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Abstract 23 

Kelp forests are structurally complex habitats, which provide valuable services along 25% of the 24 

world’s coastlines. Globally, many kelp forests have disappeared and been replaced by turf algae 25 

over the last decade. Evidence that environmental conditions are becoming less favourable for 26 

kelps, combined with a lack of observed recovery, raises concern that these changes represent 27 

persistent regime shifts. Here we show that human activities mediate turf transitions through 28 

geographically disparate abiotic (warming, eutrophication) and biotic (herbivory, epiphytism) 29 

drivers of kelp loss. Evidence suggests kelp forests are pushed beyond tipping points where new, 30 

stabilizing feedbacks (sedimentation, competition, Allee effects) reinforce turf dominance. 31 

Although these new locks on the degraded ecosystems are strong, a mechanistic understanding 32 

of feedbacks and interactions between global and local drivers of kelp loss will expose which 33 

processes are easier to control. This should provide management solutions to curb the pervasive 34 

trend of flattening of kelp forests globally. 35 

 36 

Key words: Seaweeds, warming, eutrophication, habitat loss, regime shift   37 
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Kelp forests –foundations of temperate reefs globally 38 

“The numbers of living creatures of all Orders whose existence intimately depends 39 

on kelp is wonderful ... I can only compare these great aquatic forests of the southern 40 

hemisphere with the terrestrial ones in the intertropical regions. Yet if in any country 41 

a forest was destroyed, I do not believe as many species of animals would perish as 42 

would here from the destruction of kelp” (Darwin, 1839). 43 

This passage from Charles Darwin’s book ‘Voyages of the Adventure and Beagle’ describe the 44 

awe of one of our greatest natural historians when he encountered the kelp forests off South 45 

America. His analogy of tropical rain forests clearly conveys both his profound amazement with 46 

the biological activity supported by kelp forests, and an insight into the ecological role of kelps. 47 

They do underwater, the same as trees do on land. 48 

Kelp forests are extensive, underwater habitats dominated by large brown laminarian and 49 

fucalean seaweeds (Steneck and Johnson 2013). They grow best in cold, nutrient-rich water, 50 

where they attain some of the highest rates of primary production of any natural ecosystem on 51 

Earth (Mann 1973), and some species can live up to 25 years (Steneck and Johnson 2013). Kelp 52 

forests dominate at temperate latitudes in both hemispheres, along approximately one quarter of 53 

the world’s coastlines (Steneck and Johnson 2013, Filbee-Dexter and Scheibling 2014). 54 

As Darwin’s observations clearly indicate, kelp forests support a plethora of associated 55 

species. Kelps are ecosystem engineers. They create complex biogenic habitats (Christie et al. 56 

2009, Thomsen et al. 2010, Teagle et al. 2017), which influence the physical conditions, such as 57 

light, water flow, sedimentation, physical abrasion, and pH in their surrounding environment 58 

(Eckman et al. 1989, Wernberg et al. 2005, Krause-Jensen et al. 2016). In addition to providing 59 

structural habitat (Teagle et al. 2017), the high productivity of kelp also provides an abundant 60 

food source for species such as fish, urchins, small crustaceans and snails that graze directly on 61 

the attached kelps (Christie et al. 2009, O’Brien and Scheibling 2016). Other species filter feed 62 

on particulate organic material or prey on kelp associated species (Norderhaug et al. 2005, 63 
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Christie et al. 2009). Kelp forests also produce large quantities of detached ‘drift’ kelp which 64 

tumble across the seafloor or raft on the waters’ surface, ending up in adjacent or distant habitats. 65 

As much as 80% of the local production ends up as drift which can leave the kelp forest and 66 

support food webs where autochthonous primary production is usually very low (Krumhansl and 67 

Scheibling 2012). Drift kelp is a primary source of food in many of these habitats and attracts a 68 

diverse community of detritivores and consumers, often substantially increasing secondary 69 

production (Bustamante et al. 1995, Krumhansl and Scheibling 2012). Through these trophic 70 

subsidies, and by providing an important trans-oceanic dispersal vector for kelp-rafting flora and 71 

fauna (Rothausler et al. 2012), drift kelp extend the ecological influence of kelp forests far 72 

beyond the locations where the kelps grow. 73 

 74 

The intimate connection between kelp forests and humans 75 

These ocean forests are not only critically important to marine plants and animals, but also to 76 

humans. Homo sapiens have exploited the rich resources provided by kelp forests for at least 77 

10,000 – 70,000 years (e.g., Volman 1978, Jerardino and Navarro 2002, Balasse et al. 2005), but 78 

our intimate connection with kelp forests could be as old humankind itself. Evidence suggests 79 

that early humans might have evolved along the rocky coasts of southern Africa, as a 80 

consequence of a rich diet of marine organisms, supported by highly productive kelp forests 81 

(Bustamante et al. 1995), including mussels and limpets providing the omega-3 fatty acids and 82 

trace elements required for brain function and development (Compton 2011). Kelp forests have 83 

also played an important role in the biogeography of humans. About 16,000 yrs ago early 84 

colonizers of the Americas followed a ‘kelp highway’ along the Pacific rim, sustained by the 85 

bounty provided by kelp forests (Erlandson et al. 2007). 86 

Kelp forests also play an important role in the lives of modern humans, through providing 87 

a broad range of ecosystem goods and services of great social, economic and ecological value 88 

(Vásquez et al. 2014, Bennett et al. 2016, Blamey and Bolton in press; Fig. 1). These goods and 89 
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services arise as direct contributions from the kelp forests (e.g., kelp harvesting, commercial and 90 

recreational fishing and tourism), as indirect contributions via the functions of the kelp forest 91 

(e.g., habitat provision, climate control, carbon sequestration, coastline protection and nutrient 92 

filtering) or from the innate value of the kelp forest itself (e.g., its scientific or cultural importance 93 

and biodiversity). While the economic value of these ecosystem services can be very difficult to 94 

establish, especially for indirect and non-use services, it is estimated that kelp forests provide 95 

services worth 500,000 – 1,000,000 USD per kilometer of coastline (Table 1). However, these 96 

figures are heavily dominated by direct-use services (e.g., Vásquez et al. 2014, Bennett et al. 97 

2016) and the true value of kelp forests could be 3 – 6 times higher. Valuations of more broadly 98 

defined marine macrophyte communities, which better incorporate the indirect and non-use 99 

values, place seagrass and seaweed beds as the third most productive systems globally, providing 100 

ecosystem services valued at 3,000,000 USD per km coastline per yr (assuming a 1 km wide 101 

kelp forests at 30,000 USD per hectare per yr; Costanza et al. 2014). Even this is most likely a 102 

considerable under-estimation reflecting the lack of studies valuating services explicitly from 103 

kelp forests (Bennett et al. 2016). Recently, the value of coral reefs was increased more than 40 104 

times previous estimates, mainly as a consequence of new studies valuating additional ecosystem 105 

services such as storm protection, erosion protection and recreation (Costanza et al. 2014). 106 

 107 

Kelp forests under siege 108 

Human impacts on marine foundation species have accelerated over the past 4 – 5 decades. 109 

Globally, estuaries (Lotze et al. 2006), seagrass meadows (Orth et al. 2006, Waycott et al. 2009) 110 

and coral reefs (Pandolfi et al. 2003, Hughes et al. 2017) have been adversely affected. Kelp 111 

forests are no exception (Krumhansl et al. 2016). A recent global analysis found that 38% of the 112 

world’s kelp forests have been in decline over the past five decades (Krumhansl et al. 2016), 113 

although interactions between local, regional and global processes have produced complex 114 
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responses in terms of direction and ultimate drivers of kelp forest change (Wernberg et al. 2011, 115 

Krumhansl et al. 2016).  116 

Nevertheless, climate change has set Earth on a trajectory where increasingly novel 117 

environments and biological interactions have potential to alter or decouple many of the natural 118 

ecosystem drivers and feedbacks maintaining otherwise highly resilient kelp forests. These 119 

changes can drive lasting transitions to new ecosystem states, which provide substantially 120 

different ecological services. Over the last decade, an emerging pattern has been that kelp forests 121 

increasingly are replaced by turfs, changing the reef seascape from a complex forest to a 122 

structurally simple mat of low-lying algae (e.g., Connell et al. 2008, Moy and Christie 2012, 123 

Filbee-Dexter et al. 2016, Wernberg et al. 2016a). These shifts to turfs represent widespread 124 

global loss in structural habitats and a new ‘battlefront’ as kelp forests move away from 125 

traditional urchin grazing (and overfishing) dynamics towards climate and nutrient-driven 126 

replacement by turf-algae.  127 

The current downward trajectory of more than one-third of the world’s kelp forests 128 

(Krumhansl et al. 2016) will cause major reductions in the quality and quantity of ecosystem 129 

services that these foundation species provide (e.g. loss of tourism, closures of recreational or 130 

commercial fisheries, and removal of carbon sink, cf. Table 1). There is therefore a pressing need 131 

to understand the processes that are driving these regime shifts. Here we provide an overview of 132 

the transformation of kelp forests to turf seascapes. We begin by reviewing the global literature 133 

on shifts from kelp forests to turf-dominated reefs. We map out the growing global extent of the 134 

problem and synthesize available information on global and regional drivers and dynamics of 135 

these shifts, developing a generalized conceptual model of the interacting mechanisms. Finally, 136 

we examine in more detail, the feedback mechanisms that prevent recovery of kelp forests. We 137 

suggest that efforts to reduce local anthropogenic impacts may be an effective strategy for 138 

curbing the degradation of kelp forests in many of these systems. However, a deeper, more 139 
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mechanistic understanding of the drivers, and recovery potential of kelp forests following these 140 

shifts is required to ensure cost-effective and successful management into the future.  141 

 142 

The rise of turf algae 143 

The term ‘turf algae’ (‘turfs’) cover a diverse group of macroalgae that superficially have similar 144 

morphologies and ecological traits, although there is no commonly accepted definition of ‘turfs’ 145 

(Connell et al. 2014). Here we consider turfs to be algae that provide little to no three-146 

dimensional seascape structure compared to kelp and other canopy-forming macroalgae, but 147 

cover the bottom with a dense layer of fine filaments, branches, or plumes. Turf algae tend to be 148 

small, fast-growing, opportunistic species, with high cover and turnover rates, that can be highly 149 

stress tolerant compared to larger fleshy macroalgae (Airoldi 1998). They trap and accumulate 150 

sediment and modify the chemical environment (e.g. reducing oxygen or concentrating 151 

contaminants). Under this definition, coralline algae barrens, which have no filamentous algae, 152 

and Sargassum beds and Codium meadows of large erect macroalgae that provide standing three-153 

dimensional structure, do not qualify as ‘turfs’. Shifts to these low-structure, mat-like turfs 154 

represent an undesirable degradation of the ecosystem with associated losses of habitat, food, 155 

and productivity (Airoldi et al. 2007, Connell et al. 2014). 156 

The large-scale replacement of kelp forests with turf algae is a new phenomenon (Fig. 2, 157 

3). Another important and extensively studied phenomenon of kelp loss is direct consumption 158 

by sea urchins, which can destructively graze erect macroalgae and trigger regime shifts to 159 

coralline algal-dominated 'barrens' (Steneck et al. 2002, Filbee-Dexter and Scheibling 2014). 160 

Regime shifts from kelp forests to urchin barrens have been studied for decades on temperate 161 

rocky reefs worldwide (Filbee-Dexter and Scheibling 2014). These shifts are largely triggered 162 

by population explosions of sea urchins due to removal of top predators, urchin recruitment 163 

pulses, or altered environmental conditions (Steneck et al. 2002, Filbee-Dexter and Scheibling 164 
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2014). Following collapse to barrens, kelp forests can reestablish years or decades later, when 165 

sea urchin densities decline and grazing intensity is once again reduced to levels where kelps can 166 

recruit and reestablish (Watson and Estes 2011, Filbee-Dexter and Scheibling 2014). In contrast, 167 

large-scale shifts from kelp forests to turfs have not shown recovery, but reefs have remained in 168 

a degraded turf state. It is unclear what is responsible for these new dynamics of persistent kelp 169 

loss. Potentially, human driven environmental changes such as ocean warming or coastal 170 

eutrophication are favoring growth and survival of turfs over kelps, and decoupling the kelp loss 171 

and recovery processes from top down control by urchins and/or their predators. Key questions 172 

now facing ecologists are: (1) what are the main drivers of shifts to turfs, (2) what feedbacks are 173 

maintaining them and how permanent are they, and (3) what strategies are available for moving 174 

forward towards solutions to the problem? 175 

 176 

The global flattening of kelp forests 177 

The shift from kelp forests to turfs has been increasingly documented along many temperate 178 

coasts globally. Early observations of these shifts were reported in the late 1990s and 2000s in 179 

localized areas of South Australia (Connell et al. 2008), the Baltic Sea and Skagerak (e.g. 180 

Middelboe and Sand-Jensen 2000, Eriksson et al. 2002), and Atlantic Canada (Filbee-Dexter et 181 

al. 2016). However, in the last decade, more widespread disappearance of kelp forests has been 182 

reported along 100s km of coastline in Atlantic Canada (Filbee-Dexter et al. 2016), Europe (Moy 183 

and Christie 2012, Voerman et al. 2013), and Australia (Wernberg et al. 2016a) (Table 2, Fig. 2, 184 

3). 185 

In the Indian Ocean, Ecklonia radiata kelp forests (Fig. 2a) collapsed along the coast of 186 

Western Australia during an extreme marine heatwave in the austral summer of 2010/11, 187 

following four decades of background warming in this ocean warming hotspot (Smale and 188 

Wernberg 2013, Wernberg et al. 2013, 2016a). Kelp forests were completely wiped out and 189 

replaced by turfs and Sargassum spp., along 100 km coast at their range margin (Fig. 2b), where 190 



9 
 

the cover of turfs increased from less than 10% to more than 80% in less than two years. The 191 

kelp forests to the north succumbed to acute thermal stress as temperature anomalies exceeded 192 

their physiological capacity (Smale and Wernberg 2013, Wernberg et al. 2016b) and thermal 193 

safety margins (Bennett et al. 2015a). At the same time, there was a substantial influx of tropical 194 

fish herbivores (Fig. 2c) resulting in a 400% increase in grazing rates to levels equivalent to 195 

healthy coral reefs. This increased herbivory facilitated the expansion of turfs while preventing 196 

the kelp from recovering (Bennett et al. 2015b). The tropical fishes also recruited farther south, 197 

beyond the acute catastrophic impacts of the heatwave. Here they actively grazed the kelp 198 

canopy, reducing its cover by almost 70% in less than five years at localized reefs (Zarco-Perello 199 

et al. 2017), paving the way for an equivalent expansion of turfs (T. Wernberg, personal 200 

observation). In contrast, kelp forests in colder waters farther south did not experience similar 201 

canopy loss and proliferation of turfs even though temperature anomalies during the heatwave 202 

were similar (Wernberg et al. 2013, 2016a). 203 

In the northeastern Atlantic Ocean, Saccharina latissima forests (Fig. 2d) have been 204 

replaced by filamentous turf algae (Fig. 2e) along the west and Skagerak coasts of Norway, 205 

where as much as 80% of the S. latissima populations have disappeared since 2002 (Moy and 206 

Christie 2012). This transformation appears to have been driven by a combination of warming 207 

sea temperatures over five decades, exceptionally warm summers in 1997, 2002 and 2006, and 208 

coastal eutrophication. However, other changes such as increased siltation and invasive turf 209 

species might also have been involved (Moy and Christie 2012). These environmental conditions 210 

favored rapidly growing filamentous algae, including kelp epiphytes that increased substantially 211 

in cover, presumably starving the kelps of light and nutrients (Fig. 2f) (Andersen et al. 2011, 212 

Moy and Christie 2012). The effects have been most severe in shallow areas of protected fjords, 213 

where temperatures are higher and wave action insufficient to keep epiphytes from proliferating. 214 

However, turf covered reefs have also been extending into cooler, exposed areas along the 215 
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western coast (Hartvig Christie, Norwegian Institute for Water Research, Oslo, personal 216 

communication, June 2nd, 2017). 217 

In the western Atlantic Ocean, in Nova Scotia, Canada, Laminaria digitata and S. 218 

latissima forests (Fig. 2g) have disappeared along the central Atlantic coast, with average canopy 219 

cover losses of 89% compared to baseline measures from 1982 (Filbee-Dexter et al. 2016). These 220 

declines were gradual, beginning in the early 1990s, and reductions in kelp were associated with 221 

an increase in turf-forming algae and two invasive algal species, Fucus serratus and Codium 222 

fragile subspecies fragile (Fig. 2h). This region is a global warming hotspot, and the declines in 223 

kelp were largely driven by indirect effects of warming temperatures that increased recruitment 224 

and growth of the invasive bryozoan Membranipora membranacea (Fig. 2i) (Saunders et al. 225 

2010, Krumhansl et al. 2014). M. membranacea encrusts kelp fronds leading to higher breakage 226 

and mortality during periods of wave action (Krumhansl et al. 2011). Stronger storms, increased 227 

intensity of mesograzing, and direct physiological effects of warm temperatures also played a 228 

role in eroding the resilience of the kelp forest (Filbee-Dexter and Scheibling 2012, Krumhansl 229 

et al. 2014, O’Brien et al. 2015). Shifts to turfs were most dramatic in protected bays where water 230 

temperatures are warmer, and kelp forests are still found in cooler, more exposed parts of the 231 

coast. Similarly, 300-600 km to the southwest in the Gulf of Maine, USA, shifts to filamentous 232 

and corticated red algae occurred during the mid-1990s to mid-2000s (Steneck et al. 2013). 233 

Currently, turfs are abundant along sheltered and southern reefs (Steneck et al. 2013), and in 234 

some areas kelp forests have been entirely replaced by invasive red turf algae (Dijkstra et al. 235 

2017). 236 

Most other places that have experienced transitions from macroalgal forests to turfs 237 

(Table 2) have followed the same general pattern that emerges from the three examples described 238 

above (cf. Fig. 4). For one, many of these habitats are under pressure from the direct effects of 239 

abiotic drivers due to warming or nutrient pollution. This pressure can be either lethal, causing 240 

kelp mortality, or sub-lethal, causing reduced performance and increasing vulnerability to other 241 
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drivers (Wernberg et al. 2010). Often, abiotic drivers also lead to changes in other biological 242 

components of the ecosystem, which in turn can have indirect negative effects on the kelp. 243 

Examples of these biotic drivers include increased grazing intensity from herbivores in 244 

southwestern Europe and Mediterranean Sea (Vergés et al. 2014, Franco et al. 2015) and 245 

competition from invasive red algae in the Gulf of Maine (Dijkstra et al. 2017) (Fig. 4).  246 

 247 

Multiple drivers trigger collapse to turfs 248 

Observations, experiments and correlational studies throughout the global range of kelp forests 249 

suggest that a suite of stressors and environmental changes can lead to kelp loss and shifts to 250 

turfs (Strain et al. 2014). Often several processes are at play at the same time, making it hard to 251 

identify the more important drivers of loss of kelp (Fig. 3). These drivers can be system-specific 252 

and include gradual changes such as background warming, eutrophication, pollution, and 253 

invasive species, as well as abrupt processes such as storms, heat waves, and harvesting (Fig. 4, 254 

Table 2). 255 

There is strong evidence that warming, in particular, has played an important role in most 256 

shifts to turfs documented in the last decade (Table 2). Ultimately, kelps are cool-water 257 

organisms and, towards the warmer ends of their distribution, warming will reduce their growth, 258 

weaken their tissue and negatively affect how they deal with other perturbations such as grazing, 259 

epiphytism, or mechanical damage (Wernberg et al. 2010, Simonson et al. 2015). Consequently, 260 

most of the collapsed kelp forests have been located in warming hotspots, or near the edges of 261 

their distribution where they likely are less resilient to additional perturbations [e.g. L. digitata 262 

in France and Denmark (Raybaud et al. 2013), S. latissima in Gulf of Maine and Atlantic Canada 263 

(Merzouk and Johnson 2011) and E. radiata in Australia (Wernberg et al. 2010, Wernberg et al. 264 

2016a)]. In contrast, in the center and cooler ends of their species’ distributions, kelp forests in 265 

some regions have experienced significant discrete warming events without collapsing (e.g., 266 

Wernberg et al. 2013, Krause-Jensen and Duarte 2014, Araújo et al. 2016, Reed et al. 2016). 267 
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Canopy removal experiments in Western Australia prior to the collapse of northern kelp forests, 268 

showed substantially faster canopy recovery at cooler southern locations compared to warmer 269 

northern locations, where turf algae increased in cover before the canopies could recover 270 

(Wernberg et al. 2010). Further indirect evidence for the importance of elevated temperatures 271 

comes from observational ‘space-for-time’ studies of warming along geographic temperature 272 

gradients, where low kelp and high turf cover are more prevalent in warmer regions compared 273 

to colder regions (Wernberg et al. 2010, Tuya et al. 2012, Filbee-Dexter et al. 2014). However, 274 

in almost all shifts to turf algae, significant kelp loss occurred before temperature thresholds for 275 

mortality were passed, suggesting that widespread kelp mortality is not due to direct effects of 276 

warming, but instead triggered by cumulative effects of multiple stressors, extreme events or 277 

altered biotic interactions that are often indirectly caused by increased temperatures.  278 

In contrast to gradual warming where canopy cover is reduced over longer timescales 279 

(years to decades) (Filbee-Dexter et al. 2016), heat waves that exceed physiological tolerance 280 

limits of kelp can cause shift to turfs over relatively short time scales (weeks to months) 281 

(Wernberg et al. 2013). The most dramatic example of this was the marine heat wave in Western 282 

Australia mentioned above (Wernberg et al. 2013, 2016a). Periods of exceptionally warm 283 

temperatures have also been implicated in shifts to turfs in Nova Scotia (Filbee-Dexter et al. 284 

2016) and Norway (Moy and Christie 2012), both of which experienced higher than normal 285 

summer temperatures two to three years preceding the greatest loss of kelp cover. A similar 286 

pattern of kelp loss occurred along the coast of northern California when influx of extremely 287 

warm waters in 2014 and 2015 caused a dramatic 93% reduction of Nereocystis luetkeana kelp 288 

forests (Catton et al. 2016). However, unlike Norway, Australia or Nova Scotia, the kelp forest 289 

in northern California, shifted to sea urchin barrens due to concurrent booms in purple sea urchin 290 

Strongylocentrotus purpuratus populations that overgrazed the reefs (Catton et al. 2016). In 291 

contrast, in Southern California substantial warming from 2013 to 2015 did not cause kelps to 292 

disappear, although their abundance was among the lowest ever recorded following this heat 293 
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wave (Reed et al. 2016). Across these cases, it is clear that both periods of extreme warming 294 

and/or gradual increases in temperature are having increasingly severe direct or indirect effects 295 

on the reproduction, growth and survival of kelps (Airoldi and Beck 2007, Wernberg et al. 2010, 296 

Filbee-Dexter et al. 2016).  297 

In addition to warming, increasing carbon dioxide concentrations in the future could 298 

exacerbate the effects of rising temperatures. Although there are limited observations of changes 299 

caused by ocean acidification, experimental evidence suggests that turfs could outcompete and 300 

dominate over kelps and other habitat-forming macrophytes under acidified conditions. The 301 

underlying mechanisms appear to include both stimulated growth of the turfs due to carbon 302 

enrichment (Connell and Russell 2010) and an inability of herbivores to compensate by higher 303 

growth rates (Mertens et al. 2015). 304 

Biological stressors also play a role in driving loss of kelp and proliferation of turfs. In 305 

the north Atlantic, rising temperatures increase the recruitment and growth of epiphytes, which 306 

coat the kelp blades in encrusting colonies (Saunders et al. 2010, Andersen et al. 2011). Extensive 307 

overgrowth by these epiphytes reduces the strength of the kelp tissue, increasing breakage and 308 

canopy loss during storms (Filbee-Dexter and Scheibling 2012), and contributing to shifts to 309 

turfs (Krumhansl et al. 2011, 2014). Grazing by fish and invertebrates can also contribute to kelp 310 

loss through direct consumption (Vergés et al. 2014, Zarco-Perello et al. 2017), by increasing 311 

fragmentation and breakage (Krumhansl et al. 2011), or by reducing the supply of kelp 312 

propagules through targeted consumption of reproductive tissue (e.g. Lacuna vincta; O’Brien 313 

and Scheibling 2016). In addition to favouring growth of turfs, altered environmental conditions 314 

can increase the growth or reproduction of invasive species. During shifts to turfs in Nova Scotia 315 

(Canada), Gulf of Maine (USA), and Japan invasive algae also increased in abundance, and 316 

appear to have prevented recovery of native kelps through competition for light and space, and 317 

by reducing the availability of kelp propagules over successive seasons.  318 
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An important human-driven change that can promote the growth of turfs over canopy 319 

forming species is eutrophication. Eutrophication reduces light penetration in coastal waters and 320 

can favour the persistence of turf algae (Gorman et al. 2009), which have high growth rates 321 

(Airoldi 1998) and rapid nutrient uptake rates compared to larger, canopy forming algae 322 

(Pedersen and Borum 1997). In the northern Mediterranean Sea, Sweden, Denmark and South 323 

Australia, the disappearance of canopy kelps and other macroalgae were largely attributed to 324 

increases in coastal nutrients and sediment loading (Table 2). Similar dynamics have been 325 

documented in Kola Bay (Russia) and New South Wales (Australia), but in these regions the 326 

impacts were further compounded by sewage and urban pollution, favouring turf algae (Table 327 

2).   328 

 329 

Feedbacks providing resilience to turfs 330 

Kelps are usually considered the competitively dominant species on rocky reefs. They grow 331 

quickly, have a high recruitment potential, are often long-lived and form dense canopies that 332 

change the local environment to favour kelp recruitment (Fig. 4). They prevent the growth of 333 

most other algae through shading (Reed and Foster 1984, Wernberg et al. 2005) or mechanical 334 

abrasion (Toohey et al. 2004, Russell 2007). A closed kelp canopy limits the growth of delicate, 335 

filamentous algae, and only robust and more shade-tolerant algae (e.g. articulated corallines, 336 

corticated macroalgae) are able to survive in the understory. For example, both light and 337 

sediment levels under the kelp E. radiata have been shown to decline sharply with increasing 338 

kelp density (Wernberg et al. 2005), and these changes have been experimentally linked to 339 

reduced biomass of turfs (Russell 2007). At the same time, kelps produce a large propagule 340 

supply, and the reduced water flow within their canopies ensure the retention of the propagules 341 

(Eckman et al. 1989, Steneck et al. 2002), which maintains high spore density and therefore high 342 

recruitment potential within the forests. 343 
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Once kelps are lost, many of the feedbacks reinforcing their dominance are also lost, and 344 

as turf algae start to proliferate new feedbacks are established (Fig. 4). Turf algae can prevent 345 

establishment and survival of early life-stages kelps in two ways. First, turf algae are able to 346 

quickly overgrow and monopolize primary substrate, limiting the availability of suitable hard 347 

substratum required for kelp spore settlement (Airoldi 1998, 2003, Gorgula and Connell 2004, 348 

Connell and Russell 2010). Second, sediment accumulation by turfs (e.g., Isaeus et al. 2004, 349 

Filbee-Dexter et al. 2016) reduces rates of germination and survival of kelp and canopy forming 350 

macroalgae recruits (Reed 1990, Isaeus et al. 2004, Gorman and Connell 2009). Even juveniles 351 

that manage to recruit on to mats of turf are more susceptible to dislodgement due to weak 352 

attachment (John O’Brien, Dalhousie University, Halifax, personal communication, June 2nd, 353 

2017). 354 

Allee effects (declines in individual fitness at low population density) on declining kelp 355 

populations may also stabilize the turf state. Decreased sporophyte density makes it easier for 356 

herbivores to access the kelps and concentrates grazing on fewer remaining plants (e.g., Hoey 357 

and Bellwood 2011, Franco et al. 2015, O’Brien and Scheibling 2016), directly and indirectly 358 

accelerating kelp loss. Sparse kelp forests experience lower fertilization rates because 359 

reproductive sporophytes are rare and farther apart, resulting in a reduction in kelp propagules 360 

(Reed 1990, O’Brien and Scheibling 2016). This is compounded by the short dispersal range of 361 

kelp spores (typically 1−10 m, Gaylord et al. 2012), which limits the extent of population 362 

recovery. Experimental work in Macrocystis pyrifera forests suggest that threshold densities of 363 

spore settlement (1 spore per mm2) must be achieved for successful fertilization and recruitment 364 

of kelps (Reed 1990). Extensive or prolonged kelp loss will reduce propagule supply and could 365 

lower spore density below these thresholds, further reinforcing dominance of turfs. Competitive 366 

effects of turf-forming algae on canopy species are generally limited to early life stages, but there 367 

are some cases where species of turf algae proliferate dramatically under high nutrient conditions 368 

and appear to smother adult kelps (Andersen et al. 2011). 369 



16 
 

 370 

Is a collapse to turfs a regime shift? 371 

Considerable research has focused on whether degraded reefs could be considered ‘alternative 372 

stable states’ of healthy kelp forest ecosystems (Connell and Sousa 1983, Petraitis and Dudgeon 373 

2004, Filbee-Dexter and Scheibling 2014).  A defining characteristic of regime shifts between 374 

alternative stable states is hysteresis, where the initial tipping point to a new state occurs at a 375 

critical threshold of environmental or biological stress that is greater than the threshold required 376 

to recover the system (Connell and Sousa 1983, Petraitis and Dudgeon 2004). For example, if 377 

input of nutrients was the driver of a shift to turfs, hysteresis implies that in order to recover kelp 378 

forests, nutrient concentrations would need to be reduced much below the threshold nutrient 379 

concentration that triggered the initial shift to turfs. The feedback mechanisms that prevent kelp 380 

from reestablishing on turfs suggest that these transitions likely exhibit hysteresis. This has 381 

important implications for conservation because management options may be severely limited if 382 

strong feedback mechanisms are locking the system into the degraded state (Folke et al. 2004).  383 

However, in many shifts to turfs, unprecedented and rapid changes in environmental 384 

conditions are driving collapse to new and more degraded reefs (Wernberg et al. 2011 Araújo et 385 

al. 2016, Filbee-Dexter et al. 2016, Krumhansl et al. 2016). As a result, turf reefs generally do 386 

not persist under similar environmental conditions as the initial kelp forests, and the marine 387 

environments are unlikely to return to these prior conditions. This differs from regime shifts to 388 

urchin barrens, which are often driven by loss of urchin predators (fish or sea otters) without 389 

accompanying environmental change, and can recover the previous kelp state when these 390 

predators rebound (Watson and Estes 2011, Filbee-Dexter and Scheibling 2014). This does not 391 

mean that barrens are necessarily easier to recover than turfs (e.g. Marzloff et al. 2015), but it 392 

does influence how we apply classical ecological theory to understand these shifts. We suggest 393 

that, in the context of current environmental change scenarios, it makes little difference to the 394 

consequences for ecological and human communities if the impoverished turf state persists 395 
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indefinitely as a true ‘alternative stable state’ under constant environmental conditions (Petraitis 396 

and Dudgeon 2004). What matters is that key drivers of kelp loss are likely to intensify under 397 

these scenarios, that these transformations involve feedbacks that are difficult to reverse, and 398 

that the consequences will be serious on timescales relevant to humans.   399 

 400 

Insights for future research 401 

On a global scale, it is clear that local biogeographic and oceanographic conditions play a role 402 

in increasing vulnerability or buffering perturbations, allowing some kelp forests to persist, or 403 

even expand (Bolton et al. 2012), in the face of changing environmental conditions (Wernberg 404 

et al. 2013, Reed et al. 2016). It is striking that kelp to turf transformations have not been 405 

documented along the west coast of North or South America or in southern Africa. In these 406 

regions, kelp forests exist predominantly within upwelling zones where temperatures remain 407 

cool and/or within temperature ranges well inside their physiological capacity (Steneck et al. 408 

2002). Insights into the mechanisms that enable kelp to thrive in these areas will be critical when 409 

predicting the impacts of future environmental change on kelp forests globally. It is also 410 

important to note that threats to kelp forests are not limited to replacement by turfs. Changes in 411 

dominant kelp species, commercial kelp harvesting, pollution and increases in kelp pathogens 412 

are also impacting the structure and function of these ecosystems (Steneck and Johnson 2013, 413 

Krumhansl et al. 2016). Ongoing shifts from kelp forests to urchin barrens are occurring in 414 

Tasmania, western Canada, northern California and Alaska (Filbee-Dexter and Scheibling 2014, 415 

Catton et al. 2016), suggesting that turfs only establish dominance when kelp is lost under certain 416 

conditions (e.g. low urchin abundances). Currently, the mechanisms that drive a kelp forest 417 

towards either a turf or barrens state are not clear, but remain important to explore. 418 

On a more localized scale, patches of kelp forests remain within some larger regions that 419 

have predominately shifted to turfs. For example, cooler, wave exposed headlands off the coast 420 

of Nova Scotia (Filbee-Dexter et al. 2016) and Maine (Steneck et al. 2013), and exposed shoals 421 
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at the entrance to fjords in western Norway (Moy and Christie 2009) support relatively intact 422 

kelp forests compared to nearby regions that have shifted to turfs. An interesting question moving 423 

forward is how these spatially fragmented or restricted kelp forests contribute to ecological 424 

function compared to more extensive forests. Additionally, these refuge habitats may be critical 425 

for supplying spores for kelp recruitment on reefs with high turf cover. Understanding why these 426 

areas do not collapse may provide insight on how to build resilience of kelp forests to prevent 427 

future shifts.  428 

The phenomenon of replacement of kelp forest by turfs is part of a global trend towards 429 

increased dominance of turf algae in many marine ecosystems, including coral reefs, seagrass 430 

meadows and rocky intertidal platforms. Although shifts in these marine ecosystems represent a 431 

similar loss of habitat complexity and these ecosystems provide comparably valuable ecological 432 

goods and services, far more attention and research has been given to loss of coral reefs compared 433 

to loss of kelp forests and seagrass beds (Waycott et al. 2009, Bennett et al. 2016). For example, 434 

relative to the value of the kelp forest ecosystems in Australia and South Africa, public funding 435 

of research into understanding these ecosystems and the threats they are facing is 436 

disproportionally low (Bennett et al. 2016, Blamey and Bolton in press). This highlights the need 437 

to quantify the value of kelp forests and increase public awareness of the threats they face.  438 

 439 

Solutions require understanding synergies between local and global drivers 440 

Informed management strategies can either focus on increasing resilience of intact kelp forests 441 

by relaxing the drivers of shifts to turfs, or manipulating turf assemblages to promote recovery 442 

of kelp following collapse. Our current understanding of the key drivers of these transformations 443 

is largely based on correlative linkages between declines in kelp abundance and changes in 444 

various abiotic or biotic conditions. A critical next step is to develop a stronger causal and 445 

mechanistic understanding of what drives these shifts and their reinforcing feedbacks. This will 446 

involve verifying the importance of individual drivers and interactions experimentally or 447 
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examining impacts along spatial gradients or ranges of environmental conditions. In regions with 448 

multiple stressors, reducing local anthropogenic pressure may be an effective strategy for 449 

restoring kelp forests (Wernberg et al. 2011, Strain et al. 2014). For example, in Sydney Harbour 450 

crayweed forests (Phyllospora comosa) were successfully restored by transplanting healthy, 451 

fertile adult plants onto turfs after improvements in sewage treatment increased water quality in 452 

this area (Campbell et al. 2014). In order to restore kelp forests that have already shifted to turfs 453 

it is important to know the strength (or presence) of feedbacks maintaining the degraded turf 454 

state. The relative importance and strength of these will likely vary across systems, and will 455 

strongly influence the success of restoration initiatives. Specifically, research aimed at 456 

understanding the competitive interactions limiting kelp regeneration at early life stages and the 457 

establishment potential of kelp on turf reefs across a range of spore densities, patch sizes, or 458 

levels of initial juvenile recruitment would enable us to identify threshold levels of kelp 459 

abundance necessary for recovery.  460 

However, on relevant timescales for managers, it is not possible to control the regional 461 

or global drivers (such as warming or storm events) that are driving shifts to turfs in many kelp 462 

forest ecosystems. Perhaps the most alarming aspect of this new turf phenomenon is the dearth 463 

of examples of natural recovery of kelp forests. While this could be due to the recent nature of 464 

these transitions, the direction of ongoing environmental changes away from conditions that 465 

favour kelp, combined with signs of hysteresis in the turf state, suggests we are witnessing the 466 

early stages of a pervasive trend of flattening of temperate reefs as a result of climate change and 467 

other increasing human stressors. We have a narrowing window of opportunity to identify the 468 

processes that impart resistance and stability in kelp forests or drive these shifts to turfs, and this 469 

information is essential to solutions to restore, recover or prevent further degradation.  470 
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Table 1. Estimated value of ecosystem goods and services from kelp forests around the 723 

world. 724 

Region Total value 

(USD km-1 yr-1) 

Key services evaluated 

(percent of total value) 

Main species Reference 

Northern Chile, Pacific 

Ocean3 

811,000 Kelp fishing (76%) 

Commercial fisheries (15%) 

Scientific, biological and 

climate value (9%) 

 

Lessonia spp., 

Macrocystis pyrifera 

Vásquez et al. 2013 

Great Southern Reef, 

Australia, Indian Ocean 

and Southern Ocean2 

914,000 Tourism (90%) 

Recreational and commercial 

fishing (10%) 

E. radiata, various 

endemic fucoids 

Bennett et al. 2016 

South Africa, South 

Atlantic Ocean1 

520,000 Commercial (incl. kelp), 

recreational and illegal 

fishing (45%) 

Ecotourism (30%) 

Nutrient cycling and carbon 

sequestration (25%) 

Ecklonia maxima Blamey and Bolton in 

press 

1540 million USD, 666 km coastline 725 
210 billion AUD yr-1, 8,100 km coastline, 0.74 USD 726 
35.2 billion ZAR yr-1, 700 km coastline, 0.07 USD  727 
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Table 2. Drivers, dominant species, duration of shift, and description of shifts to turfs 728 

documented throughout range of kelp forests and other canopy forming macroalgae.  729 

Possible drivers Region Description Macroalgal 

species 

Time 

period 

Source 

Asia      

Gradual warming Western 

Pacific, Japan 

Kelp loss and 

shift in algal 

community 

(increased 

tropical 

Sargassum 

spp.)1 

Herbivorous 

fish suppress 

recovery. 

Ecklonia 

spp. and 

canopy 

forming 

temperate 

Sargassum 

spp. 

1970s–

2010; 

decline: 

1990s 

Tanaka et al. 

2012 

      

Australia      

Eutrophication  Southern 

Ocean, 

Australia 

Shift to turfs 

along 70 km. 

Trapped 

sediment 

prevented 

recruitment. 

Ecklonia 

radiata 

1968–

19732, 

1990s–

2007; 

decline: 

late-1990s 

Connell et al. 

2008, Gorgula 

and Connell 

2004, Gorman et 

al. 2009 

Heat wave  Indian Ocean, 

Australia 

Shift to turfs 

along 100 km. 

Tropical 

herbivorous 

fish suppress 

recovery. 

E. radiata 2000s–

2012; 

decline:  

post-2011 

Bennett et al. 

2015, Wernberg 

et al. 2013, 

2016a 

Pollution, 

eutrophication 

South Pacific 

Ocean, 

Australia 

(New South 

Wales) 

Historic loss of 

canopy-forming 

fucoid and 

increase in 

turfs. Loss 

associated with 

proximity to 

urban areas. 

Phyllospora 

comosa 

1940s2–

2007; 

decline:  

pre-1980s 

Coleman et al. 

2008 

Possibly 

eutrophication  

South Pacific 

Ocean, 

Australia (East 

coast) 

Loss of canopy 

forming algae 

and increase in 

turfs.  

Sargassum 

spp. 

1960s–

present 

 

Phillips and 

Blackshaw 2011 

      

Europe      

Eutrophication, 

harvest  

Baltic Sea, 

Germany 

Shift to turfs. 

Reinforced by 

hard substrate 

loss due to 

stone 

harvesting 

Fucus spp 1950s, 

1987–

1988; 

decline:  

pre-1987 

Vogt and 

Schramm 1991 

Eutrophication, 

pollution  

Mediterranean 

Sea, Italy 

Shift to turfs.  Cystoseira 

spp. 

Decline: 

post-1999 

Benedetti-Cecchi 

et al. 2001 
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Loss associated 

with proximity 

to urban areas  

Warming, 

epiphytism, 

eutrophication 

NEA, Western 

and Southern 

Norway 

Shift to turfs 

and ephemeral 

algae. Drivers 

may vary 

between 

western and 

southern coasts. 

S. latissima 1990–

2010; 

decline: 

2002 

Andersen et al. 

2011, Moy and 

Christie 2012,  

Gradual 

warming, heat 

waves 

NEA, Spain Decline and 

replacement by 

turfs.  

L. 

hyperborea, 

Laminaria 

aculeata   

1990s–

2010; 

decline: 

2007 

Voerman et al. 

2013 

Eutrophication Denmark Shift to turfs 

and green 

algae. 

Fucus spp. 1950–

1951, 

1999; 

decline:  

pre-1999 

Middelboe and 

Sand-Jensen 

2000 

Eutrophication Skagerak 

(NEA/Baltic), 

Sweden and 

Denmark 

Shift to turfs. 

Nutrient rise 

due to either 

human inputs or 

increased 

inflow of Baltic 

Sea and 

Kattegat water.  

S. latissima 

(and other 

large brown 

macroalgae) 

1941, 

1998; 

decline:  

pre-1998 

Eriksson et al. 

2002 

Eutrophication, 

pollution 

Barents Sea, 

Russia (Kola 

Bay) 

Shift to red 

algae 

Phyllophora 

truncata. 

S. latissima, 

A. esculenta 

1960s–

2009; 

decline: 

post-1994  

Golikov and 

Scarlato 1972, 

Malavenda et al. 

2012 

      

North America      

Gradual 

warming,  

epiphytism, 

species invasions, 

storm activity 

NWA, North 

America 

Shift to turfs 

along 110 km. 

Mesograzers 

reduce kelp 

recruitment and 

recovery. 

L. digitata, 

S. latissima 

1960–

2016; 

decline: 

post-

1990s 

Filbee-Dexter et 

al. 2016 

 

Possible link with 

gradual warming, 

heatwave, species 

invasion  

NWA, United 

States of 

America (Gulf 

of Maine) 

Shift to 

filamentous and 

corticated red 

algae, including 

the invasive 

alga 

Dasysiphonia 

japonica. 

S. latissima 1977–

2015; 

decline: 

1990s and 

2000s 

Steneck et al. 

2013, Dijkstra et 

al. 2017. 

South America      

Possibly 

eutrophication, 

warming 

Sãu Sebastião 

region, Brazil 

Replacement by 

turfs 

Sargassum 

spp. 

1980s–

2016  

Daniel Gorman, 

May 3rd, 2017, 

University of São 

Paulo, personal 

communication, 
São Paulo   
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1Changes in understory following kelp loss not reported. 2Anecdotal or observational evidence of occurrence of 730 
macroalgal reefs.   731 
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Figures 732 

 733 

Figure 1. Kelp forests provide many ecological functions and ecosystem services. (a) Kelp 734 

forest (Ecklonia maxima) in South Africa. (b) Kelp trawler in Norway. (c) Scientific diver 735 

undertaking kelp research, Australia. (d) Commercially and recreationally important lobster 736 

(Homarus americanus) in a kelp forest in Canada. (e) Drift kelp (Laminaria hyperborea) 737 

accumulation on sand bottom in Arctic Norway. (f) Angler with kelp cod (Gadus morhua), 738 

United Kingdom. Photographs: Thomas Wernberg (a, c, e), Kåre Foss (b), Karen Filbee-739 

Dexter (d), Whitby Sea Anglers (f). 740 
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 741 

Figure 2. Kelp forests have undergone regime shifts from lush, structurally complex forests to 742 

highly simplified, sediment-laden turf reefs. Examples include the disappearance of forests of 743 

Ecklonia radiata from Western Australia (top panel), Saccharina latissima from southwestern 744 

Norway (middle panel), and Laminaria digitata and S. latissima from Atlantic Canada (bottom 745 

panel). The photographs show healthy kelp forests (a, d, g), sediment-laden turf reefs (b, e, h) 746 

and biological drivers - (c) tropical herbivores (Siganus fuscescens) cropping kelp recruits, (f) 747 

epiphytes smothering kelps and (i) the invasive bryozoan (Membranipora membranacea) 748 

encrusting and weakening kelp fronds. Photographs: Thomas Wernberg (a, b, c), Hartvig 749 

Christie (d, e, f), Karen Filbee-Dexter (g), and Robert Scheibling (i, h). 750 
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 751 

Figure 3. Global map showing locations of shifts from habitat-forming macroalgae to turfs 752 

(circles) overlaid on the approximate distribution of global kelp forests (green; light green 753 

unknown but inferred from habitat requirements; Filbee-Dexter and Scheibling 2014). Slice 754 

colours of circles indicate different drivers implicated in the shift. See Table 2 for further 755 

details. 756 

 757 
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Figure 4. Schematic overview of the direct (red) and indirect (orange) drivers and feedbacks 758 

(blue) implicated in regime shifts from kelp forests to turf algae globally (Table 2). The arrows 759 

indicate the positive effect of these drivers on kelp loss and replacement by turfs, and the 760 

positive feedbacks on either the kelp or turf state.  761 
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