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Abstract

Guaranteeing clean drinking water to the global population is becom-

ing more challenging, because of the cases of water scarcity across the globe,

growing population, and increased chemical footprint of this population. Ex-

isting targeted strategies for hazard monitoring in drinking water are not ad-

equate to handle such diverse and multidimensional stressors. In the current

study, we have developed, validated, and tested a machine learning algorithm

based on the data produced via non-targeted liquid chromatography coupled

with high resolution mass spectrometry (LC-HRMS) for the identification of

potential chemical hazards in drinking water. The machine learning algo-

rithm consisted of a composite statistical model including an unsupervised
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component (i.e. principal component analysis PCA) and a supervised one

(i.e. partial least square discrimination analysis PLS-DA). This model was

trained using a training set of 20 drinking water samples previously tested

via conventional suspect screening. The developed model was validated us-

ing a validation set of 20 drinking water samples of which 4 were spiked

with 15 labeled standards at four different concentration levels. The model

successfully detected all of the added analytes in the four spiked samples

without producing any cases of false detection. The same validation set was

processed via conventional trend analysis in order to cross validate the com-

posite model. The results of cross validation showed that even though the

conventional trend analysis approach produced a false positive detection rate

of ≤ 5% the composite model outperformed that approach by producing zero

cases of false detection. Additionally, the validated model went through an

additional test with 42 extra drinking water samples from the same source for

an unbiased examination of the model. Finally, the potentials and limitations

of this approach were further discussed.

Keywords:

Machine learning; Non-target; LC-HRMS; Drinking water; Statistical

modeling

1. Introduction1

Providing clean drinking water is crucial for sustaining human health and2

it is therefore defined as one of the UN goals for sustainable development [1].3
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According to the World Health Organization, providing clean drinking water4

to the global population may reduce the worldwide disease by ∼ 10%. To-5

day, factors such as: urbanization, human chemical footprint (i.e. chemical6

production, consumption, and release), global water scarcity due to climate7

change, and population growth are making the production and distribution8

of clean drinking water to the global population a challenging task [2–4].9

The situation is far from static as the challenges grow and change, and this10

is evident in the ever evolving water quality monitoring programs across the11

globe. However, during the past two decades, it has become more and more12

evident that existing water monitoring strategies are not adequate to address13

these challenges [2–6].14

15

Non-target analysis using liquid chromatography coupled with high reso-16

lution mass spectrometry (LC-HRMS) has been the leading analytical strat-17

egy to tackle the challenges faced by a diffuse and highly dynamic chemical18

footprint [7–12]. This approach (i.e. non-targeted LC-HRMS), differently19

from typically limited and targeted routine monitoring strategies, is not bi-20

ased towards a small number of target analytes. However, it generates highly21

complex datasets with thousands of features to be analyzed for each sample.22

To deal with such large and complex datasets the analysts have to isolate the23

environmentally relevant features from the generated features lists (i.e. pri-24

oritization) [7, 9, 13, 14]. Prioritization may be performed using the intensity25

of the features and/or based on the statistical significance of those features26
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when compared to the samples from different origins, for example [7, 13].27

Intensity based prioritization is relatively fast, but it ignores the lower inten-28

sity features, which may be relevant. Therefore, a statistical approach may29

be more adequate for analysis of water samples, including drinking water.30

31

Recently, advanced statistical tools such as machine learning algorithms32

have been utilized for regression, dimension reduction, and sample classifi-33

cation via simple or composite models [15]. This approach is a widely used34

method for prediction of chemical and physical properties of compounds [16].35

However, to our knowledge it has never been used in combination with non-36

targeted LC-HRMS data for monitoring of water samples.37

38

The aim of this study was to develop a risk warning system of potential39

chemical hazards in drinking water by combining non-targeted LC-HRMS40

and machine learning. The drinking water samples (i.e. 82 samples) were41

divided in three groups: 20 samples for a training set, 20 samples for a42

validation set, and 42 samples for a test set. The training set was used for43

the model development whereas the test set and the validation sets were44

utilized for the model validation. During the model validation and test, we45

cross validated our model via trend analysis and suspect screening.46
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2. Methods47

2.1. Chemicals48

All chemical standards and solvents (ACS grade) were purchased from49

Novachem Pty Ltd. (Victoria, Australia) whereas the technical grade filters50

were obtained from Phenomenex. A complete list of the labeled internal stan-51

dards, their measured retention time, and their measured masses is provided52

in the Supporting Information, Section S1.53

2.2. Environmental Samples and Sample Processing54

In total 82 drinking water samples of 1 L each were received from South55

East Queensland, Australia, during a 6 week time period between March and56

April 2018. Each sampling day consisted of six water samples, except two57

instances with five samples, taken during the day with intervals larger than58

1 hr. The samples were treated drinking water directly from six treatment59

plants with the same source water and treatment processes. The samples60

were delivered to the lab at 4◦C and were immediately processed and analyzed61

(i.e filtered and spiked with internal standards). For the analysis, all 8262

drinking water samples were filtered using 2 µm filters and an aliquot of each63

was transferred into 1.5 mL vials having a final volume of 1 mL, without any64

further processing. All the samples were spiked with 5 µL of a 1 ppm stock65

solution of caffeine 13C to obtain an injection standard (i.e. caffeine 13C)66

concentration of 5 ppb. The sample preparations were kept to minimum in67

order to avoid any type of cross-contamination of the samples.68
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2.3. Instrumental Conditions and Analysis69

All 82 drinking water samples were analyzed using a Sciex ExionLC chro-70

matography system coupled to a Sciex X500R QTOF mass spectrometer (AB71

SCIEX, USA). Ten µL of each sample was directly injected into the system72

and separated with Kinetex Biphenyl column (50 × 2.1 mm, 2.6 µm, Phe-73

nomenex) at 50◦C. The separations were carried out using 0.1% formic acid74

in MilliQ water as mobile phase A and 0.1% formic acid in methanol as mo-75

bile phase B at a flow rate of 0.4 mL/min. The gradient started at 0% B for76

0.5 min, then ramped up to 100% B in 9.5 min with a non-linear Curve (con-77

vex) and maintained at 100% B until 14.5 min before returning to 0% B for78

equilibration. The mass spectrometer was equipped with a TurboIonSpray79

ion source and operated employing Electron Spray Ionization (ESI) source in80

positive mode with data-independent acquisition. During pseudo MS2 scans,81

the collision energy (CE) was set at 35 eV (more details are provided else-82

where [12]). These instrumental conditions were previously optimized for83

these type of analysis [12, 17, 18].84

85

For quality control, all the glassware used during the analysis were baked86

overnight at 450◦C. We did not expect a large level of variability in the87

samples due to the simplicity of the matrix (i.e. drinking water) as was88

previously observed for similar matrices [12, 17, 18]. Moreover, each five89

samples were followed by a blank injection, which consisted of a MilliQ water90

spiked with the labeled internal standards (Section S1). All the analyzed91
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blanks were procedural blanks and were treated in the same way as the92

samples. The samples were injected in a randomized order.93

2.4. Experimental Setup94

The 82 drinking water samples were divided into three categories: the95

training set (20 samples), the validation set (20 samples), and the test set96

(42 samples), Fig. 1. For the training set and validation set, we selected97

a 50% division of the data in order to avoid any over-training of the model98

[15, 19]. With regards to the test set, we used a large test set in order to as-99

sess if a large enough training set was used for the model generation. In other100

words, a small training set would result in a large number of false positive101

detection during the model test. The training samples were employed dur-102

ing the machine learning algorithm development (i.e. the composite model)103

whereas the test set samples were used for an unbiased performance evalu-104

ation of the model. Four out of 20 validation set samples were spiked with105

a mixture of 15 labeled internal standard at 2.5 ppb, 5 ppb, 10 ppb, and 20106

ppb of each internal standard in addition to caffeine 13C. Prior to the model107

development all these 40 water samples were subject to conventional suspect108

screening in order to assess their quality (see Section 2.7 for more details).109

Finally, we employed the developed and validated model to assess the quality110

of the test set (i.e. 42 water samples). During the model validation and model111

test steps we included two different cross validation steps, which consisted112

of processing the same dataset with two conventional methods (i.e. trend113
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analysis and suspect screening). Further details regarding both the trend114

analysis and the suspect screening are provided in Sections 2.5 and 2.7).115

Moreover, the validated model was further examined via synthetic datasets116

where 5 randomly selected samples from the validation set were added to the117

test set. This process was repeated 50 times to further test the applicability118

of the model for different drinking water samples. This implied during each119

iteration a random combination of the spiked and unspiked samples were120

added to the test set for further evaluation. Doing so enabled us to truly121

evaluate the likelihood of false detection of the model. It should be noted122

that the samples did not go through any sample pre-concentration and the123

concentration of each spiked standard at the lowest concentration level (i.e.124

2.5 ppb) was close to the measured limit of detection for the same standards125

(i.e. ∼ 1.5 ppb or 15 pg on column).126

127

Using this experimental design, we were able to first build our model via128

the training set, validate the model using the validation set, and test the129

model through the synthetic test set.130
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Figure 1: The schematic of the workflow employed in this study including sample division,
modeling, and cross validation.

9



2.5. Machine Learning Algorithm Workflow131

The acquired chromatograms for all the samples, including the training132

set, validation set, and the test set went through the following steps sequen-133

tially: 1) peak picking, 2) peak alignment, 3) correction for the background134

variability, 4) standardization, and finally 5) modeling. The workflow was135

divided in two parts pre-processing, which included steps 1 to 4 and the136

modeling which was the fifth step in the complete workflow.137

2.5.1. Data Pre-processing138

All the chromatograms were peak picked using Sciex OS 1.4 (AB SCIEX,139

USA) employing a minimum peak area of 1000 counts and a signal to noise140

ratio of five. After the peak picking, we used Sciex OS for the alignment141

of the chromatograms, which employed a maximum peak width of 6 s in142

the time dimension whereas the mass window was set to 0.003 Da. Both143

of these parameters were selected based on the reported peak boundaries in144

the time dimension and the observed mass error in m/z values (i.e. ±0.003145

Da). The aligned peak list at this stage went through the correction for146

the background variability. This step enabled us to correct for the variability147

observed in the background signal caused by the instrument fluctuations [20].148

We employed the C13 labeled caffeine signal for the background variability149

correction of all the datasets, including the training set, validation set, and150

the test set. For the background variability correction, the signal of all the151

features in a sample was divided by the intensity recorded for the injection152
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standard (i.e. C13 caffeine) in that sample. The last step of the data pre-153

processing consisted of standardization via Pareto method [20], which divides154

the intensity of each feature (i.e. the tensor of m/z value, retention time, and155

intensity) by the square root of the standard deviation of that feature across156

all the chromatograms. The standardization reduces the variability range of157

each feature, thus giving the same importance to each feature independently158

from their intensity. Following the above-mentioned steps enabled us to159

adequately prepare our data for the modeling steps.160

2.5.2. Composite Model Development161

The training set, consisting of the pre-processed peak-list (i.e. m/z, re-162

tention time, and the relative intensities) of 20 drinking water samples, was163

used for the composite model development. The purpose of this model was164

to describe the chemistry of the unspiked water, through modeling the max-165

imum variance in the training set for each feature. Therefore, an observed166

larger variability for a certain feature during the validation step implied the167

presence of an abnormality or a potential chemical hazard in that sample.168

The validation set employed in this study included 20 drinking water samples169

from which 4 were spiked with 15 labeled internal standards. The validation170

set was generated in a double blind manner to comprehensively evaluate the171

capability of the model in distinguishing the clean water samples from the172

spiked ones. Both the training set and the validation set were also employed173

for tuning the model parameters. For both the model building, model val-174
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idation, and model test we employed a non-targeted approach utilizing all175

the features in the samples. Therefore, our model was based on the complete176

chemical composition of the LC-HRMS analyzable fraction of the drinking177

water samples. This implied that theoretically only one statistically mean-178

ingful feature was enough for distinguishing the spiked samples from unspiked179

ones.180

181

Our model consisted of a linear combination of principal component anal-182

ysis (PCA) [19] and partial least square discrimination analysis (PLS-DA)183

[21, 22] modeling approaches, that enabled the confident separation of the184

unspiked drinking water samples from the spiked ones. The PCA modeling185

approach is an unsupervised method, which enables an unbiased evaluation186

of the underlying trends in the data. However, given its nature [19], the187

PCA is less sensitive towards small changes in the data. PLS-DA, on the188

other hand, is a supervised approach, which takes advantage of the prior189

knowledge of the data [21, 22]. In other words, this method utilizes the user190

defined classification in the training set to create the model. This implies191

that the model is forced to give a higher importance to certain variables,192

that are causing the separation of the pre-defined groups from each other.193

However, this method suffers from overfitting issues [21, 22]. We used a lin-194

ear combination of the two modeling approaches in order to fully harvest the195

higher sensitivity of PLS-DA and at the same time take full advantage of the196

robustness of PCA.197
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198

For the PCA modeling, we used the singular value decomposition al-199

gorithm [23] given the larger number of variables (i.e. features) than the200

number of the measurements (i.e. the drinking water samples). We used201

the sum of the absolute values of the scores for the first two PCs as the202

output of the PCA model (SPCA). The choice of using only the first two203

PCs was based on the fact that these two PCs combined described ≥ 50%204

of the observed variability in our dataset, which indicates the existence of205

an underlying trend [19]. The same pre-processed training set was used for206

PLS-DA model building. During the training step, the PLS-DA was trained207

only using the unspiked samples, which enabled the generation of a highly208

sensitive model. One of the crucial steps in the PLS-DA modeling is the se-209

lection of the number of components to generate the model, in order to avoid210

overfitting issues [21, 22]. This choice was carried out through an optimiza-211

tion process employing the training set. We performed 100 simulations where212

15 samples were randomly selected from the training set for each iteration.213

A new PLS-DA model was generated during each simulation with new score214

values and components. We also recorded the number of necessary compo-215

nents to describe 95% (i.e. 95% confidence interval) of the variability in the216

data for each simulation. The results of these simulations indicated that217

four components were necessary to describe 95% of the variability in all the218

simulated cases. Therefore, we limited the number of PLS-DA components219

to three, in order to avoid overfitting issues [21, 22]. When calculating the220
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contribution of the score values of the components on the SPLS−DA value, the221

first component contributed more than 50% of the SPLS−DA. Consequently,222

for simplicity we only included the X-score (i.e. the score value associated to223

the predictor block) of the first component in the PLS-DA score calculations224

(i.e. SPLS−DA). The selection of the number of components in the PLS-DA225

model is case dependent and must be evaluated during the model creation226

for each dataset. Finally, we generated a score value for the final model,227

hereafter referred to as final score (Sfinal), for each drinking water sample in228

the training set. The Sfinal was a weighted linear combination of the SPCA229

and SPLS−DA (Eq. 1). In Eq. 1 the SPCA, SPLS−DA, and Sfinal were the230

score values from PCA model, PLS-DA model, and the final model, respec-231

tively while the wPCA and wPLS−DA were the weight value associated with232

PCA and PLS-DA score values (Eq. 1). The training set was employed to233

optimize the weight values as such to produce Sfinal values ranging between234

-1 and 1. While performing the weight value optimization, we utilized the235

likelihood of false positive detection as the selection criteria for the tested236

weight values. The details of this process is described below, Section 3.1.237

Sfinal = wPCA · SPCA + wPLS−DA · SPLS−DA (1)

2.6. Trend Analysis238

We performed trend analysis [5, 12, 24–26] on the validation set in order239

to compare the performance of the composite statistical model with a more240
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conventional approach. During these analysis, we produced the signal inten-241

sity of each feature for all the samples including the pre-processed training set242

and validation set. In this case we singled out the features that were enriched243

at a statistically significant levels through the comparison of the median of244

a feature across all the samples (i.e. background) to the intensity of that245

feature in each sample (signal). For a feature to be considered statistically246

significant, it had to produce a signal to background ratio of five in the vali-247

dation set. Consequently, a feature that met all these criteria was considered248

a statistically significant feature and was selected for post-processing (e.g.249

identification). The signal to background ratio of five was selected based on250

the observed variability of the features in the training set, which enabled us251

to minimize the likelihood of false positive detection.252

2.7. Suspect Screening253

The samples for the case study were suspect screened using a local li-254

brary of pesticides, pharmaceuticals, personal care products, illicit drugs,255

and industrial chemicals (3000 chemicals), provided with the vendor soft-256

ware package. We employed LibraryView package provided by Sciex OS for257

these analyses. We utilized a mass accuracy of ± 0.003 Da and at least 3258

matched fragments, in order to confidently identify a suspect analyte. These259

criteria were previously shown to be effective in processing such datasets260

[10, 12, 17, 18, 27, 28].261
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2.8. Rate of False Detection262

We also evaluated the rate of false detection (i.e. false positive and/or263

false negative) [29, 30] of the features that were isolated via the composite264

model and/or trend analysis. A selected feature was considered a false posi-265

tive when its accurate mass, retention time, or the sample order, during the266

analysis, did not match the same parameters of the added internal standards.267

On the other hand, a feature was assumed a false negative if it was added into268

a sample as an added internal standard and it was not selected by either the269

composite model or trend analysis as a statistically significant feature. This270

appeared to be reasonable given that the thresholds for positive detection in271

both the composite model and the trend analysis were set as such to produce272

zero cases of false positive detection for the training set.273

274

Using the rates of false detection, we were able to comprehensively com-275

pare the performance of the composite statistical model to the more conven-276

tional approach of trend analysis.277

2.8.1. Computations278

All the data manipulations and modeling were performed on a personal279

computer with an i7 processor and 16 GB of memory using Matlab 2015b280

[31].281
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3. Results and Discussion282

A machine learning algorithm was developed and validated for a risk283

warning system for chemical hazards in drinking water, using the data pro-284

duced via non-targeted LC-HRMS. The machine learning algorithm took285

advantage of a composite statistical model, which used a linear combination286

of a supervised method (i.e. PLS-DA) and an unsupervised approach (i.e.287

PCA). The composite statistical model utilized all the features present in288

the sample, thus a non-targeted approach. This composite model utilizes the289

training set to learn about the variability range of each feature in drinking290

water samples. Consequently, if one or more of the features in the valida-291

tion/test samples has a larger intensity compared to its observed variability292

in the training set, the model will generate a large Sfinal value, which is293

translated into a trigger for the risk warning system. We validated the de-294

veloped model employing a validation set of 20 drinking water samples from295

which 4 were spiked with 15 labeled internal standards at different concen-296

tration levels, ranging from 2.5 ppb to 20 ppb. The spiked samples were297

used for evaluation of false negative and false positive detection rates while298

the unspiked samples were used for the assessment of false positive detec-299

tion. We also compared the performance of the model with the conventional300

trend analysis, typically used for processing this type of data. Finally, the301

validated model was further tested in processing of 42 water samples along-302

side with conventional suspect screening. This is, to our knowledge, the first303

study using the combination of machine learning and non-target analysis for304
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a risk warning system of chemical hazards in water samples. Also it should305

be noted that this is a proof of concept study and further implementation of306

this approach on more complex samples are necessary and will be subject of307

our future studies.308

3.1. Optimization of the Machine Learning Algorithm309

The training set was used to select the weight values as well as the thresh-310

olds of false positive detection for the composite model. In order to select311

these parameters, we ran 50,000 (400×125) simulations where for each it-312

eration 18 randomly selected samples out of 20 samples in the training set313

were used to generate the final composite model. In order to perform this314

optimization, a squared matrix of weight values varying between 0 and 2315

with steps of 0.1 was generated (i.e. a matrix of 20×20, thus 400 members316

in the matrix). At each point in this matrix 125 simulations took place for317

false detection calculations. Employing this approach, we generated a dis-318

tribution of Sfinal values for unspiked drinking water samples enabling us to319

calculate the rate of false positive detection for different weight values. This320

optimization process indicated that the best weight values were 0.1 and 1321

for wPCA and wPLS−DA, respectively, producing the smallest cases of false322

positive detections.323

324

The Sfinal values of 1, 1.2, and 1.5 resulted in false positive detection325

likelihoods of 5.0%, 1.0%, and 0.1%, respectively, employing the optimized326
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weight values (Fig. 2). In order to further evaluate the likelihood of false327

positive detection, 5,000 simulations were performed using the pre-processed328

training set and the optimized weight values, which resulted in a distribution329

of the Sfinal values. These values in the generated distribution then were con-330

verted into the likelihood of false positive detection [29, 30]. For this study, a331

Sfinal value of 1.2 was selected as the threshold for a statistically significant332

warning for a potential chemical hazard risk. The selected likelihood of false333

positive detection enabled us to associate a high level of confidence to the334

samples that produced an Sfinal value of ≥ 1.2.335

336
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Figure 2: The (a) weighted SPCA, (b) weighted SPLS−DA, and the Sfinal values calculated
via Eq. 1 for 5,000 simulations with weight values of 0.1 and 1 for PCA and PLS-DA
models. The green line, red dotted line, and black line in panel (c) define the Sfinal values
of 1, 1.2, and 1.5, respectively.
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3.2. Model Validation via Validation Set (i.e. Spiked Samples)337

The previously developed model was validated using the pre-processed338

validation set. For the model validation, we replaced one of the samples in339

the training set (randomly selected between sample 2 and sample 19 of the340

training set) with one of the samples in the validation set. At this stage the341

PLS-DA model was forced to consider the added sample as a spiked sam-342

ple whether it was spiked or not. This implied that for a spiked validation343

sample both models (i.e. PCA and PLS-DA) produced larger score values,344

and consequently a large final score. On the other hand, for a non-spiked345

validation sample, considered as spiked sample, the PLS-DA model produced346

a large score value whereas the PCA model generated a small score, which347

resulted in a small final score. The random selection of the location of the348

added validation sample into the training set was due to the fact that we349

wanted to be sure that the location of the sample addition did not affect the350

outcome of the algorithm. We evaluated each sample in the validation set351

using the above mentioned procedure in an iterative way.352

353

The proposed machine learning algorithm (i.e. the composite statistical354

model) detected all the 4 spiked samples without producing any cases of false355

positive and/or false negative detections, Fig. 3. The Sfinal values ranged356

from 1.27 (Fig. S1) for the sample in the validation set with the lowest spike357

level (i.e. 2.5 ppb) to 2.5 (Fig. S2) for the sample spiked with 20 ppb of358

the standard mixture. For all the samples that were not spiked with internal359
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standards the Sfinal was ≤1, Fig. S3. By looking at the ratio of the loading360

values of PCA and PLS-DA model, we were able to identify the features that361

were the cause of the abnormality (Fig. S4). Based on the absolute intensity362

of the loading ratios, the top 95.0% of the features were selected for isolating363

those that were describing the large Sfinal values. This resulted in selection of364

15 features, which belonged to the labeled standards. For example, a feature365

with loading value ratio of 8325 and 9330 for PCA and PLS-DA, respectively,366

was associated with the signal of carbamazepine D10, which was one of the367

added internal standards. Additionally, we evaluated the model limit of368

detection (LODmodel) for the tested 15 standards using the response factor369

calculated based on the slope of the standard addition calibration curve of370

the spiked samples. The composite model resulted in an averaged LODmodel371

of ∼ 1.8 ± 0.3 ppb for evaluated internal standards, which was comparable372

to the measured instrument LOD for these standards of ∼ 1.5 ppb. This373

was performed by artificially reducing the signal of each internal standard374

in the validation set employing 0.01 ppb steps until the model was not able375

to distinguish the spiked samples from the unspiked training set. The last376

detectable signal for an internal standard was considered the LODmodel for377

that standard. Furthermore, we compared the LODmodel of the composite378

model (i.e. combined PCA and PLS-DA) to each of the models individually.379

The limit of detection of the PCA model (LODPCA) alone appeared to be ∼380

12.0 ± 1 ppb across all 15 labeled analyts, which was around 6 times larger381

than the LODmodel. When using the PCA model alone for analysis of the382
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validation set, this model produced four cases of false negative detections and383

no cases of false positive detection. On the other hand, for the PLS-DA, this384

model resulted in 6 cases of false positives and zero cases of false negative385

detection for the processing of the validation set. This was due to the lower386

LOD of PLS-DA model (LODPLS−DA) of ∼ 1.0 ± 0.2 ppb. These results387

indicated the higher performance of the composite model compared to each388

of the individual models suggesting high sensitivity and robustness of the389

final composite model.390
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Figure 3: The score values for (a) PCA model (SPCA), PLS-DA model (SPLS−DA) and
(b) the composite model score value calculated using Eq. 1. In this instance the sample
number 10 was the spiked sample.
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3.3. Comparison Between the Composite Model and Conventional Trend Anal-391

ysis392

We compared the performance of the composite model with the conven-393

tional trend analysis, which is commonly used for detection of pulsed point394

source into the water samples [24]. During the trend analysis, we selected a395

signal to background ratio of five, for a feature to be considered statistically396

significant. We used the pre-processed training set and the validation set for397

the comparison between the two methods (Section 2.6).398

399

The trend analysis approach produced 30 cases of false positive detections400

(i.e. a false positive rate of ≤ 5% [29, 30]) without producing any cases of401

false negatives. On the other hand the composite model was able to detect402

all 15 spiked analytes in all 4 samples without producing any cases of false403

positive and/or false negative. For 27 out of 30 (i.e. 90%) of the false positive404

cases manual inspection of the features caused their elimination from the list.405

These features appeared to have low intensity and high level of variability406

across all the samples, including the training set, Fig S5. The remaining407

three features identified as false positives appeared to be the isotopes of a408

real features. For example, a feature identified as a false positive with m/z409

value of 181.083 and a retention time of 4.50 min was the M+2 isotope of410

atrazine desisopropyl D5 with an accurate mass of 179.085 and the retention411

time of 4.48 min. We further investigated the 3 meaningful features isolated412

via trend analysis in the composite model. For those three features, their413
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loading values were smaller than 95%. Therefore, the composite model did414

not consider these features as statistically significant, which further indicates415

the robustness of this approach compared to the conventional method (i.e.416

the trend analysis).417

418

The composite model (i.e. the machine learning algorithm) performed419

better than the conventional trend analysis when applied to the validation420

set. This method was able to capture all the added analytes in the spiked421

samples without producing any cases of false detections. This method showed422

to be less sensitive to the high variability in the data compared to the con-423

ventional trend analysis method. However, further tests are necessary to424

comprehensively evaluate the effect of noise on such a model. Overall, this425

showed to be a sensitive, accurate, and reliable tool for capturing contami-426

nation in the drinking water.427

3.4. Further Testing via Test Set428

We further tested the capability of the composite model in distinguishing429

a spiked water sample from an unspiked one. Additionally, this final test en-430

abled us to evaluate the applicability of the same training set for a different431

batch of water samples taken from the same source (Section 2.4).432

433

The composite model produced 3 cases of false negative and zero cases434

of false positive detection out of the total 2350 (i.e. 47 samples × 50 sim-435
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ulations) evaluations during the test. All 3 cases belonged to the spiked436

water samples at lowest concentration level (i.e. 2.5 ppb). Both the com-437

posite model and the conventional suspect screening did not produce any438

abnormality cases for the test set, which was expected considering that these439

samples were treated drinking water.440

441

The outcome of the composite model was in agreement with the conven-442

tional suspect screening, which is indicative of its robustness. However, more443

complex matrices should be tested in order to further evaluate the applicabil-444

ity of this method. Analysis of more complex matrices such as ground water445

and surface water will be subject of our future study. Finally, it should446

be noted that this study is a proof of concept for applicability of such an447

approach for water related matrics.448

3.5. Potential and Limitations449

The developed and validated composite model was shown to be a reliable,450

robust and accurate method for detection of anomalies (i.e. potential con-451

taminants) in drinking water samples. The thresholds for the risk warning452

could be set by the acute and adverse toxicity of the drinking water samples,453

which will expand the applicability of this method to monitoring of both454

the produced drinking water as well as the source water used for producing455

drinking water. At the current state, the samples were injected as is into456

the instrument for analysis without any pre-concentration. However, addi-457
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tion of a pre-concentration step would drastically increase the sensitivity of458

this method, based on the achieved model LODs that were similar to the459

analytical LODs. In other words, the pre-concentration step may potentially460

increase the sensitivity of the model by increasing the instrument sensitivity.461

Moreover, this method is designed to screen the samples rapidly for anoma-462

lies. In addition to the triggered warning, the model will produce a list of463

features that are causing anomalies, which should be evaluated by the an-464

alyst. In practical terms, the analyst can focus only on the samples that465

triggered a warning and the selected features rather than all the features and466

samples, therefore simultaneous sample and feature prioritization. Finally,467

this method could be employed for continuous monitoring of more complex468

aqueous matrices as long as the observed variability in the training set is469

representative of the normal state of that matrix.470

471

It should be noted that this method was applied to the peak list in the472

current study due to the cleanness of the drinking water matrix. However,473

for more complex matrices, this method should be applied to the raw data in474

order to be able to model the variability observed in the data. This implies475

a drastic increase in its computational cost. The warning thresholds are476

highly dependent on the observed within feature variability of the training477

set. Consequently, the analyst must assure that the variability in the training478

set is representative for the variability present in the test set in a normal state,479

which is also necessary for the conventional trend analysis. In other words, if480
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the variability in the training set is too large, the model would lose sensitivity481

(i.e. producing false negatives) whereas if the variability in the training482

set is too small, then the model will become too sensitive (i.e. producing483

false positives). Similarly to the trend analysis, given the dependency of484

the explored chemical space on the analysis conditions[14, 32], the training485

sets are specific to a sample set and analysis conditions. Therefore, a good486

understanding of both the matrix and the analytical instrument is crucial to487

the success of this approach.488
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