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Abstract1

Comprehensive chemical characterization of naphthenic acids (NAs) in oilfield pro-2

duced water is a challenging task due to sample complexity. The recovery of NAs from3

produced water, and the corresponding distribution of detectable NAs are strongly in-4

fluenced by sample extraction methodologies. In this study, we evaluated the effect of5

the extraction method on chemical space (i.e. the total number of chemicals present6

in a sample), relative recovery, and the distribution of NAs in a produced water sam-7

ple. Three generic and pre-established extraction methods (i.e. liquid-liquid extraction8

(Lq), and solid phase extraction using HLB cartridges (HLB), and the combination of9

ENV+ and C8 (ENV) cartridges) were employed for our evaluation. The ENV method10
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produced the largest number of detected NAs (134 out of 181) whereas the HLB and11

Lq methods produced 108 and 91 positive detections, respectively, in the tested pro-12

duced water sample. For the relative recoveries, the ENV performed better than the13

other two methods. The uni-variate and multi-variate statistical analysis of our results14

indicated that the ENV and Lq methods explained most of the variance observed in15

our data. When looking at the distribution of NAs in our sample the ENV method16

appeared to provide a more complete picture of the chemical diversity of NAs in that17

sample. Finally, the results are further discussed.18

1 Introduction19

Naphthenic acids (NAs) are naturally occurring compounds in petroleum, with a highly vari-20

able composition depending on the source of the oil.1 The concentration of NAs in petroleum21

can range from non-detectable to 3% by weight.2 NAs constitute a complex mixture of chem-22

icals, due to the multiple possible chemical structures (i.e. structural isomers) for the same23

chemical formula. For example for an NA with the formula of C10H18O2, assuming 6 compo-24

nent rings, there are more than 37 isomers. Many of these isomers have a similar structure25

and thus similar chemical and physical properties. Therefore, a mixture of NAs becomes an26

extremely challenging matrix to resolve and characterize.2 As a consequence, the composi-27

tion of NAs in a complex matrix such as oilfield produced water (PW) is unknown.28

29

Oil production PW is one of the largest streams of industrial treated wastewater in the30

world.3 PW is an unresolved complex mixture and consists of a wide variety of chemicals31

from metals to organic pollutants, including NAs.3–7 Moreover, multiple studies have re-32

ported that the NAs are one of the toxic components of the oilfield PW to a variety of33

organisms.2,3,8–10 For example, NAs have been shown to be weak estrogen receptor agonists34

and androgen receptor antagonists.3,10–12 Little is, however, known about the chemical com-35

position NAs as well as their environmental fate and behavior. Consequently, an effective36
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assessment of the risk they pose to the environments receiving oilfield PW difficult. An un-37

derstanding of the chemical composition of the NAs in the oilfield PW is therefore warranted.38

39

The chemical characterization of NAs in PWs is typically performed on the acidic fraction40

of the total extract of PW.2–4,9 Typically, liquid-liquid extraction, solid phase extraction, or41

a combination of both are used in order to tackle the sample complexity provided by both42

the NAs and PW.2,13,14 The extraction method used to produce these extracts are com-43

pared/validated either via total extractable material measurement or through the use of a44

limited number of surrogates as reviewed by Kovalchik et al.13,15–17Both mentioned methods45

have shown to be unable to comprehensively assess the extraction efficiency of one method46

compared to another.2,13 For example, in our previous study we demonstrated that the47

choice of the extraction procedure changes the explored chemical space of the sample.18 In48

that study even though two out of three extraction methods showed similar performance for49

the surrogate chemicals, more detailed chemical characterization revealed substantial differ-50

ences among tested extraction methods. However, that study was focused on the volatile51

and semi-volatile fraction of PW. With regards to NAs, to our knowledge there has not been52

a detailed extraction recovery assessment based on individual NAs.53

54

To answer that question, we employed three generic and well established extraction meth-55

ods a liquid-liquid extraction method and two solid phase extraction (SPE) approaches to56

assess the relative recoveries each NA. We evaluated the effect of each extraction method on57

both the distribution and the relative recoveries of NAs in PW. The extracts were analyzed58

as such (i.e. no fractionation) via liquid chromatography coupled to high resolution mass59

spectrometry (LC-HRMS), which was essential to accurate identification of NAs in the PW60

samples.1961
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2 Methods62

2.1 Sample Preparation and the Experimental Setup63

A sample of PW (total volume of 5 L) was obtained from an oil platform in the Halten bank64

off coast of mid-Norway in February 2017.20 The sample was divided into 9 aliquots, each of65

400 mL. These samples were extracted using three generic extraction methods: liquid-liquid66

extraction (Lq); Hydrophilic-Lipophilic-Balanced cartridges, here referred to as HLB; and67

the combination of C8 and ENV+ cartridges, which we refer to as ENV. The HLB cartridges68

were a combination of two monomers, the hydrophilic N-vinylpyrrolidone and the lipophilic69

divinylbenzene whereas the ENV cartridges consisted of hydroxylated polystyrene-divinyl70

benzene copolymer. Both of these methods are considered wide range extraction methods for71

a combination of polar and non-polar chemicals. The details of the extraction procedure for72

all three methods are provided elsewhere.18 In short, the Lq method was the dichloromethane73

(DCM) extract of the acidified PW, repeated three times, with a final volume of 2 mL. A74

solution of 1N hydrochloric acid was used for acidification of the PW samples. For the solid75

phase extraction methods (SPE), both cartridges were conditioned with a combination of76

methanol and water as recommended by the vendors. The preconditioned cartridges then77

were loaded with 400 mL of PW using a vacuum pump. These, then, were eluted with two78

times the volume of the cartridges employing a mixture of hexane, DCM, and 2-propanol.79

This mixture was selected based on the fact that it appeared inert towards the extracted80

NAs. The final extracts of 2 mL were stored in the freezer until the analysis. This combi-81

nation of eluents was previously shown to be effective for extraction of analytes with a wide82

range of chemical and physical properties in complex samples.1883

84

Three procedural blanks were generated for each extraction method. For Lq method,85

these blanks were the extract of the glassware using a mixture of DCM and a 1N solution86

of HCl. Regarding the SPE methods, the blanks were the extracts of the preconditioned87
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cartridges with the same solvent mixture used for extraction of the samples.88

89

The final extracts, including the blanks, were spiked with 100 ng of diazepam-D5 as90

the injection standard for monitoring the instrument performance during the analysis. The91

detailed list of chemicals and suppliers are provided in the Supporting Information, section92

S1.93

2.2 Instrumental Conditions and Analysis94

Seven µL of each extract was injected into a Waters Acquity UPLC system (Waters Milford,95

MA, USA) equipped with UPLC HSS C18 column (2.1×150 mm, particle size 1.8 mm) (Wa-96

ters, Milford, MA, USA). More details regarding the chromatographic method is provided97

in the Supporting Information, section S2.98

99

The UPLC system was coupled to an Xevo G2-S Q-TOF-MS (Waters Milford, MA, US)100

time of flight high resolution mass spectrometer. The Mass spectrometer was operated with101

a nominal mass resolution of 35,000 and a sampling frequency of 2.3 Hz. This system was102

equipped with electron spray ionization source (ESI) operated in negative mode. During103

each cycle the mass spectrometer acquired a full-scan spectrum between 60 Da and 600 Da104

employing a collision energy of 6 eV.105

106

All the samples including the blanks and quality control/assurance were analyzed using107

the above instrumental conditions.108

2.3 Quality Control/Assurance (QC)109

For the purpose of QC, all the glassware used in this study were baked at 450◦C overnight.110

The samples were divided into sets of three extracts, which were followed by a solvent injec-111

tion to avoid the carryover from previous injections. Additionally, the signal of the injection112
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standard (i.e. diazepam-D5) was monitored in order to assess the stability of the instrument113

during the analyses. We observed less than 20% variability in the signal of the injection114

standard. This suggested that all the samples showed similar levels of ion suppression for115

the injection standard. Therefore, we interpreted that the chromatograms were adequate for116

our data processing workflow without any correction for the ion suppression.117

2.4 Data Processing Workflow118

All the chromatograms, including the samples and blanks, went through the following data119

processing steps sequentially. The acquired chromatograms were converted to an open MS120

format (i.e. netCDF) employing DataBridge provided via MassLynx (Waters, Milford, the121

US). The converted data were imported into the Matlab21 environment (Matlab R2015b)122

for further processing. The imported data were mass calibrated prior to evaluation for the123

NAs. The details of the mass calibration are reported elsewhere.22–25 In short, for the mass124

calibration, the measured mass of the calibrant injected into the source in 20 S intervals125

were compared to the exact mass of the same compound. The observed mass errors were126

used to calculate the needed mass shift over the whole chromatogram using a third order127

polynomial. The estimated mass shift then was applied to the data in order to produce the128

calibrated chromatograms. The mass calibrated data were used for the identification and129

signal extraction of NAs.130

2.5 Identification and Signal Extraction131

Each NA in a PW sample is representative of the mixture of all the structural isomers with132

the same molecular formula. An increase in the size of the NAs (i.e. the number of car-133

bons) is exponentially correlated with the number of potential structural isomers of NAs.1,2134

Consequently, in the literature, NAs are typically considered as a group of isomers rather135

than individual compounds.2 Similarly to the previous reports, we employed the mixture of136

isomers approach rather than individual compound ones.137
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138

In order to identify the NAs in our samples, a list of NAs using their general formula139

(i.e. CnH2n−zO2) was generated. In this list the number of carbons (i.e. n) ranged between140

8 to 35 while the number of rings ranged from zero to 6 (i.e. z= 0 : -2 : -20). This range141

was selected based on the previously reported analyzable range of NAs via LC-HRMS.2 In142

addition to these conventional NAs, we added several sulfur containing NAs based on the143

literature reports26, which enabled us to produce a comprehensive list of detectable NAs in144

PW. This resulted in a total of 181 NAs to be screened for in the samples (Table S1). For145

the identification of NAs, we generated the extracted ion chromatogram (XIC) of each NA146

in the list, employing a mass accuracy of ± 3 mDa. This mass window was selected based147

on the observed mass resolution measured using the signal of the calibrant. The generated148

XICs were integrated over the whole chromatogram to produce the signal specific to each NA149

in the list. This procedure was carried out for all the calibrated chromatograms including150

the blanks. The signal of each NA after the blank subtraction was used for the comparison151

of the performance of the three extraction methods employed in this study. During the152

identification, we performed a noise removal step which consisted of elimination of the NAs153

that produced a signal smaller than 500 counts and the NAs that were detected only in154

one out of three replicates. These eliminated NAs were considered non-detects for that155

method. This approach enabled us to accurately detect the tested NAs and compare the156

three extraction methods investigated in this study.157

2.6 Relative Recovery Calculations158

We calculated the relative recovery of each NA using the approach proposed by Samanipour159

et al.18 This approach was selected due to the large number of NAs analyzed and the lack160

of analytical standards for individual NAs in the sample.1,2,13,16 As an example, for an NA161

with formula of C10H18O there is need for more than 37 individual analytical standards in162

order to define the absolute recovery of that NA. Therefore, we used the cumulative signal163
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approach where the signal of all possible isomers of one NA are summed up to define the164

produced signal for that NA via an extraction method. Each NA, in this study, resulted165

in 9 cumulative signal values (i.e. the integrated XIC for each extract 3 methods × 3166

replicates) generated via three different extraction methods. The largest method averaged167

cumulative signal was considered the total extractable material for that NA. Therefore, the168

recovery of each NA was calculated based on its signal from each extract divided by the169

total extractable material for that NA. Using this approach we were able to evaluate the170

performance of different extraction methods for each NA.171

2.7 Statistical Analysis172

In order to further evaluate the performance of the three extraction methods, we performed173

both uni-variate and multi-variate statistical analysis. For the uni-variate test, we employed174

the non-parametric test Kruskal-Wallis.27 A ρ< 0.05 was selected as the threshold for the175

rejection of null-hypothesis with 95% confidence interval. With regards to multi-variate176

test, principal component analysis (PCA) was used in this investigation.28 Prior to our177

PCA analysis our data was scaled utilizing Pareto scaling.29 This approach has shown to be178

effective in keeping the data structure intact while reducing the importance of large signals.179

For the PCA, the singular value decomposition (SVD) was employed in order to isolate the180

statistically relevant components.30 This algorithm (i.e. SVD) is effective in dealing with181

datasets where the number of variables is larger than the number of observations. This182

procedure was previously shown to be effective in separating different extraction methods183

from each other while isolating the variables that were causing the separation.25184
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3 Results and Discussions185

3.1 Detection of NAs186

The ENV method with 134 positive detections out of 181 total tested NAs, performed the187

best, when looking at the number of positively detected NAs in the samples via different188

extraction methods. The HLB and Lq methods resulted in positive detection of 108 and 81189

NAs, respectively (Fig. 1). We further examined the effect of the number of rings and the190

number of carbons on the detection frequency of NAs produced via each extraction method.191

192

The ENV method systematically produced larger detection frequencies for all 7 z values193

when compared to the other two methods, Fig. 1. The largest detection frequency for both194

ENV and HLB was observed for NAs with a z value of -4 (i.e. 2 rings) with positive detection195

of 23 and 19 NAs, respectively. On the other hand, the Lq method showed to be unaffected196

by the number of rings in terms of the detection frequency resulting in an average of 11 NAs197

detected for all seven cases. The non-parametric Kruskal-Wallis test27 results (i.e. ρ < 0.05)198

indicated that the differences observed in the detection frequencies versus the ring number199

were statistically significant. Further examination of these results suggested that the two200

SPE methods performed in a similar way whereas the Lq method appeared to be different201

from those two. Overall, all three methods covered a range of NAs from aliphatic chains202

(i.e. z=0) up to 6 rings (i.e. z=-12) while all three methods were unable to detect NAs203

with larger number of rings, thus z values between -14 and -20. Furthermore, none of the204

methods detected the sulfur containing NAs, which may suggest their absence and/or lower205

than instrumental limit of detection concentrations in the analyzed sample.206

207

For the effect of the number of carbons on the detection frequency of NAs, the ENV208

method covered all n values ranging from 8 to 35, Fig. 1. The HLB method produced zero209

positive detections for n values of 8 and 25 while the Lq method was limited in an n value210
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range of 9-29. The ENV method resulted in the largest detection frequency of NAs for 20 out211

of 27 n values across the tested range. For cases where Lq method was the best performing212

approach with n values of 11, 12, 15, and 17, the mentioned NAs appeared to be aliphatic213

NAs. Moreover, they all were removed during the noise removal (i.e. their signal was smaller214

than 500 counts). For the remaining three cases with n values of 28, 29, and 34, HLB method215

performed better than ENV extraction method. For these cases, the missing NAs were: a one216

ring NA for the n value of 28, a two ring NA for the n value of 29, and finally, a five ring NA217

for the n of 34. Also for these cases, the noise removal step caused the elimination of these218

NAs from the detection list of ENV. Based on the fact that all these discrepancy cases where219

generated during the noise removal step, we interpreted that the sample complexity/matrix220

effect was the main cause of these observations. Finally, we preformed the non-parametric221

Kruskal-Wallis test to evaluate the trend observed in the detection frequency versus the n222

values. The ρ< 0.05 of this test suggested a statistically significant difference between the223

methods. Further investigation in the outcome of this statistical test showed the similarity224

of the SPE methods when compared to the Lq method.225

226

Overall, the ENV method appeared to perform the best by extracting the largest number227

of NAs across all the z values and n values. Additionally, this method showed a consistent228

performance when looking at the z and n values compared to the other two methods (i.e.229

HLB and Lq).230

3.2 Extraction Recoveries231

The ENV method resulted in an average relative recovery of 49.6 % across all the tested NAs232

whereas HLB and Lq produced average relative recoveries of 44.7% and 42.1%, respectively.233

We also evaluated the recoveries of the NAs for each method based on the number of carbons234

and the number of rings.235

236
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Figure 1: showing the detection frequency of NAs versus (a) the z value (i.e. the number of
aliphatic rings) and (b) the n number (i.e. the number of carbons).

For the aliphatic NAs (i.e. z=0), the Lq method performed better than the other two237

methods resulting in 100% relative recoveries for 12 out of 27 NAs, Fig. 2. The other two238

methods (i.e. HLB and ENV) produced a larger level of variability in the relative extraction239

recoveries across the analyzed NAs, ranging from non-detect for n=12 and 17 to 100% for n240

larger than 29. However, the ENV method was the only method that extracted the largest241

number of NAs compared to the other two methods. Additionally, this method showed to be242

successful in capturing the smallest and the largest NAs in this group. For small NAs with n243

ranging from 8 to 10 both HLB and Lq resulted in zero recoveries, which was attributed to244

the low affinity of these NAs for HLB resin and DCM. However, further structural elucidation245

is necessary to confirm this hypothesis. On the other hand, for NAs having n values larger246

than 22, the two SPE methods were able to isolate those NAs while the Lq failed in this247

task. This trend was associated with the lower solubility of larger NAs in DCM. However,248

in this case also further structural elucidation is necessary to confirm this hypothesis. For249

NAs with z values between -2 and -10 (i.e. 1 to 5 rings), the ENV method systematically250
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produced higher relative recoveries compared to the other two methods, Fig. 2, S1, S2, S3,251

and S4. Among these cases, for z values of -2, -4, and -6 both ENV and Lq preformed better252

than HLB in extracting smaller NAs. However, for NAs with n values larger than 22 the253

two SPE methods perform better both in terms of number of detected NAs and the relative254

recovery of individual NAs. Finally, for NAs with a z value of -12, thus 6 rings, the Lq255

performs better than the other two methods producing 100% relative extraction recoveries256

for 13 out of 17 NAs, Fig. 2. This method however was unable to isolate the NAs with257

number of carbons larger than 31. Overall, none of the methods were able to extract all258

the tested NAs. However, the ENV method appeared to perform better than the other two259

methods when looking at the relative recoveries and the number of detected of NAs.260

261

The PCA of the scaled and mean centered relative recoveries was able to clearly distin-262

guish the three extraction methods from each other, Fig. S5. The first two PCs successfully263

described ∼62% of variability in our dataset. When looking at the loading plot, also in264

this case three different clusters of variables were observed. These clusters indicated the265

variables that were causing the separation of the methods from each other. When looking266

at the loadings plot, we focused on the variables that had a weight value of larger than267

30%, which reduced the number of relevant variables to 79 rather than 172. From those 79,268

41 were associated with the NAs where the ENV method performed better than the other269

two whereas 34 belonged to the method HLB. For the Lq method, there were only four270

statistically relevant variables (i.e. NAs with masses of 326.3218, 338.3376, 348.3534, and271

426.4482), which indicated the worse performance of this method compared to the other two272

extraction approaches. The results of PCA suggested that the ENV method performed the273

best when compared to the other two methods. This was in agreement with our assessment274

of the recoveries based on individual NAs explained in details above.275

276

The ENV method also produced the largest total signal of NAs compared to the other two277
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methods, Fig. 3. We also evaluated the blank subtracted and injection standard normalized278

total signal of all detected NAs using each extraction method in order to evaluate the overall279

recovery of each method. Based on the absolute signal, the Lq and HLB methods extracted ∼280

80% of total extractable material, assuming the ENV method extracting 100%. The outcome281

of the total signal was comparable to the previous reports for Lq and SPE methods.13282

Figure 2: showing the relative recoveries of NAs versus the n value for (a) the z=0 (i.e. no
ring), (b) the z=-4 (i.e. two rings), and (c) the z=-12 (i.e. six rings).
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Figure 3: showing the blank subtracted and injection standard normalized total signal of all
detected NAs using each extraction method.

3.3 NA Distribution in Produced Water283

We further evaluated the effect of the extraction method on the overall distribution of tested284

NAs in the analyzed produced water. The noise removed extracted signal of the NAs for285

each extraction method was utilized for these evaluations.286

287

When looking at the distribution of NAs in the analyzed produced water via SPE meth-288

ods, the NAs with z values ranging from -4 to -12 appeared to be the most abundant ones.289

On the other hand, via Lq method the NAs with z value of -12 were the most abundant group290

while for other z values, this method produced relatively similar abundances, Fig. 4. All291

three extraction methods produced the smallest relative abundances for the aliphatic NAs.292

All the methods, for z values between -2 and -10, resulted in higher relative abundances for293

n values between 13 and 18, which was in agreement with previous reports regarding the294

distribution of NAs in produced water or similar matrices.9,31,32 For a z value of -12, the most295

abundant NAs were those with n values between 16 and 20 for all three tested extraction296

methods.297

298

The ENV method appeared to cover the largest NA chemical space compared to the other299

two methods, where the chemical space is defined as the total number of tested NAs, Fig.300
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4. The performance of the other SPE method, thus HLB, appeared to be more similar to301

the ENV rather than the Lq method. For Lq method the distribution of the NAs appeared302

to be affected mainly by their solubility in DCM. As a consequence, the boundaries of the303

explored chemical space via Lq method were dominated by the molecular size. In other304

words, the non-extracted NAs via the Lq were either too small or too large, therefore non305

soluble in DCM. For the two SPE methods, the explored chemical space appeared to be less306

concise when compared to the Lq method. We interpret that this observed trend was mainly307

caused by the interactions of individual compounds with the resin, sample complexity, and308

the matrix effects. We observed that the HLB method, in particular, showed less affinity for309

the smaller NAs (i.e. n value of 8) compared to the ENV method. To further test this, we310

explored our chromatograms for NAs with z value of 0 and n values of 7 and 6, which were311

not included in our initial list of NAs. None of the three tested extraction methods detected312

the NA with z=0 and n=7. However, for NA with z=0 and n=6, the ENV method was313

the only one producing a positive detection for that particular NA, Fig. S6. This further314

indicated the difficulties that the Lq and HLB methods have in extracting smaller NAs.315

316

The ENV method was able to explore the largest chemical space of NAs compared to317

HLB and Lq methods. Additionally, this method was the only method that produced a318

positive signal for hexanoic acid, which is considered the marker for the presence of NAs319

in produced water according to Norwegian Oil and Gas.33 Even though this method (i.e.320

ENV) did not produce the highest recoveries for all the tested NAs, it resulted in 100%321

relative recoveries for the largest number of NAs explored in this study. Our results in322

overall suggested that among the tested extraction procedures the ENV method is the most323

effective one for analysis of NAs in produced water. However, testing the other extraction324

procedures is necessary and will be subject of our future study.325
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Figure 4: depicting the relative abundance of the analyzed NAs using (a) Lq, (b) HLB, and
(c) ENV extraction methods. The relative abundances (i.e. ”Z” axis) are multiplied to 1000
and are shown in log scale for ease of visual comparison among the three extraction methods.

4 Environmental Implications326

Our results suggested that the choice of sample preparation approach may have a substantial327

effect on the explored chemical space of NAs. In other words, using different extraction328

methods may produce different toxicity profiles for the same sample. This is highly relevant329

for a complex mixture such as produced water and NAs with a wide variety of toxicity profiles.330

Consequently the risk assessment of such mixtures without a comprehensive understanding331

of the explored chemical space becomes impossible. Our results indicated that, when dealing332

with such complex mixture, the conventional methods may fall short and thus the use of333

more comprehensive methods are warranted. Additionally, our results indicated that when334

assessing the extraction recoveries, this should be done at higher detailed levels rather than335

the total NAs or using only a few surrogates. For example for an NA with n=24 and z=-2,336

this NA was detected using only one extraction method ENV, which implied that using the337

other two methods would not have produced an accurate toxicity profile. This is extremely338

important when performing the risk assessment of such complex mixtures such as NAs and339

PW.340
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