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Hazard assessments of Irgarol 1051, diuron, 2-

(thiocyanomethylthio)benzothiazole (TCMTB), dichloro-octylisothiazolin 

(DCOIT), chlorothalonil, dichlofluanid, thiram, zinc pyrithione, copper 

pyrithione, triphenylborane pyridine (TPBP), capsaicin, nonivamide, tralopyril 

and medetomidine were performed to establish robust Environmental Quality 

Standards (EQS), based on predicted no effect concentrations (PNECs). 

Microalgae, zooplankton, fish and amphibians were the most sensitive ecological 

groups to all evaluated antifoulants, especially in early life stages. There were no 

differences identified between freshwater and seawater species. The use of 

toxicity tests with non-standard species is encouraged because they increase the 

datasets allowing EQS to be derived from probabilistic-based PNECs whilst 

reducing uncertainties. The global ban of tributyltin (TBT) has been heralded as a 

major environmental success; however, substitute antifoulants may also pose 

risks to aquatic ecosystems. Environmental Risk Assessments (ERAs) have 

driven decision-makings for regulating antifouling products, but in many 
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countries there is still a lack of regulation of antifouling biocides which should be 

addressed.  

Keywords: assessment factors (AF); Environmental Quality Standards (EQS); 

environmental regulation; predicted no effect concentration (PNEC); species 

sensitivity distribution (SSD) 
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Introduction 

Biofouling is the settlement and attachment of organisms on the external surfaces of 

submerged or semi-submerged objects (Lewis 1998). Hulls of boats are one example of 

biofouling, which can increase frictional drag and thereby fuel consumption (Abbott et 

al. 2000), or can impair navigation devices. Antifouling coatings were developed to 

reduce biofouling to increase the performance of ships. The use of antifouling coatings 

greatly reduces the emission of carbon dioxide and sulphur dioxide, with annual 

reductions estimated to be 384 and 3.6 million tonnes, respectively 

(http://www.foulxspel-antifouling.com/, access in August 1st 2017). Moreover, 

antifouling coatings prevent the introduction of invasive species that might threaten 

indigenous aquatic biodiversity (Drake & Lodge 2007).  

Antifouling coatings have been used for centuries to reduce or prevent the 

settlement of organisms on hull surfaces. The Phoenicians and Carthaginians were the 

first to be credited with the use of pitch, and possibly copper sheeting, on the bottom of 

ships, probably as an attempt to prevent bioencrustation during their expeditions to 

Africa and the west coast of Europe (WHOI 1952; Hellio & Yebra 2009). The use of 

heavy metals in coatings increased from the late 18th century and metals (particularly 

copper) are still incorporated into certain modern coatings (Dafforn et al. 2011).  

A major milestone in antifouling technology was the discovery of the high 

efficacy of tributyltin (TBT), used in combination with copper-based algicides in paint 

formulations (Yebra et al. 2004). Organotin-based paints were introduced as marine 

antifoulants in the early 1960s and at the time were believed to be the solution to 

preventing biofouling. However, severe impacts on the marine environment occurred 

following the introduction of TBT. Ecological effects of TBT on growth, development, 

survival and reproduction have been reported in a wide range of species from bacteria to 

http://www.foulxspel-antifouling.com/
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mammals (Antizar-Ladislao 2008, Dafforn et al. 2011). A well-documented example of 

this was the imposex-driven decline of the marine gastropod Nucella lapillus in coastal 

areas of Southwest England (Gibbs & Bryan 1996). These adverse ecological effects led 

authorities to gradually restrict and then ban the use of TBT as an antifouling biocide. In 

2008 there was a global prohibition of TBT as an active ingredient in antifouling paints 

(IMO 2000, Dafforn et al. 2011). 

Following the ban of organotin-based paints, tin-free technologies dominated the 

antifouling paint market, with paint formulations being composed mainly of inorganic 

biocides (typically cuprous oxide) and one or more organic or organo-metallic co-

biocides (Hellio & Yebra 2009), which boost the biocidal efficacy of the paint. 

Examples of co-biocides in widespread use are Irgarol 1051, diuron, DCOIT, 

chlorothalonil, dichlofluanid, TCMTB, thiram, zinc pyrithione (ZnPT) and copper 

pyrithione (CuPT) (Hellio & Yebra 2009, Castro et al. 2011). Booster co-biocides 

usually make-up 0.1 - 10% of the paint formulation (International 2013, 2014; Renner 

2016a, 2016b) and are anticipated to not leach into the environment at sufficiently high 

concentrations to trigger acute toxic effects on non-target species (Hellio & Yebra 

2009). However, some lower trophic ecological groups or early life stages may be very 

sensitive to such co-biocides (Lambert et al. 2006; Zhang et al. 2008; Okamura et al. 

2009; Onduka et al. 2010; Wendt et al. 2016). Furthermore, the sublethal effects and 

modes of action of antifouling co-biocides, after chronic exposure, are largely unknown 

(Hellio & Yebra 2009). The environmental behavior of some co-biocides is still to be 

fully elucidated, especially with regard to degradation products (Thomas & Brooks 

2010).  

Many studies have been conducted to understand the sensitivity of different 

groups of organisms to antifouling co-biocides and these have been critically reviewed 
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herein. The aim of this review was to define potential Environmental Quality Standards 

(EQS) for selected antifouling co-biocides. Different approaches to derive predicted no 

effect concentrations (PNECs), acute vs. chronic ecotoxicity assays, non-standard vs. 

standard ecotoxicity assays, freshwater vs. estuarine/marine ecosystems were all 

compared and critically discussed.  

Structure and methodology 

In this study, PNECs were derived according to the Technical Guidance Document 

(TGD) on Risk Assessment (ECB 2003), for acute and chronic exposure, in either 

freshwater or estuarine/marine systems. A PNEC is defined as the concentration below 

which an unacceptable effect is unlikely to occur (ECB 2003). Assessment factors (AF), 

defined as numerical adjustments used to extrapolate from experimentally determined 

relationships to estimate the agent exposure below which an adverse effect is not likely 

to occur (https://www.opentoxipedia.org/index.php/Assessment_factor, access in 

September 14th 2017), were applied according to the type and amount of data available 

(ECB 2003, van Wezel & van Vlaardingen 2004). Based on the calculated PNECs, 

Environmental Quality Standards (EQS) were then determined according to the 

European Guidance Document (EC 2011). As summarized in Figure 1, an EQS for both 

freshwater and seawater has been calculated for each co-biocide. 

 

Antifouling co-biocides selection 

Not all compounds with biocidal activity used in antifouling paint formulations were 

addressed in this review. The most commonly used organic and organo-metallic 

antifouling co-biocides (Irgarol 1051®, diuron, dichloro-octylisothiazolin (DCOIT), 2-

(thiocyanomethylthio)benzothiazole (TCMTB), chlorothalonil, dichlofluanid, thiram, 

zinc pyrithione (ZnPT) and copper pyrithione (CuPT)), that are more likely to occur in 

https://www.opentoxipedia.org/index.php/Assessment_factor
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aquatic environments, were selected (Tornero & Hanke 2016; Chen & Lam 2017). 

Emerging biocidal compounds, with restricted regional markets (ie medetomidine, 

tiphenylborane pyridine (TPBP) and tralopyril) were also included to evaluate their 

suitability (Oliveira et al. 2017). Furthermore, capsaicin naturally extracted from chilli 

peppers, and its synthetic derivative nonivamide, are potential candidates to be used as 

environmentally-friendly antifouling biocides and these were also included (Table 1).  

Irgarol 1051 and diuron are herbicides that act by inhibiting the transport of 

electrons during photosystem II (Hall et al. 1999), affecting mainly non-target 

photosynthetic organisms. Irgarol 1051 and diuron have been widely applied as 

antifouling co-biocides (Castro et al. 2011; Ferrer et al. 1997) and exhaustive 

ecotoxicity datasets exist for these compounds (Table S1 in Supplementary 

Information).  

Chlorothalonil, dichlofluanid and thiram are mainly used as fungicides in 

antifouling coatings. Chlorothalonil is a broad-spectrum fungicide used for over 30 

years in agriculture, but its use in antifouling paints increased after the TBT ban. 

Chlorothalonil acts through the inhibition of glycolysis or depleting glutathione (Caux 

et al. 1996), causing effects in animals and plants (WFD 2012). The presence of 

multiple reactive electrophilic centers makes chlorothalonil extremely toxic to aquatic 

organisms (Castro et al. 2011) (Table S2 in Supplementary Information). Dichlofluanid 

is a potent inhibitor of fungal spore germination (PPDB 2007-2017) (Table S2). 

However, its toxicity might be caused by its degradation products, since dichlofluanid 

rapidly undergoes hydrolysis in water (Hamwijk et al. 2005), even when incorporated in 

paint particles (Thomas et al. 2003). Thiram is a dithiocarbamate fungicide designed to 

inhibit spore germination and mycelial growth (PPDB 2007-2017). Thiram is a multi-

site inhibitor and can affect a wide range of organisms (KEMI 2015) (Table S2).  
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DCOIT and TCMTB are regarded as broad-spectrum biocides used as either 

herbicides or fungicides (Fernández-Alba et al. 2002). DCOIT undergoes rapid 

degradation in natural seawater and binds strongly to sediments, reducing its 

bioavailability and hence its potential to bioaccumulate (Castro et al. 2011). These 

characteristics led to DCOIT being considered as one of the environmentally safest 

antifoulants (Jacobson & Willingham 2000; Castro et al. 2011). However, DCOIT 

prevents fouling by reacting with proteins of organisms that encounter the coating 

surface, resulting in interruption of metabolic processes and disruption of the 

physiological processes involved in the attachment of the organism to solid surfaces. 

Thus, ecotoxicity studies have reported high toxicity of DCOIT to non-target organisms, 

especially zooplankton and microalgal species (Table S3 in Supplementary 

Information). TCMTB acts through inhibition of the electron transport chain in 

mitochondria (Fernández-Alba et al. 2002), so a wide range of non-target organisms can 

be affected (Table S3). 

The pyrithione salts, such as zinc pyrithione (ZnPT) and copper pyrithione 

(CuPT), were introduced on the market in the 1990s. Due to broad antimicrobial 

activity, low water solubility and high degradability, they have been used in marine 

antifouling paints as replacements for tributyltin (TBT) (Mochida et al. 2006). It has 

been reported that pyrithiones disrupt the proton motive force in target organisms 

(KEMI 2014). Pyrithiones act by catalyzing the electroneutral exchange of H+ and other 

ions with K+ across cell membranes, resulting in a collapse of ion gradients important to 

cell function. This process may inhibit membrane transport of nutrients and lead 

organisms to starvation and eventual death (KEMI 2014) (Table S4 in Supplementary 

Information).  
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Emerging compounds (Table S5 in Supplementary Information) have been used 

as antifouling biocides on a smaller scale, typically in regional markets. TPBP is a 

broad-spectrum antifoulant used mainly in Japan, where it has been the predominant 

biocide in 40 antifouling products since 1995 (Mochida et al. 2012). There is a lack of 

reported studies on the occurrence and ecotoxicity of TPBP and its mode of action is 

largely unknown (Wendt et al. 2016). Tralopyril is a broad-spectrum biocide used to 

boost antifouling potential of copper-free antifouling formulations by uncoupling 

mitochondrial oxidative phosphorylation (EU 2014b; International 2014). 

Medetomidine is designed to protect against hard fouling (shell-building) marine 

organisms, acting via the activation of analogous octopamine leading to an anti-settling 

effect (EU 2015). 

The natural co-biocide capsaicin and its derivative nonivamide have been 

introduced in the formulation of antifouling paints in China (Oliveira et al. 2014, Liu et 

al. 2016). Both act on the nervous systems through several different mechanisms and 

also disrupt metabolism and damage membranes (Gervais et al. 2008). 

Survey of ecotoxicity information 

Data on the ecotoxicity of antifouling co-biocides was obtained from previously 

published papers and reviews, technical reports and datasets from Environmental 

Protection Agencies (EPAs). The ecotoxicity data that were used in this review required 

that the following criteria were achieved: the test was performed under laboratory 

conditions; exposure was to a single compound; the endpoint and exposure time were 

clearly indicated; and the environment (ie freshwater or seawater) was described. 

Ecotoxicity datasets were analysed according to being either: (1) acute and (2) 

chronic ecotoxicity in freshwater systems; (3) acute and (4) chronic ecotoxicity in 

estuarine/marine systems. The endpoints considered for acute tests were the lethal 
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(LC50) or effective (EC50) concentration which caused a response in 50% of the test-

population. For chronic exposures, valid endpoints were NOEC (no observed effect 

concentration) and LOEC (lowest observed effect concentration). In this study, only 

effects related to population dynamics were used to compose the datasets, such as 

development/growth, reproduction, and survival (van Wezel & van Vlaardingen 2004). 

For those compounds where more than one toxicity value were reported for the same 

test species, the most sensitive endpoint was used (ECB 2003). Tests conducted with 

salinity lower than 0.5 were considered freshwater, all others were considered seawater.  

In total, ecotoxicity data were derived from 101 marine and 132 freshwater 

species (Tables S6-S7 in Supplementary Information), belonging to different ecological 

groups, which provided a comprehensive overview of the ecosystem, yielding more 

reliable results. Both standard and non-standard species for ecotoxicity tests were 

included. The SciRAP tool (Moermond et al. 2016) was used to check the reliability of 

the non-standard tests, and only tests with a reliability > 70% were used to compose the 

datasets. Each dataset was assessed for its internal variability and all data fitted a log-

normal distribution (p > 0.01). Differences in the toxicity between the antifouling co-

biocides, across ecological groups (within the same dataset), and between freshwater 

and marine test organisms, were statistically assessed using Kruskal-Wallis test (α = 

0.05), with Statistica 13.0. All datasets were used to calculate PNECs as described 

below. 

Calculating Predicted No Effect Concentrations (PNECs) 

PNECs for each antifouling co-biocide were derived according to either a deterministic 

approach with the application of assessment factors (AFs) or, when sufficient data were 

available, a probabilistic approach using species sensitivity distributions (SSDs) (ECB 

2003; EC 2011).  
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Whenever possible, PNECs were estimated for each antifouling co-biocide for 

each exposure condition: acute PNEC for seawater (PNECASW), chronic PNEC for 

seawater (PNECCSW), acute PNEC for freshwater (PNECAFW) and chronic PNEC for 

freshwater (PNECCFW), using both the deterministic and the probabilistic approaches. 

Deterministic approach 

A deterministic approach is used especially when a limited dataset is available and then 

AFs are applied to calculate a PNEC. The criterion for choosing the size of the AF was 

following the European TGD on Risk Assessment (ECB 2003, EC 2011). 

Probabilistic approach 

The hazard assessments to derive PNECs were performed by statistical extrapolation 

when the datasets were robust enough to allow the use of SSDs, accounting for several 

ecological groups in a dataset containing at least 10 different species (ECB 2003). SSDs 

were performed following the TGD on Risk Assessment (ECB 2003) and in accordance 

with the Guidance on the Biocidal Products Regulation (ECHA 2015).  

Ecotoxicity datasets were analysed using a probability distribution of the ranked 

log-normal toxicity, and PNECs were derived following the equation (Aldenberg & 

Slob 1993), based on the confidence intervals (c.i.): 

𝑃𝑁𝐸𝐶 =
5%SSD(50% c.i.)

AF
 . 

Plotting positions on the SSD curves were calculated based on the rank of the datum (i) 

and the total number of points (n) in the dataset, following the formula (i - 0.5)/n (EC 

2011). Due to the high robustness of the datasets, the size of the AFs (usually 5-1) is 

lower than those applied in the deterministic approach (ECB 2003, EC 2011). 

Within each dataset, the organisms were sorted into ecological groups as 

follows: (1) Microalgae, including cyanobacteria; (2) Macrophyta, encompassing 
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macroalgae and all other aquatic plants; (3) Zooplankton, encompassing all 

holoplankton animals and the meroplankton invertebrates in their planktonic phase; (4) 

Benthic invertebrates, encompassing juvenile/adult organisms that have already settled 

to their substrates; (5) Fish; (6) Amphibia, encompassing tadpoles of anuran 

amphibians; (7) Bacteria; and (8) Fungi.  

Whenever differences (p < 0.05) were seen in the sensitivity to an antifouling 

co-biocide between ecological groups within the same dataset, a refined SSD was 

performed based on the most sensitive group or groups to reduce variability in the 

dataset (van Wezel & van Vlaardingen 2004).  

The size of the AFs was chosen also following the TGD on Risk Assessment 

(ECB 2003, EC 2011), except when SSDs were created from acute toxicity data. In 

these cases, an AF from 20 to 10 was assigned, accounting for the extrapolation from 

acute to chronic toxicity and the reliability of the dataset (SciRAP score, Moermond et 

al. 2016). 

Estimating Environmental Quality Standards (EQS) 

The most robust PNEC for each condition was set as the Environmental Quality 

Standard (EQS), defined as the maximum acceptable concentration for certain 

substances in a water body (EC 2011). One EQS for seawater (EQSSW) and another for 

freshwater (EQSFW) were determined. EQS estimated from SSDs were preferred over 

those estimated from deterministic values (EC 2011). Likewise, EQS derived from 

chronic studies were preferred over those from acute studies. Determination of EQS 

based on acute SSDs was included when the resulting value was sufficient to protect 

95% of the ecosystem from chronic effects. This was evaluated using the acute: chronic 

ratio (ACR). The acute SSDs were divided by the lowest chronic value reported, which 

resulted in an ACR <10 in all cases (data not shown). 
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Data analysis 

Resulting PNECs and EQS 

Since a reasonable number of ecotoxicity studies have been performed with Irgarol 

1051, diuron (Table S1) and chlorothalonil (Table S2), deterministic and probabilistic-

based PNECs were derived, in either freshwater and seawater, for both acute and 

chronic exposures. For dichlofluanid (Table S2) and ZnPT (Table S4), datasets for acute 

exposure in both seawater and freshwater were adequate to derive probabilistic-based 

PNECs. For DCOIT (Table S3), CuPT (TableS4) and TPBP (Table S5), only acute 

ecotoxicity data in seawater was robust enough to derive PNECs based on SSD, while 

for thiram (Table S2) and TCMTB (Table S3), only the acute dataset in freshwater was 

robust enough.  

For medetomidine and tralopyril (Table S5), only one value could be calculated 

using the deterministic-based approach. It was not possible to derive PNECs for 

capsaicin and nonivamide due to the lack of data (Table S5). All PNECs and the size of 

their respective assigned AFs are summarized in Table 2.  

Deterministic-based PNECs were derived mostly by assigning an AF to the 

lowest reported value for the endpoints evaluated, according to the European guidance 

documents (ECB 2003, EC 2011). Exceptions were made for diuron under chronic 

exposure in seawater, where the most sensitive species was the embryo of the bivalve 

Crassostrea gigas (24 h-NOEC = 4 x 10-3 µg l-1; Mai et al. 2013). However, microalgae 

species were overall more sensitive to diuron than all other ecological groups, and 

therefore chronic toxicity to the cyanobacteria Synechococcus sp. (72 h-NOEC = 0.21 

µg l-1; Devilla et al. 2005) was used to derive the deterministic PNECCSW (Table 2). The 

high sensitivity of the bivalve might have been due to binding to sulphydryl groups on 

molecules that control sperm activation and motility, resulting in impairment of 



13 
 

fertilization and embryonic development (Dinnel et al. 1987). For DCOIT, ZnPT and 

CuPT, exceptions were made to derive deterministic PNECCSW. Both co-biocides were 

extremely toxic to the embryo of the marine echinoid Anthocidaris crassispina 

(Kobayashi & Okamura 2002) (Tables S3-S4). However, when compared to embryo of 

Paracentrotus lividus, which is another sensitive echinoid species from the same order 

(Bellas et al. 2005, Bellas 2006), the latter was much less sensitive, with the range of 

toxicity within the same level to early life stages of other zooplankton. Furthermore, A. 

crassispina is only known to occur in Japanese rocky shores habitats (GBIF 2016), and 

subsequently may not be representative for other ecosystems. Therefore, deterministic 

PNECCSW for DCOIT, ZnPT and CuPT were derived from other sensitive marine 

species. 

Probabilistic-based PNECs for Irgarol 1051 and diuron, were first derived using 

the whole ecotoxicity dataset for each exposure condition, however primary producers 

were more sensitive than all other ecological groups. Therefore, for the reliability of the 

datasets, chronic PNECs based on refined SSDs (AF = 5) were proposed as EQS for 

Irgarol 1051 and diuron, in either seawater and freshwater. Previous studies proposed a 

PNECwater of 1.6 x 10-2 µg l-1 (Yamada 2007), 5.8 x 10-3 µg l-1 (NZEPA 2012), and 2.4 x 

10-2 µg l-1 (van Wezel & van Vlaardingen 2004) for Irgarol 1051, the latter being based 

on the refined chronic SSD to only microalgae and macrophytes. In the present work, 

due to the addition of more sensitive species in the datasets, more protective EQSSW = 

1.4 x 10-3 µg l-1 and EQSFW = 2.2 x 10-4 µg l-1 were calculated (Table 3).   

For diuron, EQSSW = 2.2 x 10-2 µg l-1 and EQSFW = 1.6 x 10-4 µg l-1 were 

calculated. These values were respectively less and more protective than the previously 

proposed PNECwater of 5.48 x 10-3 µg l-1 by the New Zealand Environmental Protection 

Agency (NZEPA 2012). Although the New Zealand EPA also derived the PNEC based 



14 
 

on SSD for primary producers, their data were based on acute toxicity datasets, so an 

AF = 1000 was assigned due to the extrapolation from acute to chronic. Conversely, in 

the present study, EQS were derived from chronic SSDs and a smaller AF = 5 was used.  

For chlorothalonil, refined SSDs were performed by excluding the most tolerant 

ecological groups in each dataset. Benthic invertebrates were removed to derive 

PNECASW, benthic invertebrates and macrophytes to derive PNECAFW, and fungi to 

derive PNECCFW, even though chlorothalonil is a fungicide. The high toxicity of 

chlorothalonil to freshwater fish has been reported (van Wezel & van Vlaardingen 2001; 

Sherrard et al. 2002). In the present review, amphibian tadpoles showed the lowest 

threshold values for chronic toxicity among all groups (Table S2), showing that 

freshwater vertebrates can be very sensitive to this antifouling co-biocide. To date, 

limited information is available on the mechanism of action of chlorothalonil (Gallo & 

Tosti 2015). It has been hypothesized that chlorothalonil binds strongly to enzymes 

involved in cellular respiration (Caux et al. 1996), which may explain the slight higher 

toxicity to animals.  

EQS for chlorothalonil were based on chronic SSDs with an AF of 2, resulting in 

EQSSW = 8.5 x 10-2 µg l-1 and EQSFW = 2.7 x 10-3 µg l-1. Conversely, the New Zealand 

EPA found PNECSW (8.3 x 10-3 µg l-1) more protective than PNECFW (8.3 x 10-2 µg l-1) 

(NZEPA 2012). However, the agency extrapolated the PNECSW from the freshwater 

dataset (AF =10), while in the present study, a robust dataset for seawater was used 

(Table S2). Previous studies have derived PNECwater of 0.69 µg l-1 (Yamada 2007) and 

of 0.53 µg l-1 (van Wezel & van Vlaadinger 2004), much less protective than those 

proposed herein. 

For dichlofluanid, probabilistic-based PNECs were performed only for the acute 

assays, in both seawater and freshwater. Resultant EQSSW was 0.2 µg l-1 (AF = 20), but 
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this value should be used with caution as it is recommended that more chronic tests be 

performed with marine organisms to derive a more reliable PNECSW. A previous study 

suggested a PNECSW of 2.65 x 10-2 µg l-1, using the deterministic approach extrapolated 

from a freshwater dataset (NZEPA 2012). For freshwater, a refined SSD, without 

benthic invertebrates, resulted in an EQSFW of 0.18 µg l-1 (AF = 20), similar to the 

previously estimated PNECFW of 0.27 µg l-1 (NZEPA 2012). Because dichlofluanid is 

very unstable, van Wezel and van Vlaardingen (2004) did not calculate PNECs and 

recommended to use the metabolites to estimate Environmental Risk Limits (ERLs).  

Fish and zooplankton showed the lowest toxicity threshold values in freshwater 

and seawater for Thiram, respectively. A previously reported PNECFW of 0.1 µg l-1 

(NZEPA 2012) is similar to the EQSFW of 0.18 µg l-1 proposed in the present study. The 

same value is recommended for marine ecosystems (EQSSW of 0.18 µg l-1), considering 

that all tested marine species are protected by this value, estimated using an acute 

freshwater SSD.  

The EQS for ZnPT was derived from probabilistic acute PNECs with an AF of 

10, resulting in EQSSW of 1.4 x 10-2 µg l-1 and EQSFW of 7.1 x 10-2 µg l-1. This was in 

line with a previous estimated PNECwater of 2.6 x 10-2 µg l-1 (Yamada 2007). For CuPT, 

EQSSW was estimated from the probabilistic acute PNEC, resulting in EQSSW of 1.9 x 

10-2 µg l-1, while EQSFW was derived from the lowest chronic value resulting in EQSFW 

= 2.4 x 10-3 µg l-1. Previous PNECwater were found to be 2.5 x 10-2 µg l-1 for CuPT 

(Yamada 2007), and PNECSW of 4.6 x 10-2 µg l-1 and PNECFW of 0.11 µg l-1 for both 

ZnPT and CuPT, considering that similar toxicity is expected for both compounds 

(NZEPA 2012). In this study, although similar EQSSW were derived for both pyrithione 

salts, the resultant CuPT EQSFW was one order of magnitude lower than ZnPT EQSFW. 

This can be explained because an AF of 100 was applied to estimate EQSFW for CuPT 



16 
 

using the deterministic approach, which might be overprotective. In this regard, more 

data on chronic toxicity is needed to estimate a more reliable PNECFW for CuPT. 

For DCOIT, probabilistic-based PNECs for freshwater could not be derived due 

to lack of data. Therefore, an EQSFW of 2.7 x 10-2 µg l-1 was estimated based on an AF 

of 100 assigned to the lowest acute value, corroborating with previous calculated 

PNECwater of 2.7 x 10-2 µg l-1 (Yamada 2007) and PNECFW of 3.4 x 10-2 µg l-1 (NZEPA 

2012). Conversely, resultant EQSSW = 6.7 x 10-4 µg l-1 was based on probabilistic 

PNECASW. The New Zealand EPA estimated DCOIT PNECSW as 6.8 x 10-3 µg l-1, 

derived from the lowest NOEC of the freshwater microalgae F. pelliculosa (0.34 µg l-1) 

(NZEPA 2012). Herein, the PNECASW was derived using an acute SSD, resulting in a 

lower value, mainly because of the addition of recent results for a very sensitive 

copepod species (Table S3).  

For TCMTB, previous studies have proposed PNECwater of 0.38 µg l-1 (van 

Wezel & Vlaardingen 2004), PNECFW of 1.8 x 10-2 µg l-1 and PNECSW of 1.8 x 10-3 µg 

l-1 (Londesborough 2005). Herein, due to a lack of data with marine species, the same 

EQSFW of 8.6 x 10-2 µg l-1 was derived and extended to seawater (EQSSW), since this 

value showed to be protective to all species tested. However, there is a clear need for 

chronic tests with marine zooplankton and microalgae for TCMTB.  

In a previous evaluation, Mochida et al. (2012) estimated Hazardous 

Concentrations (HC5 = 0.79 µg l-1 and HC1 = 0.17 µg l-1) for TPBP based on SSD, and 

attributed low risk of TPBP to the coastal area of Hiroshima Bay, where the study was 

conducted. In the present review, acute data for the copepod Acartia tonsa was added to 

the dataset (48 h-LC50 = 0.16 µg l-1; Wendt et al. 2016), the reported most sensitive 

species to TPBP. Based on acute SSD, an EQSSW = 6.2 x 10-3 µg l-1 was estimated, 

which is more protective than the values derived in the previous study. The lack of 
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chronic data (Table S5) calls for more conservative values to better protect the 

ecosystem. PNECFW was not estimated due to a lack of data. 

For other emerging antifoulants, such as capsaicin, nonivamide, medetomidine 

and tralopyril, there is a need for more ecotoxicity data (Table S5) before robust PNECs 

can be estimated. Despite that, an EQSFW of 6.5 µg l-1 was estimated for medetomidine, 

based on the acute toxicity to the microalgae Desmodesmus subspicatus (72h-EC50 = 

650 µg l-1; ECHA 2014); and an EQSFW = 2 x 10-3 µg l-1 for tralopyril, based on the 

chronic toxicity to Daphnia magna (21 d-NOEC = 0.2 µg l-1; ECOTOX 2000-2017). 

However, more robust chronic datasets are needed to reduce uncertainties in deriving 

quality standards.  

In summary, EQS were based on chronic toxicity whenever there was enough 

quality data (Table 3). The continuous release of antifouling biocides into the aquatic 

environment, especially seawater, may lead to chronic effects in wildlife, in which they 

display less severe effects (other than mortality) developed by continuous exposure to 

low levels of pollutants (Walker et al. 2012). EQS based on chronic ecotoxicity data 

were therefore preferred since they are more protective on a long-term basis. 

Furthermore, a probabilistic approach was preferred because SSDs consider many 

representative groups of the ecosystems, generating more robust PNECs and EQS. 

When toxicity was clearly associated with one or a few ecological groups, SSDs curves 

were further refined to protect the most sensitive groups of organisms (van Wezel & van 

Vlaardingen 2004), ensuring the protection of the whole ecosystem. 

Comparative ecotoxicity 

Freshwater vs. seawater 
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Most studies reported in literature have calculated EQS and PNECs by collating 

ecotoxicological results from freshwater and marine species in the same dataset (Del 

Signore et al. 2016). This approach is supported by the European technical guidance for 

ERA, which establishes criteria to use data from freshwater species to derive PNECs for 

seawater (ECB 2003, EC 2011). Depending on the chemical analysed and the biological 

group exposed, derived PNECs and EQS for a certain compound can be higher in 

freshwater than seawater or vice-versa. Conversely, they can be similar in both 

ecosystems, as has been demonstrated from SSDs resulting from different studies (Del 

Signore et al. 2016). 

In the present study, tests performed in freshwater (FW) and seawater (SW) 

were analysed separately to investigate the influence of the salinity in the toxicity of the 

selected antifouling co-biocides. Overall, the results were not statistically different (p > 

0.05) between FW and SW, suggesting that both datasets could be combined for an 

integrated analysis. In fact, the influence of dissolved salts on the toxicity of organic 

compounds is not very well understood and may vary depending on the group of 

contaminants (Wright & Welbourn 2002).   

On the other hand, despite the lack of differences between the FW and SW 

datasets, resultant EQS for some biocides differed between SW and FW. For example, 

estimated EQSFW for Irgarol 1051, diuron and chlorothalonil were lower than EQSSW 

(Table 3). This might be explained by the differences in the individual toxicity value of 

the sensitive species in the dataset, which may shift the SSD curve to the left resulting 

in lower PNECs. For example, the most sensitive freshwater species to chlorothalonil 

(amphibian tadpoles of Hyla cinerea and Rana sphenochephala, 10 d-LOEC = 0.0164 

µg l-1) were one order of magnitude more sensitive than the seawater species 
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(microalgae Thalassiosira pseudonana, 96 h-NOEC = 0.57 µg l-1), resulting in 

PNECCFW more conservative than PNECCSW.  

Conversely, EQSSW was lower than EQSFW for DCOIT, unlike previous data 

reported by Mochida & Fujii (2009). Herein, marine organisms showed lower acute 

toxicity threshold values when compared individually. The EC50 or LC50 for the most 

sensitive freshwater microalgae, zooplankton and fish were 32, 12.7 and 2.7 µg l-1, 

respectively. For marine species, these values were 0.35, 0.02 and 20.5 µg l-1, 

respectively (Table S3). As a result, the EQS was more sensitive to marine species, even 

when assigning a lower AF (10) compared to EQSFW (AF =100). The large variance of 

the datasets can be a confounding factor making the results difficult to interpret. 

Nevertheless, the resulting EQS suggest that marine ecosystems may be considered 

overall more sensitive to DCOIT.  

Antifouling co-biocides 

Since there was no difference between FW and SW ecotoxicity datasets, antifouling co-

biocides were grouped according to their mode of action and groups were compared 

with regard of their toxicity. Only co-biocides for which there were both FW and SW 

datasets were used in the comparative analysis. Herbicides (Irgarol 1051 and diuron) 

were clearly the most toxic group to aquatic ecosystems (p < 0.01), followed by 

microbiocides (ZnPT and CuPT) and broad-spectrum co-biocides (DCOIT and 

TCMTB). The group of fungicides (chlorothalonil, dichlofluanid and thiram) was the 

least toxic group to aquatic organisms (Figures 2-3). As expected, herbicides were more 

toxic to primary producers, however it is important to highlight that Irgarol 1051 and 

diuron were toxic for many species at environmentally relevant concentrations (Thomas 

et al. 2001; Carbery et al. 2006; Ali et al. 2013; Diniz et al. 2014) (Table 4). 
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Fungicides tend to be more toxic to animal groups, and very toxic to seawater 

zooplankton and freshwater vertebrates (Table S2). Indeed, chlorothalonil was toxic for 

freshwater fish and amphibians in concentrations in which it has been detected across 

the world (Saakas et al. 2002; Lee S et al. 2011; Lee M et al. 2015) (Table 4), indicating 

its potential risk to water bodies. Broad-spectrum biocides and microbiocides showed 

similar toxicity, affecting primary producers and consumers, even at low concentrations. 

In Asian and European countries, DCOIT was reported in levels above thresholds to 

trigger toxicity to microalgae and zooplankton species (Martínez & Barceló 2001; 

Thomas et al. 2002; Harino et al. 2007; Tsunemasa 2013), indicating also potential risks 

brought by these group of co-biocides.  

In the scope of the above, it can be noted that distinct biological groups respond 

differently according to the group of antifouling co-biocides. This is a major challenge 

for selecting compounds that could be applied to eliminate undesired fouling organisms, 

but are not very harmful to other biotic components of the ecosystem. Research 

performed so far has shown that different contaminants undergo various processes into 

water bodies, resulting in different degrees of bioavailability (Thomas & Brooks 2010) 

and environmental concentrations mainly in the orders of pico and nanograms per liter 

(Yamada 2007; Castro et al. 2011; Dafforn et al. 2011; Lee S et al. 2011). As 

exemplified above, such environmental concentrations are sometimes high enough to 

trigger sublethal and even lethal effects to sensitive groups. 

Ecological groups 

As discussed above, deriving PNECs and EQS using the probabilistic approach reduces 

uncertainties because it considers representative organisms that occupy different niches 

in the ecosystems, generating more realistic results which requires lower AF. Most of 

the published studies on SSD categorized organisms into three groups, algae (primary 
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producer), crustacean (primary consumer) and fish (secondary consumer) (ie DeLorenzo 

& Fulton 2012; Mochida et al. 2012). However, other ecological groups play crucial 

roles in ecosystems. In this sense, the European TG for deriving EQS requires at least 8 

taxonomic groups to perform SSD for aquatic ecosystems (EC 2011). Still, they are 

categorized according to their taxonomic classification and not by their ecological 

group, as has been done in the present work.  

Herein, the test species were grouped according to the expected sensitivity in 

different life stages, along with their representativeness. Thus, zooplankton and benthic 

invertebrates were treated as two different ecological groups, even if they belong to the 

same taxonomic group. For example, embryo and larvae of oyster species were included 

in the zooplankton group, whilst settled adults were treated as benthic invertebrates. 

Life stage is one of the most important biotic parameter that can influence toxicity, 

since organisms are usually more sensitive to chemicals during their early life stages 

(Grosell et al. 2002, Mohammed 2013). Crustaceans and mollusks, for example, have 

different sensitivities to pollutants throughout their ontogeny (Mohammed 2013). 

Indeed, zooplankton were more sensitive than benthic invertebrates to all antifoulants 

analysed in the present study (Figures S1-S10 in Supplementary Information), with the 

early life stages of cladocerans, copepods, mysids, bivalves and sea urchins the taxa 

having the lowest toxicity trigging values. Moreover, estuarine-dependent and 

estuarine-opportunist species tend to inhabit areas usually in close proximity to sources 

of antifoulants, during their initial life stages (DeLorenzo & Fulton 2012). This 

reinforces the importance of treating organisms in their zooplankton phase with great 

attention.  

It is known that fish also exhibit different sensitivities along their ontogeny, with 

the early life stages usually being the most sensitive (Gagnon & Rawson 2009). 
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However, they were grouped together in the present study, because most of published 

studies did not provide the information on the life stage tested. Publications lacking in 

information on the life stage of the test organism may either over or underestimate the 

actual toxicity of pollutants. Thereby care should be taken when reporting ecotoxicity 

data, especially when standard guidelines are not followed.  

In freshwater systems, tadpoles of amphibians were very sensitive to antifouling 

co-biocides. However, data on amphibian toxicity are available only for chlorothalonil, 

diuron and thiram. Nearly one-third of the amphibian species are currently threatened 

with extinction, and environmental pollution, such as the use of pesticides, is known to 

be one of the threats to amphibian biodiversity (Alza et al. 2016). Although the use of 

antifoulants is more often associated with estuaries and seas, they are also used to some 

extent in freshwater bodies (Arai et al. 2009). Therefore, it is important to elucidate how 

amphibians respond to exposure to other antifouling co-biocides.  

The ecological groups used in the present study included representative 

organisms of many trophic levels and niches of aquatic ecosystems, encompassing 101 

marine and 132 freshwater species (Tables S6-S7 in Supplementary Information). Out 

of these, only 21 freshwater and 16 marine species were evaluated according to 

standardised ecotoxicity tests, showing a limited number of standard test species. 

Despite that, the use of results from non-standardised test species to derive EQS must be 

carefully considered. Herein, the data quality was assessed using the SciRAP tool, and 

only reliable assays were included (Moermond et al. 2016).  

Comparing EQSs based on standard species only (Tables S8-S9 in 

Supplementary Information) with EQSs for the whole datasets (standard + non-standard 

species; Table 3) resulted in low differences (< 10) in most cases. Thus, the use of non-

standard species does not necessarily reduce the reliability of toxicity test data, if 
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performed under adequate and reliable conditions. Exceptions were EQSSW for 

chlorothalonil, ZnPT and thiram, and EQSFW for TCMTB and diuron, which were 50, 

15, 78, 25 and 16 times, respectively, more protective when datasets were based on 

standard species only. These differences may be explained because EQS for standard 

species were calculated from deterministic PNECs with the application of higher AFs, 

which represents a certain overestimation of the toxicity. The addition of non-standard 

species to the datasets, on the other hand, greatly increased the number of ecological 

groups allowing the calculation of probabilistic-based PNECs using much lower AFs 

for many of the antifoulants analysed.  

Furthermore, most standard species are not as widely distributed or as 

ecologically representative as they should be (GBIF 2016). For example, zooplankton 

were very sensitive to fungicides, but all standardised test species of freshwater 

zooplankton originate from North America and Europe (OECD 2004; ISO 2008, 2012; 

GBIF 2016). Hence, deriving EQSFW based on these species might not be a good 

strategy to protect aquatic ecosystems in South America, Africa or Oceania, where 

distinct physicochemical properties of water bodies may result in different toxicity to 

native zooplankton. Subsequently species from these different geographical locations 

may exhibit different sensitivities than standard species to antifoulants. In this sense, the 

suitability of using non-standard species is of great importance for deriving site-specific 

EQS, in which locally abundant species can greatly aid on a case-by-case basis.  

Implications for Environmental Risk Assessment (ERA) 

Risk is the probability of harmful effects to human health or to ecological systems 

resulting from exposure to an environmental stressor (U.S.EPA 1992). Thereby, ERA is 

an essential tool to estimate the risks associated with the release of antifoulants into 

aquatic ecosystems, since ERAs consider both the exposure scenario and the hazard to 
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aquatic wildlife. Importantly, industry have been required to perform ERAs to register 

or reregister biocidal products (including antifoulants) in many countries, especially in 

Europe, North America and Oceania (U.S.EPA 1998; EU 2012; NZEPA 2013).  

Environmental exposure scenarios to the antifouling co-biocides was not 

evaluated in the present study, except for freshwater/seawater conditions. However, 

whenever checking the reliability of the ecotoxicity reports, it was noted that not all 

authors provide information about the exposure duration and how often the exposure 

medium is renewed during the test. Describing such information is imperative since 

half-lives of chemicals are determined by the rate in which their transformation 

processes in water occur, which in turn depends on the geochemical and 

physicochemical properties of the ecosystem (Wright & Welbourn 2002; Walker 2009). 

In this sense, water quality parameters such as temperature, dissolved organic carbon 

and pH should also be clearly described due to the direct influence on the bioavailability 

and toxicity of contaminants (Wright & Welbourn 2002).  

Following the global ban of TBT, the use of alternative antifouling co-biocides 

has increased throughout the world, despite there being limited knowledge about the 

potential deleterious effects associated to their use. Assessing risks in complex 

ecosystems is a difficult task, and there are still many gaps to be filled. Considering that 

the behavior and effects of most single chemicals are still not fully understood, 

uncovering the overlapping effects of many antifoulants along with several other types 

of contaminants is an even harder task (van Gestel et al. 2010). In addition, quite 

specific uptake routes must be considered for antifouling biocides, such as the ingestion 

of paint particles, which may be aggravated by the improper use and removal of 

antifouling paints (Thomas & Brooks 2010, Soroldoni et al. 2017). On top of that, there 
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are many uncertainties of extrapolating laboratory observations to real ecosystems 

(Chapmen 1995; Lombardo et al. 2015; Forbes & Galic 2016).  

Nevertheless, deriving reliable PNECs and EQS are of utmost importance to 

protect wildlife and ensure ecological equilibrium in aquatic ecosystems (EC 2011). 

Regulatory science has been increasingly refined towards the protection of ecosystems, 

and ERAs have been helpful to identify acceptable risks of contaminants (ECHA 2015). 

Considering that some antifouling co-biocides have been found in nature at 

concentrations above PNECs/EQS, adverse effects may take place in the aquatic 

ecosystems. Thus, some protective measures have been implemented by authorities to 

reduce the potential risks in some countries (Tornero & Hanke 2016). 

Irgarol 1051 and diuron have been detected in water and sediment samples 

worldwide (Thomas & Brooks 2010; Dafforn et al. 2011). They are among the most 

persistent co-biocides (Thomas et al. 2002, 2003), increasing the risk to ecosystems. 

Previous risk assessments have identified Irgarol 1051 and its metabolite M1 as 

hazardous to coastal waters, specifically marinas and fishing harbours (Yamada 2007; 

Fernandez & Gardinali 2016). Governments from Europe, Asia, North America and 

Oceania have already restricted or forbidden the use of Irgarol 1051 and/or diuron 

(Bannink 2004; Cresswel et al. 2006; DEPA 2008; Thomas 2009; Dafforn et al. 2011).  

The current European legislation includes diuron as a priority substance in the 

water framework directives and establishes Annual Average EQS (AA-EQS) of 0.2 µg 

l-1 and Maximum Allowable Concentration EQS (MAC-EQS) of 1.8 µg l-1 for this 

herbicide (Directive 2013/39/EU) (OJEU 2013). However, the estimated EQS in the 

present study showed that the autotrophic community is affected by concentrations 

below that, as previously reported by Sjollema et al. (2014), who concluded that 
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selected microalgal species are not protected by the current legislation and suggested the 

continuation of monitoring programs for diuron. 

The fungicides thiram and chlorothalonil are not registered for use as 

antifoulants in European countries, but are authorized in Australia, New Zealand 

(thiram only) and some Asian countries (Thomas 2009; Dafforn et al. 2011; NZEPA 

2013). Chlorothalonil has restricted use in Canada, with an established water quality 

criteria (WQCs) for fresh (0.18 µg l-1) and marine waters (0.36 µg l-1) (CCME 1999). 

On the other hand, dichlofluanid has been regarded as a low-risk antifouling co-biocide, 

being approved in Oceania, Asian countries, UK and European Union (NZEPA 2013; 

APVMA 2017; OJEU 2017). In the present review, similar EQS values were attributed 

to thiram and dichlofluanid, which were higher than the EQS for chlorothalonil (Table 

S2). In addition to toxicity endpoints, the exposure scenario should also be considered 

before concluding on the ERA. Since dichlofluanid is very unstable in the environment 

(Hamwijk et al. 2005), it is unlikely to occur at toxic levels in the ecosystems (Table 4).  

The broad-spectrum antifoulant DCOIT is highly toxic to zooplankton and 

microalgae (Table S3). However, the rapid biodegradation and adsorption to sediment 

effectively limit its concentration to levels below toxic thresholds (Jacobson & 

Willingham 2000), resulting in a low risk to the environment. However, some authors 

have concluded that hazardous impacts of DCOIT might appear in areas where boats are 

moored due to continuous inputs (Madsen et al. 2000; Yamada 2007; Chen & Lam, 

2017), and should be given priority for further work (Mochida et al. 2015). Indeed, 

despite the relatively low DCOIT EQSSW of 6.7 x 10-4 and EQSFW of 2.7 x 10-2 µg L-1, 

especially for seawater, aquatic ecosystems are under risk since concentrations above 

these thresholds have already been measured in the environment (Table 4). Even so, the 

use of DCOIT in paint formulations is authorized in many countries, including 
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Australia, Japan, China, UK and the European Union (NZEPA 2013; OJEU 2014; 

APVMA 2017). DCOIT is under review in the U.S. (U.S. 2014). 

For the microbiocidal pyrithione salts, Madsen et al. (2000) indicated a risk of 

chronic effects of ZnPT from pleasure crafts in Denmark, although the risk is low from 

seaborne vessels. ZnPT is pending approval in the European Union, while CuPT is 

already approved (OJEU 2015). Japan, Hong Kong, China, Australia and New Zealand 

authorize the use of both pyrithione salts in antifouling paint formulations (NZEPA 

2013; APVMA 2017). 

Emerging compounds with regional markets have also been risk assessed. 

Mochida et al. (2012) concluded that TPBP posed a low risk to the Hiroshima Bay 

(Japan), suggesting an HC1 of 0.17 µg l-1 (estimated from SSD) as a cutoff value. 

Herein, a more protective EQSSW of 6.2 x 10-3 µg L-1 was suggested, considering that 

only two reports of chronic toxicity for TPBP are available. Thus, more chronic studies 

are necessary to provide more reliable PNECs/EQS. Yamada (2007) also recommended 

further studies before evaluating the hazardous impacts of TPBP. 

For medetomidine, Wendt et al. (2013) concluded that this antifoulant poses a 

low risk to the macroalgae Ulva lactuta because the maximum predicted environmental 

concentration (PEC) is low (0.057 µg l-1, Ohlauson et al. 2012). Conversely, the EC10 

for egg production of the copepod A. tonsa was reported as 0.16 µg l-1 (Wendt et al. 

2016), suggesting that medetomidine might pose a risk to the marine environment, 

depending on the exposure conditions. Since medetomidine is an octopamine-receptor 

agonist, mimicking the action of this neurotransmitter (Lind et al. 2010), animals are 

expected to be more sensitive than algae and plants. This reinforces the importance of 

understanding the response of a pollutant to a wide range of ecological groups. 

Hilvarsson et al. (2007) indicated medetomidine as a promising candidate for use as a 
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safer antifouling biocide, but stated that its actual risk to the environment would not be 

sufficiently understood until its leaching and degradation rates in the environment are 

better known. Risks can be reduced using paints with controlled leaching to minimise 

concentrations in the marine environment, and consequently their effects on non-target 

organisms (Krång & Dahlström 2006). 

Wang et al. (2014) predicted the environmental risk of capsaicin, a natural 

compound extracted from chili peppers, and concluded that this antifoulant poses a 

relatively low risk to marine environments. This is because it undergoes rapid 

biodegradation, has a low potential for bioconcentration and is present in the 

environment at concentrations below toxic thresholds. Similarly, in a preliminary ERA 

of nonivamide, Liu et al. (2016) found a low risk of this antifoulant to marine 

microalgal communities due to its easy and rapid degradation. However, limited data on 

the ecotoxicity of capsaicin and nonivamide is currently available (Table S5).  

In summary, the regulation of antifouling co-biocides is within the 

environmental policies of some regions, especially Oceania, some Asian countries and 

Europe. ERAs have been used to make final decisions to register, restrict, revoke or ban 

the application of the compounds, based on acceptable risks or otherwise. Conversely, 

there are many countries with no regulations addressing the issue of antifouling biocides 

in natural environments. South America, for example, has a large coast line facing both 

Atlantic and Pacific Oceans, which shelter a great biodiversity of aquatic life (MMA 

2004). However, to our knowledge there is no regulation concerning antifouling 

biocides, except for the ban of organotin paints (IMO 2000).  

In the present study, ecological effects of the selected antifouling co-biocides 

were assessed, bringing important contributions towards the refinement of hazard 

assessments: (1) ecotoxicity datasets were updated (Tables S1-S5 in Supplementary 
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Information); (2) EQS were mostly derived from probabilistic-based PNECs, allowing 

the reduction of the size of AF and ensuring protection to ecosystems in their entirety 

(Tables 2-3); (3) it was shown that freshwater and seawater are overall equally sensitive 

to the analysed antifouling co-biocides; and (4) the use of non-standardised species was 

supported since they resulted in similar EQSs when compared to standardised species 

only (Tables 3, S8-S9 in Supplementary Information). 

In this sense, the present study determined reliable EQSs for many antifouling co-

biocides that have been applied worldwide, using a methodology with fewer 

uncertainties, and accounting for important variables that may influence toxicity. 

Therefore, the present work can better guide hazard and environmental risk 

assessments, serving as a benchmark to drive future directions in ERAs of antifouling 

co-biocides, especially in regions where no such policies are available.  

Conclusions 

A probabilistic method (SSD) for estimating PNECs and EQS is preferred over the 

simple use of assessment factors (AFs), because SSDs account for different 

representative ecological groups of an aquatic ecosystem, reducing uncertainties and the 

need of assigning large AFs. However, there are still insufficient ecotoxicity data to 

construct reliable SSD curves for many antifoulants, thus requiring the application of 

overprotective AFs. In this regard, effort should be made to increase reliable chronic 

ecotoxicity datasets for certain antifouling co-biocides, using either standardised or non-

standardised representative species, to estimate more accurate PNECs and EQS.  

Among the ecological groups tested to date, algae, zooplankton, fish and 

amphibians were the most sensitive and are therefore very important for deriving more 

realistic PNECs and EQSs. Zooplankton were much more sensitive than benthic 
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invertebrates, highlighting the advantage of categorizing groups for SSDs according to 

their ecology instead of taxonomic classification.  

The derived EQSFW for Irgarol 1051, diuron and chlorothalonil, as well as the 

EQSSW for Irgarol 1051, DCOIT and TPBP, were more restrictive than previously 

estimated EQSs. Due to lack of data, it was not possible to estimate EQS for most of 

emerging antifoulants. However, even based on a few studies, it seems that some 

emerging compounds eg medetomidine, pose low risks to the environment, although 

more robust datasets are necessary for a thorough appraisal.  

Overall, among the assessed antifouling co-biocides, herbicides were more toxic 

to the aquatic ecosystems, followed by microbiocides and broad-spectrum biocides. 

Fungicides were the least toxic, but still of some concern. Since many antifouling co-

biocides seem to be toxic in concentrations below those already detected along water 

bodies, they pose a real risk to the aquatic ecosystems. Thus, the more frequently an 

antifoulant is used, the more likely it is to cause environmental impacts due to 

continuous input. Despite their widespread use, regulations on antifouling co-biocides 

are still restricted to a few countries. Effort should be made by national authorities to 

increase the number of other nations to adopt policies for regulating antifouling co-

biocides based on risk assessments. In this regard, the present study brings important 

contributions to address hazard assessments of antifouling co-biocides, by estimating 

reliable EQS based on a wide range of ecological groups.  
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Table and Figure Captions 

Table 1. Physicochemical properties of antifouling co-biocides 

Table 2. Derived PNECs to antifouling co-biocides following different approaches. 

Assessment factors applied are shown in brackets. Proposed EQS are bold highlighted 

Table 3. Summary of the proposed EQS for different antifouling co-biocides. Values in 

bold (chronic) or bold-italic (acute) were derived from SSD curves. Other were 

extrapolated from the lowest toxicity threshold value 

Table 4. Reported world maximum concentration of organic antifouling co-biocides in 

coastal environments 

 

Figure 1. Workflow diagram for the present study. Dashed rectangles - used tools; light 

gray ellipses – compared data in each block. 

Figure 2. Comparative ecotoxicity of antifoulants to marine species. Bac = Bacteria  

Figure 3. Comparative ecotoxicity of biocides to freshwater species. B = Bacteria; F = 

Fungi 
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