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Abstract1

Non-targeted feature detection in data from high resolution mass spectrometry is a2

challenging task, due to the complex and noisy nature of datasets. Numerous feature3

detection and pre-processing strategies have been developed in an attempt to tackle this4

challenge, but recent evidence has indicated limitations in the currently used methods.5

Recent studies have indicated the limitations of the currently used methods for fea-6

ture detection of LC-HRMS data. To overcome these limitations, we propose a self7

adjusting feature detection (SAFD) algorithm for the processing of profile data from8

LC-HRMS. SAFD fits a three dimensional Gaussian into the profile data of a feature,9

without data pre-processing (i.e. centroiding and/or binning). We tested SAFD on10
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55 LC-HRMS chromatograms from which 44 were composite wastewater influent sam-11

ples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We12

further validated SAFD by comparing its results with those produced via XCMS imple-13

mented through MZmine. In terms of ISs and the unknown features, SAFD produced14

lower rates of false detection (i.e. ≤ 5% and ≤ 10%, respectively) when compared to15

XCMS (≤ 11% and ≤ 28%, respectively). We also observed higher reproduciblity in16

the feature area generated by SAFD algorithm versus XCMS.17

Introduction18

High resolution mass spectrometry coupled with liquid chromatography (LC-HRMS) is one19

of the main analytical tools for analysis of small polar and semi-polar organic compounds20

in complex samples, with application in the areas of pharmaceutical development, human21

health, metabolics and environmental monitoring (to name just a few).1–8 Chemical iden-22

tification is commonly performed through a combination of target, suspect, and non-target23

analysis.5–8 Target and suspect screening approaches focus on a limited number of well-known24

chemicals and they are considered relatively reliable and accurate in the identification of or-25

ganic compounds in complex samples.1,8–11 On the other hand, non-target analysis (NTA)26

aims at simultaneous identification of known and unknown organic chemicals in the sam-27

ples, using the data generated by LC-HRMS1–4,12,13 without prior knowledge regarding the28

non-target analytes.29

30

Feature/peak detection is one of the most crucial steps in non-targeted LC-HRMS work-31

flows from both qualitative and quantitative points of view.14–16 During feature detection,32

data complexity is reduced from ≈ 1×10+8 variables to ≤ 10,000 features/peaks through33

grouping of the related signals (i.e. all masses measured within a feature/chromatographic34

peak).2,3,13 The generated lists of features are then used as inputs to chemical identification35

workflows.1–3,13 However, the noisy and complex nature of HRMS data means that current36
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feature detection strategies are prone to error, and these errors result in lower levels of re-37

producibility and robustness.4,1738

39

There are different open access/source algorithms for the feature detection of LC-HRMS40

data such as XCMS18 and MZmine.19 Although there are numerous differences between the41

algorithms, they do share a common framework around the use of 2 dimensional data (i.e.42

centroided data2,3) rather than 3 dimensional data (i.e. profile data) and the use of ex-43

tracted ion chromatograms (e.g. XICs and/or region of interest3,16). These approximations44

are made in order to reduce data size and consequently decrease the data processing time,45

but they come at the cost of the necessity for a suite of optimizable parameters that the users46

need to carefully set in order to minimize the rate of false detection.20,21 However, multiple47

studies have shown that the feature detection using this procedure, even under optimized48

conditions, is prone to high rates of false detection.22–25 As of today, there have been only49

a few studies working with the three dimensional (3D) data.26,27 One such method used a50

probabilistic approach,27 while the other one employs the artificial neural networks for the51

feature detection in the LC-HRMS data.26 The main disadvantages of these methods are52

the fact that they need to be trained and in the case of artificial neural networks the data53

needed to be binned prior to their use.54

55

In this study, we present a self adjusting feature detection algorithm (SAFD) that utilizes56

all of the points measured within a feature without data centrioding and data binning. This57

algorithm is considered self-adjusting due to the fact that it utilizes user defined parameters58

as only the first guess in an adoptive process. SAFD fits a 3D Gaussian distribution into the59

profile data generated via LC-HRMS to detect features. The proposed algorithm does not60

need optimization of parameters such as the peak widths in mass and time domain in the61

same way as previously reported methods. SAFD was tested and validated using a dataset62

of 55 LC-HRMS chromatograms including 44 wastewater influent samples spiked with 1963
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internal standards (IS). Furthermore, we validated SAFD by comparing its feature lists with64

those generated via XCMS implemented through MZmine.65

Experimental Section66

The Experimental Setup67

In total 55 samples consisting of 4 blank, 4 equilibration injections, 3 internal standard68

injections, and 44 composite wastewater influent samples (Section S2) were analyzed using69

LC-HRMS. All the samples except the 4 equilibration samples were spiked with 19 labeled70

internal standards (IS) at 10 ngL−1 of each standard, Table S1. In this study we looked at71

the rates of false detection both among ISs and overall detected features. In the case of ISs,72

the spiked samples were used for evaluation of the true positive and false negative detection73

while the 4 equilibration samples were used for false positive detection evaluation. We refer74

to a feature that its presence confirmed (i.e. a true peak) in a sample as a true positive (TP)75

and a feature that its absence is confirmed in the sample as a true negative (TN). A false76

negative (FN) is a case where a TP is not detected by the tested method whereas a false77

positive (FP) is a TN identified as a feature by the algorithm.78

Sample Preparation and Analysis79

All the samples were filtered and transferred into 1.5 mL vials with a total volume of 1 mL80

(more details are available in Section S2 of the Supporting Information). All the samples,81

including the blanks, were then spiked with the mixture of ISs and were stored in freezer82

until the analysis. A detailed list of solvents, ISs, and their supplier is provided in the SI,83

section S1.84

85

All the samples were analyzed on an AB Sciex 5600+ QToF (Sciex, Concord, Ontario,86

Canada) LC-HRMS. We, directly, injected 10 µL of each sample into the instrument without87
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any other sample preparation step. For more details regarding the instrumental conditions,88

please see Section S3.89

IS Identification90

For IS detection and identification, we employed a semi-targeted approach where we first91

performed a non-targeted feature detection and then the feature lists were searched for the92

ISs. For ISs to have their presence confirmed in the samples, they had to have a mass error93

≤0.003 Da and a retention error ≤10 seconds. This approach was previously shown to be94

effective for identification of target analytes in complex environmental samples.28–3095

Self Adjusting Feature Detection Algorithm (SAFD)96

All the raw chromatograms were converted into an open ms format (i.e. mzXML)31 via97

MSConvert provided by the ProteoWizard package.32 The converted chromatograms were98

processed employing the self adjusting feature detection algorithm (SAFD) in order to detect99

all chromatographic features in the data, which had an intensity larger than the user set100

threshold (Table S2). This algorithm is an iterative one where the features are processed one101

at the time starting with the feature with the highest intensity. Once a feature is detected in102

a chromatogram, the signal of that feature is set to zero and SAFD moves forward with the103

detection of the next most intense feature in the sample. The SAFD goes through 9 steps104

during each iteration (i.e. detection of a feature in the chromatogram). These steps are: 1)105

maximum detection, 2) half-height placement (mass domain), 3) signal smoothing, 4) signal106

interpolation, 5) Gaussian fit (mass domain), 6) baseline tracing, 7) move to the neighboring107

scans, 8) Gaussian fit in time domain, and 9) removal of the signal of the detected feature.108

Maximum detection and half-height placement (steps 1 and 2): After finding the109

most intense location in the chromatogram (Fig. S1), the half-height of that mass peak is110

calculated by dividing the intensity of the apex by two. In order to locate the peak half-111
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height in the data, a mass window is calculated employing the user defined mass resolution112

(i.e. first guess) and the mass of the apex. In the next step the intercepts between a line113

spanning within the calculated mass window at the level of the apex half-height and the114

measured signal are found (Fig. S2). The found intercepts enable us to define the true mass115

window (i.e. peak width in the mass domain) and the resolution based on the experimental116

data. This signal (i.e. above apex half-height) and the measured parameters (i.e. true mass117

window and the resolution) are used in the next steps of the feature detection.118

Signal smoothing (step 3): The recorded signal in the previous step (i.e. above apex119

half-height), then goes through a smoothing step. This step reduces the levels of signal120

fluctuation before performing the signal interpolation. For the smoothing step a simple121

moving average with an averaging window of three points are used (Fig. S3). The milder122

smoothing method (compared to Savitzky Golay methodology) and a small averaging window123

were necessary for minimizing the signal alteration while reducing the signal fluctuations.124

Signal interpolation (step 4): The smoothed signal is interpolated using the spline125

function33 with a total number of 50 points. This step generates two vectors of 50 points126

each for masses and intensities, respectively (Fig. S4). The signal interpolation is a necessary127

step in SAFD due to the fact that, depending on the instrumental resolution, there are not128

enough measured points in the top 50% of a mass peak for fitting a three parameter Gaussian.129

Gaussian fit (step 5): The interpolated data is used for fitting a three parameter Gaus-130

sian function, (Fig. S5) where A is the signal amplitude (i.e. the signal intensity at apex),131

σ is the measured mass window during step 2 (i.e. half-height placement), and µ is the132

measured mass of the apex.133

f(x,A, µ, σ) =
A

σ
√
2π

exp
−(x− µ)2

2σ2
. (1)
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Once the interpolated signal is fitted using the Gaussian function via a least square method,34134

the algorithm produces a regression coefficient (i.e. R2) for the goodness of the fit and the135

model estimation of the three parameters of the Gaussian function, Eq. 1. The regression136

coefficient is employed as a means to acceptance or rejection of the fit, by comparing it to137

a user defined threshold (the default of 0.9). SAFD utilizes the top 50% of a mass peak for138

Gaussian fitting, in order to minimize the influence of the neighboring mass peaks, which139

increases the accuracy of this algorithm.140

Baseline tracing (step 6): At this stage, the Gaussian model is extrapolated to reach141

the baseline (i.e. the user defined minimum intensity). Doing so enables the definition of the142

mass window in which the baseline must be found. To find the baseline a similar approach143

to the half-height placement (i.e. step 2) is used, where the intercepts of a line at the level144

of baseline lying within the defined mass window and the measured signal are measured145

(Fig. S6). Once the measured baselines are found, all the masses and intensities within the146

boundaries of the mass peak baselines are recorded for the peak integration. At this point147

the algorithm has collected all the necessary information regarding the detected mass peak.148

Neighboring scans (step 7): After the detection of the center mass peak the SAFD149

moves in the time domain by repeating the process between step 2 (i.e. half-height placement)150

and step 6 (i.e. baseline tracing) for the neighboring scans. During this process the algorithm151

uses the measured resolution for the previous mass peak (i.e. scan number -1) rather than the152

user defined one (i.e. first guess) for defining the mass peak boundaries. The algorithm moves153

away from the center mass peak in both directions (i.e. the scans larger and smaller than154

the center peak) until it receives the stopping signal (Fig. S7). The stopping signals consist155

of three different user defined threshold, which in case of violation the algorithm stops the156

mass peak detection process (i.e. moving in the time domain). These thresholds include R2,157

minimum intensity, and minimum signal increment. In case of R2, if the calculated regression158

coefficient for a mass peak is smaller than the user defined threshold the algorithm assumes159
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that the signal in that scan is not a real signal but noise. Therefore, it stops the mass peak160

detection. Another stopping signal is issued if the apex intensity of the next scan is smaller161

than the user defined minimum signal intensity. Finally, the SAFD algorithm assumes that162

within a chromatographic peak (i.e. in time domain) as you move away from the apex the163

signal intensity should be smaller than the previous scan. Consequently, an increase in the164

signal may indicate the presence of overlapping peaks. Therefore, if the algorithm observes165

such a trend, it stops the mass peak detection assuming the presence of an overlapping peak166

in the time domain.167

Gaussian fit in the time domain (step 8): Once the algorithm receives the stopping168

signals in both directions (i.e. the scans larger and smaller than the center peak), it fits a169

three parameter Gaussian function into the recorded signal in the time domain (Fig. 1). If170

the Gaussian fitting process is successful (i.e. R2 larger than the set threshold), the algorithm171

considers that as a successfully detected feature and calculates the average mass, retention172

time, minimum measured mass, maximum measured mass, minimum retention time, maxi-173

mum retention time, feature height, feature area, and the average feature resolution, based174

on all the recorded points within that feature. All the mentioned recorded information is re-175

ported in the final feature list. It should be noted that the overall process carried out during176

the feature detection is equivalent of fitting a 3 dimensional Gaussian35 into the measured177

signal.178

Signal removal (step 9): Once all the information regarding a chromatographic feature179

is recorded, independently from its successful detection, its signal is set to half of the user180

defined minimum intensity (Fig. S8). This step enables the algorithm to detect the next181

most intense feature in the sample without the interference of the already processed features.182

183

It should be noted that the SAFD algorithm does not distinguish between the features184

related to a chemical component and potential adducts, isotopes, and/or in-source fragments.185
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Figure 1: Depicts (a) the fitted Gaussian in the time domain, (b) the fitted Gaussian on the
base peak in the mass domain, and (c) a contour plot of the detected feature, step 8. The
presented plot is based on a feature of caffeine (IS) in the wastewater sample.

Consequently, each of these signals will be detected as an individual feature. Therefore, the186

analyst, if deemed necessary, must filter the feature lists for the removal of the potential187

adducts, isotopes, and/or in-source fragments.188

SAFD Parameters189

The algorithm takes four types of inputs: importing parameters, stopping parameters, filter-190

ing parameters, and performance essential parameters, Table S2. The importing parameters191

include path to the file, the file format, and finally mass range limit (if necessary). As for192

stopping parameters, they consist of four thresholds to stop the algorithm from moving for-193

ward in the time domain. These thresholds are related to: R2 (i.e. mass domain regression194

coefficient set to 0.9), maximum signal increment to avoid grouping the overlapping features195

(defined at 5%), minimum intensity of the mass peak (set to 2000 counts), and maximum196

number of iterations (defined at 15,000). The filtering parameters, i.e. minimum peak width197

(2 seconds) and maximum peak width (300 seconds) in time domain, are used to remove198

the time domain features that are considered noise/background from the feature lists (i.e.199

very broad peaks). Finally, the performance essential inputs are the mass resolution and200
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the minimum peak width in the mass domain. These two parameters are not completely201

independent from each other. The user defined mass resolution parameter is utilized as the202

initial value for defining the peak width in the mass domain. For the masses smaller than203

200 Da, the LC-HRMS instruments have lower resolution compared to the larger masses.204

The parameter minimum peak width in the mass domain is set to deal with this issue. In205

other words, if the defined mass window based on the user set resolution is smaller than the206

minimum peak width, the algorithm adjusts the resolution in order to produce a peak width207

equal to minimum peak width.208

209

Two stopping parameters related to R2 and maximum signal increment are purely con-210

nected to the nature of the signal and are dataset independent. Therefore there is no need211

for their optimization. For the minimum intensity of the mass peak and maximum number of212

iterations, these parameters depend on the complexity of the analyzed samples. Therefore,213

the analysts must use prior knowledge to define these parameters. For example, our pre-214

vious experience with wastewater samples and LC-HRMS10,13,29 indicated that a maximum215

number of detectable features (i.e. iterations) and minimum signal intensity of 15,000 and216

2,000, respectively are adequate for these types of samples. The same approach was used217

for the two filtering parameters of minimum peak width and maximum peak width in time218

domain.219

220

Finally for performance related inputs of the mass resolution and the minimum peak221

width in the mass domain, we optimized them, by evaluating them for randomly selected 10222

ISs in 5 different samples. We employed the average observed resolution (in this case 20,000223

half width full-scan) and minimum peak width of 0.02 Da as the optimized settings for these224

parameters.225
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XCMS via MZmine Parameters226

In order to validate the SAFD algorithm, we compared its feature list with the one produced227

by XCMS feature detection algorithm18 implemented via MZmine19 and RCall package.228

XCMS was selected due to its wide use and the fact that it is extensively documented.22–24229

For the common parameters between XCMS and SAFD algorithms, we used the same set-230

tings whereas for the parameters specific to XCMS, we employed the average values defined231

based on the features used for SAFD optimization and the preview function implemented in232

MZmine. The list of all the parameters and their settings is provided in Table S3.233

Calculations234

All the calculations were run using a work station with 12 CPUs and 128 GB of memory.235

SAFD algorithm is developed employing julia 1.03 programing language.36 All the figures are236

generated using the matplotlib37 (i.e. developed within python 338) and PyCall modules.237

All the functions and scripts will be made available as a julia package with MIT license238

through GitHub. Prior to the package release, the scripts/functions are available under MIT239

license upon request.240

Results and Discussion241

All 55 chromatograms were processed with both SAFD and XCMS (via MZmine). We242

compared the unique feature lists via these algorithms to each other with a particular focus243

on the ISs. The performance of the methods was compared by evaluating feature detection244

through the rate of false detects as well as the reproducibility of integration. Finally, the245

sensitivity of SAFD as a function for the two performance affecting parameters (i.e. the246

mass resolution and the minimum peak width in the mass domain) was assessed.247
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Feature Detection248

All 55 chromatograms were processed using the SAFD algorithm and employing the op-249

timized parameters. SAFD produced a feature list for each chromatogram reporting the250

average mass, scan number, retention time, minimum measured mass, maximum measured251

mass, minimum retention time, maximum retention time, feature height, feature area, and252

the average feature resolution. These feature lists were then combined to generate a master253

feature list via SAFD taking advantage of a home-developed alignment function39, that uses254

the individual feature information for the alignment. The MZmine master feature list was255

generated, using the feature alignment function implemented in MZmine with a mass window256

of 0.01 Da and retention window of 0.2 minutes. The absence and/or presence of each IS was257

manually checked in the samples and compared to the master feature lists generated by the258

tested algorithms to assure that the false detection cases are not caused by mis-alignment.259

Based on the results of the ISs, both alignment algorithms were successful in generation of260

the master feature lists.261

262

SAFD produced 3445 unique features in all 55 chromatograms whereas XCMS via MZmine263

detected 3273 unique features in the same samples. Among the detected features, both meth-264

ods detected 2032 (59%) whereas 1413 features were only detected by SAFD and 1241 were265

detected only by XCMS via MZmine. To evaluate the overall rate of false positive detection266

for each method, we randomly selected 50 detected features in three samples (i.e. 3×50=150)267

from each of the three groups (i.e. only SAFD, only MZmine, and both) for further eval-268

uation. For the selection criteria of FP features, we employed the method suggested by269

Myers et al.,25 which consisted of manual inspection of the features to the expected feature270

shape (i.e. a Gaussian). Among the features detected by both methods, we found only three271

cases of FP detection. On the other hand, for the method specific features, SAFD algorithm272

produced 14 FPs while XCMS via MZmine resulted in 42 cases of FP detection. In addition273

to those evaluated cases, we further examined all the IS features (i.e. total of 55×19=1045274
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detection cases) in the samples for false detection rate. The well-known nature of those275

features enabled us to evaluate the reason behind the observed false detection cases.276

277

For the ISs, SAFD algorithm resulted in 26 cases (i.e. ≤ 5%) of false negatives (FNs)278

whereas the XCMS via MZmine produced 117 cases (i.e. ≤ 11%) false negative detections,279

Fig. 2. None of the methods produced any cases of false positive for the ISs. Among the 26280

FN cases of SAFD algorithm, 22 were caused by the minimum intensity threshold of 2000281

counts, Fig. S9. The remaining four FNs, were caused by the stopping parameter maxi-282

mum signal increment. For these four cases, the signal had a high level of noise in the time283

domain, which stopped SAFD prematurely, Fig. S10. Consequently, those features did not284

meet the filtering parameter of minimum peak width of 2 seconds and therefore they were285

not detected. Our investigation in the FN cases that were specific to XCMS via MZmine286

(i.e. 117-22=95 cases) appeared that all 95 FNs were cases where the peak is present in the287

XIC of the ROIs however, during the feature detection the CentWavelet algorithm was not288

able to detect these features. This detection failure could be caused by a variety of reasons,289

including the five internal filters on the XICs before sending them for feature detection or290

the feature detection algorithm itself.25 We modified the three parameters related to Cent-291

Wavelet algorithm (i.e. signal/noise and Wavelet scales). The changes in the signal/noise292

and upper limit of Wavelet scales did not result in any improvement in the detection of the293

missed features (i.e. FNs). On the other hand the changes in the lower boundary of the294

parameter "Wavelet scales", from 0.1 to 0.2 minutes, caused the positive detection of hy-295

droxycotinine in sample 5 while resulting in a FN for the same IS in sample 8. This suggests296

that further investigation of the effect of each parameter on the performance of the XCMS297

feature detection is needed.298

299

SAFD algorithm is effective in the detection of features in the LC-HRMS data of wastew-300

ater influent samples. This algorithm appeared to perform better than the XCMS algorithm301
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in minimizing the false discovery rate (i.e. FP and FN detection cases). Additionally, the302

parameter setting of SAFD algorithm is very simple and intuitive.303

Feature Integration304

We also compared the performance of the SAFD algorithm and XCMS implemented via305

MZmine in feature integration. Both algorithms produced area and height for each detected306

feature. The quality of integration is highly crucial to both non-target analysis and omics307

experiments, especially if the feature prioritization is done through statistical approaches.308

In this case also, we focused on the features of ISs, given the total number of unique features309

in all the samples (i.e. ' 3,000). Considering that all the samples, except the equilibration310

injections, were spiked with the same amount of ISs, we utilized the observed variability in311

the feature areas across the samples as an indication for the quality of integration.312

313

The SAFD algorithm consistently resulted in lower averaged absolute standard error of314

integration for all the ISs in the spiked samples. The averaged absolute standard error of inte-315

gration for SAFD algorithm was 20% whereas for XCMS method this error appeared to be of316

57%, Fig. 3. We further compared these calculated standard errors using the non-parametric317

test Kruskal-Wallis test.40 A ρ value ≤ 0.01 suggested the rejection of the null-hypothesis and318

that these two error sets are statistically different from each other. Moreover, examination319

of the variance of the standard errors, Fig. S11, and the standard deviation of the averaged320

standard errors further indicated the overall superior performance of SAFD algorithm in the321

feature integration compared to the XCMS algorithm. SAFD algorithm for two out of 19322

ISs resulted in a significantly larger than average standard error, Figs. 3 and S11. These323

ISs, atrazine desisopropyl and atrazin desethyl, both were in the middle of the chromatogam324

(i.e. retention times ' 5 min) and consistently generated larger feature areas in blanks com-325

pared to real samples. These suggest the presence of matrix effect manifested in higher ion326

suppression for real samples compared to blanks.327
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Figure 2: Depicting the detection matrix of ISs via (a) SAFD algorithm, (b) XCMS via
MZmine, and (c) the difference between the two algorithms.
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328

We observed a high level of linearity between the feature heights and area for the ISs329

via both algorithms with Pearson correlation41 coefficients of ' 0.85, Fig S12. The high330

correlation coefficients indicate a direct correspondence between the feature heights and fea-331

ture areas. The feature areas calculated by SAFD algorithm appeared to be one order of332

magnitude larger than those ones via XCMS. This discrepancy is related to the way that333

feature areas are calculated by each method. It should be noted that the trends/relative334

values for feature areas are far more significant than the absolute values.335

336

The developed feature detection algorithm (i.e. SAFD) successfully integrated all the337

detected features across all the spiked samples keeping the standard averaged standard error338

within the acceptable experimental error (i.e. 20%). The cases where the observed standard339

errors were significantly larger than 20% appeared to be caused by the background effect340

through ion suppression. Overall, SAFD algorithm appeared to perform better than XCMS341

algorithm in accurately integrating the features in the analyzed samples.342

Sensitivity Analysis343

We evaluated the sensitivity of the SAFD algorithm towards the two performance essential344

parameters (i.e. mass resolution and the minimum peak width in the mass domain). It345

should be noted that, normally, these two parameters are not independent. In the SAFD346

algorithm, the minimum peak width is introduced to handle exceptions, where the first es-347

timate of the mass resolution (i.e. the user defined value) results in too small of a mass348

window. To test the algorithm’s sensitivity towards these parameters, we randomly selected349

10 IS features in 5 samples (also randomly selected) and integrated those features setting350

the mass resolution ranging between 5,000-85,000 (six steps) and varying the minimum peak351

width from 0.001 Da to 0.08 Da (seven steps). The average integration error of the 10 fea-352

tures assuming SAFD results under the optimized conditions (i.e. the resolution of 20,000353
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Figure 3: Shows the calculated average absolute standard error for each IS over 51 spiked
samples. The error bars depict the calculated standard deviation.

and minimum peak width of 0.02 Da) as the truth was calculated for each point in the grid.354

355

The algorithm appeared to be sensitive to extreme cases where both parameters are set356

wrongly (i.e. too far from the optimized conditions), particularly for the mass resolution,357

Fig. S13. The results of our sensitivity analysis indicated that for resolutions ≤ 10,000,358

SAFD algorithm is more prone to produce non-optimized results. For the mass resolutions359

≥ 15,000, the minimum peak width may range between 0.010 and 0.05 Da without affecting360

the performance of SAFD algorithm, Fig. S13. In the case of extremely high resolution361

settings (i.e. ≥ 35,000 for this dataset) the algorithm systematically ignored the set resolu-362

tion and treated that detection case as an exception. Consequently, the algorithm used the363

defined minimum peak width rather than the set mass resolution. It should be noted that364

only under the resolution setting of 85,000 and the peak width setting of 0.001 Da, SAFD365

produced five cases of FNs, which further indicates the robustness of the algorithm.366
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367

Overall, SAFD appeared to be very robust and highly stable during the sensitivity analy-368

sis. The lower sensitivity of the algorithm towards the two performance essential parameters369

was due to the self-adjusting nature of it. Additionally, it indicates easier parameter setting370

for the user.371

372

Limitations373

The SAFD algorithm assumes Gaussian peak shapes in both mass and time domains, there-374

fore, large deviations (e.g. irregular peak shapes) from this assumption may cause cases of375

false negatives. The SAFD algorithm assumes pure mass domain peaks hence the focus on376

the top 50% of the signal. A deviation from this assumption (i.e. mass resolution ≤ 10,000,377

based on the sensitivity analysis) may cause integration errors. As for the time domain, the378

features must have a chromatographic resolution of ≥ 0.75 for them to be detected by SAFD379

algorithm as two separate components.380

381

The SAFD algorithm is computationally more expensive than other algorithms due to382

the fact that it uses all of the data points in the feature (i.e. the profile data) and it fits383

a 3D Gaussian into the data. For example, the tested dataset in the current study took384

SAFD around 7 hr to process versus 30 minutes with XCMS via MZmine. However, it385

should be noted that this is the first prototype of the algorithm and future optimizations386

may drastically decrease the run time.387

Conclusions388

SAFD is a robust, reliable, and accurate algorithm for non-targeted feature detection in the389

LC-HRMS profile data. This method takes advantage of all the measured points within390
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a feature without using arbitrary parameters. This algorithm has only two performance391

affecting parameters that are only used as a first guess or as an exception handling case.392

Consequently, it adjusts itself to fit the data in the best possible way. Therefore, SAFD,393

differently from the other methods, does not need any data binning, XIC generation, and/or394

RIO generation to perform feature detection. Therefore showing a great potential to be a395

widely used algorithm for non-targeted feature detection of profile LC-HRMS data.396
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S1 Chemicals4

Analytical grade formic acid was purchased from Sigma-Aldrich (Castle Hill, Australia).5

Analytical grade hydrochloric acid 32% was purchased from Univar (Ingleburn, Australia).6

Water was puri�ed through a Milli-Q system. Liquid chromatography grade methanol was7

purchased from Merck (Darmstadt, Germany). High purity labelled internal standards were8

purchased from Novachem (Heidelberg West, Australia) with speci�c details listed in Table9

S1. Mobile phases were �ltered using Sartorius Stedim 0.45 µm RC �lters (Goettingen,10

Germany).11

Table S1: The name, measured mass, and retention time of the internal standards (ISs).

nr Name m/z ([M+H]+)a Da Retention timea (min)
1 Atenolol-D7 274.214 3.18
2 Atrazine desethyl-D6 194.107 6.22
3 Atrazine desisopropyl-D5 179.085 4.37
4 Atrazine-D5 221.132 8.75
5 Ca�eine 198.097 6.28
6 Carbamazepine-D10 247.165 9.11
7 Codeine-D3 303.179 5.18
8 Cotinine-D3 180.120 1.89
9 DEET-D7 199.182 9.35
10 Diuron-D6 239.061 8.76
11 Gabapentin-D10 182.195 3.49
12 Hexazinone-D6 260.084 7.54
13 Hydroxycotinine-D3 196.096 1.82
14 Imidacloprid-D4 260.084 7.54
15 Metolachlor-D6 290.179 10.17
16 Nicotine-D4 167.147 1.12
17 Paracetamol-D4 156.084 1.14
18 Simazine-D10 212.148 8.03
19 Venlafaxine-D6 284.251 7.78

a This is a measured value.

S2 Sample Treatment12

The wastewater in�uent samples used for this study were collected as part of national sam-13

pling campaign in Australia where sample collection coincided with the 2016 Australian14

2



Census.1 Brie�y, 24 hour composite samples were collected using existing onsite autosam-15

plers operating in the optimized mode as outlined by Ort et al.2 dependent on what was16

available at each site. Samples were aliquotted onsite into pre-cleaned (2 × methanol and 217

× MilliQ) HDPE bottles, had preservative added (samples used in this study were preserved18

with 2M HCl to adjust to ≈pH 2) and frozen prior to shipping frozen back to the lab. For19

this project, samples from 15 di�erent WWTPs collected on Census day were chosen and20

covered a range of catchment sizes (from 3,500 people to more than 2.2 million people) and21

cover both metropolitan and regional places.22

23

Prior to analysis, samples were defrosted, �ltered with 0.2 µm RC �lters (Phenomenex),24

500 µL aliquotted into amber glass vials (Agilent 2 mL for LC) and 5 µL of a 1 µg/mL25

mix of internal standard (see SI for internal standards) added to each sample. A procedural26

blank and a QA/QC wastewater sample which continues to be analyzed with each batch of27

wastewater samples since 2016, were also prepared in the same way. An equilibrium sample28

consisting of just MilliQ without internal standards was also prepared. All samples, the29

blanks and the QA/QC were analyzed in triplicate but with the sequence in randomized30

order to prevent systematic error.31

S3 LC-HRMS Conditions32

Chemical analysis was performed on a Sciex 5600+ QToF (Sciex, Concord, Ontario, Canada)33

mass spectrometer with a DuoSpray Ion Source operating in positive electrospray ionization34

(ESI) mode coupled to a Shimadzu Nexera 2 HPLC system (Shimadzu Corp., Kyoto, Japan).35

Separation was achieved with a Kinetix Biphenyl column (2.6 µm, LC Column 50 mm × 2.136

mm, Phenomenex) at 45 ◦C using a mobile phase gradient of 5 to 100% methanol with 0.1%37

formic acid over a duration of 10 minutes with a mobile phase B curve of 2. The gradient38

was held at 100% B until 14.5 minutes before re-equilibrating to 5% until 17 minutes. A39

3



pre-injection column (Altima C18 guard column) was used between the mobile phase and40

the injector to retard potential interferences from the mobile phase.41

42

The mass spectrometer was operated in TOF MS mode with an accumulation time of43

0.5 secs and a mass target range of 50 to 600 daltons. The ionization source was operated at44

500 ◦C with an IonSpray Voltage of 5000 volts. Ion Source Gas 1 and Gas 2 were both set to45

60 and Curtain Gas at 30. The Declustering Potential was set to 80 volts and the Collision46

Energy set to 10 volts. Calibration of the mass spectrometer was performed before analysis47

and after every �fth injection using the Sciex APCI Positive Calibration Solution: TOF MS48

delivered through a Calibrant Delivery System at a �ow rate of 500 µL/min for 2 minutes.49
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S4 Algorithm Parameter Settings50

Table S2: The parameter name, setting, function, and the comments related to the SAFD
algorithm.

Parameter Setting Function Comment
R2 0.9 accept/reject Gaussian �t Stopping parameter
Max Signal Increment 5a Avoid overlapping peaks Stopping parameter
Min Intensity 2000b De�ning baseline Stopping parameter
Max Iteration 15,000 Max number of features Stopping parameter
Min Peak Width 2c Removing noise Filtering parameter
Max Peak Width 300c Removing noise Filtering parameter
Resolution 20,000 The �rst guess Performance parameter
Min Mass Peak Width 0.02d Exception handling Performance parameter
a This parameter is in % signal increment; b The unit for this parameter is counts (or
absolute signal intensity); c The unit of this parameter is seconds; d The unit for this

parameter is Da.

Table S3: The parameter name, setting, function, and the comments related to the XCMS
via MZmine algorithm.

Parameter Setting Function Comment
Noise level 2000 De�ning baseline Mass detection
Scale level 20a De�ning signi�cant peaks Mass detection
Wavelet window 5a ,b Peak width mass domain Mass detection
Min time span 0.02c Min peak time domain Chromatogarm builder
Min height 2000d Removing noise Chromatogarm builder
m/z tolerance 0.01e-20f Grouping masses in XIC Chromatogarm builder
Wavelet scales 0.1-2g Peak detection in XIC Deconvolution
Peak duration 0.02-3a ,c Peak width time Deconvolution

a This parameter was optimized using show preview function; b The unit for this parameter
is %; c The unit of this parameter is minutes; d The unit for this parameter is counts (i.e.

absolute signal intensity); e This parameter is expressed in Da; f The unit for this
parameter is ppm; g The unit for this parameter is minutes.
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S5 SAFD Algorithm51

Figures S1, S2, S3, S4, S5, S6, S7, and S8 are showing all the steps taken by SAFD algorithm52

during each iteration (i.e. the detection of one feature).

Figure S1: Depicting the maximum detection of a peak in the mass domain, step 1. The
presented plot is based on a feature of an IS in the wastewater in�uent sample.

53

Figure S2: Depicting the detection of the half-height of a peak in the mass domain, step 2.
The presented plot is based on a feature of an IS in the wastewater in�uent sample.
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Figure S3: Depicting the process of smoothing a peak in the mass domain using the moving
average method with a window of 3 points, step 3. The presented plot is based on a feature
of an IS in the wastewater in�uent sample.

Figure S4: Depicting the interpolation of the smoothed signal using the Spline function,3

step 4. The presented plot is based on a feature of an IS in the wastewater in�uent sample.
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Figure S5: Showing the interpolated signal �tted by a Gaussian function via least square
method,4 step 5. The presented plot is based on a feature of an IS in the wastewater in�uent
sample.

Figure S6: Depicts the process of tracing the baseline (i.e. minimum signal intensity) in the
real signal through the �tted Gaussian function, step 6. The presented plot is based on a
feature of an IS in the wastewater in�uent sample.
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Figure S7: Shows (a) the �tted Gaussian on the base peak in the mass domain, (b) the �tted
Gaussian in the time domain, and (c) a 3D overview of algorithm moving one scan at the
time from the base peak in the mass domain (i.e. the black vertical line) to the neighboring
scans in both directions. In panel (c) each vertical line and the horizontal black line represent
a �tted Gaussian, step 7. The presented plot is based on a feature of an IS in the wastewater
in�uent sample.

Figure S8: Depicts (a) the �tted Gaussian on the base peak in the mass domain, (b) the
�tted Gaussian in the time domain, and (c) a 3D plot of the detected feature that will be set
to baseline (i.e. minimum signal intensity), step . The presented plot is based on a feature
of an IS in the wastewater in�uent sample.
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S6 Feature Detection via SAFD Algorithm54

Figure S9: Shows the extracted ion chromatogram of hydroxycotinine in one of the samples,
which was one of the FNs due to lower intensity of the base peak than the minimum signal
intensity of 2000 counts.

Figure S10: Depicts the extracted ion chromatogram of diuron, which was one of the four
cases of FNs due to the high level of noise in the time domain.
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S7 Feature Integration55

Figure S11: Shows the calculated average absolute standard error of the feature area for
each IS over 51 spiked samples via (a) SAFD algorithm and (b) XCMS implemented through
MZmine.

Figure S12: Depicts the feature height (i.e. intensity) vs feature area via (a) SAFD algorithm
and (b) XCMS implemented through MZmine.
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S8 Sensitivity Analyses for SAFD Algorithm56

Figure S13: Shows the averaged absolute standard error of feature area as a function of the
peak width and mass resolution parameters.
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