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 22 

ABSTRACT 23 

 24 

Modeling and prediction of a city’s (Oslo, Norway) daily dynamic population using mobile device-based 25 

population activity data and three low cost markers is presented for the first time. Such data is useful 26 

for wastewater-based epidemiology (WBE), which is an approach used to estimate the population level 27 

use of licit and illicit drugs, new psychoactive substances, human exposure to a wide range of pollutants, 28 

such as pesticides or phthalates, as well as the release of endogenous substances such as oxidative 29 

stress and allergen biomarkers. Comparing WBE results between cities often requires normalization to 30 

population size, and inaccuracy in the measured population can introduce high levels of uncertainty. In 31 

this study mobile phone data from 8-weeks in 2016 was used to train three linear models based on 32 

drinking water production, electricity consumption and online measurements of ammonium in 33 

wastewater. The ammonium model showed the best correlation with an R-squared of 0.88 while 34 

drinking water production and electricity consumption showed more discrepancies. The three models 35 

were then re-evaluated against 5-week of mobile phone data from 2017 showing mean absolute errors 36 

<10%. The ammonium-based estimated mean annual population for Oslo in 2017 was 645 000 37 

inhabitants, 4% higher than the “de jure” population reported by the wastewater treatment plant. Due 38 

to changing conditions and seasonality, drinking water production underestimated the population by 39 

27% and electricity consumption overestimated the population by 59%. Therefore, the results of this 40 

work showed that the ammonium mass loads can be used as an anthropogenic proxy to monitor and 41 

correct the fluctuations in population for a specific catchment area. Furthermore, this approach uses a 42 

simple, yet reliable indicator for population size that can be used also in other areas of research. 43 

  44 



INTRODUCTION 45 

 46 

Wastewater-based epidemiology (WBE) is an established tool to estimate the population level exposure 47 

to a wide range of pollutants (i.e. pesticides1, phtalates2, phosphorus flame retardants3)  by the 48 

quantitative measurement of endogenous and exogenous biomarkers excreted by humans in 49 

wastewater4. Furthermore, WBE already complements existing epidemiology-based estimation 50 

techniques of illicit drug use5-6 and more recently has provided human exposure estimates of oxidative 51 

stress7 and allergen biomarkers8. Future strategies have also been discussed to assess the 52 

measurement of population health markers and biological markers of microbial exposure and disease9. 53 

WBE has the potential to provide near real-time information on community exposure to chemicals in 54 

form of mass loads that can be used for monitoring purposes, and has also been proposed as a potential 55 

early warning system (EWS) tool 10-11. Although WBE provides evidence-based and objective data on 56 

human exposure to a range of chemicals, it is still subject to a number of uncertainties. Much of the 57 

uncertainty lies in correction factors used to normalize the levels of biomarkers measured. This 58 

normalization is essential for allowing comparisons to be made with other geographical locations or 59 

during other time intervals 12. 60 

The assessment of the population size attached to the wastewater treatment plant (WWTP) is crucial 61 

and its uncertainty has been estimated to be between 7 and 55% 12. In a recent study, mobile device-62 

based population activity (MPA) patterns were used to calculate real-time population within a certain 63 

community 13. Using this technology, Thomas et al have confirmed that the uncertainty for the 64 

assessment of a population within a certain WWTP can be as high as  55%, mainly due to the temporal 65 

fluctuations of the population. 66 

Two broad population estimates have been defined and used in recent years 14: de jure (most 67 

straightforward and based on the residence census data served by the WWTP) and de facto (actual 68 

contributors to the system). The first approach does not provide information on whether people are 69 

actually within the catchment area throughout the investigation, or are indeed elsewhere. The second 70 

approach uses a proxies (such as chemical markers) that reflect the number of individuals actually using 71 

the wastewater system during the time of the investigation. However, the proxy may not consider 72 

wastewater loss or infiltration and are more vulnerable to additional limitations such as confounding 73 

factors ( i.e. industrial discharges) 15. 74 

The introduction of a population measure as a de facto proxy could significantly diminish uncertainty 75 

associated with population normalization of WBE data. To date, the use of MPA patterns has been 76 

shown to be the most accurate option for population estimation. However, these resources are not 77 

always available and may present a high cost 13. Therefore, the use of either endogenous or exogenous 78 

substances in the wastewater as population biomarkers (PB) is seen as the better solution in the long 79 

term. Ideal PB candidates must (a) be excreted at constant levels and by a representative percentage 80 

of the population, (b) be stable and have no affinity to particle matter, (c) be quantifiable in wastewater 81 

and (d) be easily analysed and at low cost 16. 82 

Cholesterol, creatinine, coprostanol and some prescribed pharmaceuticals have been proposed as 83 

human specific PB among others 16-20. Lai et al. used a population model based on the measurement of 84 

14 chemicals during a 311-day study to estimate the de facto population and compare it against the de 85 

jure. This study showed on average 32% higher population estimate using the de facto model over the 86 

de jure15.  87 



Hydrochemical parameters (exogenous substances), such as biological oxygen demand, chemical 88 

oxygen demand, nitrogen or phosphorus have also been used to estimate the population 21-22. Been 89 

and colleagues used a population-estimate model based on the analysis of ammonium (NH4
+) derived 90 

from a Swiss survey carried out in a 4-year study in 86 WWTPs. The linear model predicted a population 91 

equivalent of 8.1 ± 0.4 g day-1 of ammonium, and using the online measurements of this proxy the 92 

authors could quantify weekly and seasonal (i.e. summer holidays) fluctuations in the population 23. 93 

Ammonium (NH4+) is present in wastewater as an hydrolysis product of urea 24, and although this is not 94 

specific to human urine, this marker has been shown to be less influenced by wastewater composition 95 

than other parameters. Ammonium is therefore regarded as a good potential PB, especially for 96 

predominantly domestic catchments with small industrial discharges23. 97 

Electricity consumption and drinking water production could potentially be considered as another 98 

alternative to PB. Both are relatively easy to measure and can theoretically represent the amount of 99 

people in a specific area, specially within areas with minor industrial activity. Yet, the major concern 100 

regarding these two measurements is the impact of the seasonal variations (i.e. electricity consumption 101 

summer vs winter). To the best of our knowledge, none of these data have been previously assessed as 102 

a population proxy. 103 

Therefore, the scope of this study was to assess the suitability of three different proxies for the 104 

population normalization of WBE data from Oslo (Norway). The three candidates were drinking water 105 

production, electricity consumption, and online measurements of ammonium in wastewater. The three 106 

proxies were studied against MPA data. Models for a simple, yet reliable indicator for population size, 107 

were created with data obtained in an 8-week period in 2016 and tested in a 5-week period in 2017. 108 

Finally, the uncertainty was assessed, and population estimates were derived for each of the three 109 

models. 110 

MATERIALS AND METHODS 111 

 112 

Wastewater Treatment Plant and Flow Rates 113 

 114 

The total length of the sewer line connected to VEAS WWTP is about 42.3 km and connects 29 pipelines. 115 

The residence time in the sewer system, defined as the average time the sewer takes from the 116 

households to the treatment plant, has been reported as 5 hours (see www.veas.nu for further details). 117 

VEAS treats sewage for approximately 600 000 people (607 651, 615 332 and 619 673 inhabitants 118 

estimated in 2015, 2016 and 2017 respectively) of which the city of Oslo contributes about 70.5% and 119 

the adjoining four different municipalities (Asker, Bærum, Nesodden and Royken) represent the other 120 

29.5% (Figure S1). Wastewater flow rate is measured at the end of the plant using a Khafagi Venturi 121 

flume with level sensor installed in the outlet channel. Time-adjusted hourly wastewater flow 122 

measurements were used to calculate the ammonium mass loads in 2016 and 2017. See S.I. for more 123 

information about VEAS WWTP configuration. 124 

 125 

Ammonium Measurements and Calculations 126 

 127 

Ammonium concentrations were measured online using a Lange Amtax SC Filtrax (Hach). The one-hour 128 

average ammonium measurements (the system logs every 2 seconds) were performed in the 129 



sedimentation tanks, right after the screens and the aerated grit chamber. VEAS WWTP has several 130 

ammonium devices registering results, and the data is averaged only from those operating adequately 131 

(i.e. passing the calibrations). Hourly ammonium data were acquired and reported from January 1st 132 

2016 until December 31st 2017, with the exception of the period from September 9th to 12th in 2017 133 

due to system maintenance. VEAS WWTP presents two different lines that recirculate ammonium 134 

affecting the original concentrations coming downstream into the inlet (see Figure S2). The first line, 135 

referred as “wash water”, is returning water used to wash the nitrification filters in the nitrification 136 

tanks and it represents approximately the 5% of the total inlet flow annually while the second, referred 137 

as “stripped filtrated water”, comes from the ammonia stripping tanks and contains filtrated water 138 

extracted from the sludge. 139 

The wash water is returned to the main pipe in the inlet while the stripped water is returned in higher 140 

concentration but lower flow rates right before the sedimentation tanks. Stripped filtrated water 141 

introduces approximately 3% extra of ammonium into the stream every year and the omission of this 142 

input would imply and average error of approximately 12%. Furthermore, the continuous changes in 143 

the concentration are sometimes noticeable and would affect the final ammonium loads significantly 144 

(i.e. minimum and maximum recirculated stripped ammonium in 2017: 150 and 1270 kg day-1). 145 

Ammonium concentrations from both washing water and stripped filtrated ammonia were measured 146 

in the laboratory with an ammonia ion selective electrode approximately once per week. Average 147 

ammonium mass loads obtained from the composite samples collected from the washing water and 148 

stripped filtrated tanks were then used to create daily correction factors in order to subtract the 149 

ammonia loads originated from the recirculation system as shown below:  150 

𝑘amm = 1 −
𝐿𝑎𝑚𝑚 +  𝐿𝑤 +  𝐿𝑠𝑡

𝐿𝑎𝑚𝑚
 151 

where kamm is the ammonium correction factor, and Lamm, Lw, and Lst the 24-hour average ammonium 152 

loads measured from raw wastewater entering in the plant, wash water line and stripped filtrated water 153 

line respectively. Subsequently, the correspondent daily correction factors were applied to each of the 154 

24 ammonium measurements registered every day. The unknown dynamics behind the mass loads of 155 

these measurements, especially Lw and Lst due to its low resolution, has not been assessed. However, 156 

the use of the kamm will decrease the potential underestimation mentioned above. 157 

Ammonium concentrations are measured at the entrance of the sedimentation tanks while the flow 158 

meter is installed in the outlet pipe. The time delay between these two locatons is of about 1 hour. 159 

Therefore, ammonium mass loads were calculated by multiplying the wastewater flow rate by the 160 

ammonium concentrations measured 1 hour later. Furthermore, 24-hour ammonium mass loads 161 

averages were multiplied by kamm and presented in kg h-1 to be compared with the MP data. 162 

 163 

Mobile Device-Based Population Data 164 

The data source used to generate the dynamic population weighting in this study was a passive network 165 

signaling monitoring system. This monitoring system extracts all signaling data generated by handsets 166 

interacting with the mobile phone network provider, Telenor’s network. The measurements were 167 

aggregated, going from cells to base station, providing a single count per geographical point. In this way 168 

the end user was protected from re-identification by inference. 169 

The exact catchment boundary for VEAS WWTP was provided by the five different municipalities. The 170 

area was then aligned with a subset of 22 000 cells grouped into 1 500 base stations within the 171 

catchment boundary distinguishing between those “inside vs outside” VEAS catchment area. Hourly 172 



measurements (1 snapshot per hour) of the mobile devices within the greater Oslo region were 173 

collected for two different periods: 8 weeks between May 30th and July 31st 2016 and a 5-week time, 174 

from June 15th until July 19th in 2017. The hourly MPA data was firstly used to align the ammonium data 175 

and then to create the daily average estimates from 00:00 to 00:00 to be used for the lineal regression 176 

models. The MPA trends and general information can be found elsewhere in Thomas et al13. 177 

Drinking water production and electricity consumption data 178 

Daily drinking water production data for Oslo in 2016 and 2017 were provided by Oslo Municipality 179 

Water and Sewage Administration (VAV) whereas the hourly electricity consumption data for Oslo 180 

during the same period of time was obtained from Statnett. Both datasets provide information for the 181 

whole Oslo region and therefore are not aligned properly with the VEAS catchment area, nor the 182 

Telenor data.  183 

Drinking water production do not consider water leakage nor percentages of water used for 184 

households, industry or commerce. The total annual production in 2016 was 95.5 mill m3, out of which 185 

approximately the 3% was sold to other municipalities, 4% unregistered and public consumption, 6% 186 

for garden watering, 17% use for commerce, 40% for households and the remaining 30% was 187 

accounted as water loss. Population estimates for the drinking water network provided by VAV were 188 

647 676 and 658 390 inhabitants in 2015 and 2016 respectively. Daily drinking water production 189 

averages were obtained in m3 day-1 and directly compared against the MPA data. 190 

Electricity consumption is heavily dependent on the season and weather conditions. In 2016, the net 191 

consumption in Norway was 44% for manufacturing and mining, 34% for private households and 192 

agriculture and 22% for construction and other services 25. Yet, this proxy may still reflect the population 193 

patterns during periods of time when the season/weather is stable. High resolution electricity 194 

consumption data were obtained as hourly measurements (MWh/h) estimated from the aggregation 195 

of continuous data, subsequently averaged by day and compared against the daily MPA data. 196 

Data Alignment and Linear regression models 197 

Daily average MPA data was correlated with electricity consumption, drinking water production, and 198 

mass loads of ammonium. Both the time series of electricity consumption and drinking water 199 

production were temporally aligned with the mobile-phone data. However, a Cross Correlation function 200 

(CCF) was used to calculate the delay between the time ammonium is excreted in the urine and the 201 

measurement at the wastewater treatment plant. In particular, we used the CCF to estimate the 202 

correlation between the hourly time series of the mobile device-based population and of the 203 

ammonium measurements, at different time lags (with 1 hour resolution). The time lag at which the 204 

cross-correlation function was maximized was subsecuently applied into the ammonium hourly data to 205 

correct the delay. 206 

A linear model was used to firstly assess the correlation between the daily mobile phone data and the 207 

other proxies in the period between June and July 2016. 208 

𝑌 = 𝛼 + 𝛽𝑋𝑖 209 

where 𝑋𝑖 represents the three proxies: drinking water (𝑋𝑤), electricity consumption (𝑋𝑒) or ammonium 210 

level (𝑋𝑎). The three linear models trained on 2016 data have been used to validate the approach and 211 

predict the population using MPA data from June and July 2017. The models’ predictions were 212 

evaluated against a new mobile phone dataset from 2017 and compared in terms of mean absolute 213 

percentage error (MAPE): 214 



MAPE =
1

𝑛
⋅ ∑ |

𝑌𝑖 − �̂�𝑖

𝑌𝑖
|

𝑁

𝑖=1

 215 

where 𝑌𝑖 is the true value (mobile data 2017) and �̂�𝑖 the predicted value for electricity consumption, 216 

drinking water production and ammonium mass loads. This function compares the residual to the 217 

observed values, providing a standardized measure to evaluate the different models. We used a LOESS 218 

(locally weighted scatterplot smoothing) non‐parametric function to highlight the trend of the daily 219 

population estimates in Oslo for the three models (drinking water, electricity and ammonium) between 220 

01/01/2017 and 31.12.2017.All statistical analyses were performed using the program R, version 3.3.2 221 

(https://www.r-project.org/). 222 

RESULTS AND DISCUSSION 223 

 224 

Ammonium Data Alignment 225 

 226 

The mean lag between the households located within the VEAS catchment area and the entrance of 227 

the sedimentation tank where ammonium was measured was best estimated using a CCF between the 228 

MPA data and the ammonium measurements in wastewater at different temporal lags (Figure 1). The 229 

CCF analysis showed that the correlation between the time series of the mobile data and that of the 230 

ammonium concentration are positively correlated, with the highest correlation occurring at lag=-4 231 

hours. This means that an increase (decrease) of the value of the mobile data activity is associated with 232 

an increase (decrease) in the ammonium level 4 hours later. Therefore, all further analysis were 233 

performed using 24-hour MPA data against a 4-hour ahead ammonium data (i.e. mobile-derived data 234 

from 00:00 to 00:00 and ammonium data from 04:00 to 04:00). 235 

 236 

Figure 1. CCF mode using hourly measures of ammonium (kg h-1) and mobile-derived data to best fitting the mean lag between 237 
the households and the WWTP. 238 

Electricity, Drinking Water and Ammonium in 2016: Training of the Models 239 

 240 

MPA data between June and July 2016 were used to train the three linear models with the daily average 241 

drinking water production in Oslo, electricity consumption in Oslo and ammonium measured in the 242 

VEAS catchment area (see model details in Table 1; Figure 2a,b,c).  243 



Average water production during the monitoring study (June-July 2016) was 261 489 m3 day-1. Drinking 244 

water production was gradually decreasing during the studied period. The highest drinking water 245 

production occurred the first day of the study (Wednesday 01/06/2017, 323 970 m3 day-1) while the 246 

lowest production was recorded in the middle of July (Wednesday 16/7/2016, 227 663 m3 day-1). The 247 

weekly patterns (presented as ratio weekend/week day, considering weekend as Saturday and Sunday) 248 

show a reduction of water production during the weekends of about 5%. The MPA data and the water 249 

production data show a good linear relationship in the low and high interval, less in the mid-range (see 250 

linear regression in Figure 2a). With an R-square of 0.6, the main discrepancies are potentially related 251 

with the different water usage during the summer season. Furthermore, the linear model estimates 252 

work well during the first two weeks but after the third weekend the discrepancy in term of population 253 

underestimation is noticeable. For the last two weeks, the estimates seem to invert the tendency and 254 

it overestimates the real population by approximately a 20%. Furthermore, the drinking water 255 

production model estimate does not seem to follow a clear weekly pattern. 256 

Model  Coefficient Value 95% CI p-value R-squared 

Drinking water 
α -342600 -524895; -160365 0.0004 

0.60 
β 3.2 2.5; 3.9 3.86e-13 

Electricity  
consumption 

α -464945 -614298; -315591 5.64e-08 
0.75 

β 364 308; 420 < 2e-16 

Ammonium 
α 144079 108864; 179294 2.95e-11 

0.88 
β 2385 2157; 2612 < 2e-16 

Table 1. Coefficient estimates and R-squared for corresponding linear models for drinking water production (Xw), electricity 257 
consumption (Xe) and loads of ammonium (Xa). 258 

The average electricity consumption in Oslo during the training study (June-July 2016) was 2 652 259 

MWh/h and followed the same pattern described above for drinking water with a decrease in 260 

consumption from June to July of about 11%. The highest consumption peak was recorded in June 10th 261 

while the minimum consumption occurred the 24th of July (3 498 -1 755 MWh/h). For this case, the 262 

weekly pattern was clearer and the weekend “drop” was more intense than for MPA data, probably 263 

due to the work/industry inactivity during the weekend. The linear model in this case showed a better 264 

fitting compared with the drinking water production and the R-squared showed a satisfactory 0.75. The 265 

influence of the daily work activity/industry in the electricity consumption seems to affect the model 266 

slightly overestimating population during the week days and underestimating during the weekend. 267 

However, the overall model seems to provide a reliable population prediction and proper trend (Figure 268 

2b). 269 

 270 



 271 

Figure 2. Linear regression models for the estimation of population based on the daily MPA data versus a) drinking water 272 
production b) electricity consumption and c) ammonium measures at the VEAS WWTP in 2016 (above) and comparison of the 273 
MPA data and model predictions (below). 274 

The best linear fit within the three studied population proxies was obtained for the ammonium mass 275 

loads (R-squared = 0.88). The average ammonium mass loads during the 2-month study were 149 kg 276 

hr-1 with a maximum and minimum mass loads of 228 and 89 kg hr-1 respectively on June 14th and July 277 

17th. Monthly ammonium mass loads averages in 2016 decreased 37% from June to July in agreement 278 

with the MPA data which showed 31% decrease. Furthermore, both intra and inter day trends correlate 279 

very well and the estimate lines showed in Figure 2c are overlapped most of the time indicating an 280 

extremely good prediction. 281 

Electricity, Drinking Water and Ammonium in 2017: Validation of the Models 282 

 283 

The models obtained from the 2016 training dataset were subsequently applied using new data 284 

obtained from 2017. Figure 3 shows the performance of the models by comparing the population 285 

predictions for 2017 against the actual MPA population during the same period. Furthermore, the 286 

models were compared in terms of MAPE providing relatively good values below 0.1 (Table 2).  287 

The drinking water production model with a MAPE of 0.0875 provided good average estimates during 288 

the validation study in 2017 (drinking water: 450 000 inhabitants vs MPA: 470 000 inhabitants) 289 

however, it failed defining the trends over the time. Electricity population model showed the lowest 290 

MAPE (0.0792) and provided a proper declining trend. However, in this case it showed a tendency of 291 

overestimating the population during the weekdays and underestimating during the weekend. 292 

Furthermore, electricity is the proxy with higher probabilities of getting affected but confounding 293 

factors, especially in winter time. Although the MAPE was not the best (0.0879), the ammonium mass 294 

loads model showed consistent estimates throughout the validation study. However, results 295 

highlighted in Figure S3c show a potential sistematic deviation of the new data from 2017 compared 296 

with the regression line estimated with the data from 2016. This variation could be linked with the 297 

recirculated ammonium water at VEAS WWTP during that period of time leading to a slightly 298 

overestimation of the population. Yet, the error is below 10% and the estimates perfectly describe the 299 

trend during the 5-week study. 300 

a)                  b)      c) 



 301 

Additionally, the potential gain of prediction power was assessed by combining the three proxies (see 302 

Table S1 and Figure S4). The new full model slightly outperformed the ammonium training model with 303 

an R-square of 0.93 and the electricity validation model showing a MAPE of 0.074, being 6% lower. The 304 

effect of drinking water consumption in the full model was found to be not significant. This approach 305 

can improve and optimize the selection/rejection of new proxies by comparing its significance in the 306 

model versus the effort/cost of obtaining the data. 307 

 308 

 309 

Figure 3. Population estimates using the A) drinking water production, B) electricity consumption and C) ammonium mass loads 310 
data from 2017 (red line) against the 2017 MPA data over the time. 311 

 312 

Model MAPE  

Drinking water production 0.0875 

Electricity consumption 0.0792 

Ammonium mass loads 0.0879 
Table 2. Mean absolute percentage error for the different population prediction models for 2017. 313 

Total Annual Population Estimates  314 

 315 

Annual population estimates for 2017 were calculated using the three models (Figure 4). It should be 316 

noted that the models were trained only on the summer month of June and July 2016. Therefore, when 317 

providing annual estimates, the trends were affected by confounding factors such as high-water usage 318 

in summer, high electrical consumption in winter or heavy rain events that might affect the wastewater 319 

flow rates. 320 

Mean drinking water production in 2017 was 245 337 m3 day-1 with a relative standard deviation (RSD) 321 

of 6% and minimum and maximum daily mean productions of 204 275 and 275 580 m3 day-1 in April 322 

and February respectively. The annual population average estimate was 450 000 inhabitants which 323 

looks far below(-32%) from the 660 000 estimated in January 2016 for Oslo by Statistics Norway 324 

(https://www.ssb.no/en). Water usage during the calibration period seemed to be relatively higher 325 

than the rest of the year which resulted in an underestimation of the annual population. Although the 326 

two datasets do not represent the same two geographical boundaries, the high differences on the 327 

estimates seem to indicate that the model do not perform well under changing conditions (seasons). 328 

Yet, the annual trend (Figure 4) captures the changes of population during the main festivities such as 329 

Easter, summer season or Christmas.  330 

 331 

a)                     b)                       c) 

https://www.ssb.no/en


Average electricity consumption in 2017 was 4 166 MWh/h which resulted in an average estimate of 1 332 

050 000 inhabitants, 59% larger than the official estimates from Statistics Norway. The high variability 333 

of the consumption (RSD = 30%, min = 2 162 MWh/h, max = 6 862 MWh/h) was driven by the drastic 334 

changes of temperature in Oslo during winter and the consumption of electricity for heating. The 335 

average temperature in Oslo in January 2017 was 0°C while in July was 16°C (see Figure S5). Although 336 

both drinking water production and electricity consumption seemed to be adequate proxies during the 337 

model calibration, the annual estimates indicate that those are biased towards the different seasons 338 

and habits of the population in summer and winter. This suggests that models using electricity as a 339 

proxy might need to consider the temperature to adjust the higher consumption of the winter period, 340 

especially in those countries characterized by strong seasonal variations. Unfortunately, MPA data was 341 

not available during winter season for a better model calibration. Therefore, further research needs to 342 

be done in order to implement new models that can take into account these additional variables. 343 

The mean ammonium mass loads for the entire year was 216 kg hour-1 with a RSD of 19% and a 344 

minimum and maximum mass loads of 86 and 305 kg hour-1 occurring in October and February 345 

respectively. Transformed into inhabitants, the average population estimate at Oslo’s catchment area 346 

in 2017 was 645 000 inhabitants, 4% higher than the “de jure” population reported by VEAS WWTP 347 

based on census data and catchment boundaries(620 000 inhabitants estimated in 2017). Furthermore, 348 

the model computed a population equivalent of 8,04 grams of ammonium per day and per inhabitant 349 

in Oslo. This estimate is in agreement with a previous Swiss study that used ammonium load averages 350 

from 86 WWTPs and a nationwide survey to estimate a population equivalent of 8.1 grams 23. 351 

Therefore, ammonium mass loads demonstrated to be the most stable proxy (or less influenced by 352 

confounding factors) for population estimates and moreover, since the calibration was performed in a 353 

single point during the year, the estimates were the best within the ones used for this study. Yet, further 354 

studies on the impact of the temperature, incomplete hydrolysis of urea to ammonium, measurement 355 

error and maintenance or temporal dynimics would increase the overall knowledge to decrease the 356 

uncertainty of this method when implemented in other locations rather than Oslo. 357 

The main drops in population observed throughout the year can be explained by Norwegian national 358 

festivities. The first major reduction in population takes place in week 9 during the Norwegian winter 359 

holiday. Population estimates during Easter drop approximately 25% and the variability in May is very 360 

high due to the large number of festivities and national holidays (1st, 17th and 25th of May). The major 361 

decrease during the year occurs during the summer break when the number of inhabitants in July 362 

decreased 35% compared with the annual mean, in agreement with our previous work 13. The 363 

population during the second part of the year seems much more stable except for the small drop at the 364 

beginning of October due to the Norwegian autumn holiday and the general decrease in December 365 

during Christmas time. The decrease in the mass loads of ammonium (and therefore population 366 

estimates) measured on October 25th are not in agreement with public holidays or events and therefore 367 

might indicate an error on the measurement of ammonium in wastewater. The drop of the estimates 368 

in September 9 - 12th was due to system maintenance.  369 



 370 

Figure 4. Daily population estimates in Oslo for the three models (drinking water, electricity and ammonium) between 371 
01/01/2017 and 31.12.2017. Red curve is a local regression model (loess curve) fitted to the population estimates to highlight 372 
the temporal trend over the year. Daily estimates are compared with the annual population estimates provided by VEAS WWTP 373 
(black dots) and Statistics Norway (SSB – dash dots). 374 



Implications and Outlooks 375 

 376 

Recent studies have demonstrated that the estimation of the number of inhabitants present within a 377 

WWTP catchment is the major source of uncertainty in WBE 13. Furthermore, the main failure is not 378 

only related to accuracy of the static population estimate but the variability and different trends during 379 

the week or the year. This issue can alter the overall conclusion of the WBE results and therefore there 380 

is a need for a solution.  381 

In this study, we assessed and compared for the first time the performance of three “low-cost” 382 

population proxies for the correction of the weekly, monthly and annual variability within a determined 383 

catchment area. Ammonium mass loads measured at VEAS WWTP were shown to be a proper 384 

population proxy for the population-normalization in WBE. Furthermore, drinking water production in 385 

Oslo and electricity consumption in Oslo are two promising complementary proxies that need to be 386 

further evaluated with supplementary MPA data. 387 

Drinking water production and electricity consumption provided good estimates during the test study 388 

in summer but failed to perform well for the rest of the year due to the changing conditions. However, 389 

it also needs to be noted that these two proxies were not perfectly aligned with the MPA data since 390 

they were measured from the whole Oslo area and not the specific catchment area. Yet, these data are 391 

very accessible and can be used in the future alone or integrated in more complex models such as 392 

machine learning. Furthermore, the integration of all the covariates in a single model can be used not 393 

only to improve the prediction power but to assess the cost/effectiveness of gathering new data for 394 

additional proxies (see S.I.). Complementary yearly data on longer periods of time, such as climate data, 395 

would contribute to refine the models presented in this study and improve the population estimates. 396 

The results obtained in this work showed that the ammonium mass loads can be used as an 397 

anthropogenic proxy to monitor and correct the fluctuations in population for a specific catchment 398 

area. This work also points out the complexity and importance of gathering reliable ammonium 399 

concentrations from the treatment facilities. These are complex systems and the online measurement 400 

instruments for ammonium are normally susceptible to the different processes in the plant that can 401 

involve drastic changes in the concentrations. Additionally, the average lag time between the area of 402 

study and the WWTP needs to be considered. The data alignment assessed in this study showed a mean 403 

4-hour delay from the release of the ammonium in the urine and the measurement at the WWTP and 404 

therefore this new outcome can be use in future WBE studies for adjusting the timing of the measured 405 

results. The population model created with the ammonium mass loads will also allow for retrospective 406 

assessment of all WBE data published during the last years in Oslo. 407 
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