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ABSTRACT 25 

There is an overall lack of data concerning the pollution status of Bosnia Herzegovina, which 26 

is confounded by fragmented national environmental management. The present study 27 

aimed to provide some initial data for concentrations of priority substances in two major 28 

Bosnian Rivers, using two types of passive sampler (PS) as well as by using high volume 29 

water sampling (HVWS). Overall, concentrations of most persistent organic pollutants 30 

(POPs), including polychlorinated biphenyls (PCBs) and legacy pesticides were shown to be 31 

low. However, around the town of Doboj on the Bosna River, concentrations of polycyclic 32 

aromatic hydrocarbons (PAH) breached European standards for several compounds and 33 

reached 67 ng L-1 for freely dissolved concentrations, and 250 ng L-1 for total concentrations. 34 

In general contamination was lower in the Neretva River compared to the Bosna, although 35 

for brominated diphenyl ethers (PBDEs) results suggested an active source of PBDEs at one 36 

location based on the ratio of congeners 47 and 99. Direct comparisons between the 37 

different sampling techniques used are not straightforward, but similar patterns of PAH 38 

contamination were shown by HVWS and PS in the Bosna River. There are both scientific and 39 

practical considerations when choosing which type of sampling technique to apply and this 40 

should be decided based on the goals of each individual study.  41 

 42 

INTRODUCTION 43 

The complex socio-political situation in Bosnia and Herzegovina (BiH) means that realising 44 

the monitoring goals obliged after ratifying the Stockholm convention in 2009 and those 45 

required by EU membership aspirations remain challenging. Whilst these issues may be true 46 

of some Balkan states in general (Skoulikidis et al., 2009), the lack of a functioning single 47 

state in BiH means environmental management and regulation are fragmented. In addition, 48 
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there is an overall need to build capacity regarding environmental monitoring and analyses 49 

in BiH. Thus in contrast to most European countries there are few data concerning 50 

concentrations of POPs and other organic pollutants in BiH waters including the 21 51 

compounds of the Stockholm Convention or the 45 priority pollutants of the EU’s Water 52 

Framework Directive (EU, 2013).  53 

From the available data from Eastern Europe in general, the trend is for elevated 54 

concentrations compared to Western Europe (Parlar et al., 2004; Ruzickova et al., 2008), for 55 

example for PCBs (Adamov et al., 2003; Vojinovic Miloradov et al., 1996; Franciskovic-Bilinski 56 

et al., 2005).  This includes studies which consider contamination from military operations, 57 

following the dissolution of Yugoslavia (Turk et al., 2007; Dalmacija et al., 2003; Klanova et 58 

al., 2007). Our previous studies in BiH have found varying levels of contamination depending 59 

on the geographical location and the target compounds. For example, relatively low 60 

concentrations of organic and inorganic compounds were shown in the Neretva River 61 

(Djedjibegovic et al., 2010; 2011), whereas in the Bosna River there were examples of 62 

sediments highly contaminated with both PAH and legacy pesticides (Harman et al., 2013). 63 

Low concentrations of pesticides have also been reported in wastewaters from the capital 64 

Sarajevo (Terzic et al., 2008), although this may not be the case in more agricultural areas.  65 

Therefore, there is an overall need for cheap and simple techniques in order to achieve 66 

widespread and broad chemical screening of Bosnian aquatic ecosystems. One approach 67 

which can help to address this need is the use of passive samplers (PS). These cost effective 68 

devices are exposed in the environment where they accumulate chemicals in a totally 69 

passive manner, without external energy requirements. These techniques are now widely 70 

applied to many different monitoring environments and measurement scenarios (Mills et al., 71 

2014). The three most widely stated advantages of using PS are; detection of fluctuating 72 
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concentrations over time; detection of very low concentrations, as larger water samplers are 73 

taken; and only sampling the freely dissolved, biologically relevant fraction, through similar 74 

diffusive cut-off limits in the polymers used and in biological membranes. Thus correlations 75 

between uptake in biota and PS have been shown to be good where the water phase is the 76 

dominating exposure pathway (Harman et al., 2009). However, some biota may also 77 

accumulate contaminants through particulates and regulatory instruments such as the 78 

European Water Framework Directive (WFD) often require total concentrations to be 79 

measured. Thus an approach using two types of PS; SPMDs (Huckins et al., 1993) and LDPEs 80 

(Booij et al., 2002), together with large volume spot samples using a high volume water 81 

sampler (HVWS) was applied in this study. The HVWS filters particles from water before 82 

water soluble compounds are extracted using polyurethane foam (PUF). The technique 83 

therefore gives an indication of the level of contaminants in both suspended material 84 

present in the rivers, as well as in the dissolved phase, if they are analysed separately. The 85 

overall objective of this study was to provide data for a suite of relevant organic 86 

contaminants from two major rivers in BiH, and to compare to concentrations found in 87 

water samples taken by both passive and high volume sampling methods. 88 

 89 

METHODS AND MATERIALS 90 

Sampling 91 

Two major BiH rivers were sampled which have catchment areas covering a large area of the 92 

country, and represent a transect from the Croatian border in the North to the Adriatic Sea 93 

in the South (see Figure 1). The Bosna River has its source near Sarajevo and flows 94 

northwards for 270 km and into the Sava River. It passes through several heavily 95 

industrialised areas and was previously sampled in 2008 and 2009 (Harman et al., 2013).  96 
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The Neretva River Flows Southwards for over 200km, with its mouth in Croatia. It is an 97 

important watercourse for irrigation and drinking water and flows through several important 98 

conservation areas including a wetland listed as of international importance under the 99 

Ramsar International Convention on Wetlands. It is under increasing anthropogenic 100 

pressure, including some industry, although contaminant concentrations were low, when 101 

previously sampled in 2007 (Djedjibegovic et al., 2010).  102 

A total of 11 sites were strategically chosen for deployment of passive samplers (n = 6 and 5, 103 

Bosna and Neretva, respectively) based on previous results and the locations of potential 104 

major point sources of contamination. In order to more easily compare to earlier results 105 

Semipermeable membrane devices (SPMDs) were the primary PS chosen. Additionally, low-106 

density polyethylene (LDPE) samplers were co-deployed for comparison. Both sampler types 107 

were held in commercially available stainless steel holders (EST labs, St. Joseph, USA), 108 

fastened to ropes, and deployed using weights and floats, according to the local conditions. 109 

Field controls (FC) were exposed to air during deployment and retrieval procedures to 110 

correct for any air contamination during these operations, and trip controls (TC) which 111 

follow the transport and storage of exposed samplers but are never opened. In addition 112 

laboratory controls (LC) were used to examine both any initial contamination and also 113 

starting concentrations of so-called performance reference compounds (PRCs), which are 114 

used to determine sampling rates (Rs L d-1) and subsequently water concentrations (Booij et 115 

al., 1998; Huckins et al., 2002). High volume water samples were taken at each of the passive 116 

sampler sampling sites, as close to the sampler rig as possible. More than one filter was used 117 

at most sites due to clogging reducing the water flow through the HVWS significantly. The 118 

amount of water extracted was determined manually using a graduated container. On arrival 119 

at the laboratory all types of samples were kept frozen at -20oC until analysis. 120 
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 121 

Chemicals and equipment preparations 122 

Solvents were from Rathburn (Walkerburn, Scotland) except for cyclohexane (J.T. Baker, 123 

Deventer, Holland) and were of HPLC grade or better. Extra pure 98% sulphuric and nitric 124 

acids were from Merck (Darmstadt, Germany). Internal standards for analysis were from LGC 125 

(Wessel, Germany). Glassware was baked in a muffle furnace at 560 oC, and all other 126 

sampling equipment was cleaned thoroughly and solvent rinsed before use. 127 

SPMDs (91.4 × 2.5 cm LDPE tubing, containing 1 mL triolein), were obtained from 128 

ExposMeter (Tavelsjo, Sweden) and were spiked with five deuterated PAH (acenaphthene-129 

d10, fluorene-d10, phenanthrene-d10, chrysene-d12 and benzo[e]pyrene-d10) as PRCs. 130 

LDPE was obtained from the same supplier as is used in commercial SPMDs (Brentwood 131 

Plastics, St Louis, USA). LDPE was cut open from its lay-flat tube form, and made to similar 132 

dimensions given above for SPMDs after mounting loops were created at either end using a 133 

heat sealer. The similar dimensions allow for straightforward deployment using standard 134 

equipment. LDPE was washed with water and further cleaned in methanol using Soxhlet 135 

extraction, before spiking with PRCs using a co-solvent method based on that of Booij et al. 136 

(2002). A suite of mono-fluorinated PAH (F-PAH) were tested for their suitability as PRCs in 137 

LDPE (F-Naphthalene, F-Biphenyl, F-Phenanthrene, F-Pyrene, F-Chrysene, F-138 

Benzo[k]fluoranthrene), and were obtained from Chiron (Trondheim, Norway). PRC spiking 139 

procedures in LDPE are described elsewhere in more detail (Allan et al., 2010).   140 

 The HVWS was constructed in house and consisted of a pump which draws water 141 

through two filters, the first of glass fibre (GF) and the second of PUF, where the retained 142 

fractions were defined as particulate and dissolved, respectively. GF filters without binders 143 

and 0.7 µm pore size were from Pall (Ann Arbor, US) and PUF plugs were obtained from 144 
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Sigma-Aldrich (Munich, Germany), and both were solvent cleaned before use. GF Filters 145 

were held in a 293 mm disc filter holder (Millipore, Billerica, USA) and PUF plugs in a 47 mm 146 

pressure filtration tube (Pall, Ann Arbor, USA). All other components were stainless steel or 147 

PTFE.  148 

 149 

Extraction of passive samplers 150 

Solvent extraction methods for both LDPE and SPMDs are described in detail elsewhere 151 

(Allan et al., 2010). Briefly samplers were cleaned thoroughly with water and paper tissues, 152 

before mounting loops were cut off. Cleaned samplers were then dialysed in hexane (ca. 150 153 

mL) for 2 × 24 h, in the dark at room temperature, with surrogate internal standards added. 154 

Extracts were combined, and reduced with a stream of nitrogen, dried over sodium sulphate, 155 

and adjusted to 3 mL. Clean up to remove analytical interferences such as co-extracted 156 

oligomers, was carried out on 2 mL of extract by gel permeation chromatography (GPC), as 157 

described previously (Harman et al., 2008). Following GPC, extracts were split into two 158 

fractions; one for PAH analysis, and one for combined PCB and OCP (organo-chlorine 159 

pesticides) analysis. The remaining (non-GPC) 1 mL fraction was analysed for PBDEs.  160 

 161 

Extraction of High Volume Water Sampler (HVWS) 162 

PUF plugs and combined filter papers from the HVWS were extracted using accelerated 163 

solvent extraction. As the PUF represents the dissolved fraction and the filter papers a 164 

fraction associated with particles, they were extracted separately. The extraction consisted 165 

of 5 min static extraction of 3 cycles using a 1:1 ratio of dichloromethane/cyclohexane. The 166 

temperature was 100 oC and the pressure was 2000 psi. Resulting extracts were dried and 167 

reduced in volume using nitrogen before analysis. Contamination of PUF blanks, resulted in 168 
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higher than normal detection limits, and prevented quantification of PCBs, OCP and PBDEs. 169 

Thus only results of PAH (which were quantifiable) are considered in any detail.   170 

 171 

Analysis of PAHs 172 

The PAH fractions from all samplers (SPMDs, LDPE and HVWS) were analysed by gas 173 

chromatography-mass spectrometry (GC-MS). An 6890GC coupled to a 5973 mass selective 174 

detector (Santa Clara, USA) was used with the inlet in splitless mode. The GC was equipped 175 

with a 30 m column with a stationary phase of 5% phenyl methylpolysiloxane (0.25 mm 176 

internal diameter and 0.25 µm film thickness (Agilent, Santa Clara, USA). Quantification of 177 

individual components was conducted by the relative response of internal standards. 178 

Analytical limits of detection (LOD) were set as the average value of triplicate solvent blanks, 179 

plus three times the standard deviation of that average. Concentrations of target 180 

compounds in sampler blanks are considered separately. Where the sum of PAH is referred 181 

to in the text, this is the sum of the 16 priority PAH as defined by the US Environmental 182 

Protection Agency (EPA PAH16). 183 

 184 

Analysis of PCBs and OCPs   185 

The PCB fractions from all sample types (SPMDs, LDPE and HVWS) received further clean up 186 

by partitioning twice with concentrated sulphuric acid (Harman et al., 2008). The PCB 187 

congeners analysed for were; 28; 52; 101; 105; 118; 138; 153; 156; 180; 209 (hereafter 188 

referred to as ∑PCB), and the OCP analysis included the following compounds; 189 

pentachlorobenzene (QCB); α-hexachlorocyclohexane (HCH-A); γ-hexachlorocyclohexane 190 

(HCH-G); hexachlorobenzene (HCB); octachlorostyrene (OCS); 4,4’-191 

dichlorodiphenyldichloroethane  (4,4-DDD); 4,4-dichlorodiphenyltrichloroethane (DDT) and 192 
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4,4’-dichlorodiphenyldichloroethylene (4,4-DDE). The same instrumentation as described for 193 

PAH was used, except a 60 m version of the same column was installed instead. This analysis 194 

also included the F-PAH, used as PRCs in the LDPE.  195 

 196 

Analysis of PBDEs 197 

Samples that were analysed for PBDEs were acid treated similarly to PCBs before receiving 198 

an additional step of partitioning with acetonitrile (no GPC performed, due to high losses).  199 

The same GC-MS system as outlined above was used but with a Rtx-1614 60 m column with 200 

a 0.1 µm film (Restek, Bellefonte, USA) fitted, and the ion source switched to chemical 201 

ionisation. Instrumental parameters are given in detail previously (Allan et al., 2013).  202 

 203 

Calculation of water concentrations from passive sampler accumulations 204 

A non-linear least squares (NLS) method was applied to calculate water concentrations from 205 

contaminant concentrations in passive samplers as described in detail by Booij et al., (2010). 206 

The statistical package R, version 2.15.2 (R core team, 2012) was used to model the data 207 

using code supplied by Booij et al (2010). Briefly; Rs were estimated from the PRC data using 208 

NLS methods by considering f as a continuous function of the sampler-water partition 209 

coefficient (Ksw) with Rs as an adjustable parameter 210 

𝑓 = 𝑒𝑥𝑝 (−
𝑅𝑠𝑡

𝐾𝑠𝑤𝑉𝑠
) 211 

Where Vs is the volume of the sampler, t is the deployment time. Ksw values were modelled 212 

from Kow according to Lohmann et al. (2010) and Booij at al. (2010), for SPMDs and LDPE 213 

respectively 214 

𝐿𝑜𝑔 𝐾𝑠𝑤 = 1.05 𝐿𝑜𝑔 𝐾𝑜𝑤 − 0.59 (𝐿𝐷𝑃𝐸) 215 



10 

𝐿𝑜𝑔 𝐾𝑠𝑤 = 0.988 𝐿𝑜𝑔 𝐾𝑜𝑤 + 0.03 (𝑆𝑃𝑀𝐷) 216 

Sampling rate (Rs) values were modelled by 217 

1

𝑅𝑠
= (

1

𝐴𝐵𝑚𝐾𝑜𝑤
0.682) + (

1

𝐴𝐵𝑤𝐾𝑜𝑤
−0.044) 218 

Where A is the sampler surface area and Bm and Bw are empirical parameters of transfer 219 

coefficients through the membrane and diffusive boundary layer respectively, obtained from 220 

modelling experimental sampling rates as a function of Kow. An estimated value of 34 nm s-1 221 

was used for Bm (giving 0.135 L d-1 ABm for 460 cm2 samplers) with Bw being then the only 222 

parameter to be gained from the PRC results (Booij et al., 2010). Using the same Bm value for 223 

LDPE as for SPMDs is somewhat erroneous as the single layer LDPE samplers are thinner, but 224 

this had little effect on the Rs values of the largely water boundary layer controlled, target 225 

compounds in the present study (see results and discussion). Once Rs values were calculated 226 

then water concentrations Cw could then were derived from analyte concentrations in the 227 

sampler Cs using the following equation (Huckins et al., 1993) 228 

𝐶𝑤 =
𝐶𝑠

𝑉𝑠𝐾𝑠𝑤 (1 − 𝑒𝑥𝑝 (−
𝑅𝑠𝑡

𝑉𝑠𝐾𝑠𝑤
))

 229 

 230 

RESULTS AND DISCUSSION 231 

SPMDs and LDPEs 232 

Blanks 233 

A total of 30 SPMDs controls were analysed, all from the same batches as exposed samplers. 234 

Overall there was little difference between the various control types (LCs, TCs, and FCs) 235 

indicating that any contamination occurred during manufacture or laboratory treatment of 236 

samplers, rather than in during field operations. Exceptions were fluoranthene and pyrene 237 
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which were present in SPMD FC used in the Bosna River, at 8.8 and 9.6 ng/sampler (average 238 

concentrations respectively, n = 4), but were not found in LC or TC. Overall LDPE controls 239 

were free from contamination, apart from naphthalene (10-20 ng/sampler) which tends to 240 

be ubiquitous in sampler controls, and benzo[k]fluoranthrene (8.5 ng/sampler). Similar to 241 

previous results, several other PAH were also present in all SPMD controls, acenaphthene, 242 

fluorene and phenanthrene (6.5, 12 and 35 ng/sampler, respectively). As deuterated 243 

versions of these compounds were used as PRCs then this is the likely source of this 244 

contamination.  245 

 246 

PRCs and sampling rates 247 

Estimated sampling rates ranged from 14 L d-1 for phenanthrene (Station L1, Bosna River), to 248 

2.4 d-1 for PBDE 209 (Station L3, Neretva River), which equates to equivalent water volumes 249 

sampled of up to approximately 200 L, during the 21 day deployment. As mentioned 250 

previously, using the same Bm value for SPMDs and LDPE is not strictly correct. Changing the 251 

value of Bm for LDPE to half that of SPMDs in order to better represent the thickness, 252 

affected estimated sampling rates by less than 1% for most compounds. More significant 253 

effects were observed for the least hydrophobic compounds such as naphthalene (14% 254 

lower Rs). As the PRC results show that these compounds reached equilibrium, this is of little 255 

consequence for the Cw calculations. Estimated Rs were similar between SPMDs and LDPE as 256 

shown in Figure 2, although LDPE values were on average ca. 25% lower. It should be noted 257 

however that Log Kow (and Log Ksw) values are not available for the F-PAH, and for simplicity 258 

the value for the non-fluorinated PAH was used. Assuming the F-PAH are slightly more 259 

hydrophobic (+ 0.2 Log units using fragment methods) then recalculating using higher values 260 

increased the Rs values for LDPE by roughly one third. A thorough consideration of the 261 



12 

factors influencing the applicability of F-PAH as PRCs is not the purpose of the current study. 262 

Despite any uncertainties they appear to be suitable for use as PRCs, and generally gave 263 

small residuals from the NLS fit (Figure 2). 264 

 265 

Contaminant concentrations 266 

A summary of results is shown below in Figure 3 and data for individual compounds is 267 

provided in Table S1 (Supporting Information). A few analytes very close to the LOD in LDPE 268 

extracts were >LOD in SPMD extracts. This was probably because the LDPE extracts were 269 

slightly cleaner, due to the absence of triolein, which allowed a slightly lower LOD. Overall 270 

both types of sampler gave comparable results (Figure 3) which is similar to previous 271 

comparisons (Allan et al., 2010). Slight differences between them were apparent, but largely 272 

for compounds that were close to the LOD. 273 

 274 

There were clear differences between the two rivers, with overall higher concentrations in 275 

the Bosna, compared to the Neretva (Figure 3). The pattern was also different between the 276 

two study rivers with concentrations decreasing downstream in general in the Bosna, and 277 

the lowest concentrations being found in the uppermost stretch of the Neretva. This is not 278 

particularly surprising seeing as the city of Sarajevo, is near the source of the Bosna River. An 279 

exception to this overall decrease in concentrations downstream was for PAH, where a 280 

significant input (ca. 70 ng L-1) was shown from the tributary Sprecca, at Doboj (Figure 1), 281 

which drains an area including some heavy industry. However, compared to previous studies 282 

this represents a substantial improvement from the nearly 500 ng L-1 and 200 ng L-1 283 

measured in 2008 at stations L9 and L8, respectively (Harman et al., 2013). Although care 284 

must be taken in drawing conclusions concerning trends based on a few years of sampling, it 285 
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appears that concentrations were now more comparable to other large cities in the region 286 

e.g. Brno in the Czech Republic (Grabic et al., 2010). Revised environmental quality standards 287 

for PAH in the WFD include, for example, a value for benzo[a]pyrene of 0.17 ng L-1, and 8.2 288 

ng L-1 for fluoranthene, which are lower than the concentrations measured at station L9 289 

(0.29 and 28.56 ng L-1 respectively). As the EQS relates to total concentrations and we have 290 

measured freely dissolved concentrations it is clear that total concentrations were higher 291 

and that the EQS values are likely periodically exceeded.  292 

Concentrations of both PCBs, and OCPs were low in both rivers, with slightly higher results in 293 

the Bosna (e.g. range ∑PCB in LDPE ca. 0.3-0.06 ng L-1 vs. 0.1-0.01 ng L-1, Bosna and Neretva, 294 

respectively). These concentrations, were relatively similar to previous results, for example 295 

∑PCB at Sarajevo of 0.17 ng L-1 in 2009 (Djedjibegovic et al., 2010; Harman et al., 2013), and 296 

0.29 ng L-1 in this study. As mentioned previously, there was an overall trend of decreasing 297 

concentrations after an initial input at Sarajevo in the Bosna River for both PCBs and OCPs, 298 

and a minor input of PCBs at station A1 in Neretva (Figure 3). The pattern was similar 299 

between the two different types of passive samplers. Concentrations of PBDEs were low in 300 

both rivers, with generally only PBDE 47 and 99 being  >LOD. In the Neretva River 301 

concentrations of PBDEs at station A1 were highest, 10 pg L-1 for PBDE 47 and 6 and 8 pg L-1 302 

for congener 99 (SPMD and LDPE, respectively). Higher concentrations were observed in the 303 

Bosna River, highest at Sarajevo (L13) 67 pg L-1 and decreasing downstream to 8 pg L-1. At 304 

these most upstream stations, congeners 66 and 71 were also detected. Due to the 305 

extremely low EU EQS values for PBDEs of 4.9 × 10-8 µg L-1 (∑ 28,47, 99, 100, 153, 154), then 306 

any measurement is automatically higher than the EQS values, even when using the low pg L-307 

1 LOD described in this study. This highlights a fundamental issue associated with these EQS, 308 
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that even by using very sensitive passive sampling methodologies, it will be extremely 309 

difficult to achieve measurement at these concentrations.    310 

 311 

HVWS results 312 

The volume of water sampled using the HVWS was between 147-200 L with slightly smaller 313 

samples taken in the Bosna River compared to the Neretva due to higher amounts of 314 

particulate matter, which caused clogging of the filters. Procedural error in the handling of 315 

the PUF blanks during extraction resulted in high LOD for all halogenated compounds (PCBs, 316 

OCPs and PBDEs) and these results are therefore not considered further. For PAH the LODs 317 

were in general low pg L-1. Total concentrations of PAH (both PUF fraction and filter fraction) 318 

in the Neretva were unremarkable, and can be considered as background, i.e. without 319 

significant point sources, never exceeding 5 ng L-1. Samples taken near an aluminium plant 320 

(site A1), where there was an assumption of elevated PAH concentrations, also showed 321 

background concentrations of 4.9 ng L-1. This corresponds well with both previous 322 

measurements of PAH using SPMDs by Djedjibegovic et al. (2010), who found concentrations 323 

< 4 ng L-1 and with those of this study, which were between 3.6-7.0 ng L-1 at site A1. In the 324 

Bosnia River however, the HVWS revealed much higher concentrations of PAH between 15-325 

250 ng L-1 (sum of both fractions), with the highest concentrations around Doboj. Earlier 326 

measurements in the same location revealed freely dissolved (using SPMD) concentrations 327 

of ∑PAH to be roughly 500 ng L-1 in 2008 and 100 ng L-1 in 2009, and levels in river sediments 328 

exceeding international criteria (Harman et al., 2013). Despite this apparent improvement, 329 

the HVWS revealed that EQS values were exceeded at 3 locations in the Bosna River for 330 

fluoranthene (L2; L4 and L8), with concentrations as high as 53 ng L-1 at Doboj. 331 

Concentrations of benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, 332 
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indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene were also exceeded at this station (13, 6, 9, 333 

5, and 6 ng L-1, respectively). All raw data from the HVWS are provided in Table S2 in 334 

supporting information.  335 

In this study the HWVS was only used to supplement the PS deployments in order to provide 336 

some preliminary data concerning concentrations in the particulate fraction and to our 337 

knowledge this is only one of a few studies to use HVWS in this way. Although these are just 338 

spot samples, compared with the time integrated measurements of the PS, the large 339 

volumes achieved allow for low LOD and facilitate the comparison.  Results were not 340 

corrected for the amount of particulates retained on the filters, or the amount of organic 341 

carbon present. In addition the actual fraction which is retained by the filter and PUF is 342 

relatively poorly defined, as are the water-PUF partitioning coefficients and overall PUF 343 

capacity. These issues require further attention before this method can contribute to 344 

monitoring studies in a more quantitative way. However this technique allows a rudimentary 345 

examination of the fate of compounds based on their hydrophobicity. Figure 4 shows the 346 

ratio of individual compounds operationally defined as the “freely dissolved fraction” (PUF) 347 

and the “particulate fraction” (filter). This suggests that compounds up to about pyrene, are 348 

mainly present in the water phase, which is higher than might be expected, based on their 349 

Log Kow values. As mentioned above the cut off point between the two fractions is poorly 350 

studied, and it is likely that a particulate fraction smaller than the filter size of 0.7 µm may be 351 

partly retained by the PUF, co-extracted and therefore contribute to the freely dissolved 352 

fraction fraction.  353 

 354 

Comparison between different sampling techniques 355 
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Direct comparisons between the different techniques are not straightforward, as they 356 

extract different fractions of contaminants from the water phase. Whilst the LDPE used in 357 

both types of PS and the PUF may have a similar cut off for diffusion into the polymer, the 358 

PUF is porous and particulates which pass though the filter may accumulate and be co-359 

extracted, as mentioned above. This may result in bias in concentrations measured in the 360 

HVWS freely dissolved fraction, but together with the filtered fraction should still provide a 361 

reasonable estimate of total concentrations. Such total concentrations remain the standard 362 

in many national and international regulatory monitoring programs, where PS is often not 363 

applied. Accumulation of hydrophobic contaminants in PS has been shown to be similar to 364 

accumulation in a range of aquatic organisms, where the main exposure pathway is from the 365 

water phase. Such studies are not available for HVWS, but it might potentially over-estimate 366 

risk to biota. Both methods offer low LOD, due to their ability to concentrate contaminants 367 

from a large sample volumes, but only PS offers time integrated exposures, as the HVWS is 368 

essentially a large spot sample. The only compound group adequately measured in all three 369 

sampler types was PAH and despite the differences discussed above all show higher 370 

concentrations of PAH in the Bosna River compared to the Neretva and increased 371 

concentrations around or downstream of the town of Doboj. The pattern of PAH 372 

contamination was also similar downstream in the Bosna River between the techniques 373 

(Figure 3). Additionally, here are often other practical issues which can dictate the final 374 

sampling protocol and again there are differences between the techniques in this regard as 375 

well. For example, PS may be tampered with or lost due to flooding, whereas this is not the 376 

case for the HVWS. Thus the types of samples to be collected should be decided according to 377 

the aims of each individual study. 378 

 379 
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CONCLUSIONS 380 

- Total concentrations of several PAH, measured using HVWS, exceed EU EQS. 381 

- Despite apparent reductions over time at these locations these discharges require 382 

further attention and site remediation 383 

- SPMDs and LDPE suggest an active PBDE source into the Neretva River  384 

- Concentrations of OCPs and PCBs found in SPMDs, were unremarkable, similar to 385 

previous surveys 386 

- Results between LDPE and SPMDs were highly comparable 387 

- Overall results between PS and the HVWS were comparable, for example showing 388 

higher concentrations of contamination in the Bosna River compared to the Neretva 389 

- Both HWVS and PS are suitable for initial screening contaminant purposes, with the 390 

former offering total concentrations and the latter time integrated measurements  391 

- Sampling methods should be chosen according to the aims of the study and care 392 

must be taken when drawing conclusions concerning overall contamination levels 393 
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Figure Captions 514 

Figure 1. Sampling sites in both rivers, for SPMDs and HVWS (round circles). Source: ESRI.  515 

 516 

Figure 2. Comparison of PRC results for SPMDs and LDPE. Fraction of initial concentrations of 517 

PRCs (t0) retained after exposure shown against hydrophobicity (average of all samplers at 518 

all stations in the Bosna River). Curves fitted to these average values, using the NLS method, 519 

solid line SPMDs, dotted line LDPE.  520 

 521 

Figure 3. Freely dissolved concentrations of PAH, PCB, OCP and PBDE (ng L-1) measured in 522 

SPMDs and LDPE.  523 

 524 

Figure 4. Ratio of accumulated PAH on PUF and filter fractions, versus hydrophobicity. 525 

Average values for all sites (n=11), both rivers, non-detects disregard 526 
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