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Research highlights 26 

• Satellite salinity measurements enable estimation of surface carbonate parameters. 27 

• Uncertainties within these observation-based estimates are well characterized. 28 

• Monthly satellite salinity and temperature allows synoptic monitoring. 29 

• Satellite observations allow study of seasonal, interannual and episodic variations 30 

31 
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Abstract  32 

Improving our ability to monitor ocean carbonate chemistry has become a priority as the 33 

ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is 34 

reducing the ocean pH; a process commonly known as ocean acidification. The use of 35 

satellite Earth Observation has not yet been thoroughly explored as an option for routinely 36 

observing surface ocean carbonate chemistry, although its potential has been highlighted. We 37 

demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and 38 

total dissolved inorganic carbon (CT), assessing the relative performance of satellite, 39 

interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of 40 

these two variables. Both AT and CT in situ data are reproducible, both regionally and 41 

globally, using salinity and temperature datasets, with satellite observed salinity from 42 

Aquarius and SMOS providing performance comparable to other datasets for the majority of 43 

case studies. Global root mean squared difference (RMSD) between in situ validation data 44 

and satellite estimates is 17 μmol kg-1 with bias < 5 μmol kg-1 for AT and 30 μmol kg-1 with 45 

bias < 10 μmol kg-1 for CT. This analysis demonstrates that satellite sensors provide a 46 

credible solution for monitoring surface synoptic scale AT and CT. It also enables the first 47 

demonstration of observation-based synoptic scale AT and CT temporal mixing in the 48 

Amazon plume for 2010-2016, complete with a robust estimation of their uncertainty. 49 

 50 

 51 
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1. Introduction  55 

The oceans play an important role in absorbing carbon (e.g. Sabine et al., 2004), and the 56 

increase in CO2 emitted into the atmosphere as a result of anthropogenic activities has 57 

resulted in an increase in CO2 uptake by the oceans (Caldeira and Wickett, 2005; Sabine et 58 

al., 2004; Takahashi et al., 2009). This long-term absorption results in a shift in ocean 59 

carbonate chemistry, which has the potential to alter biogeochemical cycles and ecosystem 60 

function in the future (Raven et al., 2005; Kroeker et al. 2013). As a result of the decrease in 61 

ocean pH arising from these shifts (often termed Ocean Acidification), this change in ocean 62 

carbonate chemistry has received increasing scientific and political attention over the past 63 

decade. This has led to questions about the magnitude and importance of spatial and temporal 64 

ocean carbon variability, as well as how to monitor ongoing change at global and regional 65 

scales. To-date, carbonate system monitoring has been primarily from ship- and field-based 66 

observations that provide relatively disparate and sparse datasets of carbonate chemistry 67 

parameters in both space and time. To expand capabilities, state-of-the-art autonomous in situ 68 

tools are needed (Byrne, 2014). Recent advances include pH sensors on biogeochemical 69 

floats (e.g. Johnson et al., 2017), and sensors to observe multiple carbonate system 70 

parameters in situ are now in development (Bushinsky et al., 2019). One such advancement is 71 

utilizing Earth Observation (EO) satellites to provide wider spatial and temporal coverage of 72 

surface carbonate chemistry observations, with the aim of detecting features and 73 

characterizing dynamics that are difficult to resolve using in situ datasets (Land et al., 2015; 74 

Salisbury et al., 2015; Fine et al., 2017). Currently, there are just two satellites in orbit that 75 

are specifically designed to support global carbon cycle research (The US NASA Orbiting 76 

Carbon Observatory OCO-2 (Osterman et al. 2016), and the Chinese Tansat; Yang et al. 77 

2018), but their focus is to observe and monitor atmospheric CO2. However, there is a suite 78 

of ocean observing satellite sensor datasets that could be used, through exploitation of 79 
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empirical relationships, to provide measures of marine carbonate chemistry parameters that 80 

include total alkalinity (AT), total dissolved inorganic carbon (CT), partial pressure of CO2 in 81 

seawater (pCO2) and pH (Gledhill et al., 2009).  82 

 83 

These four primary variables allow the ocean carbonate system to be investigated. In 84 

principle, knowledge of at least two of these four, in conjunction with temperature, salinity 85 

and pressure, allows the remaining variables to be calculated (Dickson and Riley, 1978). The 86 

relationships between these variables are principally driven by thermodynamics; temperature, 87 

pressure and salinity are therefore fundamentally associated with the carbonate system 88 

(Dickson, 2007). Furthermore, salinity is a significant driver of the ionic composition of 89 

seawater and hence has a strong relationship with AT (Millero et al., 1998). In addition to 90 

these physical controls on the carbonate system, the variables can be influenced by other 91 

chemical processes, including weathering and carbonate formation/dissolution (Friis et al., 92 

2003), and biological processes such as primary production, respiration, calcification and 93 

remineralization (Smith et al., 1975). With this knowledge it is possible to determine how the 94 

carbonate system variables vary in relation to factors such as temperature, salinity, nitrate or 95 

chlorophyll (the latter two as proxies for biological processes). These relationships take the 96 

form of empirical algorithms, which can be used to derive the respective carbonate system 97 

variable, and have been developed within a number of global and regional studies, e.g. 98 

Takahashi et al. (2013); Lee et al. (2006); Lee et al. (2000); Sasse et al. (2013); Cai et al. 99 

(2010); Lefèvre et al. (2010); Bonou et al. (2016); see Land et al. (2015) and references 100 

therein. 101 

 102 

Although initially developed from in situ datasets, these empirical algorithms could 103 

potentially be forced with inputs from other sources, such as satellite observations or 104 



 

 6 

climatologies to yield observation-based carbon system observations. Here we conduct a first 105 

assessment of four global algorithms for AT and three for CT, utilizing different combinations 106 

of satellite, interpolated in situ and climatology datasets as input. We then evaluate their 107 

output using independent in situ measurements of AT and CT. As a baseline comparison, we 108 

evaluate estimates of AT and CT from an Earth System model. In addition to the global 109 

algorithms, we also assess three regional AT and two regional CT algorithms. We aim to 110 

demonstrate algorithm suitability both globally and for regional case studies (the Caribbean, 111 

the Amazon plume and the Bay of Bengal), and to assess the performance of these different 112 

approaches, particularly the relevance of satellite datasets, in being able to reproduce the in 113 

situ patterns of these two carbonate system variables in surface waters. 114 

 115 

2. Materials and methods 116 

2.1. Published algorithms 117 

The four global algorithms used here for AT are from Lee et al. (2006) (hereafter referred to 118 

as L06), Takahashi and Sutherland (2013) (hereafter referred to as TS13) and Sasse et al 119 

(2013) (domain-based and global algorithms, hereafter referred to as S13 and S13g). L06 120 

separated the oceans into five domains and used an optimal polynomial fit to AT data, 121 

resulting in a relationship with sea surface salinity (SSS) and sea surface temperature (SST) 122 

for each region. TS13 took this a step further using a larger combination of datasets to 123 

separate the oceans into 33 domains. Instead of using SST and SSS, TS13 assessed potential 124 

alkalinity relationship with SSS, where potential alkalinity is AT plus nitrate concentration 125 

(NO3), which corrects AT for the effect of changes in NO3 caused by net community 126 

utilization. Sasse et al (2013) used multiple linear regression to relate domain and global AT 127 

to SST, SSS, SSS2, dissolved oxygen (DO), silicate (Si) and phosphate (PO4). The three 128 

regional AT algorithms are all linear relationships with SSS using data from the Amazon 129 
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plume and Caribbean (Cai et al., 2010; Lefèvre et al., 2010). Two other regional algorithms 130 

(Cooley et al., 2007; Ternon et al., 2000) were considered, but were not used here as results 131 

differed only marginally from Lefèvre et al., (2010) and they used much of the same training 132 

data. 133 

 134 

The three global CT algorithms that we used are from Lee et al. (2000) (hereafter referred to 135 

as L00) and Sasse et al. (2013) (domain-based and global algorithms, hereafter referred to as 136 

S13 and S13g). L00 found CT normalized to salinity 35 on the Practical Salinity Scale and 137 

year 1990, (nCT = CT × 35 / SSS + (year – 1990 between 30°S and 30°N)), to be strongly 138 

correlated with SST and NO3, and conducted optimal polynomial fitting for CT to domain 139 

data, giving a total of 12 regionally parameterized equations. Sasse et al. (2013) used 140 

multiple linear regression to relate domain and global CT to SST, SSS, DO, NO3, Si and PO4. 141 

The two regional CT algorithms are both linear relationships with SSS using data from the 142 

Amazon plume (Lefèvre et al., 2010; Bonou et al., 2016). The same two regional studies as 143 

for AT (Cooley et al., 2007; Ternon et al., 2000) were considered for CT, but again results 144 

differed only marginally from those of Lefèvre et al., (2010) and so they were not used. 145 

In all cases, extrapolation of algorithms beyond the range for which they were calibrated is 146 

questionable, and this is especially true of nonlinear algorithms. To avoid this, we did not use 147 

any algorithm outside its specified range of applicability, or more than one SSS unit or SST 148 

degree outside its calibration range if a range of applicability is not specified. Table 1 149 

summarises the algorithm choices and dependences. Additional details on each empirical 150 

relationship for all algorithms are provided in Supporting Information Text S1. 151 

 152 

2.2. Round-robin comparison 153 
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Four case study regions were used in a round-robin comparison of the algorithms: the global 154 

ocean, the Caribbean (14°N to 30°N, 90°W to 60°W for compatibility with Gledhill et al. 155 

(2008)), the Amazon plume (2°S to 22°N, 70°W to 32°W), and the Bay of Bengal (5°N to 156 

24°N, 78°E to 96°E, using the Bay of Bengal International Hydrographic Office Sea Area 157 

(International Hydrographic Organization, 1953)). These case studies were chosen as areas 158 

that are potentially challenging for this assessment and are discussed in more detail in Land et 159 

al., (2015).  The Amazon region was chosen to enclose the region of freshening contiguous 160 

with the mouth of the Amazon with any monthly satellite SSS < 35, with an eastern boundary 161 

at 32°W, beyond which rain freshening dominates the Amazon plume (Ibánhez et al., 2016). 162 

The region defined also includes many points with SSS > 35.  To investigate the effect of 163 

these points, we also defined a low-salinity Amazon region where data with in situ SSS > 35 164 

were excluded. 165 

 166 

Each algorithm was tested using input data for each forcing factor (SSS, SST, NO3, DO, Si 167 

and/or PO4) from a range of data sources and all possible combinations of inputs were 168 

included in the round-robin comparison. The input data for the empirical algorithms were: 169 

1) Monthly mean satellite observed data from the Soil Moisture and Ocean Salinity (SMOS) 170 

satellite [SSS 2010-2017 CATDS-IFR-CEC-v02] (Reul et al., 2015), the Aquarius satellite 171 

[SSS 2011-2015, Version 5] (Le Vine et al., 2014), and the Climate Change Initiative (CCI) 172 

[SST 1991-2010] (Merchant et al., 2012); 173 

2) In situ re-analysis data from the Coriolis Ocean Re-Analysis (CORA v4.3) database [SSS, 174 

SST 1990-2012] (Cabanes et al., 2013); 175 

3) Monthly climatology data from the World Ocean Atlas (WOA) dataset [SSS, SST, nitrate, 176 

DO, Si, PO4] (Garcia et al., 2010); 177 
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Note that WOA ‘nitrate’ is actually nitrate + nitrite (NO3 + NO2). However, NO2 typically 178 

has a concentration at least an order of magnitude lower than NO3, and so this discrepancy is 179 

neglected. The previously mentioned baseline comparison dataset were AT and CT output 180 

from the HadGEM2-ES global Earth system model, 1972-2020 (Jones et al., 2011) (hereafter 181 

referred to as HG2). 182 

All data were binned spatially to a 1°x1° grid and temporally to monthly intervals (henceforth 183 

referred to as monthly data). The multi-year CORA, satellite and HG2 data were also each 184 

combined to form monthly climatologies (climatological data). Only 1°x1° grid cells with at 185 

least two values were used to calculate climatological data. Details of all of these input 186 

datasets are provided in Table 2.  187 

 188 

The binned AT or CT from each algorithm and input, herein referred to as ‘output’, and the 189 

binned output from HG2 were all evaluated (validated) against binned in situ data of the 190 

respective carbonate parameter. Data from the Global Data Analysis Project Version 2 191 

(GLODAPv2, 1972-2013) (Olsen et al., 2016) were the primary in situ evaluation 192 

(validation) data used for both AT and CT evaluations, along with some additional regional in 193 

situ data (see Table 3). The GLODAPv2 dataset is a community compiled, merged and 194 

internally consistent global dataset.   In all cases of in situ data, the mean measurement in the 195 

top 10 m water depth was used. 196 

 197 

Following (Sasse et al. 2013), we attempted to separate the effects of terrigenous influences 198 

and sediment resuspension on the biogeochemistry of coastal waters from open ocean 199 

carbonate chemistry by calculating the minimum depth within each cell using the 200 

GEBCO_08 one-minute grid (www. gebco.net/ 201 



 

 10 

data_and_products/gridded_bathymetry_data/gebco_one_minute_grid/, downloaded on 202 

December 14th, 2009) and repeating our analysis using only grid cells with minimum depth 203 

greater than 500 m. Again following (Sasse et al. 2013), we further separated terrigenous 204 

effects by calculating the minimum distance from the nearest coast within each cell using 205 

(https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/, downloaded on October 5th, 2018) and 206 

repeated the analysis using only grid cells with both a minimum depth greater than 500 m and 207 

a minimum distance greater than 300 km. All three sets of results are included in 208 

Supplementary Information, but only data with both masks applied are presented here. 209 

 210 

2.3. Statistical measures 211 

2.3.1 Data uncertainties 212 

The GLODAPv2 analysis (Olsen et al., 2016), the chosen reference validation dataset, 213 

includes an estimate of the maximum bias that exists between different instruments 214 

determined via a crossover analysis as 4 and 6 μmol kg-1 for CT and AT respectively. Whereas 215 

a full uncertainty budget (i.e. a type A uncertainty estimate (BIPM, 2008) comprising a 216 

combination of bias and standard deviation of all measurements against a traceable standard) 217 

are not provided. Therefore in the absence of all components of the uncertainty information 218 

we assume nominal uncertainties of 0.5% for all in situ AT and CT (Bockmon et al., 2015). It 219 

should be noted that due to relatively recent improvements in quality control we would 220 

expect older in situ measurements to have greater uncertainties and more recent 221 

measurements to have lesser, though this variation is difficult to quantify.  For interest, the 222 

GLODAPv2 bias estimate stated above for a mean global AT of 2450 μmol kg-1 gives a 223 

potential bias around 0.2%. Uncertainties in the input (forcing) data (SST, SSS, NO3 and 224 

HG2 AT and CT) were not included in our analysis, since these are unknown for many of the 225 

input datasets. For interest only, the reported uncertainty in SMOS SSS is below ±0.3 for a 30 226 

https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
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day average over a 100 × 100 km open ocean area (Reul et al., 2012; Reul et al., 2014) and 227 

can be below ±0.2 for an 18 day average (Boutin et al., 2018) or in certain evaporation-228 

dominated regions, and for Aquarius SSS it is ±0.17 for a monthly average over a 150 × 150 229 

km open ocean area (Lagerloef et al., 2015). Uncertainty in CCI SST is between ±0.1 and 230 

±0.15 K (Merchant et al., 2014). However, we could find no uncertainty estimates for the 231 

CORA, WOA or HG2 datasets, and it would be inconsistent to apply uncertainties to some 232 

inputs and not others. We discuss the impact of this approach within Section 4.2. 233 

 234 

The published algorithm uncertainties (as stated in the corresponding reference) for each 235 

algorithm were propagated through to the algorithm outputs. Following standard propagation 236 

methods (Taylor, 1997), in situ and algorithm uncertainties were combined assuming that 237 

they were uncorrelated (a sum of squares analysis), allowing weighted statistics to be 238 

calculated, with each data point weighted by the inverse of the sum of squared uncertainties. 239 

 240 

2.3.2 Evaluating output accuracy 241 

Output mean (x̅m), standard deviation (σm) and in situ carbonate data mean (x̅d) and standard 242 

deviation (σd) were calculated for each assessment, as well as root-mean-square-difference 243 

(RMSD), mean absolute difference (MAD), bias and point-to-point correlation (R) between 244 

output and the evaluation (GLODAPv2) in situ data. As a check, each of these statistics is 245 

presented both weighted and unweighted. Unweighted and weighted RMSD values were 246 

usually within about 10%, except in the case of global AT using the TS13 algorithm, which 247 

includes regions with very different algorithm errors. Weighted statistics are used hereafter. 248 

 249 

A potential problem with comparing outputs in this way is that different outputs overlap with 250 

different evaluation in situ data. Consider the plausible situation in which all outputs perform 251 
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poorly in coastal waters. All else being equal, an output that is not evaluated using coastal in 252 

situ data will produce better statistics than one that is. Therefore, to compare like with like, in 253 

each region we considered outputs in pairs, for a given pair calculating RMSD for each of the 254 

two outputs using only in situ evaluation matchups shared by both outputs. Each output is 255 

given a ‘score’ of RMSD / RMSDmin, 1 for the lower RMSD and ≥1 for the other. This is 256 

repeated for all possible pairs, then each output is given a ‘final score’ equal to the mean of 257 

all of its scores. To convert this to an estimate of RMSD, we chose a representative output as 258 

that with the lowest value of (weighted final score / number of matchups), i.e. the output with 259 

the best combination of performance and coverage. The weighted RMSD of this output 260 

(RMSDrep) was left unchanged and all other output weighted RMSDs in the region were set 261 

to RMSDrep × final score / (final score)rep, where (final score)rep is the final score of the 262 

representative output; this measure is henceforth referred to as RMSDe. Output results can be 263 

compared directly within a region, but comparison of output RMSDe between regions or 264 

carbonate parameters should be treated with caution. The above calculations could equally be 265 

done using MAD in place of RMSD, though we have not done this here. 266 

 267 

2.3.2 Evaluating optimal combinations of output elements and importances 268 

To calculate the relative importance of different combinations of output elements (algorithms 269 

and/or data inputs) to the output comparison results, we calculated the best RMSDe when a 270 

given combination is excluded from all outputs, and divided it by the overall best RMSDe to 271 

give an RMSDe ratio. For example, the most effective single exclusion, with an RMSDe ratio 272 

of 1.022 (i.e. a 2.2% difference), is AT using climatological CORA SSS in the Bay of Bengal. 273 

The best 13 AT outputs in the Bay of Bengal all use climatological CORA SSS. Conversely, 274 

the best output also uses monthly CCI SST but the second best uses WOA SST, so excluding 275 

monthly CCI SST has much less effect. Excluding WOA SST has no effect, since the best 276 
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output is still the one using monthly CCI SST. Having excluded climatological CORA SSS, 277 

the next 14 best AT outputs all use the TS13 algorithm, so excluding climatological CORA 278 

SSS and TS13 has the largest effect among pairs of exclusions in this region. All possible 279 

combinations of exclusions were considered, ranked in order of number of elements 280 

excluded, then by RMSDe ratio. 281 

The resulting comprehensive list is rather hard to read and interpret. To simplify, we created 282 

subsets of exclusions objectively considered as most significant. Criteria used were that the 283 

RMSDe ratio was greater than 1.01, the exclusions were either all SSS and/or SST inputs or 284 

all algorithms, and RMSDe ratio exceeded that of a subset of exclusions by >0.1%. For 285 

example, excluding TS13 and SMOS SSS would not qualify, and excluding SMOS and 286 

Aquarius SSS would only qualify if its RMSDe ratio were greater than excluding only SMOS 287 

and only Aquarius by >0.1%. 288 

 289 

2.3.3 Comparing between carbonate parameters 290 

To compare between carbonate parameters in each region, we only considered in situ 291 

evaluation data points where both AT and CT values existed. For each data point and 292 

parameter, all outputs producing valid output were considered and the one with the best 293 

regional final score was chosen, noting the output-in situ difference for this output. The 294 

regional RMSD of each parameter was then calculated from the differences at all data points 295 

in the region. 296 

 297 

3. Results 298 

Results are summarized in Figure 1A and B, showing RMSDe for AT and CT, Table 4, 299 

showing statistics of the lowest-RMSDe output for each SSS source plus HG2 output in each 300 

region, and Table 5, showing selected importances. Figures 2 to 4 contain plots of output 301 
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versus evaluation (GLODAPv2) in situ AT, CT and SSS data, with points with depth < 500m 302 

and > 300 km from the coast labeled. Alternative versions of Figures 1A and 1B for differing 303 

masks are shown in Figure S1. Supporting data (Land et al. 2019) consist of three data 304 

collections corresponding to all data, minimum depth 500 m, and minimum depth 500 m plus 305 

minimum distance to coast 300 km; matchup data, output statistics, details of output score 306 

calculations, spatial data results, importances of exclusions and the comparisons between 307 

carbonate parameters (also included in Supplementary Information) are included. 308 

Generally there is little to choose between the SSS sources (re-analysed in situ or satellite) 309 

apart from HG2, which performs less well in all regions, or between monthly and 310 

climatological SSS sources. The main differences in performance are between algorithms and 311 

between regions, but there is no clearly superior algorithm. 312 

 313 

3.1. Total Alkalinity (AT) 314 

See Table 4 for detailed results. Globally, the best RMSDe values of about 17 μmol kg-1 are 315 

substantially lower than the SD of the global coverage in situ data used for the evaluation (81 316 

μmol kg-1), and in the Amazon and Bay of Bengal they are slightly lower (RMSDe of 55 317 

compared to a SD of 68, and RMSDe of 11 compared to a SD of 16 μmol kg-1, respectively), 318 

but in the Greater Caribbean and low-salinity Amazon the RMSDe are higher than the SD, 319 

meaning that none of the tested combinations of algorithms and inputs is accurate enough to 320 

distinguish natural variations in AT in these latter two regions. 321 

 322 

3.1.1. AT algorithm and input importances 323 

See Table 5 for details. Globally, S13 performs slightly less well (higher RMSDe) than other 324 

algorithms, as do climatological satellite inputs. In the Greater Caribbean, monthly SMOS 325 

and Aquarius and climatological Aquarius SSS perform significantly less well. In the 326 
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Amazon, the Lefevre et al (2010) algorithm and climatological Aquarius and WOA SSS 327 

perform less well. In the low-salinity Amazon, monthly SMOS and Aquarius and monthly 328 

CCI SST perform best. In the Bay of Bengal, climatological CORA SSS performs best and 329 

climatological Aquarius performs significantly less well. 330 

 331 

3.1.2. AT summary 332 

For all case study regions and with respect to these empirical outputs, satellite SSS can 333 

reproduce in situ measured AT from the GLODAPv2 evaluation dataset with performance 334 

(RMSDe) comparable to, or better than, the re-analysed in situ data derived inputs for SSS, 335 

and the satellite based AT is always better than HG2 AT estimates. Globally HG2 336 

performance is about 85% worse than the best SSS driven outputs, but this reduces to 15-337 

20% in the Amazon plume. Monthly Aquarius and SMOS observations provide a credible 338 

solution to monitoring synoptic scale global and regional AT, though in some challenging 339 

regions (Greater Caribbean and low-salinity Amazon plume) none of the tested methods are 340 

sufficiently accurate to resolve natural variability. 341 

 342 

RMSDe in the Amazon plume is higher than the global RMSDe, reflecting the larger regional 343 

standard deviation in the in situ data due to the large gradients around the river flow, and 344 

RMSDe in the Amazon with SSS < 35 is higher than in the wider Amazon, but the relative 345 

performance of SSS inputs is similar. 346 

Excluding the Amazon plume and HG2, the best outputs have bias less than 5 µmol kg-1, or 347 

0.2% of the global mean AT (of 2450 µmol kg-1) which is similar to the estimated evaluation 348 

dataset in situ nominal uncertainty of 0.5% (Bockmon et al., 2015) and the inter-annual 349 

variability of AT observed at oceanic sites such as at the Hawaiian Ocean Time-series station 350 

(HOT; ±6 µmol kg-1) (Brix et al., 2004), but lower than the seasonal variability observed at 351 
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oceanic sites (20 to 30 µmol kg-1 at both the Bermuda Atlantic Time-series Study (BATS) 352 

(Bates et al., 2012) and the European time series station (ESTOC) (Santana‐Casiano et al., 353 

2007). This seasonal variability at BATS and ESTOC is also greater than the best global 354 

RMSDe of 17 µmol kg-1. In the Amazon plume, of the monthly SSS sources only SMOS has 355 

low bias (2 µmol kg-1), and in the low-salinity Amazon plume, all SSS sources have bias 356 

greater than 19 µmol kg-1. These results highlight that these methods (of using satellite 357 

observations or re-analysed in situ dataset as input to empirical algorithms) can obtain 358 

measures of AT that are not significantly biased relative to the evaluation in situ 359 

measurements, except in regions of strong spatiotemporal variability. It also shows that these 360 

methods are capable of distinguishing the seasonal variability at long-term time series sites, 361 

though not the interannual variability at HOT. 362 

 363 

3.2. Total Dissolved Inorganic Carbon (CT) 364 

See Table 4 for detailed results. Globally, the best RMSDe values of 29-30 μmol kg-1 are 365 

considerably higher than the equivalent global AT RMSDe values, but still substantially 366 

lower than the SD of the global in situ evaluation dataset (69 μmol kg-1), and in the Amazon 367 

and Greater Caribbean they are similar (RMSDe 45 compared to SD 53 and RMSDe 19 368 

compared to SD 18 μmol kg-1, respectively), but in the low-salinity Amazon and Bay of 369 

Bengal they are higher, meaning that no combination of algorithms and inputs is accurate 370 

enough to distinguish natural variations in CT in these latter two regions. 371 

3.2.1. CT algorithm and input importances 372 

See Table 5 for details. Globally, L00 and S13g perform better (lower RMSDe) than other 373 

algorithms, as do CORA, WOA and monthly SMOS SSS inputs. In the Greater Caribbean, 374 

the S13g algorithm performs very poorly and climatological Aquarius SSS performs less well 375 

than other SSS inputs. In the Amazon, the S13g algorithm and Aquarius SSS perform less 376 
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well. In the low-salinity Amazon, the S13g algorithm performs less well, while SMOS, 377 

Aquarius and monthly CCI SST perform best. In the Bay of Bengal, the S13 and S13g 378 

algorithms perform considerably better than other algorithms and CORA and WOA SSS 379 

perform better than other SSS sources. 380 

 381 

3.2.2. CT summary 382 

Similar to AT, satellite inputs for SSS can reproduce the CT data (from the GLODAPv2 383 

evaluation dataset) with similar ability, and sometimes better than using re-analysed or 384 

climatology in situ derived SSS inputs, except for Aquarius in the Amazon plume (Figure 385 

1B), and always better than HG2 CT estimates. Global HG2 performance is only about 14% 386 

worse than the best SSS driven outputs, but this increases to over 80% in the Bay of Bengal 387 

and Greater Caribbean. As with AT, monthly SMOS and Aquarius observations provide a 388 

credible solution to monitoring synoptic scale global and in some cases regional CT. Best 389 

RMSDe values are higher for CT than AT globally and in the Greater Caribbean and Bay of 390 

Bengal, but lower in both Amazon plume regions. Again, in some challenging regions (low-391 

salinity Amazon plume and Bay of Bengal), none of the tested methods are sufficiently 392 

accurate to reproduce natural variations. 393 

 394 

Bias in the CT outputs is generally greater and more variable than that in the AT outputs, 395 

except in the Amazon plume where non-HG2 monthly and climatological bias is uniformly 396 

less than 3 µmol kg-1. The smallest bias among the best global monthly outputs is monthly 397 

CORA with -9 µmol kg-1, in the Greater Caribbean monthly SMOS and Aquarius have bias 398 

of 3 and 4 µmol kg-1 respectively, monthly outputs in the low-salinity Amazon are all 399 

strongly biased, the smallest being CORA with 45 µmol kg-1, and in the Bay of Bengal 400 

monthly CORA has bias of 16 µmol kg-1 while climatological datasets (WOA, CORA, 401 
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SMOS) have lower bias (-11, -12, -14 µmol kg-1 respectively). For comparison, the in situ 402 

nominal uncertainty of 0.5% (Bockmon et al., 2015) at the global average CT of 1900 µmol 403 

kg-1 would be 9.5 µmol kg-1, the inter-annual variability of nCT is ±4 µmol kg-1 at HOT and 404 

±8 µmol kg-1 at ESTOC (Brix et al., 2004, Santana‐Casiano et al., 2007), while the seasonal 405 

amplitude of nCT at HOT is 15 µmol kg-1 (Brix et al., 2004) and those of CT at ESTOC and 406 

BATS are 20-30 and 40-50 µmol kg-1, respectively (Santana‐Casiano et al., 2007, Bates et 407 

al., 2012). The biases in these outputs are also comparable to the systematic biases found by 408 

Lee et al. (2000) when comparing algorithm derived nCT to nCT calculated from AT and 409 

pCO2 data (-3 to +15 µmol kg-1).  Thus, these results highlight that some of the outputs 410 

evaluated can obtain measures of CT that are not significantly biased relative to the in situ 411 

evaluation measurements, though overall uncertainties may be high relative to the variability 412 

at these long-term monitoring sites. 413 

 414 

3.3. AT and CT Algorithm biases 415 

In the Amazon Plume, the best output was strongly correlated with the evaluation in situ AT 416 

or CT, but with a slope significantly different from 1 (Figures 2B and 3B). Replacing monthly 417 

satellite SSS with monthly or climatological CORA SSS (re-analysed and interpolated in 418 

situ) produces similar biases (Figure 4), suggesting that the cause of the bias is not specific to 419 

satellite SSS or monthly data. 420 

 421 

A possible explanation of this bias would be that the algorithm is not capturing the two 422 

endmember mixing from the river with zero salinity and some finite, but significant AT and 423 

CT. However, the regional algorithms for the Amazon plume implicitly include the river 424 

endmember, as they are based on measurements that include low and high salinity values, 425 

and each published algorithm finds a strongly linear relationship between salinity and AT or 426 
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CT. Since the bias using these algorithms is similar to that using the global algorithms, we can 427 

conclude that the endmember issue is not the main reason for the bias. 428 

 429 

Another possible explanation of the bias would be sampling of water with low SSS, AT and 430 

CT in regions with high spatial and temporal SSS variability, as found in the Amazon plume 431 

and particularly within the low salinity Amazon plume region. Satellite and CORA data 432 

represent an average over at best one grid cell (about 104 square kilometers at the equator) 433 

and one month (or the same month in a range of years in the case of climatological data), 434 

while an in situ measurement samples a very small volume of water and is almost 435 

instantaneous. The effect of this averaging is to remove variability that occurs on smaller 436 

spatial and temporal scales. For example, low in situ salinity in the Amazon plume may be 437 

caused by small eddies or filaments of river water not resolvable at the grid cell scale, or by 438 

interannual variations in the plume extent. In this situation, extreme evaluation in situ values 439 

will consistently be matched with outputs driven by satellite and CORA data that are closer to 440 

the large-scale and long-term mean. If the salinity distribution is strongly one-tailed, as in the 441 

Amazon plume, and the cause of anomalies is consistently unresolved by the averaged data, 442 

the in situ evaluation data will consistently give lower salinity than the averaged data, as 443 

observed here (Figure 5). This issue is likely to be one cause of the large biases evident in all 444 

output results (re-analysed in situ and satellite input derived) for the low salinity Amazon 445 

region. 446 

 447 

A third possible explanation for the bias arises from fundamental differences between the in 448 

situ measurements used to calibrate the original algorithms and the satellite salinity 449 

observations used herein as input to the algorithms. Satellite SSS observations represent the 450 

conditions in the top 10 mm of the water (Boutin et al., 2013), whereas in situ SSS 451 
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observations are typically sampled from ≥1 m below the surface. This can result in 452 

geophysical sources of variation between satellite and in situ salinity, which are linked to 453 

vertical salinity stratification, and these features are prevalent in regions of rain, oceanic 454 

fronts and river outflow (Boutin et al., 2013; Boutin et al., 2016;Drucker et al., 2014). For 455 

example, salinity gradients created by freshwater plumes can complicate the comparison of 456 

satellite and in situ salinity measurements; a difference of 2–5 pss m−1 has been observed 457 

across the halocline in the Amazon plume (Lentz et al., 1995). Plumes can also cause 458 

horizontal salinity gradients with spatial scales smaller than the footprint of the satellite 459 

radiometers. Typical horizontal SSS gradients for the plumes from the Amazon (Lentz et al., 460 

1995) or Congo (Chao et al., 2015) exceed 0.2 pss km–1 and extend more than 250 km from 461 

the river mouth. Therefore, in the vicinity of a river plume, a spatially sparse array of in situ 462 

sensors can exhibit very different SSS variability from that observed by a satellite sensor, 463 

even if the measurements are all coincident. Similarly, high-frequency SSS variations (e.g. 464 

tidal effects) can be undersampled by satellite-derived SSS products due to the relatively long 465 

revisit time of the satellite (2–3 days for SMOS and 7 days for Aquarius).  Accounting for the 466 

depth-related differences should increase the accuracy of the outputs, and a rigorous 467 

treatment might adapt the theory currently used to reconcile in situ and satellite SST 468 

(Merchant et al., 2014). We therefore recommend that the satellite SSS community consider 469 

investigating this theory for SSS. 470 

 471 

In the absence of a rigorously tested explanation for these biases, and to demonstrate the 472 

potential gain from reducing them, we simply note that linear regression of the best output 473 

against the evaluation in situ AT and CT reduces the RMSD (actual, not estimated) in the low 474 

salinity Amazon plume region from 215 to 48 μmol kg-1 (a 77% reduction) for AT and from 475 

67 to 50 μmol kg-1 (26%) for CT. 476 
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 477 

3.4. Comparison of AT with CT 478 

Results are shown in Dataset S23, showing that in direct comparisons at each matchup 479 

position, the AT outputs have a 42% lower RMSDe than CT globally, 41% lower in the Bay 480 

of Bengal and 21% lower in the Caribbean, indicating that AT outputs can generally be 481 

retrieved more successfully than CT outputs. However, AT has a 13% higher RMSDe than CT 482 

in the Amazon and 9% higher in the low salinity Amazon using the same algorithms as in the 483 

global case, so this relationship is not universal. 484 

 485 

3.5. Multi-year synoptic observations 486 

The methods evaluated here enable the first multi-year synoptic scale observations of AT and 487 

CT spatial mixing and distributions. To demonstrate their application we characterise the 488 

synoptic scale, extent and influence of river-flow-dominated alkalinity mixing in the Amazon 489 

plume and western North Atlantic. The Amazon Plume exhibits a two-end-member 490 

alkalinity-salinity mixing regime, resulting in a strong linear relationship between alkalinity 491 

and salinity (Cai et al., 2010), and mixing between river water and seawater is the dominant 492 

controlling factor of the alkalinity-salinity relationship in the western North Atlantic (Jiang et 493 

al., 2014). The accuracy assessment means that we can illustrate SMOS or Aquarius 494 

observational-based CT and AT monitoring of the Amazon plume along with a calculated 495 

estimate of the combined uncertainty in CT and AT (provided by the RSMDe and bias). 496 

 497 

To simplify the interpretation we present results using the same algorithm for monthly SMOS 498 

and Aquarius, so that any differences are due solely to the SSS source. For AT, the best 499 

output with both SMOS and Aquarius is TS13 with WOA nitrate, with RMSDe of 57.7 μmol 500 

kg-1 for SMOS and 58.4 μmol kg-1 for Aquarius. For Ct the best Aquarius outputs use 501 
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different algorithms to the best SMOS outputs, and perform less well. Therefore for 502 

simplicity we present results of using SMOS and Aquarius with a single algorithm and input 503 

pairing (L00 and climatological CORA SST), with RMSDe of 45.0 μmol kg-1 for SMOS and 504 

52.2 μmol kg-1 for Aquarius. We calculated AT and CT time series for the Amazon plume 505 

using the above algorithm and input pairings, producing monthly Aquarius and SMOS 506 

derived AT and CT collectively covering the time period 2010 to 2016. 507 

 508 

Figure 6 shows the regional (0-15°N, 45-62°W) mean SMOS and Aquarius SSS, 509 

climatological CORA SST, output AT and output CT, in relation to climatological Amazon 510 

discharge data from the Obidos gauge located 750 km from the ocean (Perry et al., 1996). 511 

The discharge data are only provided as an indication of variations in Amazon discharge and 512 

will not represent the total flow (Salisbury et al., 2011). In a given month with both SMOS 513 

and Aquarius data, we calculate mean SSS using only cells in which both have valid data, in 514 

order to compare like with like. If this is not done, and one dataset extends into a low salinity 515 

region not covered by the other, large spurious differences can occur, e.g. in May 2014 516 

inconsistent masking causes the regional mean Aquarius SSS to be 1.24 units lower than 517 

SMOS SSS (results not shown), a difference that reduced to 0.07 units with consistent 518 

masking. Maximum SSS consistently occurs during December and January and minimum 519 

SSS occurs during May-July, 1-3 months after the maximum discharge in April, both of 520 

which are consistent with previous findings (Salisbury et al., 2011). As expected, AT and CT 521 

maxima occur in phase with the variations in SSS, and typically lag the peaks in SST by one 522 

to two months, with regional AT each year varying between 2230 and 2370 μmol kg-1 and CT 523 

varying between 1890 and 2000 μmol kg-1. 524 

 525 
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Figure 7 reveals the seasonal patterns in AT over the same period as shown in Figure 6B in 526 

relation to the dynamics of the Amazon discharge and their interaction offshore with the 527 

along-shore North Brazilian Current, North Equatorial Counter Current and Guyana Current. 528 

The August 2011 SSS conditions are shown in Figure 7A. Clear annual cycles and river 529 

plume features are apparent in the observed AT, with the Amazon plume influencing AT more 530 

than 1000 km offshore of the mouth of the Amazon (Figure 7B-D). During June-July each 531 

year, very low AT values reaching below 2100 μmol kg-1 are apparent at the mouth of the 532 

Amazon (Figure 7D), the timing of which is consistent with the observed annual minima in 533 

SSS (Salisbury et al., 2011) (see also Figure 6). Further west the river plume spreads out as it 534 

interacts with the along-shore currents, resulting in AT in the region of ~2150 μmol kg-1 up to 535 

~1700 km offshore (regions of yellow up to ~17°N in Fig. 3C). The Amazon plume has been 536 

observed to bifurcate during the northern hemisphere summer months (Del Vecchio et al., 537 

2004), with one part of the river plume heading north-west and a second jet retroflected to the 538 

east (Salisbury et al., 2011). This bifurcation is apparent each year around August (Figure 539 

7A-D), with an isolated feature of AT around 2000-2100 μmol kg-1 appearing 500-1000 km 540 

offshore and to the east of the river mouth, although this feature was less pronounced during 541 

2014 (regions of yellow between 5-10°N in Figure 7D).  542 

 543 

Figure 8 shows Aquarius and SMOS monthly AT for April 2012 overlaid with 100 in situ AT 544 

observations from the GLODAPv2 dataset (Olsen et al., 2016) collected at 3 m nominal 545 

depth during 13 consecutive days in April and May 2012, and Figure 9 shows the equivalent 546 

plot for CT. Despite the different temporal resolutions, the change in magnitude of the 547 

observations (the gradient) between the open ocean data and those close to, and within the 548 

river plume, are generally comparable to the synoptic scale observations. The high monthly 549 

temporal variations along the ~52°W latitudinal transect are illustrated in Figure 7D. The 550 
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differences between in situ and synoptic scale observations are discussed in section 3.3. This 551 

comparison highlights the power of the synoptic scale observations, allowing the in situ 552 

observations to be placed within their wider spatial and temporal context. It also highlights 553 

how the synoptic observations characterise the distributions and mixing at the very surface of 554 

the water column and how these can be different from that observed in situ (at a nominal 555 

depth of 3 m), particularly in regions of strong river plume influence. Figures 8 and 9 could 556 

suggest that lower values of AT and CT are found below the surface in the coastal region, 557 

whereas offshore the salinity, AT and CT are vertically well mixed. A combination of in situ 558 

and synoptic scale observations could be used to understand the near-surface vertical profile 559 

of AT.  560 

 561 

4.0 Discussion 562 

4.1 Bay of Bengal 563 

Because there are permanent and strong radio-frequency interference sources around the 564 

coasts of Asia, SSS measurements from SMOS and Aquarius are likely to be of a lower 565 

quality in the Bay of Bengal. However, the paucity of in situ measurements in the Bay of 566 

Bengal in the satellite salinity era makes comparison difficult. The Bay of Bengal in situ AT 567 

data measured in 2014 were not included in the main analysis due to their proximity to the 568 

coast (and so were removed due to the masking), and their inclusion causes the RMSDe of 569 

HG2 to increase to over 600 μmol kg-1 (Figure S1). This demonstrates the importance of 570 

comparing like with like when evaluating the outputs and also highlights the influence of 571 

focusing on evaluation data without terrigenous influence. The low number of in situ data 572 

points used in the Bay of Bengal accuracy assessment highlights that the evaluation of output 573 

datasets (from both satellites and re-analysed in situ) will be biased against small-scale 574 

variability that may be captured by the in situ observation data used for the evaluation, 575 
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particularly when in situ validation sites are relatively near-shore and the effect of riverine 576 

water flow is more pronounced. This was the case for the 2014 in situ dataset that was 577 

omitted from the main accuracy assessment due to falling within the masked area: the site 578 

was part of the Sundarbans Biological Observatory Time Series, representing the coastal part 579 

of the Sundarbans mangrove ecoregion, which can act as a source and a sink of CO2 during 580 

pre-monsoon (April-May) (Akhand et al., 2017), and it is also an area that receives high 581 

freshwater discharge (~42000 m3 s-1) along with local heavy seasonal precipitation, in 582 

addition to increasing anthropogenic pressure (Choudhury et al., 2015). The other case study 583 

regions have more data available for comparison and therefore this variability may be 584 

averaged out in the in situ data binning process. It is essential that more in situ carbonate 585 

system data are collected to elucidate these issues for this complex region (the Bay of 586 

Bengal), which has a strong riverine influence, and to characterize the variability on a wider 587 

scale than has currently been observed (Sarma et al., 2012; Samanta et al., 2015). 588 

 589 

A large area of the Bay of Bengal is characterized by pCO2 levels far below the atmospheric 590 

value (i.e. a large gradient between atmospheric and oceanic pCO2), which is more prominent 591 

during the north-east monsoon when the air-sea pCO2 gradient exceeds 100 µatm (Akhand et 592 

al., 2013; Ganguly et al., 2011). The enhanced gradient is possibly due to new biological 593 

production sustained by excessive nutrient inputs from the Ganga-Brahmaputra-Meghna river 594 

basins, thus influencing the carbonate system via net organic production. Additionally, the 595 

presence of non-carbonate alkalinity in these regions (e.g. riverine contributions of organic 596 

species including humic acid) can result in AT that is not correlated with salinity (Akhand et 597 

al., 2013). Only 14 of the outputs overlapped in space and time with the 2014 in situ data that 598 

captured this very near-shore variability, resulting in the apparent poor performance of these 599 

14 outputs before coastal masking. If the other outputs had also captured this near-shore 600 
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variability they may also have had reduced performance. Low satellite SSS coverage due to 601 

the issues of radio-frequency interference described above will have also contributed to lower 602 

performance of the satellite data driven outputs in this region. Improvements in satellite data 603 

coverage in coastal regions together with increased in situ data are likely to begin resolving 604 

these issues. 605 

 606 

4.2 The need for continued efforts in quantifying uncertainties 607 

The problem of uncertainties, and their propagation through the analysis, is an ongoing one. 608 

Here, the estimated uncertainties in the in situ measurements used for the evaluation and 609 

algorithm uncertainties were included in the analysis where they were quantifiable (i.e. 610 

nominal uncertainties for the CT and AT in situ evaluation measurements and the propagation 611 

of the empirical algorithm uncertainties). Published remote sensing uncertainties are 612 

available, however no such information exists for the other input datasets; and even within 613 

the carbonate system there are still many challenges to fully defining in situ and laboratory 614 

measurement uncertainties (Andrew Dickson, pers. comms.; Bockmon and Dickson, 2015). 615 

Therefore, quantification of associated uncertainties for all of the input data sources requires 616 

continued work. Furthermore, unavoidably in this analysis, data used to evaluate the 617 

algorithm outputs were unlikely to be wholly independent from the data used to create the 618 

algorithms. In order to have a fully independent evaluation dataset, original datasets would be 619 

required to develop the algorithms whilst keeping enough data separate from the algorithm 620 

development process to enable an independent evaluation. This was not possible in this initial 621 

assessment due to the general dearth of measurements in some regions, and due to ambiguity 622 

over which measurements were used to develop the historical algorithms. 623 

 624 
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However in relation to our calculated combined uncertainties of our outputs, the estimated 625 

combined uncertainties from Fine et al. (2017) of smaller than 20 μmol kg-1 for retrieving 626 

global AT using satellite salinity and SST are consistent with our global results of RMSDe of 627 

17 μmol kg-1, bias < 5 μmol kg-1. This gives further confidence in the approach taken here. 628 

We note however that Fine et al. (2017) misinterpreted the uncertainty information provided 629 

by Olsen et al., (2016), as Olsen et al. only state the bias, which as previously discussed is 630 

only one component of a Type A uncertainty.  631 

 632 

To test the sensitivity of the output uncertainties to the SST and SSS satellite remote sensing 633 

input data uncertainties, the latter were propagated through the analysis for all global 634 

empirical AT algorithms (TS13, Lee06, Lee00, S13, S13g) for two example months (January 635 

and July). This results in AT output uncertainties (due solely to satellite SSS and SST input 636 

data) of 0.2 to 0.8% (Table 6), which is close to the nominal in situ uncertainties of 0.5%, or 637 

±10 umol kg-1. The combined uncertainty in most of the studied regions is considerably 638 

greater than this, implying that (in the global case at least) the other components of the 639 

uncertainty budget dominate over the remote sensing input data uncertainty. 640 

 641 

4.3 The need for algorithm retraining and the collection of in situ observations 642 

Only seven global and five regional algorithms were presented here, in addition to output of 643 

AT and CT from HG2, primarily because these were the only algorithms from the published 644 

literature that did not require additional re-parameterization for all the case study regions. 645 

Future efforts are needed to perform this re-fitting, not only for additional AT and CT 646 

algorithms, but also for the remaining carbonate system parameters (pCO2 and pH). This is a 647 

demanding task; with just the 14 algorithms and model outputs used here, 1070 outputs were 648 

compared in the round-robin comparisons. Further, where few in situ measurements of a 649 
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carbonate variable exist (e.g. pH), information could be obtained for future assessments by 650 

calculating this variable from two of the other carbonate variables (e.g. CT and AT) along with 651 

temperature and salinity. Calculating the variable in this way does introduce additional 652 

uncertainties, thus to be truly beneficial, such outputs should include the propagation of all 653 

uncertainties. A future assessment of the exploitation of satellite SSS will require further 654 

analysis of temporally resolved (rather than climatological) satellite observations, using new 655 

in situ data. We found only three cruises within GLODAPv2 that overlap with satellite 656 

salinity observations in our regions: none in the Bay of Bengal, one in the Amazon plume at 657 

the beginning of May 2010 (the first month of reliable SMOS data after its launch in 658 

November 2009) and two in the Amazon plume in April and May 2012 (shown in Figures 8 659 

and 9), one of which overlapped with the Greater Caribbean (only 6% and 3% of the 660 

GLODAPv2 data correspond to SMOS and Aquarius eras respectively). Hence coverage 661 

where we have both in situ and satellite observations is very limited spatially, seasonally and 662 

interannually, highlighting the need for further in situ data. It should also be noted that the 663 

lowest uncertainties achieved using these satellite observation-based and empirical 664 

approaches are still greater than the nominal in situ and laboratory measurement uncertainties 665 

(of ±10 μmol kg-1) so the methods presented here are unlikely to ever be a substitute for in 666 

situ measurements. Their strength is in providing synoptic data to fill the inevitable gaps in 667 

the in situ data coverage. To enable all new in situ data to be fully exploited by the Earth 668 

observation community they need to have been collected following international protocols (as 669 

defined by Dickson et al., 2007), analysed using traceable standards (as advocated by 670 

Bockmon and Dickson, 2015) enabling the provision of a complete uncertainty budget 671 

(quantified as a Type A uncertainty, BIPM, 2008).  If possible, the historical data contained 672 

within the GLODAPv2 dataset would benefit from the inclusion of some indication of their 673 

uncertainty budget e.g. a simple ‘high’, ‘low’ or ‘unknown’ determined using existing 674 
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metadata and/or expert interpretation and opinion via a Type B uncertainty approach as 675 

defined by BIPM, (2008). Similarly, the CORA re-analysis and WOA climatology data 676 

would benefit from similar additions as these datasets lack any uncertainty information. 677 

 678 

4.4 Earth system model performance 679 

It should be noted that we would not expect a free running global Earth system model such as 680 

HG2 to perform well regionally, though the poor global AT performance and the relatively 681 

good performance in the Amazon plume were surprising. We include HG2 in the comparison 682 

mainly to illustrate how this methodology could be used to compare model data with quite 683 

different input sources such as satellite data. Our results provide a potentially useful dataset 684 

(including uncertainty information) to evaluate and challenge Earth system model outputs. 685 

 686 

5. Conclusions 687 

We demonstrate that satellite SSS and SST data are, in conjunction with empirical 688 

algorithms, able to successfully reproduce both AT and CT in four regions (globally, the 689 

Caribbean, the Amazon and the low salinity Amazon) as well as or better than in situ-derived 690 

(re-analysed) SSS and SST using the same empirical algorithms, or a global Earth system 691 

model dataset, with the advantage that satellite datasets are acquired daily, on average, with 692 

synoptic coverage. 693 

The ability to derive key surface carbonate system parameters from satellite observed SSS 694 

and SST offers the potential for quantifying natural variability, as well as monitoring the 695 

present state of these important parameters through space and time. Satellite sensors provide 696 

a significant advantage over traditional in situ derived climatologies because of the ability to 697 

provide synoptic and frequent observations of global oceans. Critically, many of the satellites 698 

that provide these data are already in operation, hence historic satellite sensor datasets could 699 
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be used with these algorithms to elucidate changes over longer periods of time. These 700 

satellite methods should not replace ongoing in situ measurements, but should complement 701 

and enhance them by providing observations in periods where there are gaps in both time and 702 

space. Ongoing in situ data are essential to improve our ability to exploit satellite data, for 703 

example through enhanced parameterization of the algorithms. Satellites are also only able to 704 

measure surface waters, and are unable to measure under ice. These gaps must be filled with 705 

in situ data. Similarly, the evolving nature of the carbonate system due to anthropogenic 706 

forcing means that it is likely that these empirical algorithms will need to be periodically re-707 

trained to maintain their performance. Hence the algorithms and methods utilized are useful 708 

for studying seasonal and inter-annual variations and episodic events, but may not be suitable 709 

for resolving longer-term trends. 710 

 711 

The assessment presented here, which represents a significant effort and extensive analysis, 712 

provides the baseline performance against which any future algorithm re-training or re-713 

calibration attempts can be compared. 714 
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Tables 725 

Table 1: Summary of algorithms, their dependencies and the region for which they were 726 

originally developed. AT = Total Alkalinity, CT = Dissolved Inorganic Carbon; SSS = Sea 727 

Surface Salinity, SST = Sea Surface Temperature, DO = Dissolved Oxygen, N = nitrate, Si = 728 

silicate, P = phosphate. 729 

Product Name Dependencies Reference Region 

AT TS13 SSS, N (Takahashi and Sutherland 2013) Global  

AT L06 SSS, SST (Lee et al. 2006) Global 

AT S13 
SSS, SST, DO, 

Si, P 
(Sasse et al., 2013) Global 

AT S13g 
SST, SSS, DO, 

Si, P 
(Sasse et al., 2013) Global 

AT  SSS (Lefèvre et al. 2010) APR  

AT  SSS (Cai et al. 2010) GCR, APR  

     

CT L00 SSS, SST, N (Lee et al. 2000) Global 

CT S13 
SST, SSS, DO, N, 

Si, P 
(Sasse et al., 2013) Global 

CT S13g 
SST, SSS, DO, N, 

Si, P 
(Sasse et al., 2013) Global 

CT  SSS (Lefèvre et al. 2010) APR 

CT  SSS (Bonou et al. 2016) APR 

 730 

 731 

 732 

Table 2: Datasets used as inputs to the empirical algorithms. SSS = sea surface salinity, SST 733 

= sea surface temperature, DO = dissolved oxygen. 734 

 Type Name Time period References 

SSS Satellite SMOS (CATDS v2) 2010 - 2014 (Reul and Team 2011) 

SSS Satellite Aquarius 2011 - 2014 (Le Vine et al. 2014) 
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SST Satellite ESA SST CCI 1992 - 2010 (Merchant et al. 2012) 

SSS, SST Re-analysis CORA v4.0 1990 - 2012 (Cabanes et al. 2013) 

SSS, SST, 

DO, N, P, Si  

Climatology WOA 1970 - 2012 (Garcia et al. 2014a; 

Garcia et al. 2014b; 

Locarnini et al. 2013; 

Zweng et al. 2013) 

 735 

 736 

Table 3: In situ carbonate chemistry datasets used for evaluating the outputs. All datasets for 737 

each variable were combined into one dataset that was averaged monthly on a 1°x1° grid. 738 

The Bhadury et al. coastal data are from a sampling station located on the coast of India at 739 

21° 40’ 40.6” N, 88° 9’ 19.2”E, shown in Figure 1 of Choudhury et al. (2015) (Station 3). 740 

The Findlay et al. research cruise data are from cruises off the Svalbard and Greenland 741 

coasts, 78° 53’-59’ N, 11° 42’-12° 27’ E and 70° 14-49’ N, 22° 4-32’W respectively. 742 

 Dataset name Time period References 

AT, CT GLODAPv2  1970 – 2013 (Olsen et al. 2016) 

AT, CT OWS Mike 2001 - 2007 (Findlay et al. 2008)  

AT Bhadury et al. coastal data 2014 (Choudhury et al. 2015) 

AT, CT Findlay et al. research cruise 2012 – 2014 [Findlay pers. comm.] 

 743 

 744 

Table 4: Coverage, RMSDe and bias of the lowest RMSDe output for each SSS source in 745 

each region and carbonate parameter. Note that coverage is compared to all possible 746 

matchups, so recent SSS sources such as satellites have relatively low coverage.  747 

SSS INPUT 
COVERAGE 

(%) 

RMSDe 

(μmol kg-1) 

BIAS 

(μmol kg-1) 

GLOBAL AT (N=6019)    
In situ SD for comparison 81 

 
SSS_CORA 88 17 0 

SSS_AQUARIUS 4 17 3 

SSS_SMOS 6 17 -5 

HG2 100 32 -17 

SSS_CORA_CLIM 96 17 -2 

SSS_WOA_CLIM 96 17 0 
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SSS_SMOS_CLIM 94 18 1 

SSS_AQUARIUS_CLIM 93 18 -5 

HG2_CLIM 100 31 -16 

G CARIB AT (N=55)    
In situ SD for comparison 13 

 
SSS_CORA 96 17 3 

SSS_AQUARIUS 13 19 -4 

SSS_SMOS 13 20 -4 

HG2 100 50 50 

SSS_CORA_CLIM 100 17 -4 

SSS_WOA_CLIM 100 17 3 

SSS_SMOS_CLIM 100 17 3 

SSS_AQUARIUS_CLIM 100 19 2 

HG2_CLIM 100 48 50 

AMAZON AT (N=108)    
In situ SD for comparison 68 

 
SSS_SMOS 31 58 1 

SSS_AQUARIUS 12 58 17 

SSS_CORA 78 59 10 

HG2 100 75 43 

SSS_CORA_CLIM 100 57 -1 

SSS_SMOS_CLIM 100 59 -2 

SSS_AQUARIUS_CLIM 100 60 1 

SSS_WOA_CLIM 100 60 -6 

HG2_CLIM 100 73 41 

AMAZON S<35 AT (N=15)   
In situ SD for comparison 115 

 
SSS_SMOS 20 132 124 

SSS_CORA 20 132 125 

SSS_AQUARIUS 87 132 26 

HG2 100 172 128 

SSS_CORA_CLIM 100 132 25 

SSS_AQUARIUS_CLIM 100 133 -19 

SSS_WOA_CLIM 100 135 24 

SSS_SMOS_CLIM 100 136 20 

HG2_CLIM 100 166 121 

BENGAL AT (N=23)    
In situ SD for comparison 16 

 
SSS_CORA 96 11 -3 

HG2 100 52 77 

SSS_CORA_CLIM 100 10 -3 

SSS_SMOS_CLIM 100 10 3 

SSS_WOA_CLIM 100 11 5 

SSS_AQUARIUS_CLIM 100 11 -2 

HG2_CLIM 100 55 83 
 

GLOBAL CT (N=6689)    
In situ SD for comparison 69 

 
SSS_CORA 90 30 -9 

SSS_SMOS 6 30 -13 

SSS_AQUARIUS 3 30 23 

HG2 100 33 -13 

SSS_WOA_CLIM 99 29 -8 



 

 34 

SSS_CORA_CLIM 99 29 -8 

SSS_AQUARIUS_CLIM 96 30 21 

SSS_SMOS_CLIM 97 31 22 

HG2_CLIM 100 34 -17 

G CARIB CT (N=53)    
In situ SD for comparison 18 

 
SSS_CORA 96 19 14 

SSS_SMOS 13 19 3 

SSS_AQUARIUS 13 19 4 

HG2 100 42 52 

SSS_WOA_CLIM 100 19 9 

SSS_CORA_CLIM 100 19 10 

SSS_SMOS_CLIM 100 19 10 

SSS_AQUARIUS_CLIM 100 19 8 

HG2_CLIM 100 36 45 

AMAZON CT (N=155)    
In situ SD for comparison 53 

 
SSS_CORA 85 45 3 

SSS_SMOS 21 45 3 

SSS_AQUARIUS 8 48 0 

HG2 100 57 33 

SSS_CORA_CLIM 100 45 0 

SSS_SMOS_CLIM 100 45 0 

SSS_WOA_CLIM 100 45 -2 

SSS_AQUARIUS_CLIM 100 46 -1 

HG2_CLIM 100 53 30 

AMAZON S<35 CT (N=17)   
In situ SD for comparison 96 

 
SSS_SMOS 18 109 100 

SSS_AQUARIUS 18 109 108 

SSS_CORA 94 109 45 

HG2 100 132 118 

SSS_SMOS_CLIM 100 109 3 

SSS_CORA_CLIM 100 109 44 

SSS_AQUARIUS_CLIM 100 111 21 
SSS_WOA_CLIM 100 111 45 

HG2_CLIM 100 125 108 

BENGAL CT (N=24)    
In situ SD for comparison 10 

 
SSS_CORA 96 19 16 

HG2 100 36 51 

SSS_CORA_CLIM 100 18 -12 

SSS_WOA_CLIM 100 18 -11 

SSS_SMOS_CLIM 100 19 -14 

SSS_AQUARIUS_CLIM 100 20 -17 
HG2_CLIM 100 34 48 

 748 

Table 5: Selected importances of exclusions for each carbonate parameter and region. A 749 

source of SSS or SST can be monthly (M), climatological (C) or all (no prefix). Importances 750 

are the percentage increase in RMSDe as a result of excluding all the listed inputs or 751 



 

 35 

algorithms. Only exclusions mentioned in the text are listed here, more complete lists can be 752 

found in (Land et al., 2019). 753 

EXCLUSIONS IMPORTANCE 

(%) 

NOTES 

(GLOBAL AT)   

TS13,L06,S13g 3.1 Only leaves S13,HG2 

TS13,L06,S13g,S13 85 Only leaves HG2 
CORA,M SMOS,M Aquarius,WOA SSS 3.0 Only leaves C SMOS,C Aquarius 

CORA,SMOS,M Aquarius,WOA SSS 4.1 Only leaves C Aquarius 

(G CARIB AT)   

CORA,WOA,C SMOS SSS 13 Only leaves M SMOS,Aquarius 

TS13,L06,S13g,Cai10 2.9 Only leaves S13,HG2 

TS13,L06,S13g,Cai10,S13 286 Only leaves HG2 

CORA,WOA,C Aquarius,C SMOS SSS 16 Only leaves M SMOS,M Aquarius 

CORA,WOA,Aquarius,C SMOS SSS 18 Only leaves M SMOS 

(AMAZON AT)   

TS13,L06,S13,S13g 2.6  
TS13,L06,S13,S13g,Cai10 4.4 Only leaves Lefevre10,HG2 

SMOS,CORA,M Aquarius SSS 4.0 Only leaves C Aquarius,WOA SSS 

TS13,L06,S13,S13g,Cai10,Lefevre10 26 Only leaves HG2 

SMOS,CORA,Aquarius SSS 5.1 Only leaves WOA SSS 

(AMAZON S<35 AT)   

M SMOS,M Aquarius SSS,M CCI SST 2.5 All monthly satellite data 

M SMOS,Aquarius SSS,M CCI SST 3.2  

SMOS,Aquarius SSS,M CCI SST 4.6  

M SMOS,Aquarius,CORA SSS 2.9  

TS13,L06,S13,S13g,Cai10,Lefevre10 26 Only leaves HG2 

(BENGAL AT)   
C CORA SSS 2.2  

C CORA,C SMOS SSS 5.1  

C CORA,C SMOS,WOA SSS 6.4 Only leaves M CORA,C Aquarius 

TS13,L06,S13 3.7 Only leaves S13g,HG2 

TS13,L06,S13,S13g 517 Only leaves HG2 

CORA,C SMOS,WOA SSS 8.1 Only leaves C Aquarius 

(GLOBAL CT)   

L00 3.6  

L00,S13g 5.3  

L00,S13g,S13 14 Only leaves HG2 

CORA,WOA,M SMOS SSS 3.6  
CORA,WOA,M SMOS,M Aquarius SSS 4.4 Only leaves C SMOS,C Aquarius 

CORA,WOA,Aquarius,M SMOS SSS 7.7 Only leaves C SMOS 

(G CARIB CT)   

L00,S13 73 Only leaves S13g and HG2 

L00,S13,S13g 90 Only leaves HG2 

SMOS,CORA,WOA,M Aquarius SSS 3.9 Only leaves C Aquarius 

(AMAZON CT)   

L00,S13,Bonou16,Lefevre10 2.1 Only leaves S13g and HG2 

L00,S13,Bonou16,Lefevre10,S13g 19 Only leaves HG2 

SMOS,CORA,WOA SSS 3.6 Only leaves Aquarius 

SMOS,CORA,C Aquarius,WOA SSS 7.0 Only leaves M Aquarius 

(AMAZON S<35 CT)   

L00,S13,Bonou16,Lefevre10 2.2 Only leaves S13g and HG2 

L00,S13,Bonou16,Lefevre10,S13g 15 Only leaves HG2 
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SMOS,Aquarius SSS,M CCI SST 2.6 Only leaves CORA,WOA SSS 

SMOS,Aquarius,CORA SSS,M CCI SST 4.9 Only leaves WOA SSS 

(BENGAL CT)   

S13 2.1  

S13,S13g 9.9  
C CORA,WOA SSS 2.1  

L00,S13,S13g 83 Only leaves HG2 

CORA,WOA SSS 3.6  

CORA,C SMOS,WOA SSS 5.9  

 754 

Table 6: Testing the sensitivity of the output uncertainties to that of the satellite remote 755 

sensing input data uncertainties using all global AT algorithms (TS13, Lee06, Lee00, S13 and 756 

S13g) and exemplar uncertainties from the literature (for SST, Merchant et al., (2014) gives 757 

±0.15°C; for SSS, Boutin et al., (2018) gives ±0.2). The output uncertainties are given as a 758 

percentage of a global value of 2000 μmol kg-1 and the quoted values are the maximum open- 759 

ocean values calculated for all data within latitudes <±60°. 760 

Algorithm Uncertainty in AT due to SSS (%) Uncertainty in AT due to SST (%) 

TS13 

Lee06 

Lee00 

S13 

S13g 

<±0.8 

<±0.7 

<±0.9 

<±0.6 

<±0.6 

N/A 

<±0.2 

<±0.2 

<±0.1 

<±0.1 

  761 



 

 37 

Figures 762 

(A) 

 

(B) 

 

Figure 1: Estimated regional weighted RMSD (RMSDe) for each SSS source. Data are 

grouped by region, then by whether the input data are climatological (left group) or monthly 

(right group), then by SSS source. All regional output s using a given SSS source are 

considered, and the wide bar shows the lowest RMSDe of these, the half-width bar shows the 

median RMSDe and the thin bar shows the highest RMSDe. SSS sources in each group are 

shown in order of global lowest RMSDe. (A) AT results; (B) CT results. 
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 764 
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A) 

 

B) 

 

    

C) 

 

D) 

 

    

Figure 2: Comparison of AT estimated using monthly satellite SSS with in situ measured AT. 

(A) global; (B) Amazon plume; (C) Bay of Bengal using climatological satellite SSS; (D) 

Greater Caribbean. The algorithm is (Takahashi et al. 2013) with climatological WOA 

nitrate. Red crosses use SMOS SSS, blue plusses use Aquarius. Points with down-pointing 

triangles have depth less than 500 m, those with up-pointing triangles are less than 300 km 

from the nearest coast. Regressions use all data. 

 765 
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A) 

 

B) 

 

    

C) 

 

D) 

 

    

Figure 3: Comparison of CT estimated using monthly satellite SSS with in situ measured CT. 

(A) global; (B) Amazon plume; (C) Bay of Bengal using climatological satellite SSS; (D) 

Greater Caribbean. The algorithm is (Lee et al. 2000) with climatological WOA SST and 

nitrate. Red crosses use SMOS SSS, blue plusses use Aquarius. Points with down-pointing 

triangles have depth less than 500 m, those with up-pointing triangles are less than 300 km 

from the nearest coast. Regressions use all data. 
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 768 

A) 

 

B) 

 

    

C) 

 

D) 

 

    

Figure 4: Comparison of AT and CT estimated from CORA (interpolated in situ) SSS with in 

situ measured values in the Amazon plume. (A) AT comparison using climatological CORA 

SSS; (B) CT comparison using climatological CORA SSS; (C) AT comparison using monthly 

CORA SSS; (D) CT comparison using monthly CORA SSS. The AT algorithm is (Takahashi 

et al. 2013) with climatological WOA nitrate, and the CT algorithm is (Lee et al. 2000) with 

climatological CORA SST and climatological WOA nitrate. Points with down-pointing 

triangles have depth less than 500 m, those with up-pointing triangles are less than 300 km 

from the nearest coast. Regressions use all data. 
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 771 

A) 

 

B) 

 

    

C) 

 

D) 

 

    

Figure 5: Comparison of satellite and CORA SSS with in situ measured SSS in the Amazon 

plume. (A) monthly SMOS (red crosses) and Aquarius (blue plusses); (B) climatological 

SMOS and Aquarius; (C) monthly CORA; (D) climatological CORA. Points with down-

pointing triangles have depth less than 500 m, those with up-pointing triangles are less than 

300 km from the nearest coast. Regressions use all data. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

 

Figure 6: Time series of Amazon plume discharge and averaged satellite observations 

between 2010 and 2016. Monthly observations were average over the area 0°-15° N, 



43 

45°-62° W. Dashed black lines are climatological discharge at the Obidos gauge, red 

use SMOS SSS and blue use Aquarius SSS. In months containing both SMOS and 

Aquarius data, only cells with valid data in both are used. (A) monthly SMOS and 

Aquarius SSS; (B) climatological CORA (orange) SST; (C) AT using the TS13 

algorithm and WOA nitrate, with monthly SMOS and Aquarius SSS; (D) CT using 

the L00 algorithm, CORA SST climatology and WOA nitrate, with monthly SMOS 

and Aquarius SSS. 

773 
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Figure 7: Aquarius derived synoptic scale observations of AT in μmol kg-1 for the Amazon 

Plume between August 2011 and June 2015 using the TS13 algorithm and WOA nitrate, with 

monthly SMOS and Aquarius SSS: (a) AT in August 2011 showing the bifurcation of the 

plume; (b) Hovmöller time series plot for 55° W; (c) Hovmöller time series plot for 52° W 

and (d) Hovmöller time series plot for 45° W. 
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(A) (B) 

 

Figure 8: Synoptic scale Aquarius (A) and SMOS (B) derived AT in μmol kg-1 for April 2012 

using the TS13 algorithm and WOA nitrate, with monthly SMOS and Aquarius SSS. In situ 

observations collected in April and May 2012 from the GLODAPv2 dataset are overlaid as 

circles. The May 2012 in situ observations are all within the offshore region (latitude >20° 

N). 
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 777 

Figure 9: Synoptic scale Aquarius (A) and SMOS (B) derived CT in μmol kg-1 for April 2012 
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using the L00 algorithm, CORA SST climatology and WOA nitrate, with monthly SMOS and 

Aquarius SSS. In situ observations collected in April and May 2012 from the GLODAPv2 

dataset are overlaid as circles. The May 2012 in situ observations are all within the offshore 

region (latitude >20° N). 
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Introduction  

Supporting information is provided on the details of the algorithms used in the analyses (Text S1) 
along with the input data nomenclature for the datasets (Text S2). The datasets themselves are 
provided in three versions within (Land et al., 2019) which is available at 
https://doi.pangaea.de/10.1594/PANGAEA.898115: the first uses all data; the second excludes grid cells 
containing areas with depth less than 500 m, and the third is the same as the second, but also 
excludes grid cells containing areas closer than 300 km to any coast. The matchup data used and 
outputs at each matchup are provided in Datasets S1 to S5 (.csv files). Summary statistics for each 
output are provided in Datasets S6 to S10 (.csv files). Data pertaining to the method of scoring outputs 
are provided in Datasets S11 to S15 (netCDF files). Maps of in situ and output data and their 
differences are provided in Datasets S16 to S20 (netCDF files). The effects of excluding algorithms 
and/or data sources are shown in Datasets S21 (all combinations) and S22 (selected combinations) 
(.csv files). Results of the comparison of total alkalinity (AT) and dissolved inorganic carbon (CT) 
retrievals are provided in Dataset S23 (.csv file). 

 
 
 

https://harris.npm.ac.uk/owa/redir.aspx?SURL=t7emYekrsF21P4aReOy_lDii6t9l802RqI-3EnUfOi3RiNHmRIzWCGgAdAB0AHAAcwA6AC8ALwBkAG8AaQAuAHAAYQBuAGcAYQBlAGEALgBkAGUALwAxADAALgAxADUAOQA0AC8AUABBAE4ARwBBAEUAQQAuADgAOQA4ADEAMQA1AA..&URL=https%3a%2f%2fdoi.pangaea.de%2f10.1594%2fPANGAEA.898115
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Text S1. Algorithm details. 

 
(Lee et al. 2006) AT algorithms (L06): 
 
Regionally variable slope and intercept parameters (see (Lee et al. 2006) for details) for the following 
algorithm: 

𝐴𝑇 = 𝑎 + 𝑏(𝑆𝑆𝑆 − 𝑆) + 𝑐(𝑆𝑆𝑆 − 𝑆)2 − 𝑑(𝑆𝑆𝑇 − 𝑇) + 𝑒(𝑆𝑆𝑇 − 𝑇)2, 
where S and T are salinity and temperature variables with fixed values for a given region.  
Temperature and salinity ranges of validity in each region are specified in LeeEtAl2006.nc, included with 
the software. 
 
(Takahashi and Sutherland 2013) AT algorithms (TS13): 
 
Regionally variable slope and intercept parameters (See (Takahashi and Sutherland 2013) for details) 
for the following algorithm: 
𝐴𝑇 = (𝐴0 × 𝑆𝑆𝑆 + 𝐴1) − 𝑁𝑂3 
Note that there is a misprint in Table 1 of (Takahashi and Sutherland 2013) – the intercept of Region 25 
Antarctic (Pacific) should read -450.8 rather than 450.8, as shown in Figure 6 of (Takahashi and 
Sutherland 2013). 
Salinity ranges of validity in each region are specified in TakahashiSutherland.nc, included with the 
software. 
 
 
(Sasse et al. 2013) AT algorithms (S13 and S13g): 
 
Regionally variable plus global slope and intercept parameters (See (Sasse et al. 2013) for details) for 
the following algorithm: 

𝐴𝑇 = 𝑎 + 𝑏𝑆𝑆𝑇 + 𝑐𝑆𝑆𝑆 + 𝑑𝑆𝑆𝑆2 + 𝑒𝐷𝑂 + 𝑓𝑆𝑖 + 𝑔𝑃𝑂4 + interaction terms. 
We found no information in (Sasse et al. 2013) about data ranges, so these algorithms are applied to 
all data. 
 
 
(Cai et al. 2010) and (Lefèvre et al. 2010) AT algorithms: 
 
Simple linear relationships of AT with SSS for the Greater Caribbean (Cai et al. 2010 only) and Amazon 
Plume regions (see (Cai et al. 2010; Lefèvre et al. 2010) for details). 
The salinity range of applicability of (Cai et al. 2010) is 32.9 to 37.8 in the Greater Caribbean and 23.8 
to 38.1 in the Amazon Plume, and that of (Lefèvre et al. 2010) is 17 to 37. 
 
 
(Lee et al. 2000) CT algorithms (L00): 
 
Regionally variable slope and intercept parameters (See (Lee et al. 2000) for details) for the following 
algorithm: 

𝑛𝐶𝑇 = 𝑎 + 𝑏 × 𝑆𝑆𝑇 + 𝑐 × 𝑆𝑆𝑇2 + 𝑑 × 𝑁𝑂3 

𝑛𝐶𝑇 = 𝐶𝑇 ×
35

𝑆𝑆𝑆
 

Between 30°N and 30°S, (Lee et al. 2000) increase nCT by 1 umol kg-1 per year. 
Temperature and salinity ranges of validity in each region are specified in LeeEtAl2000.nc, included with 
the software. 
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(Sasse et al. 2013) CT algorithms (S13 and S13g): 
 
Regionally variable plus global slope and intercept parameters (See (Sasse et al. 2013) for details) for 
the following algorithm: 

𝐶𝑇 = 𝑎 + 𝑏𝑆𝑆𝑇 + 𝑐𝑆𝑆𝑆 + 𝑑𝐷𝑂2 + 𝑒𝑁𝑂3 + 𝑓𝑆𝑖 + 𝑔𝑃𝑂4 + interaction terms. 
(Sasse et al. 2013) include a calculated correction for the anthropogenic increase in CT with a global 
average of 1 umol kg-1 per year. Here we use the global average value for simplicity and consistency 
with (Lee et al. 2000). 
We found no information in (Sasse et al. 2013) about data ranges, so these algorithms are applied to 
all data. 
 
 
(Lefèvre et al. 2010) and (Bonou et al. 2016) CT algorithms: 
 
Simple linear relationships of CT with SSS for the Amazon Plume Region (see (Bonou et al. 2016; 
Lefèvre et al. 2010) for details). (Bonou et al. 2016) increase CT by 0.9 umol kg-1 per year. 
The salinity range of applicability of (Lefèvre et al. 2010) is 17 to 37, and that of (Bonou et al. 2016) is 0 
to 38.3. 
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Text S2: Details of the input parameter nomenclature 
Parameter names ending in “_CLIM” are monthly climatologies, i.e. 12 climatologies for January to 
December. All other names indicate multi-year monthly data. So an in situ measurement from January 
2010 would be compared with the January part of _CLIM datasets, and the January 2010 part of all 
other datasets.  
 
HG2 and HG2_CLIM: 
The Met Office Hadley Centre, Hadley Global Environment Model 2 - Earth System (HadGEM2-ES) 
multi-year monthly dataset and monthly climatology.  
 
SSS_WOA_CLIM, SST_WOA_CLIM, DO_WOA_CLIM, NITRATE_WOA_CLIM, 
SILICATE_WOA_CLIM and PHOSPHATE_WOA_CLIM: 
World Ocean Atlas 2013 (WOA) monthly climatologies, spatially interpolated to 1°×1° (Garcia et al. 
2014a; Garcia et al. 2014b; Locarnini et al. 2013; Zweng et al. 2013). Note that WOA nitrate is actually 
nitrate + nitrite. 
 
SSS_SMOS and SSS_SMOS_CLIM: 
SMOS satellite SSS multi-year monthly datasets and monthly climatology. 
 
SSS_AQUARIUS and SSS_AQUARIUS_CLIM: 
Aquarius satellite SSS multi-year monthly datasets and monthly climatology. 
 
SSS_CORA, SSS_CORA_CLIM, SST_CORA and SST_CORA_CLIM: 
Coriolis Ocean ReAnalysis database (version 4.0), which includes data from ARGO, the global network 
of moored buoys (including TAO/TRITON, PIRATA, RAMA buoys), underwater gliders (EGO), GTSPP, 
Ships of opportunity, sea mammals equipped with sensors, and other integrated datasets from CTDs, 
oceanographic cruises, etc. This database is output in two sets: _CORA_CLIM is the monthly 
climatology; and _CORA is the multi-year monthly dataset. 
 
SST_CCI and SST_CCI_CLIM: 
Sea Surface Temperature Climate Change Initiative data archives from ESA’s ATSR and AATSR. 
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Figure S1: Equivalent plots to that of Figure 1 in the main manuscript but with alternative depth and 
coastal masking. (A) repeat of Figure 1(A), AT with minimum depth 500 m and minimum distance to 
coast 300 km masked; (B) repeat of Figure 1(B), CT with minimum depth 500 m and minimum distance 
to coast 300 km masked; (C) AT with minimum depth 500 m; (D) CT with minimum depth 500 m; (E) 
AT with no masking; (F) CT with no masking. 
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Datasets introduction 
In the following datasets, which are all available within Land et al., (2019). ‘X’ denotes one of three 
versions: ‘’ corresponds to all data, ‘Depth500’ to a minimum depth of 500 m, and ‘Depth500Dist300’ 
to a minimum depth of 500 m and a minimum distance to coast of 300 km. Each of the three versions 
is contained in its own directory. 
 
Datasets S1 to S5 are .csv files containing all matchups in each region, including date and location, in 
situ AT and CT measurements and estimated uncertainties, all input datasets, estimates of AT and CT 
from all outputs, and the best available output estimates of AT and CT for each matchup (see main text). 
 
S1_GlobalAlgorithmMatchupsX.csv 
S2_GreaterCaribbeanAlgorithmMatchupsX.csv 
S3_AmazonPlumeAlgorithmMatchupsX.csv 
S4_AmazonPlumeLowSAlgorithmMatchupsX.csv 
S5_BayOfBengalAlgorithmMatchupsX.csv 
 
Datasets S6 to S10 are .csv files containing statistics of all outputs in each region, including the 
carbonate system variable, algorithm, input datasets used, (MAD, RMSD using all available data, output 
score, RMSD estimated from output score, output and in situ mean and standard deviation, correlation 
coefficient), all items in brackets presented both unweighted and weighted, number of matchups, 
number of potential matchups, matchup coverage, RMSD after subtraction of linear regression, 
percentage reduction in RMSD due to subtraction of linear regression and weighted score divided by 
number of matchups (see main text for explanation of terms). 
 
S6_GlobalAlgorithmScoresX.csv 
S7_GreaterCaribbeanAlgorithmScoresX.csv 
S8_AmazonPlumeAlgorithmScoresX.csv 
S9_AmazonPlumeLowSAlgorithmScoresX.csv 
S10_BayOfBengalAlgorithmScoresX.csv 
 
Datasets S11 to S15 are netCDF files containing error analyses of all outputs in each region, including 
the squared error of each output at each matchup, the weight of each squared error (1/squared 
uncertainty), weight * squared error, number of matchups available to each output, number of matchups 
available to each combination of two outputs, (score of each output in a given comparison of two outputs, 
overall output score and RMSD estimated from output score), all items in the last brackets presented 
both unweighted and weighted. 
 
S11_GlobalSquaredErrorsX.nc 
S12_GreaterCaribbeanSquaredErrorsX.nc 
S13_AmazonPlumeSquaredErrorsX.nc 
S14_AmazonPlumeLowSSquaredErrorsX.nc 
S15_BayOfBengalSquaredErrorsX.nc 
 
Datasets S16 to S20 are netCDF files containing global maps of the data in Tables S4 to S9, showing 
the spatial distribution of the mean and standard deviation of each of: in situ data; output data; output 
data – in situ data and number of matchups. Regional files show the same maps, but only including data 
within the region. 
 
S16_GlobalmapsX.nc 
S17_GreaterCaribbeanmapsX.nc 
S18_AmazonPlumemapsX.nc 



 

 

7 

 

S19_AmazonPlumeLowSmapsX.nc 
S20_BayOfBengalmapsX.nc 
 
Datasets S21 and S22 are .csv files containing the effect on estimated RMSD of excluding various 
combinations of algorithms and/or inputs for AT and CT in each region. For a given variable and region, 
the first line shows the algorithm, input data sources, estimated RMSD and bias of the output with lowest 
estimated RMSD. Subsequent lines show the effect of excluding combinations of algorithms and/or 
inputs, ordered first by the number of algorithms/inputs excluded (fewest first), then by effect on lowest 
estimated RMSD. So the first line(s) consist of the effects of excluding the best algorithm and each of 
the input sources to that algorithm, most important first. Each line consists of the item excluded, ratio of 

resulting estimated RMSD to original estimated RMSD, resulting bias and number of items excluded. 
Some exclusions are equivalent, for instance exclusion of WOA nitrate (the only nitrate source) is 
equivalent to excluding all algorithms using nitrate. Dataset S21 contains a comprehensive list of all 
possible exclusions, and so is rather hard to read and interpret. To mitigate this, Dataset S22 contains 
only those exclusion sets with effect greater than 1% and at least 0.1% greater than any subset of its 
exclusions. 
 
S21_importancesX.csv 
S22_importances2X.csv 
 
Dataset S23 is a .csv file containing like-for-like comparisons of RMSD between AT and CT in each 
region. Bear in mind that the RMSD shown here is not the same as the estimated RMSD (RMSDe in 
the main text) shown elsewhere. 
 
S23_TA_DICcomparisonX.csv 
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