration. Afterward,
constant improvements of relationships between the total chlorophyll-a concentration and PSCs were
made, such as determining weighting factors of diagnostic pigments and refining assignments of diagnos-
tic pigments for classifying PSCs (Brewin et al., 2010; Hirata et al., 2011; Uitz et al., 2006). Through satellite
images (i.e., SeaWiFs and MODIS), these statistical relationships have been successfully utilized in estimating
PSCs in global ocean and different oceanic regions (e.g., Brewin et al., 2010, 2012, 2015; Brotas et al., 2013;
Hirata et al., 2011; Lin et al., 2014; Uitz et al., 2006).

As mentioned above, relationships between PSCs and total chlorophyll-a concentration have been widely
used in global oceanic waters. However, few relationships were carried out in studies for applying in coastal
and estuarine systems, particularly in the region with large river plumes. The BS, the YS, and the ECS make
up the largest marginal seas, and host one of the most turbid coastal and shelf seas environments globally,
supporting high primary and fishery production. They are strongly impacted by the large Changjiang River
plumes and adjoining ocean processes, and hydrodynamic features are predominantly driven by variations
in tides, large seasonal climatic, and monsoon changes. Together these drivers result in complicated optical,
hydrodynamic, and biogeochemical environments, which have a strong influence on the physiology of phy-
toplankton, leading to region-specific relationships between chlorophyll-a concentration and PSCs, com-
pared to general oceanic conditions. Several studies in which pigment concentrations or size structures of
phytoplankton based on SFF methods have been investigated in the BS, the YS, or the ECS (e.g., Deng et al.,
2008; Fu et al., 2009; Huang et al, 2006; Sun et al., 2002, 2012; Zhu et al., 2009). However, to the best of our
knowledge, there have not been published documents on the application of remote sensing derived PSCs
in the entire continental shelf sea of China.

Therefore, we tried to develop an improved algorithm for the monitoring spatial distribution and diurnal
variations of PSCs from remote sensing focusing on the BS, the YS, and the ECS. For this purpose, we pre-
sented comprehensive in situ measurements derived from HPLC method, aiming to seek relationships
between proportions of PSCs and chlorophyll-a concentration. Based on these, existing models (Brewin
et al., 2010; Hirata et al., 2011) in estimating PSCs from satellite images were tested for the applicability in
the turbid seas affected by terrestrial inputs, of which three-component model (Brewin et al., 2010) was
improved by parameterization and subsequently validated through match-ups. Spatial distributions and
diurnal variations of PSCs from GOCI observations were analyzed and major controlling environmental fac-
tors were discussed.

2. Data and Method

2.1. In Situ Data
The BS is a shallow semienclosed marginal sea on the northern coast of China, of which the mean water
depth is no more than 20 m (Figure 1). The Bohai Strait, which connecting the southern of Liaodong Penin-
sula and the northern of Shandong Peninsula, is defined as the boundary between the BS and the YS. The
YS is surrounded by mainland China and the Korean Peninsula, including the north Yellow Sea (NYS) and
the south Yellow Sea (SYS). The depth of YS increases gradually from nearshore area (continental shelf) to
offshore area (central YS), approximately from 0–40 m to 60–80 m (Figure 1). To its south is the ECS, which
is the one of the largest marginal seas in the world. The depth of ECS is shallow in the northwestern area
and deep in the southeastern area, due to the impact of continental shelf. The ECS can be broadly divided
into three parts: the continental shelf (0–60 m), the outer continental shelf (60–200 m), and Okinawa Trough
(200–2,700 m). To the northwest of Taiwan Island, the depth is less than 200 m and it increases significantly
toward southeastern area (Figure 1).
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Water masses and current systems are complex in the YS and the ECS during the sampling time, including
coastal currents in the east, open ocean water in the west, and mixed water between them (Figure 1).
Changjiang River carries large amount of fresh water into the sea, forming Changjiang diluted water (CDW)
with low temperature, salinity, and more nutrients. The Shandong Peninsula coastal current comes out of
the BS and flows into the YS bypassing the Shandong Peninsula. The Yellow Sea coastal current water flows
southward along Jiangsu province and turns southeastward into the ECS, while the Zhe-min coastal current
water flows through Zhejiang coastline. By contrast, the Kuroshio water is more powerful and characterized
by higher temperature and salinity. After entering the ECS, it flows northeastward along the continental
slope. Taiwan Strait warm current flows through Taiwan Strait and moves forward to the north, together
with Kuroshio intrusion, forming Taiwan warm current (Chen et al., 1995; Li et al., 2006, 2016; Lie et al., 2001;
Quan et al., 2013; Zhang et al., 2008).

The study is based on samples collected on two research cruises in the BS and the YS (31�408N,
118�1268E, 28 April to 18 May) and the ECS (22�308N, 121�1268E, 22 May to 11 June) in 2014 (Figure 1).
Water samples for HPLC pigment concentration were collected with Niskin bottles attached to the
conductivity-temperature-depth profiler (CTD, Seabird 911) rosette. During the analyses, five outliers of
HPLC pigment concentrations were removed and 180 samples were acquired for analyzing surface distribu-
tions in the study. Among them, algae bloom was observed at station 4-0-0 (27.768N, 122.558E) and quite
high chlorophyll concentration was obtained at station H40 (328N, 124.998E). To avoid the effect of bloom

Figure 1. Locations of in situ data used in this study (N 5 180), circle green symbols represent stations in the Bohai Sea and the Yellow Sea and circle blue ones
are the stations in the East China Sea. Square yellow symbols stand for match-ups between in situ measurements and satellite images. Major water masses in
summer-half-year are sketched with red lines (after Li et al., 2016). The background seawater depth (The GEBCO_2014 Grid, version 20150318) is obtained from
GEBCO (http://www.gebco.net/).
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water on the algorithm (details in section 4.4), these two samples were excluded and 178 samples were left
in model reparameterization and validation processes. Underway data such as temperature and salinity
were measured by CTD in the BS, the YS, and the ECS as well.

2.2. Satellite Data
The Geostationary Ocean Color Imager (GOCI) is a geostationary-orbiting ocean color sensor with the cover-
age including the YS and the ECS. The spatial resolution of GOCI image is 500 m and 8 images (one image
per hour) are available during daytime (Ryu et al., 2011), not only increasing numbers of image over coastal
ocean affected by cloud coverage, but also providing a capability to map short-time scale variation in the
entire continental shelf sea of China. In this study, L1B data were obtained from the KOSC (Korea Ocean Sat-
ellite Center) website (http://kosc.kiost.ac/eng/). The surface chlorophyll-a concentration products were cal-
culated through the GOCI Data Processing System (GDPS version 1.4.1), in which KOSC standard was the
method for atmospheric correction and YOC (Yellow Sea Large Marine Ecosystem Ocean Color Work Group)
was the method for chlorophyll-a concentration products. Based on the empirical algorithm applied for
coastal waters from Tassan (1994), parameters of the algorithm YOC were optimized for the YS and ECS
(Siswanto et al., 2011). The YOC algorithm is:

Chlayoc510 0:34222:511�log 10ðRÞ20:277�log 2
10 Rð Þð Þ (1)

R5
Rrs 443ð Þ
Rrs 555ð Þ

� �
Rrs 412ð Þ
Rrs 490ð Þ

� �21:012

(2)

Since a whole GOCI image consists of 4-by-4 subimages taken by one camera, mosaic edge effects of top-
of-atmosphere radiance from L1B products at some bands (e.g., Band 1 at 412nm) are the cause of spatial
discontinuity of the chlorophyll-a concentration products. Therefore, in this study we utilized neighboring
pixel interpolation method to reprocess the neighboring slots in order to avoid discontinuity. After top-of-
atmosphere of radiance products which have slot margin effects are exported from the GDPS, pixels values
on either sides of the slot margins are extracted to establish linear regression equations and calculate

Table 1
Symbols and Definitions

Symbol Description Units

CE The estimation of chlorophyll-a concentration using seven diagnostic pigments
(equation (3))

mg m23

CHPLC Chlorophyll-a concentration derived from HPLC method (equation (5)) mg m23

Fm/ Fn/ Fp Fraction of microplankton/ nanoplankton/ picoplankton (equations (4), (5), and (6)) Dimensionless
Cm/ Cn/ Cp Concentration of microplankton/ nanoplankton/ picoplankton (equations (9), (10), and

(11))
mg m23

Cn,p Concentration of combined of nanoplankton and picoplankton (equation (8)) mg m23

Pm/ Pn/ Pp Percentage of microplankton/ nanoplankton/ picoplankton (equations (12), (13), and (14)) %
Cm

n;p Asymptotic maximum values for combined nanoplankton and picoplankton (equation
(8))

mg m23

Cm
p Asymptotic maximum values for picoplankton (equation (10)) mg m23

Dn,p Fraction of total chlorophyll in combined nanoplankton and
picoplankton as total chlorophyll tends to zero (equation (8))

Dimensionless

Dp Fraction of total chlorophyll in picoplankton as total chlorophyll tends to zero
(equation (10))

Dimensionless

r Pearson linear correlation coefficient Dimensionless
p p Value Dimensionless
d Bias between concentrations or percentages from measured and

estimated data (equation (16))
mg m23 or %

MAE Mean absolute error between concentrations or percentages from
measured and estimated data

mg m23 or %

RMSE Root mean squared error between concentrations or percentages from measured and
estimated data

mg m23 or %

MAE% Relative mean absolute error between concentrations or percentages from measured
and estimated data (equation (17))

%
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slopes. Through the judgment of chlorophyll-a concentration, slots with outliers are calculated based on
slopes. Then without mosaic edge effects, the processed top-of-atmosphere radiance L1B products are
imported to the GOCI images.

Considering the frequency of the GOCI no-cloud overpassing and in situ survey time, the time window of
match-ups was set to 63.5 h. Under the condition of picking images with the shortest time interval, 31 sam-
pling sites were matched to GOCI data in the study area (Figure 1). The matched images were acquired on
30 April, 1 May, 2 May, 3 May, 6 May, 9 May, 12 May, and on 9 June. Average values of 3-by-3 pixel box from
the GOCI chlorophyll-a concentration products were regarded as the matched data. Eight images on 7 April
2013 were provided to show the GOCI-derived PSCs and the diurnal variation.

For comparison with physical variables on 7 April 2013, SNPP VIIRS (Suomi NPP Visible Infrared Imaging
Radiometer Suite) daily composite sea surface temperature data at 4 km resolution was obtained from
OceanColor website (https://oceancolor.gsfc.nasa.gov/).

2.3. Laboratorial Determination of Phytoplankton Size Classes
Laboratorial determination of PSCs was based on the high performance liquid chromatography (HPLC)
method. Water samples (100�2,000 mL) from Niskin bottles were filtered through the Whatman GF/F Glass
Microfiber Filters (pore size 0.7 lm, diameter 25 mm), and the filters were kept in the aluminum foil and fro-
zen in liquid nitrogen. Using a Shimadzu LC-20A high-performance liquid chromatography system (Kyoto,
Japan), pigment concentrations in the ECS were processed using the method described by Wang et al.
(2016). Detailed instrumentation and methodology of samples processing for HPLC pigments in the BS and
the YS can be found in Zhang et al., (2016). Twenty phytoplankton pigments were measured, including
chlorophyll-c3, chlorophyllide-a, chlorophyll-c2, peridinin, 19-but-fucoxanthin, fucoxanthin, neoxanthin, pra-
sinoxanthin, 19-hex-fucoxanthin, violaxanthin, diadinoxanthin, alloxathin, diatoxanthin, zeaxanthin, lutein,
chlorophyll-b, DV-chlorophyll-a, chlorophyll-a, a-carotene, and b-carotene. Pigments or pigment groups can
be assigned to individual phytoplankton species, thus characterizing PSCs indirectly. We utilized seven diag-
nostic pigments (i.e., fucoxanthin, peridinin, alloxanthin, 19-but-fucoxanthin, 19-hex-fucoxanthin,
chlorophyll-b and zeaxanthin) considering the differences in phytoplankton species of each study area
(Brewin et al., 2010; Hirata et al., 2011) (Table 2).

In the global marine system, Devred et al. (2011) and Hirata et al. (2011) assigned part of the pigment fuco-
xanthin to the nanoplankton group by involving pigments 19’-but-fucoxanthin and 19’- hex-fucoxanthin in
fucoxanthin adjustment when chlorophyll-a concentration was low (0.25 mg m23), because fucoxanthin

Table 2
Major Diagnostic Pigments Used for Classification of PSCs From Brewin et al. (2010), Hirata et al. (2011), and This Study,
Along With the Taxonomic or Biogeochemical Significance (Ras et al., 2007)

Diagnostic pigments Designation Brewin et al. (2010) Hirata et al. (2011) In this study

Fucoxanthin (Fuco) Diatoms Micro Micro/Nano Micro
Peridinin (Per) Dinoflagellates Micro Micro Micro
Alloxanthin (All) Cryptophytes Nano Nano Nano
19’-but-fucoxanthin (But) Pelagophytes Nano Nano Nano
19’- hex-fucoxanthin (Hex) Prymnesiophytes Nano/Pico Nano/Pico Nano/Pico
Chlorophyll-b (Chl-b) Chlorophytes Pico Nano Nano
Divinyl chlorohphyll-b Prochlorophytes Pico
Zeaxanthin (Zea) Cyanobacteria Pico Pico Pico

Prochlorophytes

Table 3
Retrieved Parameter Values Derived From Fitting the Three-Component Model to In Situ Pigment Data From the YS and the ECS

Study Cm
n;p Dn,p Cm

p Dp MAEa MAEb

This study 0.329 1.000 0.052 0.914 0.127 0.045

aMAE was the mean absolute error between in situ and modeled Cn,p. bMAE was the mean absolute error between
in situ and modeled Cp.
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was also present in prymnesiophytes and chrysophytes. Considering most water samples were higher than
0.25 mg m23 and diatoms had absolute advantage in the climatic spring in the BS, the YS, and the ECS (Gao
et al., 2003; Guo et al., 2014), we assumed that fucoxanthin was a representative for microplankton. Brewin
et al. (2010) combined pigments chlorophyll-b and divinyl chlorophyll-b as a whole and treated them as the
diagnostic pigments of picoplankton. However, chlorophytes were one of the major composition of nano-
plankton in the study area (Gao et al., 2013; Song et al., 2017). Therefore, in this study, chlorophyll-b was
regarded as a biomarker of nanoplankton which has been utilized by Hirata et al. (2011). Zeaxanthin and
alloxanthin were much lower in the study area, comparing to the other five diagnostic pigments. Even
though values were small, these two pigments were detected in most stations through a more sensitive
method developed for the purpose of decreasing the detection limit (Zhang et al., 2016).

The estimation of chlorophyll-a concentration (CE) as proposed by Vidussi et al. (2001) and later refined by
Uitz et al. (2006) can be inferred as

CE51:41Fuco11:41Per11:27Hex10:6All10:35But11:01Chl2b10:86Zea (3)

According to Brewin et al. (2010) and Hirata et al. (2011), the fractions (F) of the size-fractionated chloro-
phyll-a concentrations can be estimated as

Fm5
1:41 � Fuco1Perð Þ

CE
(4)

Fn5

12:5 � CHPLC � 1:27 � Hex11:01 � Chl2b10:35 � But10:6 � All
CE

; CHPLC < 0:08mg=m3

1:27 � Hex11:01 � Chl2b10:35 � But10:6 � All
CE

; CHPLC > 0:08mg=m3

8>><
>>: (5)

and

Fp5

212:5 � CHPLC11ð Þ � 1:27 � Hex10:86 � Zea
CE

; CHPLC < 0:08mg=m3

0:86 � Zea
CE

; CHPLC > 0:08mg=m3

8>><
>>: (6)

The subscripts m, n, and p refer to micro, nano, and picoplankton, respectively. CHPLC represents
chlorophyll-a concentration derived from in situ HPLC pigment data. CHPLC and CE were in good agreement,
with a correlation coefficient of 0.843 and p-value of< 0.001. Size-fractionated percentages could be calcu-
lated by multiplying fractions by 100, and size-fractionated concentrations could be calculated by multiply-
ing fractions by the CHPLC.

2.4. Estimation of Phytoplankton Size Classes
2.4.1. Three-Component Model of PSCs
Brewin et al. (2010) developed a group of equations based on an underlying conceptual model (Sathyendra-
nath et al., 2001) that was used to quantify the relationship between chlorophyll-a concentration and frac-
tional contribution to chlorophyll-a for each size class. These equations were extended by Brewin et al.,
(2014, 2015), where total and size-fractionated concentrations are obtained from

CHPLC5Cm1Cn1Cp (7)

Cn;p5Cm
n;p 12exp 2

Dn;p

Cm
n;p

CHPLC

 !" #
(8)

Cm5CHPLC2Cn;p; (9)

Cp5Cm
p 12exp 2

Dp

Cm
p

CHPLC

 !" #
(10)

and
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Cn5Cn;p2Cp (11)

where CHPLC is the sum of micro (Cm), nano (Cn), and picoplankton (Cp) chlorophyll-a concentration, and Cn,p

is the sum of nano and picoplankton. Cm
n;p and Cm

p are the asymptotic maximum values for the classes whose
sizes are smaller than 20 and 2 lm, respectively. Similarly, Dn,p and Dp represent size-fractionated chloro-
phyll-a concentrations as total chlorophyll-a concentrations tends to zero. Therefore, Dn,p and Dp are con-
strained to be less than or equal to one. The percentage of each PSCs (Pm, Pn, Pp, and Pn,p) to the CHPLC can
be calculated by dividing the size-fractionated chlorophyll-a concentration by the total and multiplying by
100, which are

Pm5
Cm

CHPLC
� 100 (12)

Pn 5
Cn

CHPLC
� 100 (13)

Pp 5
Cp

CHPLC
� 100 (14)

and

Pn;p 5
Cn;p

CHPLC
� 100 (15)

2.4.2. Model Reparameterization and Algorithm Improvement
In this study, we reparameterized the three-component model of PSCs based on in situ pigment measure-
ments from the BS, the YS, and the ECS. According to section 2.1 and 2.2, 31 satellite match-ups of 178 sur-
face samples were removed, leaving 147 samples for parameter establishment. The unknown model
parameters Cm

n;p, Cm
p , Dn,p, and Dp were obtained by fitting the equations (14) and (15) using nonlinear least-

square regressions (MATLAB R2014b, Curve Fitting Tool). The newly obtained parameters are shown in
Table 3.

2.5. Error Tests
Different parameters of error tests were used to compare (1) the estimation of size-fractionated concentra-
tion and percentage from the different algorithms and in situ measurements; and (2) the size-fractionated
concentration derived from satellite images and in situ measurements. These parameters include Pearson
linear correlation coefficient (r), p-value (p), and the bias (d) which was calculated by

d 5
1
N

XN

i51
ðXi;A2Xi;BÞ (16)

where N is the number of samples and X is variable derived from A and B methods, respectively. In section
3.3, estimation from satellite data were regarded as A, and B was in situ HPLC measurements. Besides, mean
absolute error (MAE) measures the average magnitude of errors in a set of comparison, while the root mean
squared error (RMSE) represents the sample standard deviation of the differences between predicted values
and observed values. Relative mean absolute error (MAE%) between in situ measurements and observations
from satellite images is computed according to

MAE% 5
1
N

XN

i51

� ���� Xi;A2Xi;B

Xi;A

������100 (17)

where A is the in situ measurement and B is the estimation from satellite images.

3. Results

3.1. Total Chlorophyll-a Concentration and PSCs Derived From HPLC Pigments
Chlorophyll-a concentration (CHPLC) ranged from 0.027 to 11.298 mg m23 in the entire study area
(Figure 2a). In the BS and the YS, the CHPLC varied from 0.531 to 6.631 mg m23, and the average concentra-
tion was 1.849 mg m23. In the ECS, the CHPLC had a wider range from 0.027 to 11.298 mg m23, with an aver-
age concentration of 0.454 mg m23. The CHPLC was lower in the central BS, the northwest NYS, the central
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SYS, and outer continental shelf area of the southeast ECS. By contrast, higher values were found in the
coastal BS, the central NYS, coastal currents (i.e., Yellow Sea coastal current and Zhe-min coastal current)
and the extension area of the Changjiang Diluted Water (CDW), which carries large quantities of freshwater
from mainland and the salinity was less than 32.

Surface salinity and temperature ranged, respectively, from 27.95�33.34 and 8.74�14.79 (8C) in the BS and
the YS (Figures 2b and 2c). Compared to temperature, salinity varied obviously from the nearshore area (i.e.,
northwest area of Shandong Peninsula and southeast area of Liaodong Peninsula) to the offshore area (i.e.,
central SYS). Higher salinities and temperatures were observed in the southeast of the ECS due to the influ-
ence of Kuroshio water and Taiwan warm current which transport high salinity and temperature surface
waters to the eastern boundary of ECS, where the surface salinities and temperatures were 29.80�34.46
and 21.58�27.86 (8C), respectively. Salinities and temperatures were much lower in the nearshore area due
to coastal currents and the CDW, compared to the offshore area.

The CHPLC, salinity, and temperature had similar patterns of spatial distribution (Figure 2). In the nearshore
area where salinity and temperature was lower, CHPLC was higher, compared to the offshore area. With the
increase of salinity and temperature, the CHPLC tended to be lower. The CHPLC had a negative relationship
with salinity (N 5 35, r 5 20.594, p< 0.001) and temperature (N 5 35, r 5 20.460, p< 0.01) in the ECS.

Distribution of size-fractionated concentration of microplankton was similar to that of the CHPLC (Figure 2a),
having higher average value than nano and picoplankton, which were 1.116, 0.254, and 0.038 mg m23,
respectively. In the nearshore area, both percentage and concentration of microplankton were higher than
those of the other two groups (Figures 3a and 3d). Besides the central SYS, percentages of microplankton
were higher than 70% in the BS and the YS. Nanoplankton was distributed extensively, especially in the ECS
(Figures 3b and 3e), with the average percentage of 27.48% over the entire study area and 50.77% in the
ECS. The percentage of picoplankton constituted the main background in the central SYS and offshore area

Figure 2. Distribution of surface (a) CHPLC, (b) salinity, and (c) temperature in the Bohai Sea, the Yellow Sea, and the East China Sea during the 2014 cruise
investigation.
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Figure 3. Spatial distribution of size-fractionated (a–c) percentages and (d–f) concentrations of micro, nano, and picoplankton in the Bohai Sea, the Yellow Sea,
and the East China Sea during the 2014 cruise investigation.
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in the ECS, where the CHPLC was low (Figure 3c). For example, at station TW1–3-1 (24.088N, 122.508E) located
east of Taiwan Island, the percentage of picoplankton was 78.54%. The concentrations of picoplankton
were the lowest, which were no more than 0.1 mg m23 in the most of the study area (Figure 3f).

When comparing size-fractionated percentages with the temperature and salinity, we found that in the BS
and the YS, microplankton was negatively correlated with salinity (N 5 123, r 5 20.361, p< 0.001) and tem-
perature (N 5 123, r 5 20.379, p< 0.001); nanoplankton was positively correlated with salinity (N 5 123,
r 5 0.275, p< 0.01) and temperature (N 5 123, r 5 0.362, p< 0.001); and picoplankton had a positive correla-
tion with temperature (N 5 123, r 5 0.254, p< 0.01). In the ECS, microplankton was negatively correlated
with salinity (N 5 35, r 5 20.414, p< 0.05); picoplankton had positive correlation with salinity (N 5 35,
r 5 0.416, p< 0.05) and temperature (N 5 35, r 5 0.356, p< 0.05).

3.2. PSCs Predicted by the Improved Algorithm
The improved algorithm (details in section 2.4.2) was applied to estimate concentrations and percentages
of PSCs in the BS, the YS, and the ECS (Figure 4). Furthermore, estimates by other two algorithms from
Brewin et al. (2010) and Hirata et al. (2011) are also shown in the plot, as a comparison. The size-
fractionated percentages were smoothed with the 5-point running mean filer to improve the signal-to-
noise ratio and make it easier to show changing regularities. The improved algorithm (red lines) fits the
measurements well (Figure 4). The improved parameters were effective in predicting the trends in size-
fractionated percentages of the PSCs in the BS, the YS, and the ECS, especially when chlorophyll-a concen-
tration was high (Figures 4a–4d). As for concentrations, the improved algorithm had good agreements in
estimating microplankton and nanoplankton. Because of the extremely low values of picoplankton in the
BS and the YS (Figures 3f and 4h), the improved algorithm had lower precision in estimating picoplankton
concentration when chlorophyll-a concentration was high, and its trend with the change of total concentra-
tion requires further study.

For the purpose of discussing the applicability of two existed methods (details in section 4.1), PSCs derived
from three component model (Brewin et al., 2010) and from empirical equations (Hirata et al., 2011) were
shown as well. Instead of estimating size-fractionated concentration (Brewin et al., 2010), Hirata et al. (2011)
expressed the percentages of PSCs (Pm, Pn, and Pp) instead of concentration. The equations are

Figure 4. Relationships between size-fractionated (a–d) percentages and (e–h) concentrations, all as a function of CHPLC. Measurements included in situ data (blue
dots) and 5-point running mean data (blue triangles), N 5 149. Estimations were predicted by the improved algorithm in this study (red lines), by Brewin et al.
(2010) (green dotted lines) and by Hirata et al. (2011) (yellow dash dot lines). MAE and RMSE were calculated between in situ measurements and estimations from
the improved algorithm.
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Pm5 0:91171exp ð22:7330 � log 10 CHPLCð Þ10:4003ð Þ21 � 100 (18)

Pn51002Pm2Pp (19)

and

Pp5 2 0:15291exp 1:0306 � log 10 CHPLCð Þ21:5576ð Þ½ �21
21:8597 � log 10 CHPLCð Þ12:9954

� �
� 100 (20)

the concentration of each PSCs can be calculated by multiplying its percentage by the total, which are Cm,
Cn and Cp.

3.3. GOCI-Derived PSCs and Validation
All the GOCI images with less cloud coverage from April to June from 2011 to 2017 were processed, of
which images on 7 April 2013 had the best image quality and the largest available areas. Figure 5 showed
the spatial distributions of the chlorophyll-a concentration and the estimation of size-fractionated percen-
tages by the improved algorithm, which were derived from the GOCI image at 10:28 (center time of the
scene, Beijing time) on 7 April, 2013. Daily SNPP VIIRS sea surface temperature on the same day was shown
as well.

Figure 5a illustrated that higher values of chlorophyll-a concentration distributed in the northern BS, north-
ern NYS, central SYS, and along the nearshore area of the YS and the ECS. While in the offshore area, such
as the eastern SYS and the southeastern ECS, concentrations were much lower. The distribution pattern of
microplankton percentage was similar to the total concentration. Except for the offshore area of the ECS,
microplankton was dominant in the study area where chlorophyll-a concentrations were higher than 1 mg
m23 (Figure 5b). Nanoplankton had lower percentage in the BS and nearshore area of the YS and the ECS,
while in the offshore area of the SYS and the ECS, its percentage ranges from 20% to 50% (Figure 5c). By
contrast, picoplankton only had higher distribution in the offshore area and percentage in these areas
tended to be greater than 40% (Figure 5d). Figure 5e showed that temperature rose from north to south
and from west to east in the study area, due to the influence of Taiwan warm current, the Kuroshio and its
brunches. Temperature in the offshore area of the SYS and the ECS was higher, leading to lower percentage
of microplankton and higher percentages of nano and picoplankton. In comparison, distribution of total
chlorophyll-a concentration and microplankton percentage had clear negative correlation with tempera-
ture, while nanoplankton and picoplankton percentages were positively correlated to temperature. This
estimated distribution of PSCs’ derived from the GOCI image with the improved algorithm had a good con-
sistency with the in situ results presented in section 3.1, especially for the BS and the YS, where both the
image time and the investigation time were in April. However, the shaded area caused by the shape of
clouds, leading to challenges in representing full knowledge of PSCs in the study area, especially for the
edges. Additionally, there is a temporal limitation in observing continuous changes with one image.

Figure 5. GOCI-derived chlorophyll-a concentration (a, Chl-a, in unit of mg m23) and percentage (%) of each PSCs (b–d) in the Bohai Sea, the Yellow Sea, and the
East China Sea, which were estimated by the improved algorithm. The GOCI image was taken at 10:28 on 7 April 2013 (Beijing time). Daily sea surface temperature
image of SNPP VIIRS (e, in unit of 8C) on the same day.
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The improved algorithm was then applied to GOCI images to validate the estimation accuracy of PSCs
through independent match-ups between satellite data and in situ measurements. During the investigation
time, 31 in situ data were matched to the GOCI satellite images. In the GDPS (version 1.4.1), there are three
algorithms for chlorophyll-a concentration retrieval, of which OC2 (ocean chlorophyll 2 algorithm) and YOC
algorithms were selected for comparison. Based on the data set from oceanic waters, OC2 proposed by
O’Reilly et al. (1998) was the default for chlorophyll analysis in the GDPS, whereas the YOC data set from
Siswanto et al. (2011) covered the YS and the ECS. Chlorophyll-a concentrations derived directly from GDPS
using YOC algorithm were named YOC (preprocessing). Considering the mosaic edge effects caused by
Band 1 at 412 nm in L1B products, a neighboring pixel interpolation method was used (details in section
2.2) in processing chlorophyll-a concentration, thus using YOC (postprocessing) to distinguish from YOC
(preprocessing). Statistically, the YOC algorithm was better than the OC2 algorithm in the study area, as it
had lower bias, MAE, RMSE, and MAE% (Table 4).

Based on the images with neighboring pixel interpolation processing, independent satellite and in situ
match-up data (N 5 31) were compared, including chlorophyll-a concentration, size-fractionated concentra-
tion, and size fractionated percentages. When calculating errors, extremely low in situ size-fractionated con-
centrations which less than 0.01 mg m23 were eliminated, leaving 29, 31, and 18 match-ups for micro,
nano, and picoplankton. Figure 6a showed that satellite-derived total and microplankton chlorophyll-a con-
centration had good agreements with in situ measurements, with MAE% of 43.83% and 49.09%, respec-
tively. Biases indicated that the improved algorithm overestimated microplankton concentration and
underestimated nanoplankton concentration slightly. As for picoplankton concentration, poor MAE%

Table 4
Comparison of Chlorophyll-a Concentration Between In Situ Measurements and Observations Derived From Satellite Data
Using Different Chlorophyll-a Concentration Algorithms (N 5 31)

d (mg m23) MAE (mg m23) RMSE (mg m23) MAE% (%)

OC2 0.368 0.720 0.928 69.00
YOC (preprocessing) 0.408 0.698 0.974 55.75
YOC (postprocessing) 20.050 0.626 0.824 43.83

Figure 6. Validation of GOCI estimations using the improved algorithm through match-ups, including (a) total chlorophyll-a concentration (yellow circle) and size-
fractionated chlorophyll-a concentration of micro (blue square), nano (purple triangle) and picoplankton (green diamond), and (b) size fractionated percentages of
micro, nano, and picoplankton. Match-ups within 63.5 h are shown in filled symbols, while match-ups within 60.5 h are shown in empty symbols. Solid lines rep-
resent the 1:1 lines. The units of d, MAE, RMSE are mg m3 in Figure 6a, and % in Figure 6b.
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(82.97%) was obtained compared to the other groups, which was caused by the limited coverage of match-
ups. Match-ups mostly distributed in the BS and the YS (Figure 1), where microplankton was dominant dur-
ing the investigation and in situ picoplankton concentrations were low (Figures 3c and 3f). By contrast, pico-
plankton was abundant in the offshore ECS, however, cloudy weather was common during the ECS cruise
and only two match-ups were found in the ECS. Figure 6b showed that the improved algorithm had a better
accuracy in estimating the microplankton percentage (MAE% 5 17.84%), while it underestimated percen-
tages of nano and picoplankton, compared to the in situ measurements. Moreover, match-ups within
60.5 h (empty symbols) were shown in the Figure 6 as well, and with this strict time window, the improved
algorithm had a better accuracy in estimating PSCs, with the RMSE for size-fractionated chlorophyll-a con-
centrations and percentages are 0.848, 0.183, 0.139, and 14.48, 10.60, 10.14, respectively.

3.4. Diurnal Surface Variation of GOCI-Derived Chlorophyll-a and PSCs
Diurnal variation of chlorophyll-a and PSCs were derived from GOCI images on 7 April, 2013 from 8:28 to
15:28 (center time of the scene, Beijing time). Based on the available coverage of eight images, a transect
and four regions of interest were analyzed, which are ROI-1 (center coordinate, 34.338N, 123.158E), ROI-2
(29.968N, 122.568E), ROI-3 (29.808N, 122.948E), and ROI-4 (29.628N, 123.398E), 11 pixels by 11 pixels (Figures
7a and 7b). ROI-1 is located far away from the coast, less affected by coast currents and contains clearer
water. The transect in the southeastern area of Zhoushan Island is approximately parallel with the direction
of tidal currents and vertical to isobaths. Due to the impacts of different water masses and current systems,

Figure 7. A transect and four regions of interest (ROIs) utilized in diurnal variation (a, b). The base map is a three-band composite true color image acquired at
10:28 (local time, red: Band 6, green: Band 4, blue: Band 2). (c) Tide height from Shenjiamen tide gauge station on 7 April 2013, the red squares represent hourly
imaging time of GOCI images. (d) Diurnal variation of GOCI-derived chlorophyll-a concentration of the transect.
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chlorophyll-a concentration of the transect decreased obviously from nearshore area to offshore area (Fig-
ure 7d). Besides, characteristics of diurnal variation changed with the distance from the shore. Thus, ROI-2,
ROI-3, and ROI-4 were extracted, located at nearshore area, the transition region with a steep drop in
chlorophyll-a concentration and offshore area, respectively.

GOCI-derived chlorophyll-a values showed a regular pattern of variation during the daytime (Figures 8a, 8b,
and 8d). In the morning, the concentration value was the lowest, after that it reached its highest value
between 10:00 and 12:00. Then in the afternoon, the concentration tended to decline. However, due to the
impact of tides, variation of chlorophyll-a concentration in the afternoon was different in the transition area
(i.e., ROI-3). Diurnal variations in four ROIs were as follows.

1. In the ROI-1, chlorophyll-a value varied from 1.11 to 1.40 mg m23 throughout the day and peaked at
12:28 (Figure 8a). Microplankton was the major component throughout the day, while nanoplankton had
higher percentages in the morning and afternoon. Picoplankton was no more than 5% throughout the
day.

2. Since the ROI-2 received more terrestrial inputs, chlorophyll-a concentration was the highest among four
ROIs, ranging from 2.80 to 3.15 mg m23 during the daytime (Figure 8b). Microplankton was dominant,
while percentages of nanoplankton and picoplankton were less than 10% during the daytime.

Figure 8. Diurnal surface variations of GOCI-derived chlorophyll-a concentration (mg m23) and percentage of PSCs (%) are included in (a) ROI-1, (b) ROI-2, (c)
ROI-3, and (d) ROI-4. The axis on the left gives the concentration (mg m23) and the axis on the right gives the percentage (%) and deviation bar were included for
chlorophyll-a concentration and percentages of PSCs.
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Presumably nutrient concentrations would provide enhanced growth conditions for microplankton. Size-
fractionated percentages were stable within the day and insensitive to environmental changes.

3. As for the ROI-3, the biggest difference was that chlorophyll-a concentration increased at 14:28 and
15:28 (Figure 8c). As shown in the Figure 7c, all the eight images were acquired during the ebb tide
phase when water flowed from nearshore area to offshore area. Under the influence of the tidal currents,
high chlorophyll-a concentration nearshore move southeastward to the offshore area, as well as high
percentages of microplankton. The increasing temperature and decreasing turbidity led to higher per-
centages of nanoplankton and picoplankton in this region, compared to the ROI-2.

4. The variation trend of chlorophyll-a concentration in the ROI-4 was similar to that in the ROI-1. However,
chlorophyll-a concentrations were much lower, ranging from 0.46 to 0.88 mg m23 (Figure 8d). Both
microplankton and nanoplankton were dominant groups and picoplankton percentage was higher than
10% at 8:28. Percentages of nano and picoplankton decreased with the light intensity increased. The
intrusion of Taiwan warm current with high temperature and salty water masses made it beneficial for
the growth of small size phytoplankton.

In summary, characteristics of spatial distributions of PSCs were affected by environmental factors and diur-
nal variations were observed as well, which will be discussed later.

4. Discussion

4.1. Applicability of Methods for Deriving PSCs
By comparison, the improved algorithm had an advantage in estimating both percentages and concentra-
tions of PSCs (Figure 4 and Table 5). When chlorophyll-a concentration was low, percentage and concentra-
tion of microplankton derived from Hirata et al. (2011) were more suitable to in situ measurements since
there was an acceleration in the regression slopes (Figure 4a). However, when chlorophyll-a concentration
was high, it underestimated. The three-component model (Brewin et al., 2010) had lower accuracy in esti-
mating microplankton, with a little bit higher MAE and RMSE (Table 5). As for estimating nanoplankton and
picoplankton, three methods had differences (Figures 4c, 4d, 4g, and 4h). Both algorithms of Brewin et al.
(2010) and Hirata et al. (2011) seemed to overestimate nanoplankton and picoplankton when chlorophyll-a
concentration was high, which made it less applicable in the study area. Since the three-component model
is based on an underlying conceptual model (Sathyendranath et al., 2001), it was parameterized to fit the
study area. As a result, the improved algorithm has a higher estimation accuracy.

Moreover, due to the effects of CDW and Zhe-min coastal current, the ECS was divided into two parts, one
is the area where salinity was lower than 32 (ECS-1), the other is the outer continental area where salinity
was higher than 32 (ECS-2). Table 5 showed that the improved algorithm had a better accuracy in estimat-
ing PSCs in the BS and the YS, since more measurements were utilized in parameterization and

Table 5
Comparison of Size-Fractionated Percentages and Concentrations Between In Situ Measurements and Estimations From
Three Methods in Different Study Areas

Percentage (%)
Concentration

(mg m23)

Method Study area Error tests Micro Nano Pico Micro Nano Pico

Brewin et al. (2010) Entire area MAE 25.36 23.53 10.33 0.337 0.288 0.079
N 5 147 RMSE 29.87 26.03 13.33 0.434 0.367 0.096

Hirata et al. (2011) Entire area MAE 21.24 13.41 17.44 0.271 0.135 0.185
N 5 147 RMSE 27.07 16.48 19.13 0.352 0.187 0.221

In this study Entire area MAE 12.87 11.56 7.10 0.127 0.105 0.045
N 5 147 RMSE 17.06 15.61 10.96 0.185 0.166 0.071

In this study BS and YS MAE 10.63 7.83 4.22 0.162 0.129 0.058
N 5 93 RMSE 13.22 9.94 7.28 0.208 0.183 0.085

In this study ECS-1 MAE 23.34 21.74 12.51 0.136 0.129 0.037
N 5 19 RMSE 29.43 26.86 17.04 0.225 0.211 0.047

In this study ECS-2 MAE 13.13 15.94 11.82 0.027 0.029 0.018
N 5 35 RMSE 16.99 19.23 14.35 0.044 0.046 0.023
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environmental factors were homogeneous relatively (Figures 2b and 2c). In the ECS, abundant fresh water
and nutrients carried by the coastal current supported the growth of large size phytoplankton (Deng et al.,
2008; Huang et al, 2006; Sun et al., 2012), which affected the distribution of PSCs, making the model less
robust in the nearshore area (ECS-1). Without the influence of the coastal current, the improved algorithm
provided a better estimation in the ECS-2.

4.2. Spatial Distribution of PSCs
GOCI-derived PSCs’ distribution showed that microplankton and nanoplankton were generally the major
contributors to coastal and transitional regions, and picoplankton was found to be abundant in the oligotro-
phic regions (Figure 5), which was consistent with in situ investigations in our study (Figure 2), previous
studies in the BS, the YS, and ECS (e.g., Fu et al., 2009; Huang et al, 2006; Sun et al., 2002, 2012), and from
other study areas (e.g., Arin et al., 2002; Chisholm et al., 1988; Madariaga & Orive, 1989; Mara~n�on et al.,
2001). Similar distribution of GOCI-derived PSCs was observed from our study (Figure 5) and the study of
Sun et al. (2017). However, slight differences existed in the nearshore BS and SYS where microplankton
instead of nano and picoplankton was dominant in our study, which might result from regional data sets
for modeling and time scales utilized in the two studies.

Spatial distribution is closely related to the competitive abilities of different PSCs in response to environ-
mental conditions. Figures 2b and 2c showed that salinity and temperature were higher in the central YS
and the offshore ECS, due to the influence of Yellow Sea warm current, Taiwan warm current, and Kuroshio
(Li et al., 2016; Quan et al., 2013; Yu et al., 2005). Results in section 3.1 revealed that temperature and salinity
were correlated to the phytoplankton size structure, which might serve to explain why nano and picoplank-
ton had higher concentrations and percentages offshore. Similar correlations were observed in a previous
study in the same season and area (Sun et al., 2012). However, obvious relationships between PSCs and
temperature or salinity in the YS and the ECS were not found from Deng et al. (2008), indicating that envi-
ronmental factors that determined the PSCs were more than temperature and salinity. Some previous stud-
ies have suggested that nutrients have positive correlations with larger phytoplankton and negative
correlations with smaller phytoplankton in the YS and the ECS (Deng et al., 2008; Sun et al., 2012). Indeed,
higher dissolved inorganic nitrogen, phosphate, and silicate along coastlines and in the Changjiang Estuary
and its adjacent areas were observed (Gong et al., 2003; Guo et al., 2014; Liu et al., 2015; Wang et al., 2003;
Zhang et al., 2007), supporting our results that micro and nanoplankton were distributed with higher per-
centages in nearshore areas (Figure 3). With the enhanced solar radiation in April, sea surface temperature
increased and the stratification occurred in the central YS (Li et al., 2016; Yu et al., 2005), preventing the sup-
plementary of nutrients in the surface. Availability of nutrients became the major limiting factor for the
growth of large-sized phytoplankton in more oligotrophic environments (Mara~n�on, 2015). Due to the
surface-area-to-volume ratio, small cells are considered to be more competitive under limiting nutrient con-
ditions (Agawin et al., 2000; Mara~n�on et al., 2013), which could help to explain why percentage and concen-
tration of picoplankton were higher in the central YS (Figures 3c and 3f).

4.3. Diurnal Variation of PSCs
Unlike polar-orbiting ocean color satellites (e.g., SeaWiFs and MODIS), GOCI has higher temporal resolution
which can capture diurnal changes. Plenty of researches showed applications in suspended particulate
materials (Ge et al., 2015; He et al., 2013; Pan et al., 2018) and phytoplankton (Choi et al., 2014; Lee et al.,
2012; Lou & Hu, 2014). The atmospheric correction utilized in this study (i.e., KOSC standard in GDPS system)
is the same as that in the researches of diurnal variation of turbidity fronts (Hu et al., 2016a), tidal currents
(Hu et al., 2016b), and salinity (Liu et al., 2017).

Hourly variations of chlorophyll-a concentration observed from space were obvious throughout the day in
all the ROIs (Figure 8). Maximum chlorophyll-a concentration usually occur around noon, which was similar
with the temporal pattern from Lorenzen (1963) and Maulood et al. (1978). Similar trends of variation
between photosynthetically available radiation (PAR) and chlorophyll-a concentration among the four ROIs
indicated that the diurnal variation of chlorophyll-a concentration might due to the ability of photosynthe-
sis to light by phytoplankton (Figures 8 and 9a). Synchronous GOCI-derived PAR was calculated by
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where ki 5 412, 443, 490, 555, 660, and 680 nm, h 5 6.626*10234 j s, c 5 2.996*108 m s21, Ed 5 Lw/Rrs and
the unit of PAR was convert to Ein m22 d21. The equation (21) is originated from Cao and Yang (2002).

As for PSCs, variations were much stronger in the offshore area. It is obvious that the percentages of micro-
plankton increased with the increasing radiation, while the picoplankton was opposite (Figures 8a and 8d).
Previous study found that micro and nanoplankton required more illuminance intensity than picoplankton
for reaching the best growth condition (Sun et al., 2008). Dinoflagellates, such as Ceratium tripos and Cera-
tium furca were phototactic and had characteristics of diurnal vertical migration (i.e., upward migration to
the surface in the morning and downward migration in the evening), leading higher abundance in the
upper layers during the daytime (Blasco, 1978; Jephson & Carlsson, 2009). By contrast, small cells cope bet-
ter with reduced light conditions, since they are less affected by the package effect (Finkel et al., 2004). Sur-
face chlorophyll and abundance of Synechococcus were observed higher in the morning and after evening,
while at noon the lower populations could be suffered from photoinhibition because of the high radiation
(Mitbavkar & Saino, 2015; Vaulot & Marie, 1999). Since the phytoplankton mentioned above are common
species in the ECS (Chen et al., 2006), their responses to the light can well explain the features of surface dis-
tribution in this study.

Furthermore, water turbidity is one of important factors for phytoplankton in turbid coastal oceans. Figure
9b showed GOCI-derived hourly turbidity of the four ROIs, which was computed following equations from
Dogliotti et al. (2015). Compared to the ROI-1 which was located far from the coast, diurnal variations were
more obvious in the ROI-2, ROI-3, and ROI-4. Turbidity was the highest in the ROI-2, where suspended par-
ticulate matters were mainly dominated by nonalgal particles. Under influences of tidal currents, coastal
currents, and waves, the mechanism of the turbidity variation was complicated, and the relationship
between turbidity and chlorophyll-a concentration was not significant. Diurnal variations of PSCs in the ROI-
2 were stable and less affected by environmental factors (Figure 8b). The ROI-3 was located in turbid-clear
transition zone. Diurnal variation of turbidity might be influenced by the tidal current. It was found in Figure
9b that an obvious increment of turbidity was found in the afternoon, which was corresponding to the ebb
tidal phase of 7 April 2013 (Figure 7c). Horizontal transportation of the water mass was the cause of the vari-
ation in chlorophyll-a concentration and percentages of PSCs in the afternoon (Figure 8c). Diurnal variation
of bloom surface distribution impacted by tidal situation in nearshore waters of ECS was also reported by
Lou and Hu (2014). The ROI-4 was situated in the clearer water mostly dominated by high salinity and oligo-
trophic water mass of Taiwan warm current so that it had the lowest turbidity, where algal particles were
the major component of suspended particulate matters. Thus, the fluctuation of turbidity suggested the

Figure 9. GOCI-derived diurnal variation of (a) photosynthetically available radiation (PAR) and (b) turbidity in the four ROIs.
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variation of chlorophyll-a concentration (Figures 8d and 9b). Compared to other ROIs, percentages of PSCs
had significant variations in the ROI-4 within a day due to the combined effects of both light intensity and
turbidity. In addition to environmental factors mentioned before, intrinsic population processes caused by
resuspension of benthic phytoplankton and grazing might also have influences on diurnal variation of PSCs.
Consistent and more comprehensive monitoring in the whole water column is required in the future.

4.4. Potential and Limitation of Remote Sensing Estimation
In general, PSCs can be detected by remote sensing through three popular approaches—abundance-based,
spectral-based, and ecological-based (Brewin et al., 2011b; IOCCG, 2014; Nair et al., 2008). The three-
component model (Brewin et al., 2010) which is regarded as an abundance-based method can be used to
estimate PSCs when chlorophyll-a concentration derived from space has been proved to be accurate. The
accuracy of classification is completely relied on parameters in the models, thus model parameters are
required to improve for different biogeochemical provinces (Devred et al., 2006). In this study, parameters
of the model were tuned and validated according to our investigation. However, the abundance-based
approach has its limitations that it might not work well in distinguishing algal blooms of different PSCs with
the same chlorophyll concentration, since it assumes that larger cells dominate in higher concentrations
and smaller cells in low concentrations. Many studies found that microplankton such as dinoflagellates
were the most common dominances along coastal waters in the study area (e.g., Dai et al., 2013; Lou & Hu,
2014; Xia et al., 2007; Zhou et al., 2003) which confirmed the assumptions of the abundance-based model.
Although there are few reports, there is the possibility that small size or mixed sizes phytoplankton blooms
could exist. Therefore, bloom stations were removed in the reparameterization in the study. When analyzing
PSCs in blooming conditions utilizing the abundance-based approach, additional environmental knowledge
are required to improve the model reliability (Brewin et al., 2010).

In order to be more dependable, recent trend of detecting PSCs concerned more about the comparison
and combination of different approaches. Spectral-based approach is a more direct way depending on fea-
tures that spectrum shape of chlorophyll-specific absorption coefficient or particle backscattering coeffi-
cient varies with size structure (Brewin et al., 2011a; Ciotti & Bricaud, 2006; Ciotti et al., 2002; Kostadinov
et al., 2009; Loisel et al., 2006; Uitz et al., 2008). Brewin et al. (2011b) has proved that both abundance-based
and spectral-based approaches can have similar accuracy, however, comparison results remain to be tested
in the BS, the YS, and the ECS. As discussed in the section 4.2, environmental factors are crucial to the distri-
bution pattern of PSCs, and several studies have pointed that some of them, such as light availability and
temperature are tightly related to parameters of abundance-based model (Brewin et al., 2015, 2017). The
combination of empirical methods and the exploitation of additional environmental data will help to opti-
mize models and obtain retrivals more accurately (Bracher et al., 2017).

5. Conclusions

Large numbers of in situ samples were collected in the entire continental shelf sea of China. Through the
HPLC method, seven diagnostic pigments were obtained and assigned to corresponding size classes. In situ
PSCs’ distributions showed that microplankton was dominant in the BS, the YS, and nearshore ECS, while
nanoplankton was the major contribution to the chlorophyll-a concentration in the ECS, and picoplankton
had higher proportions in the offshore ECS. Temperature and salinity in the study area affected by continen-
tal shelf currents circulation had influences on the spatial distribution of PSCs. Microplankton was negatively
correlated with the temperature and salinity, while nano and picoplankton had positive correlations.

We proposed an improvement on the parameterization of the three-component model (Brewin et al.,
2010). Using strict match-ups, validation revealed that the improved algorithm had a higher accuracy in esti-
mating PSCs in the BS, the YS, and the ECS, with RMSE of concentrations and percentages been 0.774,
0.257, 0.142, and 14.17, 13.58, 13.77 for micro, nano, and picoplankton, respectively.

GOCI-derived PSCs’ spatial distribution was in good agreement with in situ measurements and previous
studies, resulting from responses of PSCs to different environmental conditions. Characteristics of diurnal
variations of PSCs’ distributions in different water types were captured by this high temporal resolution sat-
ellite as well. Diurnal variation of PSCs in the offshore area was obvious and mainly affected by the light
intensity, leading to maximum microplankton percentage around noon and higher percentages of nano
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and picoplankton in the morning and afternoon. However, in the nearshore area, diurnal variation of PSCs
was relatively slight and water masses such as coastal currents and tides were major influencing factors.
The study provides a beneficial approach of a consistently spatial-temporal observation of PSCs for better
understanding marine ecological and biogeochemical systems in the entire continental shelf sea of China.
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