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Abstract 42 

 43 

Variability in riverine flow regimes is important for aquatic biodiversity. However, across the 44 

globe, management of water resources has altered natural flow dynamics. We explored 45 

relationships between flow regime (calculated from three years’ daily averaged discharge), and 46 

water chemistry, benthic algae, as well as macroinvertebrate datasets from 64 sites across 47 

Germany and Norway. To deal with multicollinearity while maintaining interpretability, we 48 

performed principal component (PC) analyses for each dataset in each country, and selected 49 

the metric with the highest absolute loading on each PC to represent that PC. We then used L1-50 

regularised (lasso) regression to link differences in water chemistry and hydrology to 51 

differences in ecology, and compared this approach to the more popular best-subsets ordinary 52 

least squares (OLS) regression. 53 

The results obtained using lasso regression were broadly comparable to those produced by best-54 

subsets OLS, but the lasso approach “rejected” more models than the best-subsets approach. 55 

When lasso identified a plausible model, it was the same or similar to the best model found by 56 

best-subsets OLS. The lasso method was more “discerning”, i.e. it identified a smaller number 57 

of potentially interesting models, while best-subsets regression seemed to find “too many” 58 

relationships. We identified two response variables that were potentially affected by regulation: 59 

(i) river regulation may lead to higher cyanobacterial abundance, possibly via a less variable 60 

flow regime; (ii) reduced flow variability may lead to a reduced proportion of grazers and 61 

scrapers, possibly indicating a shift towards an increased importance of heterotrophic energy 62 

sources in ecosystems with less variable flows.  63 

 64 
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1. Introduction 65 

 66 

Natural variability in riverine flow regimes maintains ecological gradients, impacting aquatic 67 

biodiversity (Poff et al., 2007; Richter et al., 1997; Schneider and Petrin, 2017). However, 68 

exploitation of freshwater resources such as industrial abstractions, hydropower generation and 69 

drinking water supply has significantly altered natural flow dynamics across the globe (Poff et 70 

al., 2007). 37% of European rivers are affected by flow regulation (www.ecologic.eu/11663) 71 

and, in Norway, where hydropower provides >95% of the total electricity generated, more than 72 

two-thirds of river basins are affected by hydromorphological alteration (www.nve.no). 73 

Understanding the effects of flow alteration on aquatic ecology is crucial for the sustainable 74 

management of regulated river systems, but linking indicators of hydrological change to 75 

ecology is not straightforward because (1) properly replicated and controlled experiments are 76 

rarely possible in practice in fluvial ecosystems (Richter et al., 1997), (2) species assemblages 77 

in experimental flumes often differ from the assemblages in adjacent watercourses, raising 78 

questions on the relevance of flume experiments (Bækkelie et al., 2017), and (3) field data may 79 

reflect the effects of correlated variables rather than the effects of the variables of interest. 80 

 81 

The “natural flow paradigm” (Poff et al., 1997) provides a rationale for linking hydrological 82 

indicators (HIs) to ecological responses, and a range of HIs have been proposed for assessing 83 

the extent of ecohydrological change. Olden & Poff (2003) conducted a comparison of more 84 

than 170 flow-derived metrics and concluded that the suite of indices commonly referred to as 85 

the “Indicators of Hydrological Alteration” (IHA; Richter et al., 1996) typically provide an 86 

adequate summary of the overall flow regime. The IHA methodology defines 33 statistics in 87 

five broad classes, and the approach has been widely applied to characterise compensation 88 

flows that mimic the natural regime. However, in the context of linking HIs to ecological 89 

datasets, multicollinearity between the IHA variables usually necessitates dimensionality 90 

reduction (Olden and Poff, 2003; Yang et al., 2008). A simpler approach is the “ecochange” 91 

concept proposed by Vogel et al. (2007), in which hydrological alteration is estimated from the 92 

difference between “before” and “after” flow duration curves. Gao et al. (2009) demonstrated 93 

that this method provides an effective summary of the IHA output without multicollinearity 94 

issues, but it is only applicable to study designs where flow data are available both before and 95 

after some well-defined intervention (such as building a dam). 96 

 97 

Although many studies focus on developing indicators of hydrological change, comparatively 98 

few establish convincing links between these metrics and measures of ecological 99 

health/resilience. In the presence of strong multicollinearity, common pre-processing 100 

approaches for linking hydrological and ecological variables include using PCA or 101 

(Non-)Metric (Multi-)Dimensional Scaling (NMDS) to identify relevant subsets of explanatory 102 

variables from an initial broader suite, followed by regression analysis to identify potentially 103 

interesting relationships: Monk et al. (2007) used PCA followed by stepwise linear regression 104 

to investigate relationships between around 200 HIs and macroinvertebrate metrics at 83 105 

locations in England and Wales; Yang et al. (2008) used a genetic programming approach to 106 

perform variable selection and identify significant relationships between time series of fish 107 

species diversity and the IHA parameters calculated for a catchment in Illinois, USA; and 108 

Schneider and Petrin (2017) used NMDS and stepwise regression to link hydrology and water 109 

chemistry variables to benthic algae and macroinvertebrate assemblages at 40 sites in Norway. 110 

http://www.ecologic.eu/11663
http://www.nve.no/
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 111 

Here, we explored relationships between hydrology, water chemistry, benthic algae and 112 

macroinvertebrate datasets collated for 64 sites across Germany and Norway. We use two 113 

independent datasets collected in two countries to identify potentially causal relationships 114 

between regulation/hydrology and aquatic biota. We used the approach of Richter et al. (1996) 115 

to develop an initial set of HIs, which were then distilled to a more informative subset following 116 

the recommendations of Olden and Poff (2003) and Gao et al. (2009). We expected (1) 117 

ecological and (2) hydrochemical & hydrological differences between regulated and 118 

unregulated streams, and we hypothesized (3) that the hydrochemical and hydrological 119 

differences may plausibly explain the ecological differences. 120 

 121 

When testing hypothesis 3, we avoided using stepwise or “best-subsets” regression techniques 122 

– despite their popularity in the literature – because in cases where significance testing is of 123 

interest these methods have been criticised for “overfitting” the data, leading to inflated 124 

estimates of significance (Harrell, 2001). Instead, we present an alternative approach using L1-125 

regularised (lasso) regression with qualitative analysis of the “lasso path”, which we believe is 126 

both more robust and more informative than iterative variable selection procedures. Results 127 

obtained using “best-subsets” regression are included for comparison.  128 

 129 

2. Methodology 130 

 131 

2.1 Site locations 132 

 133 

Data were collected from 64 sites (Fig. 1), half of which were classified as "regulated" i.e. they 134 

had an anthropogenically modified flow regime. 24 sites (12 regulated) were in Western 135 

Germany and the remaining 40 (20 regulated) in Southern Norway. The study sites were 136 

selected to be located close to flow gauging stations, such that daily average flow 137 

measurements were available. River regulation is a multifaceted term, and our dataset 138 

comprises “minimum discharge” sites (those from which freshwater is abstracted and bypasses 139 

the river), sites downstream from outlets of hydropower plants, and sites downstream from 140 

dams and weirs.  141 

 142 

The German sites were small and medium sized siliceous mountain streams in the state of 143 

North Rhine-Westphalia. Elevations ranged from 50 to 350 m a.s.l. and the median drainage 144 

area was 147 km2 (range: 11 to 800 km2). Land cover comprised mostly deciduous forest 145 

dominating the hillslopes with settlements and agricultural areas at lower elevations and along 146 

valley floors. The geology was siliceous, with precipitation ranging from 800 to 1600 mm/yr. 147 

 148 

The median drainage area of the Norwegian sites was 375 km2 (range: 7 to 2335 km2). 149 

Elevations ranged from 15 to 990 m a.s.l. and land cover from alpine mats to largely 150 

coniferous forest, as well as settlements and agricultural areas along valley floors. The 151 

geology was siliceous and average precipitation ranged from 600 to 3500 mm/yr.  152 

 153 

2.2 Ecological data 154 

 155 

Benthic algae and macroinvertebrate surveys were conducted at all 64 sites. The German data 156 

originated from national monitoring surveys during late summers and autumns between 2006 157 
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and 2012. In Norway, fieldwork took place during September 2013, and samples were taken 158 

as close as possible to the respective hydrological gauging stations. The distance between 159 

sampling points and gauging stations was <5 km in Germany and <1 km in Norway, and the 160 

differences in drainage area between sampling sites and gauging stations was < 10%.  161 

 162 

Benthic algae 163 

 164 

Samples of soft-bodied benthic algae (defined as algae, attached to the river bottom or in close 165 

contact on or within patches of attached aquatic plants, including cyanobacteria but excluding 166 

diatoms) were taken according to European standard procedures (EN 15708:2009) along an 167 

approximately 10 m length of river bottom using an “aquascope” (a bucket with a transparent 168 

bottom). Diatoms were not included due to the great differences in methodology for sample 169 

preparation and enumeration between diatom and non-diatom benthic algae. In Germany, a 5-170 

level scale was used to record abundance of benthic algae at each site: 1, microscopically rare; 171 

2, microscopically abundant; 3, maximum 5% cover; 4, 5% to 33% cover; 5, more than 33% 172 

cover. In Norway, percentage cover of each form of macroscopically visible benthic algae was 173 

recorded, and the abundance of each microscopic taxon was estimated in the laboratory as 174 

“rare”, “common” or “abundant”. To enable comparative data analysis, we translated the cover 175 

data recorded in Norway into the 5-level scale used in Germany. All samples were examined 176 

under a microscope and all non-diatom algae identified to species, wherever possible. For some 177 

genera of filamentous green algae, whose vegetative forms cannot be determined to species 178 

level (e.g. Spirogyra Link or Mougeotia C. Agardh), categories based mainly on filament width 179 

were used.  180 

 181 

Prior to analysis, the taxonomic levels were harmonized between German and Norwegian 182 

datasets. From the harmonised dataset, we calculated overall taxon richness, as well as richness 183 

of the most abundant algal groups, i.e. red algae, green algae, and cyanobacteria (Table 1). We 184 

approximated total benthic algal abundance at each site by summarising the cubed 5-level 185 

values for each taxon. This was done because the 5-level scale used for abundance estimation 186 

of benthic algae in Germany is non-linear. Using cubed 5-level values for total abundance is a 187 

method commonly used for submerged macrophytes (Melzer, 1999) and is regarded as the 188 

“best possible” approximation for comparing abundances among algal groups and among sites. 189 

Other response variables were calculated (e.g. cover of Phormidium sp., cover of cyanobacteria 190 

with heterocysts, eutrophication indices used for ecological status assessment, etc.), but 191 

omitted from further analysis since they either showed little variation, co-varied with other 192 

response variables, or were inapplicable in one of the countries. 193 

 194 

Macroinvertebrates 195 

 196 

In Germany, the multi-habitat sampling procedure was applied. Benthic invertebrates were 197 

collected from a total of 20 sample units from representative substrates (i.e. those covering 198 

more than 5% of the sample reach). Each sampling unit had a size of 25 x 25 cm (resulting in 199 

1.25 m2 of stream bottom being sampled), and was sampled by means of kick sampling. At 200 

each site in Norway, macroinvertebrates were collected in ten replicates using a Surber net 201 

(sampling area 0.1 m2; mesh size 500 µm). The substrate mainly consisted of gravel, pebbles, 202 
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cobbles or small boulders, that were agitated to a depth of ~10 cm for one minute during 203 

sampling. All samples were immediately preserved in 70% ethanol for later analysis.  204 

 205 

In the laboratory, samples were sorted using a 500 µm sieve and the macroinvertebrates 206 

classified to the lowest possible taxonomic level, usually species. In Germany, 207 

macroinvertebrate identification was performed to the level of the Operational Taxalist 208 

(http://www.fliessgewaesserbewertung.de/en/download/bestimmung/), which means most 209 

taxa were identified to species, but with genus level for certain Plecoptera and Trichoptera, 210 

family level for Oligochaeta, and from genus to subfamily level for Diptera. In Norway, some 211 

dipteran taxa and microcaddisflies (Hydroptilidae) could only be identified to genus. In 212 

addition, bryozoans, nematodes, oligochaetes, water mites, cladocerans, ostracods, non-biting 213 

midges and blackflies were not identified any further. Prior to data analysis, taxonomic levels 214 

were harmonized between the German and Norwegian datasets. 215 

 216 

We calculated common bioassessment indices and abundance ratios of functional feeding 217 

groups (FFG) of macroinvertebrates using ASTERICS (www.fliessgewaesserbewertung.de/; 218 

Table 1). FFGs are used to characterize ecosystem attributes such as the relative importance of 219 

autotrophic and heterotrophic organic carbon as the basis of the food web (Doledec et al., 220 

2015).  221 

 222 

2.3. Water chemistry 223 

 224 

In Germany, water samples were taken within one month of biological sampling, while in 225 

Norway, water samples were taken together with the biological samples. At four German sites, 226 

there was a considerable time gap between the dates of macroinvertebrate surveys and the 227 

collection of hydrochemical samples. The corresponding sites were therefore removed from 228 

the macroinvertebrate dataset, leaving 64 sites for benthic algae and 60 for macroinvertebrates. 229 

Water chemistry was analysed at accredited laboratories using the following national standard 230 

procedures (Norway/Germany): total organic carbon (TOC; NS/DIN EN 1484), Total 231 

phosphorus (TP; NS/DIN EN ISO 15681-2), and Total nitrogen (TN; NS 4743/ DIN 38409 232 

H28). In addition, pH and conductivity were measured in both countries using handheld 233 

instruments. 234 

 235 

2.4. Hydrological indices 236 

 237 

Near-complete time series of average daily flow were available for all locations for a period of 238 

three years prior to sampling. Beyond three years, some of the discharge records had substantial 239 

data gaps, so the three-year period prior to sampling was chosen to represent medium-term 240 

hydrological conditions at each watercourse. Three years seem an appropriate time frame for 241 

our analysis because macroinvertebrates and benthic algae may rapidly recolonize a stream site 242 

after an extreme event (Power et al., 2013). Consequently, older records of river flow are 243 

increasingly unlikely to have persistent effects on present day macroinvertebrate and benthic 244 

algal composition. 245 

 246 

Small data gaps in each series, up to a maximum of 7 days in length, were filled using linear 247 

interpolation (because we had no indications of extreme events during these short periods), and 248 

http://www.fliessgewaesserbewertung.de/en/download/bestimmung/
http://www.fliessgewaesserbewertung.de/
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a suite of 62 HIs were calculated from the daily flow values at each location (Table 2). Selection 249 

of HIs was initially based on the 33 IHA metrics defined by Richter et al. (1996), but modified 250 

to produce a single statistic for each variable for the entire three-year period. For example, 251 

rather than using the Julian date of each annual maximum to represent the timing of extreme 252 

events (as per Richter et al.), we calculated the number of days prior to sampling to the 253 

maximum flow in the series (and also to the last point when flows exceeded the 95th percentile). 254 

 255 

Exploratory analysis of the modified set of IHA metrics revealed that some variables exhibited 256 

very little variation in our dataset. In addition, previous analysis of the Norwegian data found 257 

that important predictors included metrics representing flow ranges, as well as indices of 258 

monthly maxima and minima (Schneider and Petrin, 2017). This finding was broadly consistent 259 

with the work of Olden and Poff (2003), who noted that the IHA methodology often fails to 260 

adequately quantify the magnitude of extreme flow conditions. We therefore expanded the set 261 

of HIs in our analysis to include monthly minimum and maximum discharges, together with a 262 

number of overall indices of flow variability, such as the coefficient of variation (CV), the 263 

interquartile range (IQR) and the 90-percentile-range (Table 2). 264 

 265 

 266 

2.5. Analysis procedure 267 

 268 

The workflow for the analysis is summarised below and described in detail in Appendices A1-269 

A4. Data processing was performed using Python 2.7 (Python Software Foundation, 2016) and 270 

all code is available in the Supplementary Information. 271 

 272 

1. Define hydrological regimes and stratify the dataset 273 

2. Use dimensionality reduction to ameliorate collinearity among variables, separately for 274 

each dataset (benthic algae, macroinvertebrates, water chemistry, hydrology) and each 275 

country (Norway, Germany); identify subsets of variables that broadly represent overall 276 

variability in each dataset 277 

3. Test hypotheses 1 and 2 by comparing the metrics selected in step 2 at regulated versus 278 

unregulated sites  279 

4. Use regression techniques on the variables showing substantial differences in step 3 to 280 

quantify relationships between hydrology, water chemistry and biota (hypothesis 3), 281 

and interpret their ecological significance 282 

 283 

Germany and Norway have different climates and hydrological regimes (Appendix A1). 284 

German sites are characterised by high autumn and winter flows generally declining throughout 285 

the summer. In contrast, Norwegian sites are heavily influenced by snow accumulation and 286 

melting processes, typified by low flows during the winter and peak discharges during May 287 

and June. A number of previous studies (Monk et al., 2007; Olden and Poff, 2003) found that 288 

the most representative hydrological metrics vary according to stream type. For this reason, we 289 

began by performing separate analyses on the German and Norwegian datasets before 290 

analysing the pooled data (to create an analysis with greater statistical power). We regard the 291 

occurrence of similar relationships in the Norwegian, German and pooled datasets as 292 

particularly interesting, as they increase the weight of evidence. 293 

 294 
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Dimensionality reduction 295 

 296 

The set of calculated metrics comprised two binary categorical variables (Germany/Norway; 297 

regulated/unregulated) and almost 100 continuous variables (62 HIs, 23 macroinvertebrate 298 

metrics, 8 benthic algae metrics and 5 water chemistry variables), many of which are similar 299 

in nature (e.g. maxima, minima, and percentiles of flow). Exploratory data analysis using 300 

pairwise correlation matrices revealed substantial multicollinearity, which was reduced using 301 

the PCA algorithm in Scikit-Learn (v0.18.1; Pedregosa et al., 2011) to identify a smaller set of 302 

near-orthogonal variables capable of explaining most of the variance. Olden and Poff (2003) 303 

suggested PCA as a pragmatic method for variable selection in the context of eco-hydrological 304 

data analyses. One disadvantage, however, is that linear combinations of the input variables 305 

can become difficult to interpret in a meaningful way. We therefore followed the approach of 306 

Gao et al. (2009) by choosing the metric with the highest absolute loading on each principal 307 

component (PC) to represent that PC. In cases where several metrics had approximately the 308 

same maximum loading, all candidate variables were carried forward for further analysis (such 309 

variables are marked in brackets in Table 3). This method has the advantage of retaining 310 

meaningful variables and facilitating interpretation, while also reducing multicollinearity. 311 

Note, however, that collinearity is not eliminated completely, because the selected variables 312 

for each PC are no longer orthogonal. 313 

 314 

We use the Kaiser-Guttman criterion (KGC; Gao et al., 2009) to decide how many PCs to keep. 315 

The KGC recommends keeping all components with eigenvalues greater than 1, which in the 316 

analysis presented here typically selects between 3 and 10 PCs, explaining around 80 – 90% 317 

of the overall variance. Variables were first standardized by subtracting the mean and dividing 318 

by the standard deviation, and separate PCAs were applied to each of the four datasets (benthic 319 

algae, macroinvertebrates, water chemistry, hydrology) in each country. Further details are 320 

provided in Appendix A2. 321 

 322 

Tests for differences 323 

 324 

The metrics selected by PCA were tested to explore statistical differences between regulated 325 

and unregulated sites using a robust Bayesian approach (Kruschke, 2012) implemented using 326 

the PyMC3 package (v3.0; Salvatier et al., 2016). A detailed explanation is provided in 327 

Appendix A3. Within a Bayesian framework, probabilities are interpreted as “degrees of 328 

belief”, so our approach permits statements such as (for example), “given our data, there is 329 

85% probability that regulated sites in Norway have a higher macroinvertebrate abundance 330 

than unregulated sites”.  331 

 332 

Regularised multiple linear regression 333 

 334 

The 64 sites comprising our dataset encompassed a range of regulation and also a variety of 335 

natural flow regimes, so there may be no clear-cut distinction between regimes at “regulated” 336 

and “unregulated” sites. As well as analysing differences between regulated and unregulated 337 

sites, we therefore also analysed the dataset as a continuous spectrum of hydrological regimes, 338 

rather than making a binary classification, in order to better understand the relationships 339 

between variables.  340 
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 341 

The regression analysis considered the same set of response and explanatory variables for both 342 

countries, as this makes it possible to directly compare models between countries, and to 343 

estimate combined models based on the “pooled” data from both countries. The set of response 344 

and explanatory variables included all those showing substantial differences between regulated 345 

and unregulated sites in either country (i.e. the union of the variables for Norway and Germany 346 

shown in Table 4).  347 

 348 

Despite dimensionality reduction using PCA, the number of combinations of response and 349 

explanatory variables under consideration was still large. Previous studies (e.g. Monk et al., 350 

2007; Schneider and Petrin, 2017) applied stepwise or best-subsets regression in this situation, 351 

but these techniques are problematic when significance testing is of interest (Harrell, 2001). 352 

We therefore used the more robust approach of lasso regression (Hastie et al., 2009), using 353 

standardized data to identify the most important relationships between ecological (response) 354 

and explanatory variables. A detailed explanation of this method is given in Appendix A4. The 355 

lasso can easily be used to assess which predictors are important in the model, but estimating 356 

the strength of the relationships (i.e. the model coefficients) is more difficult. One pragmatic 357 

solution is to use the lasso to identify the best model (or a small number of candidate models), 358 

and then use OLS regression with the unstandardized data to estimate the coefficients directly 359 

in the original data units (Hastie et al., 2009). This is the approach adopted here. 360 

 361 

Finally, for purposes of comparison, we also applied “best-subsets” regression to identify the 362 

best OLS model out of all possible combinations of explanatory variables (judged according to 363 

the Bayesian Information Criterion; BIC). This method is computationally intensive and prone 364 

to “overfitting”, but it is nevertheless widely used and therefore offers an interesting contrast 365 

to the lasso.  366 

 367 

All regression analyses were carried out separately for each country. In addition, datasets were 368 

“pooled” and additional analyses of the combined Norwegian and German data carried out. 369 

Individually, the ecological, chemical, and hydrological gradients in each country may be 370 

small, whereas in the combined dataset they were larger. The combined analyses therefore 371 

made it easier to constrain regression relationships, albeit with the caveat that additional 372 

complications were introduced by combining measurements from two different hydrological 373 

regimes, and by introducing a possible “country effect”. However, if similar relationships 374 

occurred in the Norwegian, German and combined dataset, that strengthened the significance 375 

of the findings. 376 

 377 

3. Results 378 

 379 

3.1. Differences between regulated and unregulated sites 380 

 381 

Table 3 summarizes the variables with the strongest gradients in each dataset and each country. 382 

See Appendix A2 and the online code repository for further details of the PCA procedure. 383 

 384 

Each of the variables listed in Table 3 was tested for differences between regulated and 385 

unregulated sites using a Bayesian approach (Table 4; see Appendix A3 and the online code 386 

https://github.com/JamesSample/ECOREG
https://github.com/JamesSample/ECOREG
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repository for further details). Table 4 only includes metrics with a posterior probability of a 387 

difference between regulated and unregulated sites assessed to be worthy of further 388 

investigation: cases where posterior probabilities of differences were small (< 75%), or the 389 

model diagnostics indicated problems with the assumptions (based on the posterior predictive 390 

check – see Appendix A3) were disregarded. 391 

 392 

Consistent differences between regulated and unregulated sites in both countries included (1) 393 

the higher abundance of cyanobacteria, (2) the slightly higher German saprobic index, (3) the 394 

higher mean flow, (4) the lower coefficient of variation in flow regime and (5) the slightly 395 

higher total nitrogen concentration at regulated than unregulated sites. 396 

 397 

The observed differences in biota between regulated and unregulated sites (Table 4) may reflect 398 

coincidence, river regulation, or a causal relationship with a co-variate. Our data cannot 399 

differentiate among these. To gain a more detailed understanding of the relationships between 400 

response and explanatory variables, we used lasso regression. 401 

 402 

3.2. Regression analysis  403 

 404 

We summarised the results of the OLS analysis obtained for the best lasso model and compared 405 

them with results from a “best-subsets” approach, separately for the Norwegian, German and 406 

combined datasets (Table 5; see Appendix A4 and the online code repository for further 407 

details). The same sets of response and explanatory variables were used in both countries (i.e. 408 

all variables in Table 3) to facilitate model comparison.  409 

 410 

The positive relationship between the coefficient of variation of flows (CV) and the 411 

proportion of grazers and scrapers consistently occurred in the Norwegian, German and 412 

combined datasets. In both, Germany and Norway, a 10% decrease in flow variability was 413 

associated with a 1.3% to 2% decrease in the proportion of grazers and scrapers (Fig. 2, 414 

Table 5). A similar result was also achieved with OLS “best-subset” regression, although in 415 

the Norwegian dataset the best model was achieved using December maximum flow and the 416 

number of flow reversals per year, instead of CV (Table 5). 417 

 418 

Using the best-subset approach, three more relationships consistently occurred in the German, 419 

Norwegian and combined datasets: the German saprobic index, Shannon-Wiener diversity, and 420 

the proportion of swimmers and divers were significantly related to flow variables (Table 5). 421 

However, for the German saprobic index, explanatory variables differed between Norway and 422 

Germany (Table 5), rendering the relationship unreliable. For the proportion of swimmers and 423 

divers, the number of high pulses consistently occurred in all three datasets, but with different 424 

signs (positive in Germany and negative in Norway), also rendering the relationship unreliable. 425 

However, a high October maximum flow was consistently associated with a higher 426 

macroinvertebrate diversity in the German, Norwegian and combined datasets (Table 5).  427 

 428 

All other relationships were either unexplained in one country (no model performed 429 

significantly better than the null model), weakly explained, or inconsistent between countries. 430 

Since we did not want to overinterpret our data, we only show the results (Table 5), but do not 431 

discuss them further, so that other researchers may compare our results with their own data.  432 

https://github.com/JamesSample/ECOREG
https://github.com/JamesSample/ECOREG
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 433 

4. Discussion 434 

 435 

We used two independent datasets that were collected in two countries to identify potentially 436 

interesting relationships between hydrological regulation and aquatic biota, supposing that the 437 

occurrence of similar relationships in Germany and Norway reduces the likelihood that the 438 

relationships occurred by chance. We found systematic differences in water chemistry and 439 

hydrology between regulated and unregulated streams, regardless of differences in general flow 440 

patterns between Norway and Germany (Appendix A1). In both countries, regulated rivers 441 

were characterised by a lower coefficient of variation in flow (Table 4), consistent with the 442 

expectation that regulated rivers have a more stable flow regime (Poff et al., 2007). Also, 443 

regulated rivers were characterized by higher TN concentrations. The reason for this, however, 444 

remains unclear, given that river regulation may have ambivalent effects on water chemistry. 445 

Hydropower plants usually withdraw hypolimnetic water, where nutrient concentrations are 446 

typically higher than at the surface (Kunz et al., 2013), leading to higher nutrient concentrations 447 

downstream from the outlets. On the other hand, reservoirs may act as nutrient traps, reducing 448 

nutrient concentrations downstream (Kunz et al., 2011). As regulated rivers also had a higher 449 

mean flow (Table 4), we suspect that the enhanced TN concentrations may simply reflect river 450 

size. We lack data on land use in the catchments, but a larger proportion of agricultural and 451 

urban land use further downstream is likely to be associated with higher nitrogen levels in 452 

aquatic ecosystems (Schindler, 2006). The higher mean flow at regulated sites is simply related 453 

to the fact that many large rivers are regulated today (Poff et al., 2007), so rivers with an 454 

unregulated flow regime will mostly be found upstream, where mean flow is low. 455 

 456 

Only two biological variables consistently differed between regulated and unregulated sites in 457 

both Germany and Norway. The abundance of cyanobacteria and the German saprobic index 458 

were higher at regulated sites (Table 4). However, the increase in the German saprobic index 459 

was very small, and likely is only indirectly related to regulation through the generally larger 460 

size of the regulated rivers: macroinvertebrate assemblages will often shift towards species 461 

tolerating higher organic pollution levels along the river continuum (Rosenberg and Resh, 462 

1993). An effect of stream flow on the abundance of cyanobacteria has been shown before 463 

(Schneider, 2015) suggesting that the reduced flow variation in regulated rivers (Table 4) may 464 

indeed lead to an increase in cyanobacterial abundance. This may be due to reduced scouring 465 

in regulated rivers (prolonged periods of high discharge may decrease Phormidium cover, 466 

probably due to substrate movement; Schneider, 2015), or indirectly related to higher fine 467 

sediment deposition in regulated rivers (Phormidium is able to trap sediment (Aristi et al., 468 

2017), and use phosphorus released from the entrapped sediment (Wood et al., 2015)). 469 

 470 

When relating the observed differences in ecology to differences in hydrology and water 471 

chemistry, we found that the results obtained using lasso regression were broadly comparable 472 

to those produced by the more commonly used best-subsets OLS. However, the lasso approach 473 

seems more conservative, presumably because the cross-validation procedure employed by 474 

lasso provides a more rigorous test for actual predictive power. When lasso does suggest a 475 

plausible model, it is usually the same or similar to the best model found by best-subsets OLS. 476 

In the context of significance testing, the lasso is statistically more robust and, in addition, 477 

consideration of the lasso path (Appendix A4) provides valuable additional insights concerning 478 
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the relationships between variables and trade-offs between model complexity and goodness-479 

of-fit. We believe the combined methodology presented here offers a pragmatic approach to 480 

variable selection and significance testing that will also perform well using larger datasets 481 

(unlike best-subsets or stepwise approaches).  482 

 483 

The key pattern in our models was that the proportion of grazers and scrapers increased with a 484 

more variable flow regime (Table 5). These results agree with results from flume experiments 485 

(Ceola et al. 2013) suggesting that a stochastic flow regime increases grazing rates compared 486 

to stable flow conditions, probably due to a larger number of microhabitats with reduced shear 487 

stress and hence better foraging conditions for grazers than under constant flow conditions. 488 

Doledec et al. (2015) found an increased proportion of grazers following an increase in the 489 

daily minimum flow in regulated rivers. Grazers and scrapers feed on periphyton, and a higher 490 

proportion of grazers and scrapers therefore suggests a shift towards a more autotrophic basis 491 

of the food web (Doledec et al., 2015). Although the relationship between the coefficient of 492 

variation in flow and the proportion of grazers and scrapers was not very strong (Table 5), it 493 

nevertheless indicated that reduced flow variability may coincide with a shift from an 494 

autotrophic towards a more heterotrophic basis of the food web. A reduced proportion of 495 

grazers and scrapers in rivers with a less variable flow regime may also contribute to the 496 

increased cover of cyanobacteria observed in regulated rivers (because they are less grazed 497 

upon). 498 

 499 

The best-subset approach also indicated that high October maximum flows were associated 500 

with higher macroinvertebrate diversity (Table 5). However, Poff and Zimmermann (2010) 501 

reported that both increasing and decreasing macroinvertebrate diversity may occur in response 502 

to elevated flows. Consequently, this relationship should not be over-interpreted; since it only 503 

occurred in the best-subset approach and was not picked up by the lasso, it perhaps illustrates 504 

the argument that best-subset regression is prone to finding “too many” significant 505 

relationships. 506 

 507 

In conclusion, we identified two biological response variables that were potentially affected by 508 

regulation/flow regime: (i) river regulation may lead to higher cyanobacterial abundance, 509 

possibly via a less variable flow regime, and (ii) reduced flow variability may lead to a reduced 510 

proportion of grazers and scrapers, possibly indicating a shift towards an increased importance 511 

of heterotrophic energy sources in the ecosystem. We cannot exclude that other response 512 

variables also were affected by regulation/flow regime, but these were not picked up in our 513 

analyses (e.g. because the gradient in our data was too short). The high number of potentially 514 

interesting variables, combined with strong multicollinearity, complicates the interpretation of 515 

our results. Nevertheless, we believe the changes in community composition indicated by our 516 

analyses are strong enough to warrant further investigation.  517 

 518 
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 611 

Table 1: Ecological indices calculated at each site. 612 

 613 

Benthic algae metrics Macroinvertebrate metrics 

Species richness metrics 

• Overall taxon richness 

• Red algae richness 

• Green algae richness 

• Cyanobacteria richness 
 
Abundance metrics 

• Overall abundance 

• Red algae abundance 

• Green algae abundance 

• Cyanobacteria abundance 

Overall metrics 

• Abundance (ind/m2) 

• Taxon richness 

• Number of Genera 

• Average score per Taxon 

• German Saprobic Index 

• Diversity (Shannon-Wiener-Index) 

• Life Index 

• Evenness 

• EPT-Taxa (%) 
 
Feeding behaviour metrics 

• Grazers and scrapers (%) 

• Miners (%) 

• Xylophagous Taxa (%) 

• Shredders (%) 

• Gatherers/Collectors (%) 

• Active filter feeders (%) 

• Passive filter feeders (%) 

• Predators (%) 

• Parasites (%) 
 
Locomotion metrics 

• Swimming/skating (%) 

• Swimming/diving (%) 

• Burrowing/boring (%) 

• Sprawling/walking (%) 

• (Semi-) sessile (%) 

 614 
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 615 

Table 2: 62 hydrological indicators (HI) calculated from daily flow data. IQR, interquartile range; 𝑐𝑣, 616 

coefficient of variation; 𝜎, standard deviation of flows; 𝜇, mean flow. 617 

 618 

Group Variable(s) 
Number of 

metrics 
Description 

Magnitude of 
overall water 

conditions 

Mean discharge 1 
The mean daily flow over the entire 3-year 
period 

Min, P05, P25, 
P50, P75, P95, 

max, range, IQR, 
90-percentile-

range 

10 
Flow percentiles. The range is calculated as 
(max-min); the IQR as (P75−P25); the 90-
percentile-range as (P95−P05) 

Coefficient of 
variation 
of flows 

1 
A dimensionless measure of variability: 

𝑐𝑣 =  
𝜎

𝜇
 

Magnitude of 
monthly water 

conditions 

Monthly 
minimum, mean 
and maximum 

discharge 

36 
The minimum, mean and maximum of all daily 
flow values in each month over the period of 
interest 

Timing of 
extremes 

Days to the last 
extreme event 

4 

The number of days from the sampling date to 
the minimum and maximum flows in the 
record. 
The numbers of days to the last point in the 
record where flows either exceeded the P95 
value or fell below the P05 value 

Magnitude, 
frequency and 

duration of 
extremes 

Moving 
averages 

6 
The minimum and maximum of 7-, 30- and 90-
day centred moving averages over the period 
of interest 

Average 
number of 

reversals per 
year  

1 
The average number of times per year where 
the flow record switches from rising to falling 
or vice-versa 

Number of high 
pulses 

1 
The average number of "events" each year 
where the flow is greater than P90 

Rates of 
change 

The average 
daily rise 

and fall rate 
2 

The average rate of change (m3/s/day) from 
all periods when flows are increasing and all 
periods when flows are decreasing. (Periods 
where flows are constant are not included) 

 619 
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 620 

Table 3: Variables selected for further analysis using PCA. The selected variables represented the 621 

strongest gradients in each dataset and country. Metrics in brackets had loadings very close to the 622 

maximum, and were therefore also included – see text for details. 623 

Variable type Variable category Germany Norway 

Response 

Benthic algae 

Overall PB richness Overall PB richness 

Cyanobacteria abundance Cyanobacteria abundance 

Green algae richness Red algae abundance 

 (Overall PB abundance) 

Macroinvertebrates 

Number of taxa or genera Overall abundance 

German saprobic index German saprobic index 

Evenness Shannon-Wiener diversity 

LIFE index Shredders 

Passive filter feeders Sprawlers and walkers 

Predators Swimmers and divers 

Sprawlers and walkers  

Burrowers and borers  

(Active filter feeders)  

(Grazers and scrapers)  

Explanatory 

Water chemistry 

Conductivity Conductivity 

TP TP 

(TN) TN 

(TOC) (TOC) 

Hydrology 

Mean Mean 

Coefficient of variation October maximum 

Number of high pulses December maximum 

Days to p05 Days to p95 

Days to maximum Days to maximum 

Days to minimum Number of reversals 

 Range 

  (Coefficient of variation) 

 624 
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 625 

Table 4: Metrics with a ≥75% posterior probability of differences between regulated and unregulated 626 

sites. Negative differences imply a metric is lower at regulated sites than at unregulated ones. Brackets 627 

as in Table 3. HPD, Highest Posterior Density. Metrics marked in bold denote consistent differences 628 

between regulated and unregulated sites in Germany and Norway. 629 

Country Category Metric 
Mean 

difference 
95% HPD 
interval 

Probability 
of difference 

G
e

rm
an

y 

benthic 
algae 

Overall PB richness [-] 1.2 -1.5 to +3.8 83 % 

Cyanobacteria abundance [-] 22.7 +3 to +45 99 % 

Green algae richness [-] 0.5 -0.9 to +1.8 78 % 

macro-
invertebrates 

Number of taxa [-] -4.4 -16 to +8 77 % 

Number of genera [-] -3.6 -13 to +6 78 % 

German saprobic index [-] 0.05 -0.1 to +0.2 76 % 

Evenness [-] -0.05 -0.14 to +0.04 89 % 

Sprawlers and walkers [%] 6.2 -3 to +15 92 % 

(Active filter feeders) [%] -0.8 -2.6 to +1.1 83 % 

(Grazers and scrapers) [%] -5.9 -18 to +6 85 % 

hydrology 

Mean flow [m3.s-1] 1.4 -2.4 to +5.6 77 % 

Coefficient of variation [-] -0.33 -0.51 to -0.13 100 % 

Number of high pulses [-] -2 -4 to -1 100 % 

water 
chemistry 

Conductivity [µS.cm-1] 66.9 -40.0 to +176.0 90 % 

(Total nitrogen) [mgN.l-1] 0.5 -0.7 to +1.7 82 % 

(Total organic carbon) [mgC.l-1] -0.9 -2.7 to +0.9 87 % 

N
o

rw
ay

 

benthic 
algae 

Cyanobacteria abundance [-] 37 -9 to +85 94 % 

(Overall PB abundance) [-] 61 -57 to +185 84 % 

macro-
invertebrates 

Overall MZB abundance [-] 305 -304 to +873 85 % 

German saprobic index [-] 0.04 -0.06 to +0.13 78 % 

Shannon-Wiener diversity [-] 0.17 -0.1 to + 0.5 86 % 

Shredders [%] -1.9 -4.7 to +0.9 92 % 

Swimmers and divers [%] -9 -19 to 0 97 % 

hydrology 

Mean flow [m3.s-1] 5.7 -3.9 to +16.0 88 % 

October maximum flow [m3.s-1] 19.6 -18.3 to +58.6 84 % 

December maximum flow [m3.s-1] 14.2 +4.1 to +24.1 100 % 

Number of reversals per year [-] 25 +13 to +36 100 % 

Range of flows [m3.s-1] 51 -48 to +151 85 % 

(Coefficient of variation) [-] -0.23 -0.43 to -0.02 98 % 

water 
chemistry 

Total nitrogen [mgN.l-1] 0.08 +0.02 to +0.13 99 % 

(Total Organic Carbon) [mgC.l-1] 1 0 to +2 98 % 

 630 

 631 

 632 

 633 
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Table 5: Summary of fitted regression models. PB, Benthic algae (phytobenthos); MZB, macroinvertebrates (macrozoobenthos); F-prob, F-statistic for 634 

overall model significance; BIC, Bayesian Information Criterion. “country” is a binary variable (1 for Norway; 0 for Germany); colour code: red, there 635 

are obvious problems with the model (e.g. overfitting, residuals not normally distributed); yellow, the best identified model is no better than the null 636 

model; green, the model is worthy of further consideration. Bold letters: all variables in the model were significant at p = 0.05. 637 

 638 

 639 

 640 

 641 

Model Adj. R2 F-prob BIC Model Adj. R2 F-prob BIC

Overall PB richness -0.005*cond+0.069*max10-0.61*n_hi_pulse_yr-0.03*revs_per_yr-0.25*toc+17 0.43 0.008 116.5 -0.0075*cond+0.17*max10-0.4*mean-0.59*n_hi_pulse_yr+14 0.51 0.001 111.3

Cyanobacteria abundance Null model - - - +65*cv+4.7*max10+3.4*max12-23*mean-1.1*range+2.9*revs_per_yr-4.1*toc-3.6e+02 0.60 0.002 232.1

Green algae richness -0.0044*cond-0.37*n_hi_pulse_yr-0.031*revs_per_yr+11 0.53 0.000 75.2 -0.0044*cond-0.37*n_hi_pulse_yr-0.031*revs_per_yr+11 0.53 0.000 75.2

(Overall PB abundance) -21*n_hi_pulse_yr-14*toc+3.6e+02 0.24 0.021 285.0 -20*n_hi_pulse_yr+3.1e+02 0.18 0.022 284.9

Overall MZB abundance Null model - - - 9.3e+02*cv+74*max10-9.4*range-28*revs_per_yr+4.9e+03 0.52 0.004 309.0

Number of taxa Null model - - - -28*cv+0.87*max10-0.69*revs_per_yr+1.5e+02 0.38 0.012 157.9

German saprobic index Null model - - - -0.01*max10+0.039*mean+0.036*tn+1.6 0.37 0.016 -23.4

Evenness Null model - - - Null model - - -

Shannon-Weiner diversity Null model - - - +0.018*max10-0.013*revs_per_yr+4 0.26 0.030 19.6

Sprawlers and walkers Null model - - - Null model - - -

Shredders Null model - - - Null model - - -

Swimmers and divers +2*n_hi_pulse_yr+0.32*revs_per_yr-1.2*tn-0.99*toc-27 0.38 0.022 140.7 +2*n_hi_pulse_yr+0.29*revs_per_yr-32 0.36 0.000 138.1

(Active filter feeders) Null model - - - Null model - - -

(Grazers and scrapers) 20*cv+13 0.18 0.038 157.7 20*cv+13 0.18 0.038 157.7

Overall PB richness Null model - - - Null model - - -

Cyanobacteria abundance -0.69*cond-55*cv+0.51*max12+4.9*n_hi_pulse_yr-0.067*range+2.9e+02*tn+1.3e+02 0.25 0.015 476.4 -86*cv+8.4*n_hi_pulse_yr+1.7e+02 0.20 0.006 468.6

Green algae richness Null model - - - Null model - - -

(Overall PB abundance) Null model - - - Null model - - -

Overall MZB abundance -1.6e+03*cv+3.2e+03 0.12 0.017 690.7 -1.6e+03*cv+3.2e+03 0.12 0.017 690.7

Number of taxa +42*tn+19 0.16 0.007 291.4 +0.13*cond-9.3*cv+1.8*toc+31 0.26 0.003 291.2

German saprobic index -0.014*n_hi_pulse_yr+1.7 0.10 0.024 -37.1 -0.014*n_hi_pulse_yr+1.7 0.10 0.024 -37.1

Evenness +0.0011*max10+0.00025*max12+0.0051*n_hi_pulse_yr-0.00038*range+0.4*tn-0.0024*toc+0.46 0.33 0.003 -49.9 +0.0011*max10-0.00042*range+0.41*tn+0.51 0.35 0.000 -59.0

Shannon-Weiner diversity +1.9*tn+0.063*toc+1.4 0.27 0.001 49.9 +0.0034*max10-0.0014*range+2.5*tn+1.5 0.44 0.000 42.3

Sprawlers and walkers Null model - - - Null model - - -

Shredders Null model - - - Null model - - -

Swimmers and divers +10*cv-0.041*max10-0.08*max12-0.81*n_hi_pulse_yr+0.033*range-24*tn-1.9*toc+21 0.43 0.000 326.5 +15*cv-1.3*n_hi_pulse_yr-3.7*toc+20 0.41 0.000 318.2

(Active filter feeders) -4.4*cv-0.0068*range+11 0.21 0.005 215.6 -6.7*cv-0.078*mean+14 0.26 0.002 213.2

(Grazers and scrapers) 13.2*cv + 13.2 0.09 0.034 318.5 -0.16*max12-0.17*revs_per_yr+53 0.16 0.015 317.9

Overall PB richness -0.013*cond+11*country+11 0.61 0.000 422.8 +16*country+6.5 0.61 0.000 420.4

Cyanobacteria abundance +1.2e+02*country-63*cv+0.49*max12+6.3*n_hi_pulse_yr+37 0.50 0.000 731.7 +1.1e+02*country-71*cv+6.9*n_hi_pulse_yr+55 0.49 0.000 730.0

Green algae richness -0.0099*cond+7.6*country+6.3 0.63 0.000 369.6 +11*country+2.7 0.63 0.000 367.6

(Overall PB abundance) -0.26*cond+2.9e+02*country-1.1e+02*cv+0.36*max10+3.6e+02 0.60 0.000 843.8 +3.9e+02*country+1.5e+02 0.59 0.000 836.6

Overall MZB abundance -1.4e+03*cv+11*mean-14*revs_per_yr-1.4e+02*tn+4.6e+03 0.18 0.005 1023.0 -1.6e+03*cv-15*revs_per_yr-1.7e+02*tn+5.1e+03 0.18 0.003 1020.0

Number of taxa -13*country+1.1*toc+37 0.29 0.000 464.0 -14*country+42 0.28 0.000 462.1

German saprobic index +0.00029*cond-0.044*country-0.014*n_hi_pulse_yr+0.027*tn+1.7 0.45 0.000 -51.8 +0.00066*cond-0.014*n_hi_pulse_yr+1.7 0.45 0.000 -58.7

Evenness -0.13*country+0.001*max10+0.00032*max12+0.0063*n_hi_pulse_yr-0.00034*range-0.00045*revs_per_yr+0.014*toc+0.670.44 0.000 -88.7 -0.13*country+0.0011*max10-0.00038*range+0.015*toc+0.68 0.44 0.000 -97.1

Shannon-Weiner diversity -0.54*country+0.0039*max12-0.00078*range+0.082*toc+2.3 0.49 0.000 78.5 -0.67*country+0.0034*max10-0.0012*range+0.084*toc+2.4 0.52 0.000 74.3

Sprawlers and walkers Null model - - - Null model - - -

Shredders +0.011*cond-3*country+7.7 0.21 0.000 389.6 +0.018*cond+4.7 0.21 0.000 386.2

Swimmers and divers +0.021*cond+6.8*cv-0.048*max10-0.061*max12-0.75*n_hi_pulse_yr+0.037*range-2.5*toc+20 0.37 0.000 473.4 +0.02*cond-0.31*mean-0.97*n_hi_pulse_yr+0.046*range-2.7*toc+30 0.36 0.000 467.8

(Active filter feeders) +2.7*country-3*cv+0.14*n_hi_pulse_yr-0.0048*range+4.7 0.20 0.002 318.1 +3.4*country-4*cv+0.035*max12-0.085*mean+6.3 0.25 0.001 314.7

(Grazers and scrapers) -7.6*country+15*cv+19 0.18 0.002 475.8 -7.6*country+15*cv+19 0.18 0.002 475.8
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Figures 642 

 643 
Fig. 1: Map of sampling locations. 644 
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 645 
Fig. 2. Proportion of grazers and scrapers in relation to the coefficient of variation (CV) in the flow regime; 646 

regression lines are drawn from the combined regulated and unregulated sites in each country 647 

 648 

 649 
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Appendices 650 

 651 

Appendix A1: Hydrological regimes 652 

 653 

 654 
Fig. A1: Monthly flows relative to the mean in (a) Germany (n=24) and (b) Norway (n=40). CI, confidence 655 

interval.  656 

 657 
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Appendix A2: PCA 658 

 659 

Fig. A2 shows the results of the PCA for benthic algae in Germany. The KGC implies keeping the first three PCs, 660 

which together explain 83% of the total variance. The PC loadings (see online code repository) indicate that PC1 661 

is dominated by an inverse correlation with overall benthic algae richness and abundance, so sites with high scores 662 

on PC1 tend to have lower richness and abundance. PC2 is dominated by an inverse relationship with green algae 663 

richness and abundance, and PC3 is dominated by a similar relationship for cyanobacteria abundance. 664 

 665 

Fig. A2b suggests it may be possible to use PC1 to distinguish between regulated and unregulated locations: a 666 

straight line drawn at approximately 𝑃𝐶1 = 0 broadly divides the data into “regulated” and “unregulated” 667 

subsets, with only a small number of misclassification errors. The implication is that unregulated sites in Germany 668 

tend to have lower overall benthic algae richness and abundance than regulated sites – an observation that is 669 

tested more rigorously in subsequent phases of the analysis. 670 

 671 

 672 
Fig. A2: PCA results for German benthic algae data. (a) Eigenvalues for each 673 

PC. (b) Projection of the data onto the first 2 PC axes 674 

 675 

https://github.com/JamesSample/ECOREG
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Appendix A3: Bayesian test for differences 676 

 677 

For testing for differences between regulated and unregulated sites, we adopted a robust Bayesian approach 678 

(Kruschke, 2012), in which the variables of interest are assumed to be t-distributed, rather than Normally 679 

distributed (as in a standard t-test). Compared to a Normal distribution, the t-distribution has an additional 680 

degrees-of-freedom parameter, 𝜈. As 𝜈 → ∞, the t-distribution becomes a Normal distribution, while values of 𝜈 681 

close to 0 give the distribution heavier tails. These heavy tails mean the t-distribution penalises extreme values 682 

less severely than a Normal distribution, making the test more robust to outliers.  683 

 684 

In each test we have two groups of data, from the regulated and unregulated sites. Following Kruschke (2012), 685 

we assume that each group is drawn from a t-distribution with the same number of degrees-of-freedom, and the 686 

aim is to estimate whether the other distribution parameters are different.  687 

 688 

𝑟𝑒𝑔𝑖  ~𝑇(𝜈, 𝜇1, 𝜎1
2)         (1) 689 

 690 

𝑢𝑛𝑟𝑒𝑔𝑖  ~𝑇(𝜈, 𝜇2, 𝜎2
2)         (2) 691 

 692 

Where 𝑟𝑒𝑔𝑖 and 𝑢𝑛𝑟𝑒𝑔𝑖 are the observed values for regulated and unregulated sites, respectively; 𝜈 is the number 693 

of degrees-of-freedom (assumed the same for both groups); 𝜇1 and 𝜇2 are the (possibly different) means for each 694 

group; and 𝜎1 and 𝜎2 are the (possibly different) standard deviations. 695 

 696 

We set broad, uninformative priors on these quantities: the priors for the 𝜇𝑗  are Gaussian with the means equal 697 

to the overall mean of the pooled data, 𝑦, and a variance that is twice the variance of the pooled data, 𝜎; the 698 

priors for the 𝜎𝑗  are assumed to be Uniform on the interval between 0 and 𝜎𝑚𝑎𝑥, where 𝜎𝑚𝑎𝑥  is large relative to 699 

the variance in the pooled data; and the prior for 𝜈 is an exponential distribution with mean 30, chosen because 700 

it allocates credibility evenly over the range between "nearly normal" and "heavy tailed" (Kruschke, 2012). This 701 

arrangement is illustrated in Fig. A3_1. 702 

 703 

 704 
Fig. A3_1: Hierarchical diagram illustrating a robust Bayesian test for differences between two groups. After 705 

Kruschke (2012) 706 
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The posterior distribution 𝑃(𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜐|𝐷), where 𝐷 are the observed data, was explored via Markov chain 707 

Monte Carlo (MCMC) sampling using the PyMC3 package (Salvatier et al., 2016) for the Python programming 708 

language (Python Software Foundation, 2016). The goodness-of-fit of the model was assessed using “posterior 709 

predictive checks” (Gelman et al., 2004) and, when the fit was deemed acceptable, marginal posterior 710 

distributions were constructed for the differences between means, (𝜇1 −  𝜇2), and standard deviations, (𝜎1 −711 

 𝜎2). The Highest Posterior Density (HPD) intervals and the proportions of each distribution greater than or less 712 

than zero were then used to estimate the (Bayesian) probability that differences between regulated and 713 

unregulated sites were statistically significant.  714 

 715 

 716 
Fig. A3_2: Differences in the coefficient of variation of flows between regulated and unregulated sites in 717 

Norway. (a) Posterior distribution for the difference between group means, (𝜇1 −  𝜇2). (b) Posterior for the 718 

difference between group standard deviations, (𝜎1 −  𝜎2). (c) PPC for unregulated sites. (d) PPC for regulated 719 

sites. 720 

 721 

Fig. A3_2 shows an example of the output for differences in the coefficient of variation of flows between regulated 722 

and unregulated sites in Norway. Fig. A3_2a shows the posterior distribution for the difference between group 723 

means, (𝜇1 −  𝜇2), while Fig. A3_2b shows the difference between group standard deviations, (𝜎1 −  𝜎2). The 724 

mean difference in the coefficient of variation between the two groups is -0.23 (Fig. A3_2a), implying that flows 725 

at regulated sites are, on average, 23% less dispersed than under natural flow regimes. The 95% HPD extends 726 

from -2% to -43%, and more than 98% of the posterior distribution is less than zero. There is therefore high 727 

probability that, given the data and the prior assumptions, flows at regulated sites are less variable than at 728 

unregulated sites. Similarly, there is strong evidence that regulated sites exhibit a greater range of coefficients of 729 

variation than unregulated ones (Fig. A3_2b). 730 

 731 

The lower row of plots on Fig. A3_2 shows the Posterior Predictive Checks (PPCs) for unregulated (Fig. A3_2c) and 732 

regulated (Fig. A3_2d) sites. Black vertical lines show the means of the observed data in each group, while the 733 

smoothed histograms show distributions for synthetic means, generated by simulating from the fitted model. 734 

Substantial differences between simulated and observed values indicate a poorly fitting model and should be 735 

investigated further, but in this example the fit seems adequate. Additional details regarding model checking are 736 

provided in the online code repository. 737 

https://github.com/JamesSample/ECOREG
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Appendix A4: L1-regularised (“lasso”) regression 738 

 739 

The commonly used stepwise and best-subsets regression approaches have a number of well-documented 740 

limitations in the context of variable selection and significance testing (Harrell, 2001). A more robust approach is 741 

to use regularized regression, such as ridge or lasso, both of which accept a degree of bias in the model predictions 742 

in return for parameter estimates that have lower variance and are therefore more stable (Hastie et al., 2009).  743 

 744 

Ridge regression has advantages when there are lots of collinear predictors, whereas the lasso incorporates 745 

"feature selection" and can be useful when the aim is to produce a parsimonious model, which may be easier to 746 

interpret. Since multicollinearity had already been addressed to some extent using PCA, lasso regression was 747 

chosen to identify the most important relationships between ecological (response) and explanatory variables.  748 

 749 

The “loss function” minimised by lasso regression is: 750 

 751 

min
𝜃

[
1

2𝑛
∥ 𝑋𝜃 − 𝑦 ∥2

2+  𝛼 ∥ 𝜃 ∥1]       (3) 752 

 753 

Where 𝜃 is the vector of model parameters; 𝑛 is the number of samples; 𝑋 is the design matrix; 𝑦 is the vector of 754 

observations; and 𝛼 is a parameter controlling the amount of regularisation. The first term in this expression is 755 

proportional to the usual loss function for Ordinary Least Squares (OLS) regression, whereas the second is 756 

proportional to the L1-norm of the parameter vector. Large values of 𝛼 therefore impose a heavy penalty on large 757 

parameter values, producing “sparse” models where most parameters are set to zero. In contrast, 𝛼 = 0 758 

corresponds to the OLS solution. 759 

 760 

Lasso regression must be performed on standardized predictors, as otherwise the regularization penalty is applied 761 

unevenly across the variables. Regularization also means the lasso coefficient estimates are not consistent (i.e. 762 

they do not necessarily converge as the sample size grows) and they are biased towards zero. The lasso can 763 

therefore be easily used to assess which predictors are important in the model, but estimating the strength of the 764 

relationships (i.e. the model coefficients) is more difficult. One pragmatic solution is to use the lasso to identify 765 

the best model (or a small number of candidate models), and then use OLS regression with the unstandardized 766 

data to estimate the coefficients directly in the original data units (Hastie et al., 2009).  767 

 768 

In the approach adopted here, the best fitting lasso model was chosen as the one with the lowest mean squared 769 

test error under k-fold cross-validation across a range of values for 𝛼. In addition, plots of the “lasso path” (Fig. 6) 770 

were assessed in order to better understand relationships between variables – in particular to identify and remove 771 

strong collinearity between predictors. The analysis was performed using scikit-learn (Pedregosa et al., 2011). 772 

 773 

For small to medium sized datasets, the choice of 𝑘 in k-fold cross-validation can substantially affect the validation 774 

curve. For each model, a range of k-values (usually 3, 5, 7 and, sometimes, 9) was explored to see whether the 775 

location of the test-error minimum was robust. Models where the minimum was strongly dependent on 𝑘 were 776 

categorised as unreliable (highlighted in red on Table 5). 777 

 778 

Fig. A4_1 shows the lasso path for a model where the response variable is “proportion of macroinvertebrate 779 

swimmers and divers (%) in Germany”. The plot illustrates how the standardised model coefficients of the best 780 

model (selected through cross-validation) vary with the penalty weight, 𝛼 (equation 3). Small values of −𝐿𝑜𝑔(𝛼) 781 

correspond to strong regularisation, such that all model coefficients are forced to zero (the “null” model). Larger 782 

values of −𝐿𝑜𝑔(𝛼) mean less regularisation, so models towards the right-hand margin of the plot approximate 783 

the OLS solution.  784 
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 785 

 786 
Fig. A4_1: Lasso path for “proportion of macroinvertebrate swimmers and divers (%) in Germany”. Range, 787 

range of flows (maximum – minimum); Mean, average long-term flow; Revs Per Yr, average number of 788 

flow reversals per year; Cond, conductivity; CV, coefficient of variation; High Pulses, Number of high pulses 789 

(>90th percentile) per year; TOC, total organic carbon; TN, total nitrogen; Dec Max, December maximum 790 

flow; Oct Max, October maximum flow. 791 

 792 

 793 
Fig. A4_2: Average cross-validation score as a function of the regularisation parameter, 𝛼. 794 
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As the amount of regularisation is reduced (reading from left to right along the x-axis), parameters that come into 795 

the model first can be interpreted as having a stronger relationship to the response. In addition, the shape of the 796 

lasso path for each variable provides information regarding any remaining collinearity between predictors. The 797 

plot can be interpreted as follows: 798 

 799 

• The first variable to enter the model is “Revs Per Yr”. The coefficient value is positive and increases rapidly, 800 

implying a strong positive correlation between the proportion of swimmers and divers and the average 801 

number of flow reversals per year.  802 

 803 

• The next variable to enter is “TOC”. This relationship is negative and the magnitude increases steadily 804 

throughout the path, implying that high TOC concentrations are associated with fewer swimmers and 805 

divers.  806 

 807 

• The third variable to enter the model is the number of high flow pulses. The coefficient is positive and 808 

increases steadily until around −𝐿𝑜𝑔(𝛼) = 1.3, at which point both “Oct Max” and “CV” enter the model. 809 

These two new variables are collinear with “High Pulses” and “Revs Per Yr”, as shown by the distinct kinks 810 

in the paths for these variables: the trace for “Revs Per Yr” appears to be increasing to offset the negative 811 

influence of “Oct Max”, while the coefficient for “High Pulses” slowly decreases, implying that once “CV” 812 

and “Oct Max” are included in the model, the importance of “High Pulses” is reduced. This provides 813 

evidence that, by around −𝐿𝑜𝑔(𝛼) = 1.3, the model is already beginning to “overfit” the data. By the 814 

time the variables “Mean” and “Dec Max” enter the model, at around −𝐿𝑜𝑔(𝛼) = 2.2, there is very clear 815 

evidence of overfitting, with obvious collinearity between “Mean”, “Oct Max”, “Dec Max”, “Range” and 816 

“Revs Per Yr”. 817 

 818 

Consideration of the lasso path provides useful qualitative insights into relationships between explanatory 819 

variables and the response, and also between the explanatory variables themselves. For the example shown in 820 

Fig. A4_1, a relatively parsimonious model with little obvious collinearity can be constructed for values of 821 

−𝐿𝑜𝑔(𝛼) less than around 1.3. The best overall lasso model can be identified quantitatively by calculating the 822 

mean squared test error for a range of values of the regularisation parameter, 𝛼 (Fig. A4_2). The minimum mean 823 

squared cross-validation error occurs at −𝐿𝑜𝑔(𝛼) ≈ 1.1, which is in agreement with the qualitative assessment 824 

of the lasso path. By comparison to Fig. A4_1, it is clear that this model includes four explanatory variables with 825 

non-zero coefficients: “Revs Per Yr”, “TOC”, “High Pulses” and “TN”. According to the lasso approach, these 826 

variables are “significantly” associated with the response. Further details of this model, including plots of residuals 827 

and fitted versus observed values, can be found in the online code repository. 828 

 829 

 830 

 831 

https://github.com/JamesSample/ECOREG
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