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Abstract: A novel passive exchange meter (EM) device was developed to assess air-surface exchange and leaching of Hg in a forest floor. Flux measurements 1 

were carried out in a subtropical forest ecosystem during a full year. Over 40% of the Hg fixed in fresh forest litter was remobilized in less than 60 days in 2 

warm and humid conditions as a response to rapid turnover of labile organic matter (OM). A two-blocks experiment including understory and clearing showed 3 

that losses of Hg co-varied with seasonal conditions , and was significantly affected by forest coverage. The process controlling the bulk loss of total Hg from 4 

the litter was volatilization, which typically represented 76% to 96% of the loss processes (Floss). Floss ranged 520-1370 ng m-2 d-1 and 165-942 ng m-2 d-1, in 5 

the understory and clearing, respectively. On a yearly basis, deposition of airborne Hg exceeded the total losses by a factor 2.5 in the clearing and 1.5 in the 6 

understory. Vegetation litter in this subtropical forest therefore represented a net sink of atmospheric Hg. This study provided a nvel approach to Hg air-soil 7 

exchange measurements and further insights on the link between Hg remobilization and OM turnover along with its environmental drivers. 8 

 9 
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Introduction  15 

Hg is an ubiquitous neurotoxic pollutant. Anthropogenic emissions of Hg to the atmosphere are primarily in the form of elemental mercury (Hg(0)) and divalent 16 

mercury (Hg(II)), while redox chemistry controls the transition between these two species. Hg(0) is relatively volatile, whereas Hg(II) is less volatile, more 17 

soluble and rapidly scavenged by wet depositions and direct adsorption to soils and vegetation1-4. Evidences suggest that scavenging by forests is an important 18 

sink of atmospheric Hg while organic soils and vegetation represent important long-term reservoirs5-8. Once in the soil Hg can undergo a methylation reaction 19 

to form a highly neurotoxic and bioaccumulative species.  20 

Earlier assessments estimated that the global annual Hg deposition through litterfall is 1180 ± 710 Mg yr−1, while the OM bounded Hg in background soils 21 

and vegetation is in the order of 240,000 Mg, globally 7, 9. This figure exceeds of two orders of magnitude the steady state atmospheric budget of total Hg 22 

(~5,000 Mg) suggesting that re-mobilization from aging organic matter can easily affect atmospheric loads and, consequently, global distribution. Hg emitted 23 

from soil organic matter (OM) and biomasses is calculated to represent 31% of the sum of total anthropogenic secondary emissions and natural sources4. 24 

Hg(II) and Hg(0) can be adsorbed to OM through ionic exchange and simple condensation processes on organic surfaces, respectively10-12. These bounds are 25 

reversible and Hg can be re-emitted if environmental conditions of OM characteristics change over time10, 13. The predominant pool of Hg associated to OM 26 

is thought to be taken-up by the foliage and covalently fixed . To this regard, reduced sulphur groups in the OM efficiently bind Hg (II), preventing reduction 27 

processes9, 14, 15. Recent studies showed that most Hg in plant leaves is sequestered as divalent mercury-sulphur nanoparticles11. This promotes long term 28 

storage in vegetation and soil. The re-emission of Hg to the atmosphere is therefore expectedly subordinated to the degradation of these binding structures. In 29 

nature this can occur accidentally through fires, or naturally and more diffusely through biochemical degradations.   30 

Despite the potentially high relevance of the re-mobilization from vegetated soils for the global Hg mass balance, the coupling between volatilization and the 31 

turnover of labile organic matter is poorly understood. Empirical assessments are available only from few controlled laboratory experiments16-18 which showed 32 

a correlation between Hg volatilization and OM degradation. In field assessments, correlative studies have shown a potential link between these two processes18, 33 

19, but a causal relationship could not be confirmed. Covariance of OM turnover with temperature and humidity can in fact blur causal relationships.  34 

Laboratory experiments demonstrated slow mobilization of only a relatively minor fraction (between 5 and 23%) of the mass of Hg initially bound to OM, in 35 

response to a two-fold loss in the OM mass during a 18 months-long observations18. The use of traditional deposimeters to assess air-OM exchange does 36 

however not allow disentangling the influence of co-occuring processes affecting Hg and OM mass budgets. Continuous depositions of "fresh" airborne Hg 37 

during OM ageing may in fact mask volatilization fluxes20.  38 

In order to study Hg mobilization from OM in forest floors at the net of atmospheric depositionsin  in-situ OM ageing experiments, we developed a novel 39 

passive exchange meter (EM) that, utilizing a mass balance approach, simultaneously and dynamically resolves OM and Hg budgets in vegetation litter over 40 

arbitrarily chosen integrated time periods. To assess causality in the relationship between litter dry mass and Hg re-mobilization and assess the entity of Hg 41 

fluxes under fast OM turnover, an experiment was conducted in a subtropical humid forest of southern China, subjected to monsoon climate. The subtropical 42 

monsoon climatic conditions maximize the seasonal variance of OM degradation assessed here through losses of litter dry weight and losses in organic carbon 43 

content from forest litter.  44 

To control for possible spurious correlations between Hg re-mobilization and OM degradation (possibly mediated by precipitation, air humidity or temperature 45 

as lurking variables), the experiment was conducted in two blocks using 5 replicated EMs deployed in a forest plot under a dense canopy (estimated leaf area 46 

index was 5), and 5 replicated EM in an adjacent (less than 30 m distant) understory gap (clearing diameter was about 10 m). Previous studies showed that 47 

canopy gaps significantly inhibit degradation of litter, while experiencing nearly identical conditions of air temperature, humidity and precipitations21.  48 

Material and methods 49 

Site description  50 

The study site is located in the Dinghu National Nature Reserve (DNNR) area in mid-western Guangdong province, China (Figure 1). DNNR is part of the 51 

"Man and the Biosphere" (MAB) Programme of United Nations Educational, Scientific and Cultural Organization (UNESCO) network of protected areas. It 52 

has typical subtropical monsoon climate with hot and wet seasons (from Apr. to Sep.) and dry and cold seasons (from Oct. to Mar.) The annual average 53 

temperature is 20.9 °C with the hottest month in July (average 26.0 °C) and the coldest in January (average 12.6 °C). The annual average rainfall is 1929 mm,22 54 

with 75% of precipitations occurring from March to August23. The land use is characterized by evergreen coniferous and broad-leaved mixed forests. Dominant 55 

tree species are broad-leaves (mainly Schima superba and Castanopsis chinensis) and pine needles (mainly Pinus massoniana). Surface litter covers 80%-90% 56 

of the ground with a thickness of 1-3 cm24. 57 

Exchange Meters  58 

The EM (Figure 2 and Figure S1) consists of a stainless-steel tripod with a cylindrical cross-section holding an open borosilicate glass cylinder (diameter 16 59 

cm, height 25 cm). The glass cylinder seals up two pieces of silver mesh discs (pore size of 0.8 µm, thickness 51 µm, SPI-Pore™) placed at its base. Above 60 

the silver mesh, a nickel net (<2 mm mesh) is placed, holding a sample of litter collected in-situ and spiked with a known amount of 202Hg(II). 202Hg(II) is used 61 

as a field reference to determine the volatilization and leaching fluxes (as described in a following section).  This isotope is an ideal surrogate for tracking 62 

fate processes in OM as the bulk of mercury bound to forest litter is in the form of Hg(II). This is supported by previous findings showing that mercury in 63 

foliage is prevalently oxidized and exists in complex forms such as organic Hg-S species6, 11, 25-27. A small portion of Hg(II) in litterfall may convert into Hg(0) 64 

from time to time through Hg(II) reduction, but in this form will rapidly be released back to the atmosphere28, 29.  65 

EM handling and sampling  66 

For each sampling period forest litter (including broad-leaves (mainly Schima superba and Castanopsis chinensis) and pine needles (mainly Pinus 67 

massoniana)) was collected from the forest site. In order to determine the water content an aliquote of the litter was vacuum dried for 24 h . Large dead leaves 68 
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and detritus present in the remaining litter was mechanically broke-down to achieve a texture with the largest pieces in the order of 1 cm2. This was done to 69 

allow adequate homogeneization and distribution of samples in repicaltes EMs. The remaining litter was then spiked with 2.00 µg of inorganic divalent 202Hg 70 

by adding 100 mL of 20ng/ml 202Hg(NO3)2 solution to 200 g (dw) of litter. The solution of 202Hg2+ was prepared by dissolving 1 mg of 202HgO in 1 ml of 71 

HNO3 solution and diluted to 20 ng ml-1 by adding Milli-Q water. The spiked litter was transferred into an ambered borosilicate glass jar, vigorously shaken by 72 

hand for several minutes and stored in the dark jar for at least 24 h before deployment in the field. This procedure was carried out to allow homogenization 73 

and partial re-distribution and of 202Hg in the litter sample. The spiked litter was then distributed in situ into 10 aliquots of 20 g each and deployed in different 74 

EMs (five in understory and five in the adjacent clearing) (Figure S1). The EMs were deployed so that the spiked litter sample was only a few cm above the 75 

soil level to approximate natural exposure conditions. After field deployment, the spiked litter was sampled twice: 6 h after deployment and after two months 76 

to calculate changes in the masses of Hg (THg), 202Hg, dry organic matter, organic carbon (OC), N and water content before (t0) and after (tf) the exposure 77 

period. Sampling at t0 was conducted by collecting 5 g of litter from each EM. These were carefully sealed, individually, into plastic bags and brought back to 78 

the laboratory. At tf the remaining litter was collected and handled in a similar way. At tf silver mashes, conceived to sample the leaching flux of 202Hg(II) were 79 

also retrieved and stored in sealed bags. Before analysis, litter and silver meshes were stored at 4 oC. This procedure was repeated 6 times covering time 80 

intervals of two months throughout a full year.  81 

Hg analysis  82 

Litter samples were freeze dried and grinded to a fine powder in a pre-cleaned food blender (200 meshes). The blender was extensively cleaned with Milli-Q water and ethanol 83 

between different sample batches to prevent cross contamination20, 30. THg in litter samples were determined by Zeeman Lumex mercury analyzer (model RA915+, Lumex 84 

Co. Inc., Russia) attached with Pyro-91 thermal decomposition accessory from Lumex Ltd. The solid samples were directly decomposed in atomizer chamber 85 

at 800 °C with the aided catalytic action. THg was then measured by RA-915t analyzer31. Standard reference samples were measured every 10 field samples 86 

yielding recoveries in the range of 95%–105%. GBW10020 (GSB-11) was used as the litter Hg standard. Approximately 0.15 g of the samples were digested in 50 87 

mL of freshly mixed HNO3/H2SO4 (4:1 v/v) for 6 h at 95 °C in a water bath32, 33. The digested solution was then diluted by adding Mili-Q water to a volume of 25 mL. For Hg 88 

isotope analysis, the analyte preconcentrated by BrCl oxidation, SnCl2 reduction, purge and trap step onto a gold trap was thermo-desorbed quadrupole inductively coupled 89 

plasma mass spectrometry (ICP–MS; Agilent 7700X). The detection limit was 100 pg/L for Hg34-37.   90 

For the analysis of 202Hg in the silver meshes, filters were transferred in quartz glass tubes into a furnace. The quartz tube was subsequently connected to a 91 

generator of Hg-free air (Nitrogen gas, ≤ 0.1 ng m-3). Temperature was increased to ~450 °C. The silver amalgam was then decomposed into Hg(0) vapor, 92 

which was brought by the air stream into a bubbler containing an acidic KMnO4 solution that quantitatively oxidized the generated Hg(0). An aliquot of the 93 

KMnO4 solution was used for analysis. Prior to analysis, excess KMnO4 was reduced with NH2OH•HCl (aq) and subsequently Hg(II) (aq) was back-reduced 94 

to Hg(0) by addition of SnCl2 (aq). Hg(0) was subsequentely purged from the solution and pre-concentrated onto a gold trap to be finally quantified by ICP-95 

MS. 96 

QA/QC  97 

All borosilicate glass cylinders were pre-cleaned following the US EPA Method 1631 (https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1008IW8.txt). 98 

Briefly, the outside and inside surfaces of the Ems glass cylinders were first washed with laboratory analytic grade acetone in a fume hood, then washed with 99 

alkaline detergent, and finally rinsed five times with de-ionised water. The cylinders were immersed in 3.5 % HNO3 for 6 hours at 65-75 ºC through submerging 100 

the cylinders in a polyethylene bucket containing a HNO3 solution. We ensured all the cylinder surfaces were in contact with the HNO3 solution.  After this, 101 

the cylinders were rinsed five more times with de-ionised water and let drying in a fume hood. They were finally placed in a muffle furnace and baked at 102 

500°C for 5 hours. Prior deployment they were individually sealed in teflon bags. In general, glass surfaces exhibit a low adsorption of mercury38. Nickel metal 103 

was chosen on the same principles based on the low degree of Hg amalgamation. On the other hand, silver metal shows a nearly quantitative collection 104 

efficiency for Hg(0) and inorganic Hg(II) species39. The feasibility of using silver mesh filters as passive samplers of leaching Hg was tested prior the 105 

experiment. The retention of silver mesh filter to Hg is very high (95.50% and 96.84%) and was tested by feeding a Hg standard solution at different 106 

concentrations (200 pg/ml and 500 pg/ml) through the silver mesh at a flow rate of 100 ml/h. In order to control for breakthrough, during field deployments 107 

two silver meshes were piled in each EM and analyzed separately. Negligible breakthrough was observed. 108 

Before any field deployment, the silver meshes were blanked from Hg by positioning them in a Hg free inert gas stream and heating at 450 0C. This allowed 109 

reaching a stable blank value of 232.7 ± 102.6 pg (n=10). In this way the silver mesh could be reused in subsequent deployments. After repeated uses, visual 110 

inspection of the silver mesh occasionally revealed a patchwise change in the surface lustre. This might have resulted from mechanical deterioration and/or 111 

chemical oxidation. Various treatments to restore the surface were tested. Gentle treatments with diluted acid or small amount of commercial silver polish 112 

were generally found to produce a satisfactory results.  113 

In ICP-MS measurements, isotopes of 198Hg, 199Hg, 200Hg, 202Hg of the spiked sample were collected in time-resolved, single point per-peak mode with dwell 114 

times of 20 ms. Carried gas flow was optimized every day to obtain maximum and stable signal. Detailed operating conditions for ICP-MS are listed in Table 115 

S2. A 5 ml standard solution (100 pg/ml) were measured prior to every 4-5 samples as a QA/QC measurements. Limits of detection for ICP-MS measurements 116 

of 202Hg isotope was 50 pg. The forest litter spiking procedure was a critical step. For the homogeneous distribution of the spiked mercury in the organic 117 

matter, we used a diluted spiking solution via diluting 10 times the concentrated 202Hg solution. In this study, 17% of the mass balance assessment of Hg in 118 

the EM provided "non-sense" negative values of Fvols. This was possibly due to poor homogeneisation of spiked litter. These outliers were excluded from 119 

statistical analysis. 120 

Flux calculations  121 

Fnet  (ng m-2 d-1) is the net result of all the deposition and loss processes involving THg, and is calculated as: 122 

https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1008IW8.txt
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where 202 silverHg  represent the amount of 202Hg found in the silver mesh disks at the end of the exposure. Hereone the supersription "s" will indicate fluxes for 132 

202Hg. 202Hg is rare in the environment, therefore the deposition flux for this isotope is approximated to be 𝐹𝑑𝑒𝑝
𝑠 = 0, and equation 1 for the labeled 202Hg can 133 

be rewritten as: 134 
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Let’s define now the function 𝑓𝑙𝑜𝑠𝑠(𝑡)
 describing the instantaneous value of Floss . If the concentrations of spiked 202Hg in the litter is in the order of or lower 136 

than that of the native THg, and assuming the spiked 202Hg behave as its native homologue, the relationship between the instantaneous loss fluxes of native 137 

and spiked 202Hg can be written as: 138 
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𝑠 . 140 

Since  𝑟(𝑡) is not constant (despite losses of native Hg are assumed to be the same as those of 202Hg, native Hg continuously receive inputs from the atmosphere), 141 

the shape of the functions 𝑟(𝑡) and 𝑓𝑙𝑜𝑠𝑠(𝑡)

𝑠  are not known. It is therefore not possible to exactly derive the value of 𝐹𝑙𝑜𝑠𝑠 for native Hg over the integrative 142 

sampling period. However, it can be argued that 𝑟(𝑡) is a growing function of time, where the minimum (𝑟(𝑡0)) and maximum (𝑟(𝑡𝑓)) values are experimentally 143 

known. Therefore, assuming in first approximation, that 𝑟(𝑡) is linearly growing during the two month sampling period, the following relationship can be 144 

introduced as a first approximation: 145 
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Similarly, the downward export flux and volatilization flux of native Hg from the organic matter can be expressed as: 149 
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Finally, from equation 1, 4 and 7, Fdep for native Hg can be calculated as follows, 152 

             
s
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Quality of Hg flux measurements 154 
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Screening EM flux results for measurement quality included checking for consistentcy of the following assumptions: i) the concentration of 𝐻𝑔202 𝑙𝑖𝑡𝑡𝑒𝑟 is in 155 

the order or lower than that of native Hg; ii) r(t) is a growing function of time and therefore the condition assumed in equation 6 is verified; and iii) 𝐻𝑔202 𝑙𝑖𝑡𝑡𝑒𝑟 156 

is a useful tracer of the behavior of THg. Assumption i) is verified since r values representing the ratio of concentrations between THg and 𝐻𝑔202 𝑙𝑖𝑡𝑡𝑒𝑟 ranged 157 

18-20 at t(0) and 20-60 at t(f). This result also confirms the validity of assumption ii) given that 𝑟(𝑡𝑓) was always > than 𝑟(𝑡0) (it has to be acknowledged 158 

however that the magnitude of the difference Δr = 𝑟(𝑡𝑓)- 𝑟(𝑡0), have implication for tracking the accuracy of flux measurements as described above). If the 159 

growth trend of the function r(t) is highly non linear the identity assumed in equation 6 can introduce an error. Assuming an unlikely worst case scenario with 160 

all deposition of Hg occurring only during the first day of exposure and considering the maximum observed values of Δr, it is possible to demonstrate that the 161 

resulting theoretical error in flux accuracy will not exceed 50% of the estimated mean value. Finally, assumption iii) has been adopted in other notable studies40, 162 

41.  163 

It can be critically argued that the spiked 202Hg could be more loosely bound to OM compared to the native Hg. A quick initial release of 202Hg was indeed 164 

observed during the equilibration phase preceding the experiment, suggesting rapid volatilization of the superficially adsorbed pool. During the experiment, 165 

however, Δr values were directly correlated with the change in THg concentration in the litter at t(0) and t(f), showing that the increase in the r values are fully 166 

explained by fresh deposition of native Hg on the litter and not by higher mobilization of 202Hg. An additional confirmation of is that during the sampling 167 

period of Aug-Oct and Feb-Apr, when very low net deposition of fresh THg occurred, no significant change in r values was observed. 168 

Statistics  169 

Normality in the distribution of replicated Hg flux measurement and litter dry mass loss was assessed using the Lillefors test with N=10. To compare Hg fluxes between canopy 170 

and gap conditions, we de-trended the dataset by dividing by dividing the individual Flux measurement for their overall (understory and clearing) mean value within each 171 

period. We obtained two groups of data (understory and clearing) and we perform a F precision test to assess similarity in their variance. We applied the Student's t-test to 172 

compare the mean of the groups in the case F-test was positive and the Cochran's variant of the t-test when variance was significantly different. Regression models were based 173 

on the ordinary least squares method. Correlation was quantified using Pearson's correlation coefficient. Significance of regression coefficients was tested by analysis of 174 

variance (ANOVA). 175 

Organic matter analysis  176 

Information on the method to analyze organic matter characteristics including dray weight, total OC and total N is presented in the supplementary information (Text S1).  177 

Results and Discussion 178 

Seasonality of litter turnover  179 

Dry mass OC mass losses from vegetation litter measured using the EM confirmed that understory conditions significantly (P<0.05) promoted turnover of OM 180 

with dry mass losses up to 55% during the warmest and most humid periods (Figure 3). Dry mass loss data from the EM were validated by consistent 181 

measurements simultaneously performed using traditional litter bags in the understory. The data on litter degradation (i.e. mass loss) reveal the highly seasonal dynamic 182 

of OC respiration in this subtropical forest. The loss rate of litter mass had a maximum during the hot and wet seasons, in particular in June-August, then it consistently declined 183 

to a minimum in the dry and cold seasons, in particular January-March, to increase again with temperature and precipitation toward the last sampling campaign. During the 184 

dry and cold seasons, the litter deployed in the understory and the clearing experienced similar dry mass losses in the range of 15-25%, however the variability 185 

over time of dry and OC mass loss under the canopy was 140% of that observed in the clearing. Litter degradation rate positively correlated (P<0.01) with 186 

rainfall, air temperature and humidity (Table S1) both in clearing and understory.  187 

Litter mass loss derives from the activity of detritivorous macro-invertebrates and microbe, and the loss rate depends on climate (in particular temperature and litter water 188 

content) and on the nature of the litter42-45. A significant decline of the C:N ratio was observed during the hot and wet seasons, consistent with the period in which the 189 

highest water content in litter was measured (Table S3). The hypothesis addressed in this study is that OC mineralization and the decline of C:N drives and correlates to Hg 190 

losses from the forest litter. Water content of litter deployed in the hot and wet seasons was generally higher than in dry and cold seasons, probably due to heavy 191 

rainfall in the hot and wet seasons. Organic matter turnover was higher in the hot and wet seasons than in the dry and cold seasons (p<0.05), and under the canopy 192 

compared clearing (p<0.05).  193 

Experimental observations were designed to represent two blocks (understory and clearing) where environmental conditions (namely: rainfall, air temperature 194 

and humidity) were the same but distinct dynamics of OM degradation occurred. The correlation among environmental conditions data and litter dry mass, OC 195 

and N loss (Table S1) showed that OM turnover was under similar drivers both in understory and clearing conditions. The clearing conditions, however 196 

inhibited the rate of degradation, possibly due to altered water balance in the EM (e.g. more rapid evaporation in response to direct exposure to incident 197 

shortwave radiation in the clearing, compared to the understory conditions), as exhaustively discussed elsewhere42-45, 50. Our results on litter mass dynamics are 198 

therefore fully consistent with previous observations in similar environments21.    199 

Seasonality of 202Hg fluxes  200 

The s

volF  and 𝐹𝑑𝑜𝑤𝑛 
𝑠 fluxes in each sampling period and canopy conditions were higher in the hot and wet season than in the dry and cold season (Figure S2), 201 

suggesting that high precipitation, high temperature and enhanced dynamics of organic matter turnover favored 202Hg mobilization. To our knowledge this is 202 

the first study to show a relationship between Hg mobilization from litter and OM turnover in field conditions54, 55. 203 

Organic matter in forest litter is largely constituted by complex polysaccharides including cellulose, more labile hemicellulose and pectine56. Lignin is also an 204 

important component of litter, however, unlike cellulose and hemicellulose only a limited classes of fungi and bacteria can completely mineralize it57, 58. The 205 

observed dependence of 202Hg mobilization on litter decomposition (and the conditions that promoted it) suggests that Hg might be prevalently bound to the 206 

labile constituents. Litter mass loss derive from complete mineralization of the labile constituents and the production of water-soluble components which are 207 
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then released by leaching to the underlying soil. The leaching of water-soluble constituents may contribute to the higher values of 𝐹𝑑𝑜𝑤𝑛 
𝑠 . Similar to soil, litter 208 

(as an organic matrix) can effectively trap Hg depositions. Litter mineralization is however fast in subtropical wet forests and tightly controlled by temperature 209 

and humidity. Previous experiments in the laboratory showed that 5%-23% Hg could be released into the atmosphere during one-year litter decomposition 210 

process due to the rapid mineralization of litter carbon18. In our study, higher air temperature and litter moisture during the hot and wet season, promoted faster 211 

decomposition of litter and Hg release. During the dry and cold season, instead, lower air temperature and lower litter moisture inhibited litter decomposition 212 

and Hg releases. Loss fluxes under the canopy were relatively high compared to the clearing. To this regard, it is important to recall that water budget in litter 213 

is strongly influenced by land cover. Canopies, prevent rapid evaporation of water in the litter, maintaining better conditions for microorganisms growth. 214 

Decomposition of litter has been observed to be generally faster in understories than in clearing59-61.  215 

The fluxes of native Hg in litter  216 

Hg fate in litter underwent a strong climate control during the different seasons (Figure 4). The net air-litter exchange Fnet  had a positive value during October-February 217 

and April-August, and the deposition flux Fdep displayed a higher value in the same sampling period compared to other periods, indicating prevailing deposition 218 

of atmospheric Hg, and forest litter serving as a net sink (Figure 4). In contrast, during the other sampling periods, the loss of Hg from litter was prevalent, 219 

primarily due to re-volatilization of Hg. Generally, over the whole sampling period, both Fvol and Fdown of native Hg were higher under the canopy than in the clearing. 220 

The process controlling the bulk loss of total Hg from the litter was volatilization typically representing 76% to 96% of the total loss. After de-trending to 221 

exclude the effect of seasonality, Floss measured under canopy throughout the year were generally higher than in the clearing (Mann-Withney test, P<0.05; 222 

Figure 4). Data from the wetter and warmer part of the year were determinant for this result.  223 

The total Hg loss from litter (Floss, encompassing both volatilization and the leaching flux captured by the silver mesh) under the canopy was statistically 224 

correlated to litter dry mass loss, OC loss, N loss, rainfall, air temperature and humidity (Figure 5, Table S1). These relationships dramatically fell when 225 

considering the clearing dataset. The mean value of Floss over the year ranged 520-1370 ng m-2 d-1 and 165-942 ng m-2 d-1 in the understory and clearing, 226 

respectively. These fluxes resulted in a total loss ranging between 8% and 45% in two months-time of the total Hg present in the litter at the beginning of each 227 

exposure period. The EM method allowed resolving net air/litter exchange into the volatilization and deposition component. On a yearly base, deposition of 228 

airborne Hg during litter exposure exceeded the total losses by a factor of 2.5 in the clearing and 1.5 in the understory. Vegetation litter represented therefore 229 

a net sink of atmospheric Hg. This is in agreement with previous results showing the mass of Hg in litter of temperate forests increasing over time during litter 230 

decomposition 18, 46, 47, 62. In our study, however we observed that the general trend was inverted during certain period of the year, with volatilization higher 231 

than deposition. The mechanism of Hg accumulation during litter decomposition is still uncertain. One hypothesis is that despite ongoing decomposition, 232 

binding sites for Hg on litter OM never become saturated. In this case, accumulation mechanisms will be similar to the adsorption of Hg by the cuticle of the 233 

leaf surface63. Another hypothesis is that the organic functional groups formed in the litter decomposition process can also serve as new binding sites 48, 64, 65. 234 

The first block of the experiment (understory) showed consistent results with previous laboratory-based studies in which Hg mobilization correlated with OM 235 

turnover16-18 as well as other measured environmental variables (namely: rainfall, air temperature and humidity). The results of the second block (clearing) 236 

however, helped to disentangle the role of litter degradation as a driver of Hg loss from other correlated factors (namely: Temperature and humidity). Despite 237 

the clearing and the understory set experienced the same average conditions of temperature, waterfall and air humidity, no significant correlation was observed 238 

in the clearing with temperature and humidity. Only a positive correlation with N loss (P<0.05) was observed, corroborating the hypothesis that higher Hg 239 

mobilization fluxes under and outside canopies were primarily driven by litter OM turnover. 240 

Lack of significant correlation between Floss and litter dry mass loss observed in the clearing could have been determined by either lack of statistical resolution 241 

due to the limited variance of OM degradation rate (in comparison to the forest block), or by the influence of an emerging confounding factor associated to the 242 

clearing conditions, possibly controlling Hg dynamics (e.g. direct exposure to solar radiation during some hours of the day); alone or in combination. The 243 

comparison of the residuals from the correlation between Floss values and the first order least square model linking Floss and dry mass loss in the understory 244 

and clearing conditions helps to evaluate these cases. Consistent scedasticity (Figure S3) was observed for the residuals from the understory and clearing 245 

datasets, suggesting common drivers in the relationships linking Hg and dry mass losses. Such a consistent behaviour supports the hypothesis that: Floss is 246 

under the same biogeochemical drivers in the understory and the clearing, while the lack of correlation with the OM loss flux in the clearing was likely due to 247 

the insufficient variability of OM degradation rates measured in the clearing during the year. 248 

Total Hg loss rates observed in the present study were much higher (about one order of magnitude) than those previously observed in the laboratory-based 249 

studies16-18 or in previous field studies19 reporting limited mobility of OM-bounded Hg. Our study is the first to be performed in a subtropical warm and humid 250 

environment. OM degradation rates measured here were one order of magnitude higher than those reported in those previous studies18. Additionally, litter 251 

decomposition rate is strongly influenced by the type of litter. In general, litter decomposition rate is higher for subtropical forest dominated by evergreen or 252 

deciduous broadleaf species than for coniferous forests with pine needles46, 66-68. Inclusively, lower capacity of accumulating Hg in the former than the latter 253 

were also observed47, 69. Remarkably, the only available theoretical assessment of the influence of OM turnover on the global mass balance of Hg was performed 254 

taking into consideration parameters derived for temperate and boreal environments9. Subtropical and tropical forests represent more than 50% of the total 255 

forest land cover. Assessments of global mass balance of Hg could therefore have significantly underestimated the influence of rapid turnover of Hg fixed in 256 

the litter and superficial soil of subtropical and tropical humid climates. The enhanced mobility of Hg shown here  deserve therefore further scientific attention, 257 

especially when assessing general fate and distribution of Hg under a globally warming climate. 258 

Significance of EM based measurements and comparisons with previous studies  259 

The conventional widely used technique for measuring the air-surface exchange flux of Hg(0) is the DFC method70-72. Hg(0) emission fluxes from deciduous 260 

forest soils previously collected using this method are summarized in Table S4. The mean volatilization flux (668 ng m-2 d-1) calculated in the present study 261 

was somehow higher but in the sme order of magnitude than previously reported observations by DFC (Table S4) (12-498 ng m-2 d-1) with a mean of 221 ng 262 
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m-2 d-1. Similarly, the volatilization fluxes estimated in the present study were comparable to, although slightly higher than those measured by DFC in a study 263 

in Mt. Jinyun of Chinawhich in a similar forest ecosystem (342-498 ng m-2 d-1) 78. These differences are not surprising as the DFC measurements target the 264 

volatilization flux at the net of gaseous depositions, while the flux calculated through the EM represents the total volatilization. This fully explains the off-set 265 

existing between the datasets. It must also be recalled that, similarly to the EM method, DFC flux measurements are also affected by uncertainties73-77.  266 

Previous DFC-based measurements have shown both prevailing volatilization or depositions varying from case to case 73, 79, 80. In contrast, measurements using 267 

the EM quantifies the total deposition flux including contributions from gaseous oxidized mercury and particulate bound mercury (PBM) dry and wet deposition 268 

(mostly from throughfall) besides the total gaseous depositions of Hg0) .  Net deposition fluxes estimated from EM approach (annual mean of 276 µg m-2 yr-269 

1) suggested that DNNR forest was a net sink of Hg. This conclusion is also supported by earlier findings which showed that throughfall Hg fluxes (40-113 µg 270 

m-2 yr-1) were significantly higher than the Hg(0) emission fluxes in China79, 81-83. 271 

Uncertainties in conventional flux measurements, and emission estimates s, (including primary and secondary sources)  hinder confidence on current global 272 

and regional Hg budgets4, 80, 84. The proposed EM methods can constrain some of this uncertainties, delivering long term temporally integrated flux 273 

measurements. Globally, the variability of air-surface exchange flux measurements is larger for forest systems (-727 to +707 Mg yr-1) than other terrestrial 274 

ecosystems85. Applying, in first approximation, the result generated in the present study to the total forested area of China 275 

(http://www.resdc.cn/data.aspx?DATAID=99), the net Hg deposition flux is calculate to be roughly 73 Mg yr-1 for the broadleaf forests and 240 Mg yr-1 for 276 

the coniferous forests. It should be emphasized that the air-surface exchange process strongly depends on land cover and climate48, 49, 86, 87. For example, THg 277 

mass positively correlated with latitude with average mass increase of 10.6 g ha−1 per degree latitude48, 49. High contents of Hg in litterfall and throughfall  278 

were observed in coniferous forests47, 66, 88, 89, confirming boreal forests as important capacitors for Hg. It is thus recommended to expand the application of 279 

EM to address ecosystem exchange of Hg in different forest biomes. 280 

Supporting information: 281 

Additional information on the pearson correlation coefficients and P values of the correlation analysis, detailed operating conditions for 282 

ICP-MS, the trends of mean air temperature, rainfall, water content and C/N in every sampling period, Hg(0) emission fluxes from 283 

deciduous forest soils collected by DFC method, the field deployment and mass balance of Hg in the exchange meters (EMs), The fluxes 284 

of 202Hg in the litter after 2 months of deployment and the consistent scedasticity for the residuals from the understory and clearing datasets.  285 
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 506 

Figure 1: The location of sampling site DNNR (Yellow circle) and gridded (0.1°×0.1°) mean of monthly NDVI (satellite-based normalized 507 

difference vegetation index, representing the vegetation activity) in East Asia during the study period.8 508 
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 527 

Figure 2: The diagram of the exchange meters (EMs). Fdep was the Hg flux deposited to the EM during the sampling period, Fdown is the 528 

Hg flux downward export (e.g. leaching (including run-off) from EM and Fvol is the Hg flux emitted up to the air from EM. 529 
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Figure 3. Bow plots of the litter dry mass loss expressed as percentage of the initial dry mass for the understory (grey boxes) and the 548 

clearing. Boxes show sample mean, 25th and 75th percentiles. Whiskers extent to the lowest (or highest) value within 1.5 of the lower (or 549 

higher, respectively) interquartile range. 550 
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Figure 4. Hg loss, deposition and net fluxes of native Hg as well as their volatilization and leaching components in the litter after 2 months 571 

of deployment. (a) Left (black) bars represent the leaching fluxes of native Hg (Fdown) in the understory and right (gray) bars represent the 572 

leaching fluxes of native Hg (Fdown) in the clearing. (b) Left (dark blue) bars represent the volatilization fluxes of native Hg (Fvol) in the 573 

understory and right (blue) bars represent the volatilization fluxes of native Hg (Fvol) in the clearing. (c) Left (black) bars represent the loss 574 

fluxes of native Hg (Floss) in the understory and right (red) bars represent the loss fluxes of native Hg (Floss) in the clearing. (d) Left (dark 575 

green) bars represent the deposition fluxes of native Hg (Fdep) in the understory and right (bright green) bars represent the deposition fluxes 576 

of native Hg (Fdep) in the clearing. (e) Left (dark red) bars represent the net fluxes of native Hg (Fnet) in the understory and right (light 577 

green) bars represent the net fluxes of native Hg (Fnet) in the clearing. 578 
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Figure 5. Scatter plot and first order least square model for Floss vs litter dry mass loss. 581 
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