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Abstract 12 

Many studies have suggested that organic matter (OM) substantially reduces the bioavailability 13 

and risks of mercury (Hg) exposure in soils and sediments; however, recent reports have also found 14 

that OM could greatly accelerates Hg methylation and increases the risks of Hg exposure. This study 15 

aims to summarize the interactions between Hg and OM in soils and sediments and improve our 16 

understanding of the effects of OM on Hg methylation. The results show that component alteration, 17 

promotion of the activity of Hg-methylating microbial communities, and the microbial availability of 18 

Hg accounted for the acceleration of Hg methylation which increases the risk of Hg exposure. These 19 

three key aspects were driven by multiple factors, including the types and content of OM, Hg 20 

speciation, desorption and dissolution kinetics and environmental conditions.  21 

Keywords: Organic matter; methyl-mercury; Hg; bioavailability; microbial methylation 22 

1 Introduction 23 

Mercury (Hg) contamination in aquatic and terrestrial environments is a global concern. Soils 24 

and sediments may serve as major sinks for Hg in ecosystems present in these environments, and 25 

their importance in the biogeochemical cycling of Hg has received recent attention (Eklof et al. 2018; 26 

Rajaee et al. 2015; Shu et al. 2016a; Zhang et al. 2018a; Zhu et al. 2018). The constituents and levels 27 

of microbial activity in soils and sediments are known as crucial factors in the biogeochemical 28 

cycling of Hg (Hang et al. 2018; Ma et al. 2015; Skyllberg 2010). Organic forms of Hg, particularly 29 

methyl-mercury (MeHg), are bioaccumulated in food webs (Bloom 1992) and can potentially serve 30 

to enhance the risk to ecosystems (Yu et al. 2012; Zhu and Zhong 2015). Among the components of 31 

soil, organic matter (OM) is considered to be the most important factor for Hg biogeochemistry, Hg 32 

bioavailability, and Hg risks due to its interactions with Hg (Klapstein and O’Driscoll 2018; Liu et al. 33 

2016; Windham-Myers et al. 2014c).  34 

Many studies have suggested that OM substantially decreases the bioavailability and 35 

bioaccumulation of Hg and thus significantly reduces the risks associated with Hg in soils or 36 

sediments (supplemental file Table S1). The reduced risk of Hg in soils and sediments following 37 

interactions with OM stems from three different mechanisms (Ndungu et al 2016). First, OM has a 38 

high affinity to Hg and thus strongly affects the partitioning and bioavailability of Hg in soils and 39 

sediments. The abundant reduced sulfur sites on OM molecules provide strong binding sites for Hg, 40 

resulting in immobilization of Hg and reduced Hg bioavailability in highly Hg-contaminated 41 

sediments and soils (Hammerschmidt et al. 2008; Shu et al. 2016b). Second, OM enhances the 42 

photodemethylation rates of MeHg and reduces mercury bioavailability (Klapstein and O’Driscoll 43 

2018; Tossell 1998). Even low concentrations of dissolved OM (DOM) are beneficial for the 44 

photodemethylation of MeHg (Jeremiason et al. 2015; Qian et al. 2014; Tai et al. 2014; Zhang et al. 45 

2017), which results from the release of radicals from DOM that form an excited triplet state 46 

(3DOM*) under UV-radiation and the subsequent breakage of the carbon-Hg bond by the 47 

intramolecular charge transfer (Qian et al. 2014). The photodemethylation of Hg has been shown to 48 

accelerate in the presence of iron (Hammerschmidt and Fitzgerald 2010; Zhang et al. 2017) and 49 

thiolate and aromatic functional groups in DOM (Qian et al. 2014). Hg photodemethylation occurs 50 

more easily because the carbon-Hg bond is weakened when Hg binds with reduced thiol functional 51 
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groups (Zhang et al. 2017), facilitating the absorption of specific radiation wavelengths by aromatic 52 

functional groups in DOM (Baker and Spencer 2004). Third, OM can potentially reduce MeHg 53 

production in soils and sediments. Enrichment of nitrate, iron, sulfate, cysteine and selenite in OM 54 

has been shown to effectively decrease MeHg production and accumulation in rice grown on 55 

Hg-contaminated paddy fields, which might be attributed to inhibition of the activity of related 56 

bacteria by these additives (Zhang et al. 2018b; Zhong et al. 2018).  57 

Recently, however, several studies have suggested that additions of OM to soils and sediments 58 

significantly accelerate Hg methylation rates through increased microbial activity, subsequently 59 

increasing the risk of Hg to the environment. In this paper, a review of the available literature was 60 

conducted to summarize the interactions between OM and Hg species in soils and sediments. The 61 

objective of the present review is to discuss the effects of these interactions on Hg methylation in 62 

soils and sediments, which would improve our understanding of the mechanisms on how OM 63 

increases or decreases the environmental risks associated with Hg. This review will also provide 64 

guidance on how to manage Hg-contaminated soils and sediments through soil amendments 65 

application. 66 

2 Anthropogenic processes where OM can enhance environmental Hg risks 67 

Recently, several studies have demonstrated that OM greatly increases the environmental risks 68 

associated with Hg in soils and sediments (a summary of studies is provided in Table S2). The 69 

increased risks are mainly from an accelerated methylation processes, which turns available IHg to 70 

MeHg in the presence of OM in soils and sediments. An example of an important process that was 71 

recently discovered is the production of MeHg in paddy soils during rice cultivation. During this 72 

process, MeHg can be translocated to rice grains in the presence of bulk root-derived organic 73 

residues during the period from field preparation to post-harvest (Liu et al. 2014; Rothenberg et al. 74 

2014; Windham-Myers et al. 2014a). Seasonal wetting and drying of rice-field sediments leads to a 75 

promotion of MeHg production by providing abundant water and nutrients and relatively labile 76 

plant-derived carbon (Windham-Myers et al. 2014a; Zhao et al. 2018; Zhu et al. 2015b).  77 

Another process which has recently gained many attentions for its effect on biogeochemical Hg 78 

cycling is forestry operations. Such operations accelerate the decomposition of organic residues from 79 

logging and other OM in forest soils and creates wetland-like environments with a high abundance of 80 

bacterial communities (including sulfur-reducing bacteria (SRB), iron-reducing bacteria (IRB) and 81 

Firmicutes families) and increased MeHg production (Eklof et al. 2018). Forestry also increases Hg 82 

concentrations in runoff water due to the hydrological connection between methylation hotpots and 83 

surface waters (Kronberg et al. 2016). IHg complexed with DOM was usually more available for 84 

methylation than dissolved IHg (Mazrui et al. 2016). Relatively high production of MeHg was 85 

associated with high OM content in a hydroelectric reservoir sediment (Meng et al. 2016). 86 

Anthropogenic processes where OM can enhance environmental Hg risks were also frequently 87 

observed in marine sediments (Correia and Guimaraes 2017; Liang et al. 2016), lake and estuarine 88 

sediments (Bravo et al. 2017; Liem-Nguyen et al. 2016) and wetlands sediments (Marvin-DiPasquale 89 

et al. 2014; Windham-Myers et al. 2014b). 90 

The formation and enhancement of MeHg in soils and sediments following methylation of IHg is 91 

a key factor for evaluating Hg risks. The Hg risk is driven by a balance between biotic IHg 92 

methylation and biotic and abiotic MeHg demethylation (Zhu et al. 2018). Hg methylation rates in 93 

the environment often vary more than demethylation rates (Kronberg et al. 2016). For example, 94 

demethylation rates did not differ between an area of clear-cutting and a reference area, although 95 

there were quite distinct methylation levels (Kronberg et al. 2016). Therefore, the conversion of IHg 96 

to MeHg is usually recognized as the most important factor in this balance, which is predominantly 97 

mediated and regulated by microbial methylators under anaerobic conditions (Marvin-DiPasquale et 98 

al. 2014; Windham-Myers et al. 2014b; Zhu et al. 2018).  99 

3 Mechanisms whereby OM affects Hg methylation 100 

OM has a direct or indirect link with the conversion of Hg in soil and sediment ecosystems 101 
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(Liem-Nguyen et al. 2016). Factors and conditions affecting soil and sediment OM and the 102 

subsequent effects on Hg methylation processes and Hg risks must be clarified. In this paper, three 103 

aspects that relates to the effects of OM on IHg methylation in soils and sediments are summarized 104 

and discussed, including the following: (1) The activity of microbial Hg methylators; and (2) the 105 

microbial availability of IHg.  106 

3.1 Effects from OM on the microbial activity of Hg methylators 107 

The Hg-methylating microbial community are restricted to specific anaerobic methylators 108 

carrying the gene hgcA and hgcB, which encode a corrinoid protein and a ferredoxin required in the 109 

corrinoid cofactor reduction (Parks et al. 2013). SRB, IRB, syntrophic and acetogenic bacteria, and 110 

methanogens are important Hg methylators in soils and sediments (Eklof et al. 2018; Kronberg et al. 111 

2016; Marvin-DiPasquale et al. 2014; Mazrui et al. 2016; Zhu et al. 2018).  112 

Stimulated microbial activity of Hg methylators appears to be the main control of OM on 113 

accelerating Hg methylation in soils and sediments. Substantial and variable types of OM were 114 

widely distributed in natural soils and sediments. The activity of Hg methylating microbes was 115 

significantly higher as a result of the existence of OM in soils and sediments. The OM usually acted 116 

as a source of energy, available nutrition and an electron donor, which furnished plentiful substrate, 117 

and mediated microbial activity, for Hg methylators in the biotic Hg methylation process (Eklof et al. 118 

2018; Frohne et al. 2012; Kronberg et al. 2016; Marvin-DiPasquale et al. 2014; Windham-Myers et 119 

al. 2014a). However, the effects of OM on the microbial activity of Hg methylators depend on the 120 

characteristic and availability of OM and the environmental conditions (temperature, redox 121 

conditions, water saturation, nutrients, light, etc.). These issues are discussed in detail below.  122 

3.1.1 The characteristic and availability of OM  123 

Microbial Hg transformation and microbial activity of Hg methylators are controlled by the 124 

sources and characteristics of OM (Kronberg et al. 2016; Zhu et al. 2018). Labile OM including 125 

organic carbon, rice straw decay products, logging residue, natural OM (NOM), DOC, which are 126 

easily decomposed and utilized by microorganisms, play an important role in limiting and mediating 127 

the activity of Hg-methylating microbes (e.g., IRB, SRB, Firmicutes and methanogens) in different 128 

types of soils and sediments (Table S3) (Meng et al. 2016; Zhu et al. 2015a; Zhu et al. 2016). 129 

Autochthonous NOM was more prone to be utilized as an electron donor by methylating bacteria 130 

than allochthonous NOM, which might be an important factor affecting the microbial activity of Hg 131 

methylators (Liem-Nguyen et al. 2016). Organic compounds originating from fresh chlorophyll, 132 

proteins and phyto-derived cell wall lipids were important labile NOM for enhancing microbial 133 

activity in lake sediments and rice paddy soils for methylation of inorganic mercury (Bravo et al. 134 

2017; Zhao et al. 2018). Root exudation of labile organic carbon appeared to be the primary factor 135 

that enhanced microbial activity and methylation in the presence of vegetated soils and sediments 136 

(Windham-Myers et al. 2014b; Windham-Myers et al. 2014c; Zhao et al. 2018). For example, 137 

pore-water acetate supplied abundant labile carbon as a key electron donor for improving the activity 138 

of microbial methylators in soils and sediments (Windham-Myers et al. 2014b; Zhao et al. 2018). 139 

The availability of OM is believed to be an important driver regulating microbial MeHg 140 

formation in soils and sediments. A significant positive correlation between OM content and the 141 

microbial abundance of Hg methylators was observed in rice paddy soils due to the contribution of 142 

OM to microbial growth and reproduction (Liu et al. 2014; Zhao et al. 2018). Microbial activity and 143 

Hg methylation rates were the highest in locations with more organic content in estuarine sediment 144 

(Schartup et al. 2013). Organic matter favoured microbial methylators and subsequently enhanced 145 

their activity for Hg methylation (Zhao et al. 2018). An abundant amount of labile organic carbon 146 

was a significant variable in directly stimulating the activity of Hg methylators, which contributed to 147 

methylation differences in marine sediments and rice paddies, especially during the post-harvest 148 

period (Mazrui et al. 2016; Windham-Myers et al. 2014b; Zhao et al. 2018). The stimulating effect of 149 

high labile organic carbon concentrations on the microbial activity of Hg methylators is exemplified 150 

by rice paddy soils. In the practice of rice cultivation, a large amount of structural and exuded labile 151 
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organic carbon from root tissue enters into the rice paddy soils after decay and would be readily 152 

consumed by secondary microorganisms (Rothenberg et al. 2014; Zhao et al. 2018). This 153 

root-derived organic carbon, including acetate, aliphatic hydrocarbons and simple aromatic 154 

compounds, provides plentiful energy and carbon as well as electron donors for Hg methylators that 155 

facilitate microbial activity (Rothenberg et al. 2014; Windham-Myers et al. 2014b; Windham-Myers 156 

et al. 2014c; Zhao et al. 2018). If the content of OM was lower than the threshold for utilization, the 157 

microbial activity of Hg methylators would be limited. Primary methylators would compete for 158 

electron donors (e.g., acetate and hydrogen) with each other and with other microbes in soils and 159 

sediments (Rothenberg and Feng 2012). The lack of electron donors led to a decrease in the activity 160 

of microbial methylators. These results suggested that differences in the availability of OM might 161 

hold the key to explaining the large variability in the activity of microbial methylators. 162 

3.1.2 Effects of environmental factors on OM related methylation 163 

The effects of OM on microbial activity pertaining to Hg methylation are dependent on selected 164 

environmental variables (water saturation, redox condition, temperature, nutrients, light, et al.) 165 

resulting from anthropogenic activities or natural biogeochemical environmental changes (Eklof et al. 166 

2018; Kronberg et al. 2016; Zhu et al. 2016; Windham-Myers et al. 2014a). The effects of water 167 

saturation, redox state, temperature, and nutrient and light availability could be illustrated as 168 

examples of forest and rice cultivation practices. 169 

Forest practices can enhance microbial Hg-methylation activity in the presence of logging 170 

residue by influencing water saturation, redox conditions, temperature, nutrition and light conditions 171 

in soils (Eklof et al. 2018; Eklöf et al. 2016; Kronberg et al. 2016). The increased microbial activity 172 

from logging activity is reflected by the overall bacterial diversity and relative abundance of 173 

microbial methylator families (e.g., SRB Desulfovibrio, Desulfobacteraceae; IRB Geobacteraceae; 174 

Firmicutes Peptococcaceae, Ruminococcaceae, Veillonellaceae) in soils (Eklof et al. 2018). The 175 

decomposition of organic residue and microbial methylating activity is closely associated with the 176 

amount of water, the saturation time, temperature and light conditions in soils and sediments (Eklof 177 

et al. 2018; Kronberg et al. 2016). Wet, low-oxygen, and high-temperature conditions are more likely 178 

to result from stump and stem logging practices, which create favourable environments for anaerobic 179 

Hg methylators (Eklof et al. 2018; Rothenberg et al. 2014). Solar radiation exposure to OM in soils 180 

quickly increased after plant-cutting (Kronberg et al. 2016). Organic residue from logging and soil 181 

OM were prone to decompose and degrade under these environments, resulting in bulk production of 182 

fresh organic carbon sources, which provides abundant and excellent substrate (as electron donors) 183 

for enhancing the microbial activity of Hg methylators (Eklöf et al. 2016; Kronberg et al. 2016).  184 

Rice cultivation practices can affect the activity of Hg methylators in the presence of rice straw 185 

decay by altering water saturation, nutrients, and redox conditions (Zhu et al. 2016; Windham-Myers 186 

et al. 2014a). Aerenchyma tissue for enhancing gas transport between soil and plants was more likely 187 

to alter the surrounding environment in the plant rhizosphere under anaerobic conditions, which 188 

might be a good habitat for anaerobic microbial communities capable of methylating Hg (Rothenberg 189 

et al. 2014). Periodic flooding and drying produced high water saturation resulting from more 190 

frequent water movement and relatively oxic to suboxic conditions due to long-time cultivation in 191 

standing water (Windham-Myers et al. 2014a). The activity of native Hg-methylating microbes was 192 

triggered by enhancing the proliferation of microorganisms living at the oxic-anoxic boundaries 193 

(Eklof et al. 2018; Windham-Myers et al. 2014a). The decomposition of post-harvest rice straw 194 

residue was accelerated under these environments, resulting in a large pool of labile OM that 195 

provided microbial electron acceptors (sulfate and ferric iron) and electron donors (e.g., acetate) for 196 

the Hg-methylating microbial community (Liem-Nguyen et al. 2016; Marvin-DiPasquale et al. 2014; 197 

Windham-Myers et al. 2014a; Zhao et al. 2018). Moreover, the release of a large amount of labile 198 

OM also led to the alteration of the ambient redox potential in rice fields (Zhu et al. 2018).  199 

3.2 Effects of OM on the microbial availability of IHg  200 

The microbial availability of IHg was demonstrated to be responsible for the effects of OM on 201 
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enhancing the risk of Hg from soils and sediments. However, compared with the spatial-temporal 202 

variation of the activity of Hg methylators, Hg methylation was less affected by variations in the 203 

microbial availability of IHg in some cases (Marvin-DiPasquale et al. 2014). For example, the effects 204 

of the former on Hg methylation were 100 times larger than the latter in wetland sediments, whereas 205 

the latter appeared to be the main limiting factor in permanently flooded wetlands 206 

(Marvin-DiPasquale et al. 2014). The pool of IHg available to methylating microbes was controlled 207 

by the speciation of IHg and the desorption and dissolution kinetics of IHg from much more 208 

abundant sediment and soil pools (Jonsson et al. 2012; Liem-Nguyen et al. 2016). The corresponding 209 

speciation or the desorption and dissolution of IHg were summarized and discussed to understand the 210 

effects of OM on the microbial availability of IHg. 211 

3.2.1 The speciation of IHg 212 

The chemical speciation of Hg in solid/absorbed phases potentially limited Hg availability for 213 

microbial uptake because of the control on aqueous concentrations of IHg (Liem-Nguyen et al. 2016). 214 

Some aqueous Hg forms, such as Hg-sulfide complexes and low-molecular-mass Hg-thiol complexes, 215 

were more bioavailable to microbial methylators (Liem-Nguyen et al. 2016).  216 

The effects of OM on the microbial availability of IHg varied according to Hg species. Hg-S 217 

complexes affected the interactions between OM and Hg due to the high aqueous solubility and the 218 

presence of sulfur (Gerbig et al. 2011; Graham et al. 2013; Liem-Nguyen et al. 2016). Recent studies 219 

suggested that bioavailable neutral Hg-S species may be nanoparticulate β-HgS(s) or polynuclear 220 

Hg-S clusters, rather than aqueous HgS0 monomers. DOM can strongly react with β-HgS(s) (Miller 221 

Carrie et al. 2009) and inhibit the aggregation of β-HgS(s) particles (Gerbig et al. 2011; Graham et al. 222 

2013). HgS-DOM polynuclear clusters and Hg nanoparticles were more bioavailable for Hg 223 

methylators, and transformation was enhanced (Graham et al. 2012). Low-molecular-weight Hg-thiol 224 

complexes (LMMC) were another aqueous Hg species that could readily become bioavailable to Hg 225 

methylators in soils and sediments. It was demonstrated that NOM was important for the 226 

complexation of LMMC due to the formation of NOM and thiol ligand complexes and thus 227 

subsequently influenced the microbial availability of IHg (Liem-Nguyen et al. 2017). 228 

3.2.2. The desorption and dissolution kinetics of IHg  229 

The desorption and dissolution kinetics of IHg affects the role of OM on the microbial 230 

availability of IHg in soils and sediments. In this paper, the effects of the desorption and dissolution 231 

kinetics of IHg are illustrated as the interactions between IHg and DOM. Two theories were 232 

suggested and supported to explain enhanced Hg availability by DOM. One view held that IHg 233 

complexed with DOM was part of the dissolved Hg pool, which could directly facilitate the bacterial 234 

uptake of Hg and act as a shuttle molecule to transport Hg from the environment to metal 235 

transporters (Jonsson et al. 2012; Mazrui et al. 2016). Another view suggested that Hg was first 236 

bound with DOM and subsequently transported into bacterial cells with DOM as a nutrition source 237 

(Mazrui et al. 2016). To the contrary, dissolved IHg complexes were readily absorbed by the 238 

sediment matrix and unavailable (Mazrui et al. 2016). Recent studies showed that IHg complexed 239 

with DOM was more readily dissolved and more available for microbial methylation in sediments 240 

(Frohne et al. 2012; Mazrui et al. 2016; Zhao et al. 2018). Hg complexes with DOM facilitated rapid 241 

Hg bio-uptake and methylation by Hg methylators, which might be attributed to the presence of the 242 

thiol ligand in DOM (Graham et al. 2017; Kronberg et al. 2016). 243 

DOM with low-molecular-weight organic acids (LMWOAs) and low-molecular-weight thiols 244 

(LMWTs) enhance microbial Hg methylation in soils and sediments. LMWOAs led to a lower pH 245 

and thus facilitated desorption of Hg from soil solid phases and increased Hg availability to 246 

microbial methylators (Zhao et al. 2018). At the same time, LMWOAs provided a carbon source for 247 

utilization by Hg methylators (You et al. 2016), which promoted microbial methylation. Increased 248 

numbers of carboxylic groups in LMWOAs led to increased Hg desorption from soils and sediments, 249 

which can be beneficial to the net production of MeHg (Yin et al. 2018). Two types of LMWOAs, 250 

Suwannee River humic acid and Williams Lake hydrophobic acid, increased the bioavailability of Hg 251 
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(2 to 38-fold) to sulfate-reducing bacteria under sulfidic conditions and subsequently enhanced the 252 

methylation of Hg. MeHg production by sulfate-reducing bacteria showed a linear relationship with 253 

DOM concentration (Zhao et al. 2017). LMWTs can enhance Hg bioavailability via Hg-S-DOM 254 

complexation and provide a source of energy for Hg methylators, contributing to an indirect uptake 255 

of Hg (Chiasson-Gould et al. 2014; French et al. 2014; Graham et al. 2012; Moreau et al. 2015). 256 

However, complexation of IHg with NOM provided less available Hg for methylation in an organic 257 

forest soil due to the effect of the thiol groups in NOM on IHg speciation (Kronberg et al. 2016).  258 

4 Conclusions and implications 259 

The interactions between Hg and OM are illustrated on Figure S1. Component alteration and the 260 

stimulated activity of the Hg-methylating microbial community, as well as the microbial availability 261 

of IHg, account for the impact of OM on Hg risks associated with soils and sediments. The 262 

characteristic and availability of OM, the speciation, desorption and dissolution kinetics of Hg, as 263 

well as environmental conditions, are important factors controlling the three key processes. Firstly, 264 

OM with Fe, thiolate, S, cysteine, selenite and aromatic functional groups and some strong Hg 265 

binding sites greatly reduced the risks associated with Hg in soils and sediments, which resulted from 266 

the decrease in the bioavailability of IHg and MeHg. However, labile OM (acetate, hydrogen, etc.) 267 

promotes the activity of microbial Hg methylators and accelerate Hg methylation, which contributed 268 

to the enhanced risks of Hg from soils and sediments. Secondly, a large amount of labile OM led to 269 

the bulk production of energy, nutrition and electron donors, which regulated the microbial activity 270 

of Hg methylators. If the content of OM was lower than a threshold for utilization, the microbial 271 

activity of Hg methylators would be limited. Third, mercury methylation was prone to be triggered in 272 

environments with a low oxygen supply, sufficient water saturation, and high temperatures and solar 273 

radiation. Lastly, OM, which is beneficial for the desorption of Hg from soils and sediments and the 274 

formation of aqueous Hg complexes, will increase the risk of Hg from soils and sediments.  275 

This study showed that enhanced Hg related risks from soils and sediments are controlled by 276 

multiple factors, which should be fully considered in applying organic amendments to 277 

Hg-contaminated soils or sediments. Background mercury concentrations cannot be ignored in the 278 

amendments. 279 
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