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Abstract 25 

 26 

The two essential insect hormones, ecdysteroids and juvenile hormones, are 27 

possessed not only by insects, but also widely by arthropods, and regulate 28 

various developmental and physiological processes. In contrast to the 29 

abundant information about molecular endocrine mechanisms in insects, the 30 

knowledge of non-insect arthropod endocrinology is still limited. In this 31 

review, we summarize recent reports about the molecular basis of these two 32 

major insect hormones in the freshwater microcrustacean Daphnia, a 33 

keystone taxon in limnetic ecology and a bioindicator in environmental 34 

studies. Comprehensive comparisons of endocrine signaling pathways 35 

between insects and daphnids may shed light on the regulatory mechanisms 36 

of various biological phenomena and, moreover, evolutionary processes of 37 

arthropod species. 38 

 39 

 40 

Highlights: 41 

- Ecdysteroids and juvenile hormones synergistically regulate various 42 

phenomena in Arthropoda.  43 

- Endocrine systems in non-insect arthropods are poorly understood. 44 

- Endocrine systems differ in complexity among taxa, although general 45 

outline is conserved. 46 
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1. Introduction 68 

 69 

The freshwater microcrustacean or water flea, Daphnia (Branchiopoda: 70 

Cladocera), is a keystone taxon in limnetic ecology and is widespread around 71 

the world [1-3]. Generally, daphnids reproduce by a process referred to as 72 

cyclical parthenogenesis [4]. By employing clonal reproduction during spring 73 

and summer when conditions are warm and food is abundant, female 74 

daphnids lay eggs in the brood chamber situated in their dorsal region. The 75 

offspring are reared in the brood chamber until hatching and released into 76 

the water column immediately before molting. Under favorable conditions, 77 

adult daphnids have a reciprocally synchronized cycle of molting and 78 

reproduction throughout their lives. On the other hand, when environmental 79 

conditions become less favorable (e.g., a decrease in day length, temperature 80 

and food), they produce male offspring in a process referred to as 81 

environmental sex determination and employ sexual reproduction which 82 

increases genetic variation through recombination and the likelihood of 83 

survival under harsh environmental conditions [5]. Thus, these small 84 

crustaceans have very complicated life cycles and can alter their survival 85 

strategies drastically in response to the surrounding environment [6]. It has 86 

recently been demonstrated that these survival mechanisms are regulated by 87 

a variety of physiological and endocrine systems. For example, endocrine 88 

factors such as ecdysteroids and juvenile hormones (JHs), which are among 89 
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the most widely studied and well known insect hormones, are also considered 90 

to play important roles in daphnids [7, 8]. For instance, topical application 91 

of ecdysteroids or their agonists on Daphnia magna causes a delay and/or 92 

defect in molting, and consequently death [9-12]. Similarly, exposure to JHs 93 

or their analogs decreases the number of offspring in many daphnia species, 94 

and the sex ratio of offspring becomes male-biased, which is a typical 95 

example of the disruption of sex determination by chemicals [13-18]. In 96 

addition to the occurrence of clonal reproduction in daphnids, which is useful 97 

for producing large numbers of genetically identical organisms, their high 98 

sensitivity to insect hormones prompted the Organization for Economic 99 

Cooperation and Development (OECD) to establish a biological assay system 100 

for screening the hormonal activities of chemicals using daphnids as a model 101 

organism [19-20]. However, in contrast to insects, a lack of basic information 102 

about daphnid (and other non-insect arthropods) endocrine systems is an 103 

important limitation. Indeed, this has resulted in the OECD test guidelines 104 

being applied in the absence of developmental, physiological, and/or 105 

molecular information of the mode of action (MoA) and adverse effects of 106 

chemicals. 107 

 Under these circumstances, as the draft genome sequence of D. 108 

pulex was determined [21] and gene-function analytical methods, such as 109 

RNAi, TALEN and CRISPR/Cas9, were established in succession [22-27], 110 

striking findings and advances in the technical and genetic aspects of daphnid 111 
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genetics have emerged. In this review, we summarize recent reports on the 112 

molecular basis of biosynthesis; reception and signaling cascades of two 113 

major arthropod hormones, ecdysteroids and JHs, in Daphnia; and how these 114 

findings have increased the potential suitability of Daphnia as a model for 115 

environmental studies. Knowledge is not only important for removing the 116 

“black boxes” in biological assay systems, but it also helps to shed light on 117 

the regulatory mechanisms of various biological phenomena and to clarify the 118 

complicated life cycle observed in daphnids. 119 

  120 



 

 9 

2. Insect hormones – biosynthesis and signaling 121 

 122 

Before discussing the endocrinology of daphnids, it is important to understand 123 

the ecdysteroid- and JH-signaling pathways in insects. Ecdysteroids and JHs 124 

work in a synergistic manner to regulate the development and 125 

metamorphosis of most (perhaps all) insects studied to date [28, 29]. 126 

Numerous studies on insect endocrinology have been undertaken using 127 

traditional model insects, such as the fruit fly (Drosophila melanogaster), red 128 

flour beetle (Tribolium castaneum) and moths (Bombyx mori and Manduca 129 

sexta) [7, 8, 29-33]. Although the endocrine systems and their underlying 130 

molecular mechanisms can differ markedly between divergent species, the 131 

endocrinology of more evolutionary related species such as insects are 132 

considered to be conserved. 133 

 Schematic pathways for both ecdysteroid and JH biosynthesis and 134 

their receptors can be seen in Fig. 1A. In insects, ecdysteroids are 135 

synthesized in a specific organ called the prothoracic gland (PG). Cholesterol 136 

contained in food is converted into the end product, ecdysone, by the action 137 

of a series of particular enzymes, and then ecdysone is released into 138 

hemolymph [33-43]. At the target peripheral cells, ecdysone is converted 139 

into 20-hydroxyecdysone (20E), an active form of an ecdysteroid, by shade 140 

(shd) [44]. Among these ecdysteroidogenic genes, spook (spo), phantom 141 

(phm), disembodied (dib), shadow (sad) and shd are referred to as 142 



10 

“Halloween genes”, as knockout of these genes showed the naked cuticle 143 

phenotype in flies as a result of ecdysteroid synthesis deficiency [45-46]. 144 

Another major insect hormone, JH, is synthesized in the corpora allata (CA). 145 

JH biosynthesis starts with the mevalonate pathway, which is common in 146 

eukaryotes (and some prokaryotes) [47]. Farnesyl pyrophosphate (FPP), an 147 

end product of the mevalonate pathway, is then converted by a series of 148 

enzymes into active forms of JH, such as juvenile hormone III (JH III), which 149 

is most commonly found in insects. These active JHs are released into the 150 

hemolymph before exerting a variety of functions in the target peripheral cells 151 

[48-55]. This synthetic pathway differs slightly between Lepidoptera and 152 

other insect taxa. In the former, JHs are produced using juvenile hormone 153 

acid (JH acid) as an intermediate whereas the latter JHs are produced using 154 

methyl farnesoate (MF) as an intermediate. Although the cholesterol 155 

biosynthetic (mevalonate-squalene) pathway is considered highly conserved 156 

in many species, insects are found to be lacking the squalene synthase and 157 

genes involved in the squalene pathway, which means that insects are unable 158 

to synthesize cholesterol and therefore dependent on direct dietary sources 159 

[56]. 160 

161 

162 
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163 
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164 

165 

Fig. 1. A schematic view of the ecdysteroid and juvenile hormone (JH) 166 

signaling pathways in insects. (A) The pathways from biosynthesis in the 167 

specific organs to reception at peripheral target cells. (B) Hormonal crosstalk 168 

between ecdysteroid and JHs during regulation of metamorphosis. 169 

Abbreviations: PG, prothoracic grand; CA, corpora allata; Farnesyl-PP, 170 

farnesyl pyrophosphate; MF, methyl farnesoate; JH III, juvenile hormone III; 171 

20E, 20-hydroxyecdysone; EcR, ecdysone receptor; USP, ultraspiracle; Met, 172 

Methoprene-tolerant; SRC, steroid receptor coactivator; nobo, noppera-bo; 173 

nvd, neverland; sro, shroud; spo, spook; spok, spookier; phm, phantom; dib, 174 

disembodied; sad, shadow; shd, shade; FP, farnesyl phosphatase; FDH, 175 

farnesol dehydrogenase; FaDH, farnesal dehydrogenase; FAMeT, farnesoic 176 

acid O-methyltransferase; MFE, methyl farnesoate epoxidase; FAE, farnesoic 177 

acid epoxidase; JHAMT, juvenile hormone acid O-methyltransferase; BR-C, 178 

Broad-Complex; Kr-h1, Krüppel homolog 1. 179 

180 

181 

In target peripheral cells, ecdysteroids and JHs bind to specific 182 

receptors (Fig. 1). The active ecdysteroid, 20E, transformed from ecdysone 183 

by shd, binds to a member of the nuclear receptor superfamily, ecdysone 184 

receptor (EcR) [57]. When EcR binds 20E, it forms a heterodimer with 185 
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another nuclear receptor superfamily protein, ultraspiracle (USP) [58, 59]. 186 

Following association with cofactors, such as steroid receptor coactivator 187 

(SRC), the EcR complex then binds to a specific sequence on the genome 188 

(ecdysone response element: EcRE) and acts as a transcription factor [58-189 

60]. Unlike the ecdysteroids, the JH receptor was only discovered relatively 190 

recently. Juvenile hormone III and other JHs are bound by the basic helix-191 

loop-helix-Per-Arnt-Sim (bHLH-PAS) family protein, Methoprene-tolerant 192 

(Met) [61-63]. After heterodimerization with SRC, which is another bHLH-193 

PAS protein and a component of the EcR complex, in response to binding to 194 

JHs, the Met complex binds to the JH response element (JHRE) and acts as a 195 

transcription factor, similar to EcR [64-66]. 196 

Ecdysone receptor complex transduces signaling to downstream 197 

factors by regulating the transcription of quite various genes [67, 68]. The 198 

transcription factors, Broad-Complex (BR-C) and E93, which are pupal- and 199 

adult-specifier genes, respectively, are representative targets that are 200 

directly regulated by EcR [69-81]. In contrast to EcR, the downstream 201 

signaling of the JH receptor is less understood, primarily because the Met/SRC 202 

complex has only recently been discovered. However, the transcription of the 203 

zinc finger transcription factor, Krüppel homolog 1 (Kr-h1), which is directly 204 

regulated by the Met/SRC complex in response to binding to JHs, has been 205 

extensively studied [82-85]. Recent studies using B. mori demonstrated that 206 

Kr-h1 prevents both larval-pupal and pupal-adult metamorphosis by binding 207 
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directly to the promoter region of BR-C and E93, repressing their expression, 208 

and in so doing, forming the molecular basis of a mutual inhibitory action 209 

(“status quo”) of JHs [86, 87] (Fig. 1B). 210 

211 
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3. Ecdysteroids in Daphnia212 

213 

Like all members of the Ecdysozoa and Arthropoda, daphnids grow through 214 

molting. However, as mentioned previously, there are two major differences 215 

between daphnids and insects: 1) in contrast to insects which do not molt at 216 

the adult stage, daphnids continue to molt and increase in size over the 217 

course of their lives; 2) molting and reproduction are reciprocally 218 

synchronized in adult daphnids. Consequently, ecdysteroids are considered 219 

to be necessary for survival throughout their lifetime [88, 89]. 220 

221 

222 

3.1. Ecdysteroid biosynthesis 223 

224 

Although the Y-organ in decapods is known to be responsible for ecdysteroid 225 

synthesis [90, 91], little is known about where ecdysteroids are synthesized 226 

and released in other crustaceans, such as daphnids. Recent effort to identify 227 

key genes in ecdysteroidogenesis of D. magna by cloning led to the discovery 228 

of the genes neverland (nvd), which converts cholesterol into 7-dehydro 229 

cholesterol at the first step of the synthesis, and shd, which converts 230 

ecdysone to an active form of the ecdysteroid 20E in target cells [12]. In 231 

addition, D. magna has two nvd homologs (nvd1 and nvd2), and these were 232 

expected to be paralogs acquired specifically in daphnids. At both embryonic 233 



16 

and adult stages, nvd1 was strongly expressed in gut epithelial cells [12, 92]. 234 

Embryonic knockdown of nvd1 by RNAi showed a striking reduction in the 235 

internal ecdysteroid titer and a delay of development by inhibition of 236 

embryonic molt [92]. A similar developmental delay was also observed in 237 

shd RNAi embryos [92]. These results strongly suggest that both nvd1 and 238 

shd are involved in the ecdysteroidogenesis in D. magna, and that nvd1-239 

expressing gut epithelial cells may be responsible for ecdysteroid synthesis. 240 

On the other hand, nvd2 was expressed in germ cells of the ovary where nvd1 241 

was absent [92]. Further studies are necessary to determine whether nvd2 242 

is also involved in the ecdysteroidogenesis. In addition, several other genes 243 

involved in ecdysteroid synthesis can be found in the daphnid genome (e.g., 244 

phm and dib), and expression and functional analyses of these genes could 245 

be instrumental for elucidating where ecdysteroids are synthesized [93] 246 

(Table 1). 247 

248 

249 

250 

251 

Table 1. Accession numbers of Daphnia homologs of ecdysteroid and 
juvenile hormone signaling-related genes 

Gene name Daphnia magna Daphnia pulex Reference 

Ecdysteroid biosynthesis 

nobo ? ? 
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nvd 
BAQ02388, 
BAQ02389 

EFX86361, 
EFX88304, 
EFX60729 

[12, 92] 

sro ? ? 

spo/spok KZS09664 EFX88041 

Cyp6t3 ? ? 

phm KZS17835 EFX85499 

dib KZS10280 EFX63066 

sad KZS16986 EFX70970 

shd BAF35770 EFX77008 

Ecdysteroid receptor 

EcR BAF49030 EFX79409 [94] 

USP BAF49028 EFX88423 [94] 

Ecdysteroid-responsive gene 

E74 KZS09932 EFX89297 

E75 ABP48738 ADB79814 [98, 99] 

HR3 ACY56690 ACY56691 [98, 99] 

HR4 KZS12701 EFX67867 

betaFTZ-F1 BAU20372 EFX77612 

DDC KZS20105 EFX90074 

BR-C KZS07124 EFX90040 

E93 ? ? 

Juvenile hormone biosynthesis 

FP ? ? 

FDH KZS13936 EFX87469 

FaDH KZS05270 EFX71031 

FAMeT/JHAMT ? BAH86593 [104] 

FAE/MFE lost? lost? [109] 

Juvenile hormone receptor 

Met BAM83855 BAM83853 [110] 

SRC BAM83854 BAM83856 [110] 

Juvenile hormone-responsive gene 
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Kr-h1 KZS09055 LC270151 
Miyakawa et al. 
unpublished 

hairy ? ? 

Accession numbers in italic indicate computational gene models based on 
the genome sequences. 

252 

253 

3.2. Ecdysteroid receptors 254 

255 

Homologs of both EcR and USP have been isolated from D. magna, and both 256 

have the characteristic structure of the nuclear receptor superfamily [94]. 257 

The two-hybrid luciferase assay using mammalian cultured cells transfected 258 

with D. magna EcR, USP and Drosophila Taiman (the same as SRC) 259 

demonstrated that Daphnia EcR and USP form a heterodimer specifically in 260 

response to ecdysteroids such as ecdysone and 20E [94, 95]. Homologs of 261 

these ecdysteroid receptors are also found in the D. pulex genome [96] 262 

(Table 1), suggesting that daphnids bind to ecdysteroids by employing a 263 

similar (or the same) receptor system to that of insects. 264 

265 

266 

3.3. Downstream signaling of ecdysteroids 267 

268 

The heterodimer of EcR and USP acts as a transcription factor and activates 269 

downstream genes [58-60]. When D. magna embryos were injected with a 270 
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reporter plasmid containing insect EcRE fused to GFP and exposed to 20E, 271 

the fluorescent intensity increased dose-dependently with 20E exposure [97]. 272 

These results suggest that ecdysteroid receptors have the same molecular 273 

function in insects and daphnids, although the direct targets of the receptors 274 

are not yet known in daphnids. 275 

 Among various ecdysteroid-responsive genes in insects [67, 68], 276 

hormone receptor 3 (HR3) and E75 have already been isolated in both D. 277 

pulex and D. magna [98, 99]. In D. magna, HR3 expression was upregulated 278 

in response to 20E, whereas E75 expression remained unchanged [98]. 279 

Although ecdysteroid-responsive genes such as E74, HR4 and βFTZ-F1 have 280 

been identified in the daphnid genome (Table 1), their involvement in the 281 

ecdysteroid signaling pathway in daphnids remains unknown. In order to 282 

clarify how daphnids regulate and synchronize their elaborate molting and 283 

reproduction cycles, and to perform a detailed functional analysis of each 284 

candidate gene, a comprehensive analysis of all of the molecular pathways 285 

(i.e., from hormone biosynthesis to the expression of biological phenomena) 286 

is considered necessary [100]. 287 

  288 
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4. Juvenile hormones in Daphnia 289 

 290 

In addition to ecdysteroids, JHs play very important roles in the reproduction 291 

and development of daphnids. In particular, their roles in sex determination 292 

is both unique and essential for their life history [13-18, 101]. 293 

 294 

 295 

4.1. Juvenile hormone biosynthesis 296 

 297 

The current progress status regarding studies on the JH-synthesizing organ 298 

in daphnids is similar to that for studies on ecdysteroids. Although the 299 

mandibular organ (MO) is known to be the site of synthesis in decapods [102, 300 

103], homologous organs have not been found in daphnids and related taxa. 301 

However, a considerable number of homologous genes involved in JH 302 

biosynthesis in the insect CA, have been identified in the genomes of daphnids, 303 

implying the existence of the same molecular synthesis pathway (Table 1). 304 

Among these genes, especially juvenile hormone acid O-methyltransferase 305 

(JHAMT)/farnesoic acid O-methyltransferase (FAMeT) has the ability to 306 

convert farnesoic acid (FA) into MF, indicating that daphnids also appear to 307 

produce MF [104]. Decapods use MF as an active form of JH, without 308 

converting it to JH III [105-107]. Although unconfirmed, daphnids are 309 

considered to use MF as an active JH ligand, mainly because the male-310 
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induction activity of MF is higher than it is for JH III [14, 108] and also 311 

because of the loss of methyl farnesoate epoxidase (MFE), a member of cyp15, 312 

that converts MF to JH III in insects [109]. However, given that several 313 

similar sequences could be found in a genome-wide survey for MFE genes 314 

(Table 1), further studies are awaited. 315 

 316 

 317 

4.2. Juvenile hormone receptors 318 

 319 

We recently cloned and functionally analyzed the JH receptor in daphnids for 320 

the first time in crustaceans. Similarly to insects, the JH receptor was a JH-321 

dependent heterodimer complex comprising Met and SRC, which responded 322 

to various JH analogs in addition to MF and JH III [110]. Ligand sensitivity 323 

profiles against these various JHs corresponded well with the male-induction 324 

activity of each chemical, suggesting that the JH receptor, Met, is a molecular 325 

target when sex determination is disrupted by exposure to exogenous JHs. 326 

Moreover, we found that two of the eight amino acids comprising the JH-327 

binding pocket in Met differed between insects and daphnids, and that a single 328 

amino acid mutation of an insect-type residue into Daphnia Met caused a 329 

marked increase in response to JH III, just as in insect JH receptors [108, 330 

110]. It is possible that a change in the ligand selectivity of the JH receptor, 331 

Met, is related to the difference observed in the innate JH ligands between 332 
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insects and crustaceans. If so, then understanding the molecular evolution of 333 

JH receptors is one of the important topics in the evolution of the JH signaling 334 

pathway in Arthropoda. 335 

 336 

 337 

4.3. Downstream signaling of juvenile hormones 338 

 339 

Activation of the JH signaling pathway causes a lot of physiological changes 340 

in daphnids. One of the well-studied examples is environment-dependent 341 

male production [13, 14]. We recently used RNA-seq analysis to screen 342 

genes downstream of the JH signaling pathway that are activated when males 343 

are produced. The results showed that hemoglobin, serine protease, and 344 

numerous other genes (many of which are functionally unknown because of 345 

a lack of homology to known genes) were upregulated in male-producing 346 

mothers [111]. Both hemoglobin and serine protease genes have also been 347 

reported to be upregulated after topical application of JHs to D. magna at the 348 

juvenile stage (before starting reproduction), suggesting that these genes are 349 

typical downstream factors of the JH signaling pathway in daphnids [112]. 350 

It is considered likely that these factors are involved in male determination 351 

in the ovary of parental daphnid, and after that, which fate-determined eggs 352 

spontaneously express the male specific gene, doublesex, in daphnids [113, 353 

114]. 354 
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 On the other hand, some Daphnia species are known to produce 355 

defensive morphs or structures in response to the presence of predators (i.e., 356 

so called “inducible defense” mechanisms) [115-117], and JHs are also 357 

involved in regulation of the morphogenesis in these defensive morphs [118, 358 

119]. We previously proposed a signaling cascade model describing how, in 359 

individuals that have received chemical stimuli released by predators, the JH 360 

signaling pathway is activated and morphogenesis occurs in response to the 361 

involvement of several morphogenetic and cell-proliferating factors [96]. 362 

 In this way, the molecular underpinnings of a variety of biological 363 

phenomena exhibited by daphnids, as well as the role of the components of 364 

the JH signaling pathway in these processes, are becoming increasingly clear. 365 

However, aspects related to the proximate signaling of JH, such as the direct 366 

target genes of the JH receptor, Met, are still unknown. In insects, one such 367 

direct target is Kr-h1, which is a well-studied and very important downstream 368 

component of JHs [82-87]. Although daphnids possess a Kr-h1 ortholog, the 369 

findings of our recent study using a reporter assay to clarify the function of 370 

Daphnia Kr-h1 strongly suggested that this ortholog is not involved in JH 371 

signaling (Miyakawa et al. unpublished). Consequently, identifying primary JH 372 

responsive genes is considered crucial for obtaining a comprehensive 373 

understanding of the various molecular characteristics of the JH signaling 374 

pathway in daphnids. 375 

  376 



 

 24 

5. Summary and future directions 377 

 378 

Ecdysteroids, JHs and their signaling pathways, are extremely important 379 

endocrine systems that elaborately regulate a vast array of physiological 380 

phenomena, not only in insects, but also in daphnids. While daphnid 381 

endocrinology is still less understood than that for the model insect species 382 

(e.g., D. melanogaster and B. mori), the overall nature of the hormonal 383 

pathways in daphnids has been gradually elucidated using a variety of 384 

molecular approaches since the draft genome of D. pulex was published. 385 

Findings published to date have shown that the endocrine systems of insects 386 

and daphnids, while generally conserved and similar in terms of their overall 387 

outline, differ in certain respects. It is possible that these slight differences in 388 

the molecular signaling pathways could serve as a basis for the novel traits 389 

or life histories acquired by specific taxa; for example, environmental sex 390 

determination and inducible defense in daphnids. 391 

 In many cases, ecdysteroids and JHs do not act independently of 392 

each other, with final developmental processes often being a sequel to 393 

complicated crosstalk between the two signaling pathways [7, 8, 29]. Recent 394 

studies have demonstrated that a cofactor of the EcR complex, SRC, is the 395 

heterodimeric partner of the JH receptor, Met [64-66], and that Kr-h1, a 396 

direct target of the JH/Met/SRC complex, acts as a repressor of BR-C and E93 397 

expression by ecdysteroid signaling [86, 87]; the molecular basis of the 398 
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hormonal crosstalk has thus been partly elucidated. We have already 399 

successfully established several variations of reporter assay systems that can 400 

be used to analyze gene regulatory relationships within both ecdysteroid and 401 

JH signaling pathways in daphnids [94, 108, 110]. By comparing not only 402 

expression patterns and functions of individual genes, but also connections 403 

of each component of signaling pathway between insects and daphnids using 404 

these systems, we expect to understand how the alterations of endocrine 405 

systems have occurred in an ancestor of insects after diverging from 406 

branchiopod crustaceans.  407 

To date, study of arthropod endocrinology has mainly relied on the 408 

specific taxa, holometabolous insects and decapod crustaceans. To 409 

understand the evolutionary processes of arthropod diversity from the aspect 410 

of physiological regulation, further studies should be performed using various 411 

arthropods broadly (i.e., hemimetabolous insects, non-decapod crustaceans, 412 

myriapods, arachnids, etc.). 413 

  414 
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