Accepted Manuscript

This is an Accepted Manuscript of the following article:

Jan Mareš, Jan Hájek, Petra Urajová, Andreja Kust, Jouni Jokela, Kumar Saurav, Tomáš Galica, Kateřina Čapková, Antti Mattila, Esa Haapaniemi, Perttu Permi, Ivar Mysterud, Olav M. Skulberg, Jan Karlsen, David P. Fewer, Kaarina Sivonen, Hanne Hjorth Tønnesen, Pavel Hrouzek.

Applied and Environmental Microbiology Feb 2019, 85 (4) e02675-18; DOI: 10.1128/AEM.02675-18

The article has been published in final form at 10.1128/AEM.02675-18 by American Society for Microbiology.

AEM Accepted Manuscript Posted Online 30 November 2018 Appl. Environ. Microbiol. doi:10.1128/AEM.02675-18 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

1 Alternative biosynthetic starter units enhance the structural diversity of cyanobacterial

2 lipopeptides

3

- 4 Jan Mareš,^{1,2,3} Jan Hájek,^{2,3} Petra Urajová,² Andreja Kust,^{1,2,3} Jouni Jokela,⁴ Kumar Saurav,²
- 5 Tomáš Galica,^{2,3} Kateřina Čapková,¹ Antti Mattila,⁴ Esa Haapaniemi,^{5,6} Perttu Permi,⁵ Ivar
- 6 Mysterud,⁷ Olav M. Skulberg,⁸ Jan Karlsen,⁹ David P. Fewer,⁴ Kaarina Sivonen,⁴ Hanne
- 7 Hjorth Tønnesen,⁹ Pavel Hrouzek^{2,3#}
- 8
- ⁹ ¹The Czech Academy of Sciences, Biology Centre, Institute of Hydrobiology, České
- 10 Budějovice, Czech Republic
- ²The Czech Academy of Sciences, Institute of Microbiology, Center Algatech, Třeboň, Czech
- 12 Republic
- 13 ³University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- ⁴Department of Microbiology, Biocenter 1, Helsinki, Finland
- ⁵Department of Chemistry, University of Jyväskylä, Finland
- ⁶Department of Biological and Environmental Science, Nanoscience Center, University of
- 17 Jyväskylä, Finland
- ⁷Department of Biosciences, University of Oslo, Oslo, Norway
- 19 ⁸Norwegian Institute for Water Research (NIVA), Oslo, Norway
- ⁹School of Pharmacy, University of Oslo, Oslo, Norway
- 21
- 22 Running title: Cyanobacterial lipopeptide biosynthesis
- 23
- 24 #Address correspondence to Pavel Hrouzek, hrouzekp@gmail.com
- 25

1

26	Abstract: Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous
27	cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high
28	structural variability, particularly in the fatty acid (FA) moiety. Although biosynthetic gene
29	clusters for several PUW variants has been proposed in a cyanobacterial strain, the genetic
30	background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene
31	clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic
32	gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide
33	synthetase and polyketide synthase. Surprisingly, the gene clusters encode two alternative
34	biosynthetic starter modules, and analysis of structural variants suggests that initiation by each
35	of the starter modules results in lipopeptides of differing length and FA substitution. Among
36	additional modifications of the FA chain, chlorination of minutissamide D was explained by
37	the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena
38	minutissima UTEX B 1613. We detected PUW variants bearing an acetyl substitution in
39	Symplocastrum muelleri NIVA-CYA 644, consistent with an O-acetyltransferase gene in its
40	biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant
41	antibacterial activity, and only the PUW F variant was moderately active against yeast,
42	consistent with previously published data suggesting that PUW/MIN interact preferentially
43	with eukaryotic plasma membranes.
44	
45	Importance: Herein, we aimed to decipher the most important biosynthetic traits of a
46	prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis

47 by two alternative starter units hardwired directly in the same gene cluster, eventually

48 resulting in the production of a remarkable range of lipopeptide variants. We identified

- 49 several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful
- 50 characterization of these biosynthetic gene clusters and their diverse products could provide

2

important insight into lipopeptide biosynthesis in prokaryotes. Some of the identified variants
exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilmforming strain. The findings may prove valuable to researchers in the fields of natural product
discovery and toxicology.

55

56 Introduction

Bacterial lipopeptides are a prominent group of secondary metabolites with
pharmaceutical potential as antibacterial, antifungal, anticancer, and antiviral agents (1).
Compounds such as fengycin, the iturin family antibiotics, octapeptins, and daptomycin are
important pharmaceutical leads, the latter of which is already in clinical use (1–3). Their
biological activity is the result of an amphipathic molecular structure that allows micellar
interaction within the cell membranes of target organisms (4).

63 Lipopeptides are widespread in cyanobacteria and possess cytotoxic and antifungal activities (5-8). Puwainaphycins (PUWs) and minutissamides (MINs) are lipopeptides 64 65 featuring a β -amino fatty acid and a 10-membered peptide ring (5, 9–11). Both classes exhibit 66 considerable structural variability in terms of length and functionalization of the fatty acyl (FA) side chain attached to the stable peptide core (10-14). Only minor discrepancies in 67 68 length and substitution of the FA chain separate these two types of lipopeptides. A wide array 69 of bioactivities has been reported for these compounds. PUW C is a cardioactive compound 70 (15) as demonstrated by positive inotropic activity in mouse atria, while PUW F/G exhibit 71 cytotoxicity against human cells *in vitro* through cell membrane permeabilization (5). MINs 72 A-L exhibited antiproliferative effects when tested against human cancer cell lines over a concentration range similar to PUWs (10, 11). The overall structural similarity suggests that 73 74 PUWs and MINs share a similar biosynthetic origin. However, the biosynthetic mechanisms generating the conspicuous chemical variability remain unknown. 75

76	PUWs are synthesized by a hybrid polyketide/non-ribosomal peptide synthetase
	(PKS/NRPS) accompanied by tailoring enzymes (12). A characteristic feature of the PUW
77	
78	synthetase is the fatty acyl-AMP ligase (FAAL) starter unit (12). This enzyme specifically
79	binds and adenylates FAs, and passes the activated acyl-adenylate to a downstream
80	phosphopantetheine arm of the PKS acyl carrier protein (ACP) for further processing (12).
81	The whole process bears resemblance to the biosynthesis of iturin-family lipopeptides (16–19)
82	as well as small lipopeptide-like cyanobacterial metabolites such as hectochlorin (20),
83	hapalosin (21), and jamaicamide (22), as discussed previously (23). Bacterial FAAL enzymes
84	originate from basal cell metabolism, and likely evolved from fatty acyl-CoA ligases (FACLs)
85	following a specific insertion that hampered subsequent ligation to CoASH (24) or altered the
86	catalytic conformation (25). FAAL enzymes play an important role in the assembly of other
87	metabolites including olefins (26) and unusual lipids (27) in addition to lipopeptide synthesis.
88	The exact substrate-binding mechanism employed by FAALs was demonstrated
89	experimentally in Mycobacterium tuberculosis using several homologous FAAL enzymes and
90	FA substrates as models (28). The substrate specificity of these enzymes corresponds to the
91	structure of the substrate-binding pocket (25, 28), although it overlaps among homologs.
92	Herein, we combined recently developed bioinformatics and high performance liquid
93	chromatography combined with high resolution tandem mass spectrometry (HPLC-
94	HRMS/MS) approaches (13, 23) to identify biosynthesis gene clusters for PUWs/MINs in
95	five new cyanobacterial strains, and characterized the chemical variability of their products.
96	We discuss the specific structural properties of the identified lipopeptide variants, and
97	compare the predicted functions of synthetase enzymes.
98	
99	Results and Discussion
100	Structural variability vs. common biosynthetic origin of PUWs and MINs

101	In the present study, we collected all known PUW/MIN producers (except for
102	Anabaena sp. UIC10035). The strains were originally isolated from various soil habitats
103	(Table 1). HPLC-HRMS/MS analysis detected multiple PUW and MIN variants in each of the
104	strains studied (Fig. 1), ranging from 13 to 26 in strains 3 and 1, respectively (Table S1).
105	The MS/MS data acquired for crude extracts were used to create a molecular network
106	(Fig. 2), analysis of which demonstrated that Cylindrospermum strains 1-3 and Anabaena
107	strains 4 and 5 formed a single group with MIN A as the only variant common to all the
108	strains (Fig. 2a). All major structural variants of these strains shared the common peptide
109	sequence FA ¹ -Val ² -Dhb ³ -Asn ⁴ -Dhb ⁵ -Asn ⁶ -Ala ⁷ -Thr ⁸ - <i>N</i> MeAsn ⁹ -Pro ¹⁰ (Fig. 3), described
110	previously for PUW F and MIN A (5, 10). The pattern of variant production was almost
111	identical in Cylindrospermum strains 2 and 3, which in addition to MIN A contained PUW F
112	(Fig. 1, Table S1). By contrast, Anabaena strains 4 and 5 produced MIN C and D in addition
113	to the major variant MIN A (Fig. 1). The peptide core of the molecule was different in
114	Symplocastrum muelleri strain 6 (Fig. 3), forming a separate group in the molecular network
115	(Fig. 2b), with the general peptide sequence FA^1 -Val ² -Dhb ³ -Thr ⁴ -Thr/Val ⁵ -Gln ⁶ -Ala ⁷ -OMe-
116	Thr ⁸ -NMeAsn ⁹ -Pro ¹⁰ (Fig. 3), identical to PUW A–D and MIN I, K, L isolated previously
117	from Anabaena sp. (9, 11).
118	The peptide core of the variants included in the network differed to some degree, but

most variation was detected in the FA moiety (Fig. 4) when crude extracts were analyzed forthe presence of characteristic FA immonium fragments (13).

Accordingly, bioinformatic analysis identified putative PUW and MIN gene clusters in each of the five newly sequenced strains (Fig. 5, Table 2). Based on BLASTp, CDD, and AntiSMASH searches, these gene clusters exhibited synteny and functional homology with

the previously characterized *puw* biosynthesis gene cluster in strain 1 (12) (Fig. 5). Therefore,

our results strongly indicate a common biosynthetic origin of PUWs and MINs in

126 cyanobacteria.

127

128 Variability in the peptide core

129	A common set of NRPS genes (puwA, puwE-H; Fig. 5) encoding a sequence of nine
130	amino acid-incorporating modules (Fig. 6) was detected in all analyzed strains. Individual
131	NRPS modules displayed variability in amino acid adenylation and tailoring domains that was
132	generally congruent with the PUW/MIN peptide cores inferred using HPLC-HRMS/MS (Fig.
133	3). The two major observed types of peptide cores (represented by PUW A and PUW F,
134	respectively) differed in the amino acids at positions 4 (Thr→Asn), 5 (Thr→Dhb), 6
135	(Gln \rightarrow Asn), 7 (Ala \rightarrow Gly) and 8 (Thr \rightarrow OMe-Thr), as shown in Fig. 3 and Table S1. This was
136	reflected in the predicted substrates of the corresponding A-domains, and by the presence of
137	an O-methyltransferase domain in PuwH of S. muelleri strain 6, which is responsible for the
138	methoxylation of Thr ⁸ (Fig. 6, Table S2). In contrast to the variability observed at the
139	previously noted amino acid positions, the two positions adjacent to both sides to the
140	modified fatty acid (NMeAsn ⁹ -Pro ¹⁰ -(FA ¹)-Val ² -Dhb ³) are conserved in all known PUW/MIN
141	variants described here and previously (5, 9, 13-15) (Fig. 3, Table S1). Accordingly, no
142	functional variation in A-domains corresponding to these positions was observed within the
143	deduced PuwA, PuwE, and PuwF proteins (Table S2). This is interesting because these four
144	hydrophobic amino acids surround the FA moiety, which is likely responsible for the
145	membrane disruption effect suggested previously (5). Thus, we hypothesize that such an
146	arrangement could further support hydrophobic interactions with the lipid layer of the plasma
147	membrane.
148	For some of the other positions, minor variants were observed involving substitution

149 of amino acids similar in structure and hydrophobicity, including Asn-Gln at position 4, Thr-

Downloaded from http://aem.asm.org/ on April 14, 2020 by guest

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Applied and Environmental Microbiology

168	formation of the cycle via a peptide bond between the terminal prolyl and the β -amino group
169	of the FA chain, as previously suggested (12).
170	Two hypothetical starter units and their substrate range
171	The biosynthesis of bacterial lipopeptides is typically commenced by FA-activating

al lipopeptides is typically commenced by FA-activating 172 enzymes (16, 18). Initiation of the biosythesis of PUW/MIN is performed by a FAAL enzyme 173 (12) and allows a much broader array of activated substrates than the relatively conserved 174 oligopeptide core (13) (Fig. 4). We identified three alternative arrangements of the putative

Val at position 5, Ala-Gly at position 7, and Thr-Ser at position 8 (Fig. 3, Table S1),

indicative of probable substrate promiscuity in their respective adenylation domains (29). The

A6-domains in strains 4 and 5 activated Ala as a major substrate, and Gly to a lesser extent,

even though in silico analysis predicted Gly as their main substrate (Table S2). In strain 6,

Gly was incorporated, in agreement with the predicted substrate specificity. An epimerase

domain was present in each of the sixth NRPS modules of the pathways (Fig. 6), indicating

probable formation of a D-amino acid enantiomer at position 7 of the peptide core. Indeed, the

presence of D-Ala was previously confirmed in PUW F (5) and MIN A-H (10, 11), and D-Gly

was identified in MIN I-L (10, 11). In two cases, the adenylation domains A3 (PuwF) and A6

(PuwG) are capable of incorporating significantly different amino acids such as Asn⁴-Thr⁴

and Ala⁷-Ser⁷, respectively (Fig. 6). This degree of substrate promiscuity is relatively

uncommon. Activation of two divergent amino acids (Arg/Tyr) by a single adenylation

domain, based on point mutations in just three codons, was previously demonstrated in the

exchange of Ala vs. Ser was previously reported from fungal class IV adenylate-forming

reductases that contain A-domains homologous to NRPS enzymes (31).

anabaenopeptin synthetase from the cyanobacterium Planktothrix agardhii (30). The substrate

The last synthetase enzyme in the pathway (PuwA) is equipped with a terminal

thioesterase domain (Fig. 6), which presumably catalyzes cleavage of the final product and

175	FAAL starter units (Fig. 5 and 6), each corresponding to a different array of FA side chains
176	detected by HPLC-HRMS/MS, which presumably reflects the range of FA substrates
177	activated during their biosynthesis (Fig. 4). Cylindrospermum sp. strains 1-3 possess the Type
178	I putative starter unit consisting of a standalone FAAL enzyme PuwC and a separate ACP
179	PuwD (Fig. 5, Table 2). By contrast, the biosynthetic gene cluster of S. muelleri strain 6
180	contains the Type II putative starter unit (PuwI) consisting of a FAAL fused to an ACP (Fig.
181	5, Table 2). Anabaena spp. strains 4 and 5 combine both Type I and Type II putative starter
182	units in their biosynthetic gene clusters (Fig. 5, Table 2). Although the functions and substrate
183	ranges of these hypothetical starter units requires further confirmation by gene manipulation
184	experiments, they are supported by the patterns of lipopeptide variants detected by HPLC-
185	HRMS/MS (Fig. 4, Table S1). In Cylindrospermum strains 1-3 that exclusively contain the
186	Type I starter unit, the PUW/MIN products exhibited an almost continuous FA distribution
187	between C_{10} - C_{15} (up to C_{17} in negligible trace amounts; Fig. 4). In <i>S. muelleri</i> strain 6, the
188	presence of the Type II loading module resulted in production of PUW/MIN variants with
189	discrete FA lengths of C_{16} and C_{18} . Strains containing both Type I and Type II starter units
190	(Anabaena strains 4 and 5) produced two sets of PUW/MIN products with no overlap
191	(C_{12} - C_{14-15} for the Type I pathway, and C_{16} for the Type II pathway), but exhibited a slightly
192	shifted length distribution (Fig. 4). Based on these results, it seems plausible that PuwC/D and
193	PuwI represent two alternative FAAL starter modules capable of initiating PUW/MIN
194	biosynthesis (Figs. 5, 6). An analogous situation was previously described for the alternative
195	NRPS starter modules in the anabaenopeptin synthetase (32).
196	In the FA residue of the lipopeptide, proximal carbons in the linear aliphatic chain are
197	incorporated into the nascent product by PKS enzymes (12). The PKS domains of PuwB and
198	PuwE (Fig. 6, Table 2) catalyze two elongation steps. Therefore, the fatty acid is expected to

199 be extended by four carbons.. The substrate length specificity of the FAAL enzymes in

200	Mycobacterium tuberculosis was recently shown to be determined by the size and position of
201	specific amino acid residues protruding into the FA-binding pocket (28). Experimental
202	replacement of Gly or Ile by a larger Trp residue in the upper and middle parts of the pocket
203	blocked the binding of the original C_{12} substrate, but shorter chains (C_2 or C_{10} , respectively)
204	were still activated (28). Experimental data on FAAL substrate specificity in cyanobacteria
205	are currently lacking. Alignment of amino acid residues from all putative PuwC and PuwI
206	proteins demonstrates overall homology (Fig. S2a), including the positions corresponding to
207	the FA-binding pocket, as previously shown in Mycobacterium (28) (Fig. S2b). Experimental
208	evidence such as in vitro activity assays and crystallization of protein-ligand complexes is
209	required to explain the variable substrate specificity of PuwC vs. PuwI. Also, we cannot
210	exclude the possibility that the FA substrate length range is partially determined by the pool
211	of free FAs available to the FAAL enzyme. Indeed, this possibility is supported by
212	observations of Cylindrospermum strains 1-3, which share highly conserved PuwC proteins
213	(Fig. S2a) with identical residues in the predicted FA-binding pockets (Fig. S2b), but display
214	slightly different ranges and ratios of incorporated FAs in the PUW/MIN variants produced
215	(Fig. 1, 4).

216 FA tailoring reactions: oxidation, halogenation, and acetylation

217 Intriguingly, all products originating from biosynthesis initiated by the Type II starter unit (variants with a C₁₆ and C₁₈ FA tail in Anabaena strains 4–5 and S. muelleri strain 6) 218 219 include substitution of a hydroxy- or oxo-moiety (Fig. 6). For minutissamides C and D, this 220 substitution takes place on the third carbon from the FA terminus (C_{14}), as described 221 previously (10), and this position was confirmed by NMR in variants produced by Anabaena 222 sp. strain 4 in our study (Table S3, Figs. S3-6). In agreement with this hydroxy- and oxo-223 substitution, the respective gene clusters each encode PuwJ, a putative cytochrome P450-like 224 oxidase (Table 2), immediately downstream of the gene encoding the Type II starter module. 225

226	residues activated by PuwI (Fig. 6). However, the formation of the keto variant remains
227	unexplained by our data.
228	Another gene, the putative halogenase <i>puwK</i> , was associated with the Type II starter
229	module in Anabaena sp. strain 5 (Table 2). Although no conserved enzymatic domain was
230	detected in the deduced protein, it shares similarity with proteins postulated to be involved in
231	halogenation of cyanobacterial chlorinated acyl amides known as columbamides (33), and N-
232	oxygenases similar to <i>p</i> -aminobenzoate <i>N</i> -oxygenase AurF (34–36). The possible functional
233	designation of this enzyme as a halogenase is further supported by the fact that the ω -
234	chlorinated product MIN B, originally described in strain Anabaena sp. strain 5 (10), was also
235	detected in this study (Table S1) as one of the major variants, while no MIN B or any other
236	chlorinated PUW/MIN products were detected in Anabaena sp. strain 4 (Fig. 1). Anabaena sp.
237	strains 4 and 5 share identical organization across the entire gene cluster, and lack of the
238	putative halogenase gene $puwK$ is the only difference between these two clusters in terms of
239	presence of genes (Fig. 5).
240	In Cylindrospermum sp. strains 1–3 that exclusively possess the Type I starter unit, the
241	presence of minor amounts of hydroxylated and chlorinated variants (Fig. 4) suggests the
242	involvement of another biosynthetic mechanism unexplained by the current data. This
243	ambiguity warrants experimental research such as gene knock-out experiments to confirm the
244	proposed functions of <i>puwJ</i> and <i>puwK</i> .
245	Finally, the gene cluster identified in S. muelleri strain 6 was the only one containing
246	gene puwL. The deduced product of this gene shares 53.4% similarity with the O-
247	acetyltransferase McyL (Table 2) involved in acetylation of the aliphatic chain of microcystin
248	in cyanobacteria (37). Additionally, this gene is similar to chloramphenicol and streptogramin
249	A O-acetyltransferases that serve as antibiotic resistance agents in various bacteria (38). The

We therefore hypothesize that the PuwJ enzyme is responsible for hydroxylation of FA

Applied and Environ<u>mental</u>

Microbiology

250

251

252

253

254

255

256

257

258

259

261

detection of O-acetylated lipopeptide variants in S. muelleri strain 6 (Table 3, Fig. 7). Five PUW variants (m/z 1265.7338, 1279.7496, 1277.7695, 1291.7870 and 1293.7654) yielding high-energy fragments, proving the presence of an acetyl group bonded to the FA moiety, have been detected. In the m/z 1279.8 and 1293.8 peaks, the high-energy fragment ion at m/z312 corresponds to the FA immonium ion bearing an acetyl group, and fragment ion at m/z439 corresponds to the prolyl-FA-acetyl fragment. The subsequent loss of an acetyl group resulted in the presence of ions at m/z 252 and 379, respectively (Table 3, Fig. 7). Similarly, analysis of the m/z 1265.7 peak revealed analogous fragments at m/z 284/411 and 351/224 Both PUWs and MINs possess cytotoxic activity against human cells in vitro (5, 10,

260 Antimicrobial activity

(Table 3).

262 11). In the current study, we demonstrated that the major PUW/MIN variants (PUW F and 263 MINs A, C, and D) did not exert antibacterial effects against either Gram-positive or Gram-264 negative bacteria using a panel of 13 selected strains (Table 4). PUW F was the only tested 265 variant manifesting antagonistic activity against two yeast strains utilized in our experiment, 266 namely Candida albicans HAMBI 261 and Saccharomyces cerevisiae HAMBI 1164, with 267 inhibition zones of 14 and 18 mm, respectively, and minimum inhibitory concentration (MIC) values of 6.3 μ g mL⁻¹ (5.5 μ M; Fig. 8). No antifungal activity was recorded for the MIN C 268 269 and D variants, and only weak inhibition of the two yeast strains was recorded for MIN A 270 (Fig. S7). PUW F differs only slightly from MIN A by a -CH₂-CH₃ extension of the FA 271 moiety, indicating that the FA length affects bioactivity. Furthermore, the lack of bioactivity 272 for MIN C and MIN D suggests that hydroxy- and oxo- substitution also compromises 273 antifungal efficacy. As previously demonstrated, cytotoxicity is due to membrane

functional annotation of PuwL as a putative O-acetyltransferase is consistent with the

274 permeabilization activity accompanied by calcium flux into the cytoplasm (5), consistent with

281

282

275 the membrane effects documented for other bacterial lipopeptides (4). However, as apparent 276 from our data (Fig. 8), PUW/MIN products appear to be effective solely against eukaryotes (thus far tested only on human and yeast cells). This finding is in contrast to the typical 277 278 antibacterial activity frequently described for many lipopeptides produced by Gram-positive 279 bacteria (4). Analogously, the cyanobacterial lipopeptides anabanenolysin A and hassalidins 280 preferentially interact with cholesterol-containing membranes, hence their predisposition for

activity against eukaryotic cells (6, 8).

Distribution of PUWs and MINs in cyanobacteria

283 PUWs and MINs form one of the most frequently reported groups of lipopeptides in 284 cyanobacteria, and have been isolated from heterocytous cyanobacteria, particularly members 285 of the genera Anabaena and Cylindrospermum that inhabit soil (5, 9–11). Only a single study 286 has mentioned the probable occurrence of puwainaphycins in a planktonic cyanobacterium 287 (Sphaerospermopsis) (39). Our current comprehensive analysis of these lipopeptides and their 288 biosynthetic genes further supports the hypothesis that lipopeptides occur predominantly in 289 non-planktic biofilm-forming cyanobacteria (23). In this context, it is worth mentioning that 290 S. muelleri strain 6 was isolated from a wetland bog in alpine mountains in coastal Norway 291 (40). This strain is a toxigenic member of a biofilm microbiome, and suspected to play a role 292 in the development of severe hemolytic Alveld disease among outfield grazing sheep (41, 42). 293 Biomass harvested from pure cultures of this strain exhibited strong cytotoxic activity toward 294 primary rat hepatocytes (43, 44), which indicates the production of secondary metabolites 295 with cytotoxic properties. Thus, the possible toxic potential of cyanobacterial lipopeptides 296 such as PUWs and MINs in the environment warrants further attention.

297 **Conclusions**

Our study highlights and explores the extensive structural versatility of cyanobacterial 298

299 lipopeptides from the PUW/MIN family by introducing previously unknown variants and

and Environmental	crobiology
Applied d	Mi

300	newly sequenced biosynthetic gene clusters. Intriguingly, all variants are synthesized by a
301	relatively conserved PKS/NRPS machinery with a common genetic origin. We hypothesize
302	that chemical diversity is generated largely by the presence of two alternative fatty acyl-AMP
303	ligase starter units, one of which exhibits an unusually broad specificity for FAsubstrates of
304	variable length. Additionally, putative halogenase and O-acetyltransferase genes were present
305	in some gene clusters. This knowledge provides novel insight into the genetic background
306	underpinning the biosynthesis of bacterial lipopeptides. The proposed biosynthetic
307	mechanisms allow the studied microbes to generate a large pool of products that can be
308	readily expanded by introducing relatively small genetic changes. This is consistent with the
309	so-called 'Screening Hypothesis' (45, 46), which predicts an evolutionary benefit for
310	organisms producing a large chemical diversity of secondary metabolites at minimum cost.
311	Accessory antimicrobial tests on bacteria and yeasts, together with previously published
312	results, suggest a specific toxic effect of PUWs against eukaryotic cells. Thus, their toxic
313	potential for humans and other animals clearly warrants further investigation, and their
314	possible use as antifungal agents is ripe for exploration.
315	
316	Materials and Methods
317	Cultivation of cyanobacterial strains
318	Six cyanobacterial strains were included in the present study: Cylindrospermum moravicum
210	Six cyanobacterial strains were menuced in the present study. Cyunarosperman moravicum

319 CCALA 993 (strain 1), *Cylindrospermum alatosporum* CCALA 994 (strain 2),

320 Cylindrospermum alatosporum CCALA 988 (strain 3), Anabaena sp. UHCC-0399

321 (previously Anabaena sp. SMIX 1; strain 4), Anabaena minutissima UTEX B 1613 (strain 5),

322 and Symplocastrum muelleri NIVA-CYA 644 (strain 6). The origins of the strains are listed in

- Table 1. For chemical analysis, strains 1–5 were cultivated in BG-11 media (47) in glass
- columns (300 mL) bubbled with air enriched in 1.5% CO₂ at a temperature of 28°C and

13

constant illumination of 100 μ umol photons m⁻² s⁻¹. Strain 6 was maintained in culture using a 325 custom liquid medium obtained by mixing 200 mL of Z8 medium (48), 800 mL distilled 326 water, 30 mL soil extract, and common vitamin pre-mix (according to SAG - Sammlung von 327 328 Algenkulturen der Universität Göttingen, but without biotin). Cultivation was performed in 329 100-200 mL Erlenmeyer flasks at 20°C with a 16:8 light:dark photoperiod under static conditions. Cultures were kept at low irradiance (4 μ mol m⁻² s⁻¹ PHAR generated using RGB 330 LED strips). Cells were harvested by centrifugation $(3125 \times g)$, stored at -80°C, and 331 subsequently lyophilized. Strain 4 was cultivated at a larger scale for purification of major 332 333 lipopeptide variants in a 10 L tubular photobioreactor under the above-mentioned conditions 334 in BG-11 medium.

Molecular and bioinformatic analyses 335

Single filaments of strains 2, 3, 5, and 6 were isolated for whole-genome amplification 336 (WGA) and subsequent preparation of a whole-genome sequencing (WGS) library, as 337 338 described previously (12). Briefly, the glass capillary technique was used to isolate filaments 339 excluding minor bacterial contaminants. A set of 20 filaments from each strain was then used as a template for WGA. Multiple displacement amplification (MDA) using a Repli-g Mini Kit 340 341 (Qiagen, Hilden, Germany) was followed by PCR and sequencing to monitor the cyanobacterial 16S rRNA gene using primers 16S387F and 16S1494R (49). Positive samples 342 343 (7–10 MDA products yielding clear 16S rRNA gene sequences of the respective genera) were 344 then pooled to create a template for WGS. DNA samples were sent for commercial de novo 345 genome sequencing (EMBL Genomics Core Facility, Heidelberg, Germany) using the 346 Illumina MiSeq platform (Illumina, San Diego, CA, USA) with a ~350 bp average insert 347 length Pair-End library and 250 bp reads (~1.4 Gbp data yield per strain). Raw data from de 348 novo WGS were assembled using CLC Bio Genomics Workbench v. 7.5 (CLC Bio, Aarhus,

349	Denmark). Genomic DNA was isolated from strain 4 as previously described (37) and the
350	quality was assessed using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific,
351	Waltham, MA, USA) and an Agilent TapeStation (Agilent Technologies, Santa Clara, CA,
352	USA). High-molecular-weight DNA was used to construct an Illumina TruSeq PCR Free 350
353	bp library and sequenced using an Illumina HiSeq 2500 platform with a paired-end 100 cycles
354	run. Genome data (1Gb for each strain) were first checked using SPAdes version 3.7.1 (51)
355	for read correction and removal of erroneous reads, and then assembled using Newbler
356	version 3.0 (454 Life Sciences, Branford, CT, USA). Genomic scaffolds were loaded into
357	Geneious Pro R10 (Biomatters; available from http://www.geneious.com) and investigated for
358	FAAL and NRPS genes using BLASTp searches to identify putative lipopeptide synthetase
359	gene clusters (23). FAAL and NRPS adenylation domains (A-domains) from the single
360	known PUW gene cluster (strain 1; KM078884) were used as queries since homologous gene
361	clusters were expected. Contigs yielding high similarity hits (E-value $<10^{-20}$) were then
362	analyzed using the Glimmer 3 (50) algorithm to discover putative open-reading frames
363	(ORFs). Functional annotation of ORFs was conducted by applying a combination of
364	BLASTp/CDD searches against the NCBI database, and using the antiSMASH 4.0 secondary
365	metabolite gene cluster annotation pipeline (52, 53). Pairwise sequence identities and the
366	presence of conserved residues in homologous putative proteins encoded in the gene clusters
367	were assessed using Geneious Pro software based on amino acid alignment (MAFFT plugin,
368	default parameters). Minor assembly gaps were identified in the genomic scaffolds of all
369	investigated strains, either directly after pair-end read assembly, or based on mapping to the
370	reference gene cluster from C. alatosporum CCALA 988. Gaps in PUW/MIN gene clusters
371	were closed by PCR, and subsequent Sanger sequencing of PCR products was performed
372	using custom primer annealing to regions adjacent to the assembly gaps.
373	Extraction and analysis of PUWs/MINs

Applied and Environmental Microbiology

AEM

374

375	lyophilized biomass (200 mg) to extraction solvent (10 mL of 70% MeOH, v/v). Extracts
376	were evaporated using a rotary vacuum evaporator at 35°C and concentrated to 1 mL of 70%
377	MeOH. The methanolic extracts were analyzed using a Thermo Scientific Dionex UltiMate
378	3000 UHPLC+ instrument equipped with a diode-array detector connected to a Bruker Impact
379	HD (Bruker, Billerica, MA, USA) high-resolution mass spectrometer with electrospray
380	ionization. Separation of extracts was performed on a reversed-phase Phenomenex Kinetex
381	C18 column (150 \times 4.6 mm, 2.6 μm) using H2O (A)/acetonitrile (B) containing 0.1%
382	HCOOH as a mobile phase, at a flow rate of 0.6 mL min ⁻¹ . The gradient was as follows: A/B
383	85/15 (0 min), 85/15 (over 1 min), 0/100 (over 20 min), 0/100 (over 25 min), and 85/15 (over
384	30 min). For better resolution of minor PUW variants, another analytical method with a
385	longer gradient (67 min) adopted from our previous study (13) was applied. The peptide
386	sequence was reconstructed from the b ion series obtained after opening of the ring between
387	the proline and N-methylasparagine residues, followed by the sequential loss of water and all
388	the amino acids with exception of the last residue (Pro). The number of carbons in the FA
389	moiety in PUW/MIN variants containing nonsubstituted and hydroxy-/chloro-substituted FA
390	was determined using a method described previously by our team (13). Characteristic FA
391	immonium fragments in oxo-substituted PUW/MIN variants were identified by employing
392	this method to crude extracts of Anabaena strain 5 containing the oxo-substituted MIN D
393	variant (10). Since a stable, prominent, and characteristic FA immonium fragment with the
394	sum formula $C_{15}H_{30}NO^+$ was obtained for MIN D (Fig. S1), analogous fragments with general
395	formula $C_x H_{2x} NO^+$ were used to identify oxo-substituted components in unknown PUW/MIN
396	variants from other investigated strains.
397	Molecular networking

To obtain comparable results, each strain was extracted using an identical ratio of

398	A molecular network was created using the Global Natural Products Social Molecular
399	Networking (GNPS) online workflow (54). Data were filtered by removing all MS/MS peaks
400	within +/- 17 Da of the precursor m/z . MS/MS spectra were window-filtered by choosing only
401	the top six peaks in the $+/-50$ Da window throughout the spectrum. Data were then clustered
402	with MS-Cluster with a parent mass tolerance of 0.1 Da and a MS/MS fragment ion tolerance
403	of 0.025 Da to create consensus spectra. Additionally, consensus spectra comprised of fewer
404	than two spectra were discarded. A network was then created in which edges were filtered
405	using a cosine score above 0.75 and more than three matched peaks. Additional edges
406	between pairs of nodes were retained in the network only when both nodes were included in
407	each other's respective top 10 most similar nodes. Spectra in the network were then searched
408	against the GNPS spectral libraries, and library spectra were filtered in the same manner as
409	the input data. All matches obtained between network spectra and library spectra were
410	retained only when the score was above 0.7 and at least four peaks matched. Analog searching
411	was performed against the library with a maximum mass shift of 200 Da.
412	Purification of MINs from Anabaena sp. strain 4 and its NMR analysis

12 *Purification of MINs from* Anabaena sp. strain 4 and its NMR analysis

Freeze-dried biomass of strain 4 (10 g) was extracted with 70% MeOH (500 mL). The extract 413 414 was evaporated using a rotary vacuum evaporator to reduce the MeOH content, and the 415 sample was subsequently diluted with distilled water to reach a final MeOH concentration 416 >5%. The diluted extract was pre-purified using a Supelco C18 SPE cartridge (10 g, 60 mL) 417 pre-equilibrated with 60 mL of MeOH and 120 mL of H₂O. After loading, retained 418 components were eluted with 60 mL of pure MeOH, concentrated to dryness, and 419 resuspended in 10 mL of pure MeOH. MINs A, C, and D were purified in two HPLC 420 purification steps. The first step was performed on a preparative chromatographic system (Agilent 1260 Infinity series) equipped with a multi-wavelength detector and automatic 421 422 fraction collector. A preparative Reprosil 100 C18 column (252×25 mm) was employed for

Applied and Environmental Microbiology

423	separation at a flow rate of 10 mL min ⁻¹ using the following gradient of MeOH containing
424	0.1% HCOOH (A) and 10% MeOH containing 0.1% HCOOH (B): 0 min (100% B), 6 min
425	(100% B), 15 min (43% B), 43 min (12% B), 45 min (0% B), 58 min (0% B), 60 min (100%
426	B), and 64 min (100% B). Fractions were collected using an automatic fraction collector at 1
427	min intervals, and fractions were analyzed for MIN A, C, and D using the method described
428	above. Fractions containing MIN A, C, and D were collected in separate vials and
429	concentrated using a rotary evaporator. The second purification step was performed on a semi-
430	preparative HPLC (Agilent 1100 Infinity series) using a Reprosil 100 Phenyl column (250×8
431	mm) with (A) acetonitrile containing 0.1% HCOOH and (B) water containing 0.1% HCOOH
432	using the following gradient: 0 min (60% B), 2 min (60% B), 6 min (50% B), 28 min (18%
433	B), 30 min (0% B), 30 min (0% B), 32 min (0% B), 31 min (60% B), and 36 min (60% B).
434	The flow rate was 1 mL min ⁻¹ throughout, fractions were collected manually, and the purity
435	was analyzed using the HPLC-HRMS method described above. NMR spectra of
436	minutissamides were measured in dimethyl sulfoxide (DMSO)-d6 at 30°C. All NMR spectra
437	were collected using a Bruker Avance III 500 MHz NMR spectrometer, equipped with a 5
438	mm \emptyset BBI probehead with actively shielded z-gradient.

439

440 Antibacterial and antifungal assays

The antimicrobial activity of four major variants (PUW F, and MINs A, C, and D) was 441 442 tested against 13 bacterial and two yeast strains (Table 4) using disc diffusion assays (8) in three independent experiments with kanamycin/nystatin and MeOH as positive and negative 443 444 controls, respectively. Antifungal activity of PUW F was further evaluated by determining the 445 MIC against Candida albicans (HAMBI 261) and Saccharomyces cerevisiae (HAMBI 1164) as described previously (8). PUW F was isolated from Cylindrospermum strain 1 according to 446

447 a protocol described previously (5), and isolation of MIN A, C, and D was performed as described above. The variants produced by S. muelleri strain 6 were impossible to isolate due 448 to the slow growth of the cyanobacterium, resulting in low biomass yields during the study 449 450 period.

451 Accession numbers for the newly sequenced complete putative biosynthetic gene 452 clusters uploaded to the NCBI GenBank database are MH325197-MH325201.

453

455

454 Acknowledgements

456 cyanobacterial lipopeptides: genome mining, detection, and structure-activity relationships), 457 and by the Ministry of Education, Youth and Sports of the Czech Republic, National 458 Programme of Sustainability I, ID: LO1416 project ALGAMIC (ID: CZ.1.05/2.1.00/19.0392)

This work was supported by Czech Science Foundation grant no. 16-09381S (Bioactive

459 and MSCA IF II project (CZ.02.2.69/0.0/0.0/18_070/0010493). Access to instruments and

460 other facilities was supported by the Czech Research Infrastructure for Systems Biology

461 (C4SYS; project no. LM2015055). This research was also supported by a grant from the

462 NordForsk NCoE programme "NordAqua" (project no. 82845). The Norwegian participation

463 was supported by grants from the Department of Agriculture and Forestry, the County

464 Governor of Møre og Romsdal, the County Governor of Sogn og Fjordane, the University of

465 Oslo, and the Norwegian Institute for Water Research. The authors declare no conflict of

466 interest. The funders had no role in study design, data collection and interpretation, or the

- 467 decision to submit the work for publication.
- 468

References 469

Applied and Environmental Microbiology

AEM

Applied and Environmental Microbiology

470	1. Cochrane SA, Vederas JC. 2016. Lipopeptides from <i>Bacillus</i> and <i>Paenibacillus</i> spp.:
471	A gold mine of antibiotic candidates. Med Res Rev 36:4–31.
472	2. Taylor SD, Palmer M. 2016. The action mechanism of daptomycin. Bioorg Med Chem
473	24:6253–6268.
474	3. Velkov T, Roberts KD, Li J. 2017. Rediscovering the octapeptins. Nat Prod Rep
475	34:295–309.
476	4. Ines M, Dhouha G. 2015. Lipopeptide surfactants: Production, recovery and pore
477	forming capacity. Peptides 71:100–112.
478	5. Hrouzek P, Kuzma M, Černý J, Novák P, Fišer R, Šimek P, Lukešová A, Kopecký J.
479	2012. The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing
480	necrosis via cell membrane permeabilization and subsequent unusual actin
481	relocalization. Chem Res Toxicol 25:1203–1211.
482	6. Oftedal L, Myhren L, Jokela J, Gausdal G, Sivonen K, Doskeland SO, Herfindal L.
483	2012. The lipopeptide toxins anabaenolysin A and B target biological membranes
484	in a cholesterol-dependent manner. Biochim Biophys Acta-Biomembr 1818:3000-
485	3009.
486	7. Tomek P, Hrouzek P, Kuzma M, Sýkora J, Fišer R, Černý J, Novák P, Bártová S,
487	Šimek P, Hof M, Kavan D, Kopecký J. 2015. Cytotoxic lipopeptide muscotoxin A,
488	isolated from soil cyanobacterium Desmonostoc muscorum, permeabilizes
489	phospholipid membranes by reducing their fluidity. Chem Res Toxicol 28:216-
490	224.
491	8. Vestola J, Shishido TK, Jokela J, Fewer DP, Aitio O, Permi P, Wahlsten M, Wang H,
492	Rouhiainen L, Sivonen K. 2014. Hassallidins, antifungal glycolipopeptides, are
493	widespread among cyanobacteria and are the end-product of a nonribosomal
494	pathway. P Natl Acad Sci USA 111:E1909–E1917.

495	9. Gregson JM, Chen JL, Patterson GML, Moore RE. 1992. Structures of
496	puwainaphycins A-E. Tetrahedron 48:3727–3734.
497	10. Kang HS, Krunic A, Shen Q, Swanson SM, Orjala J. 2011. Minutissamides A-D,
498	antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena
499	minutissima. J Nat Prod 74:1597–1605.
500	11. Kang HS, Sturdy M, Krunic A, Kim H, Shen Q, Swanson SM, Orjala J. 2012.
501	Minutissamides E-L, antiproliferative cyclic lipodecapeptides from the cultured
502	freshwater cyanobacterium cf. Anabaena sp. Bioorg Med Chem 20:6134-6143.
503	12. Mareš J, Hájek J, Urajová P, Kopecký J, Hrouzek P. 2014. A hybrid non-ribosomal
504	peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the
505	beta-amino fatty acid lipopeptides puwainaphycins in the cyanobacterium
506	Cylindrospermum alatosporum. Plos One 9: e111904.
507	13. Urajová P, Hájek J, Wahlsten M, Jokela J, Galica T, Fewer DP, Kust A, Zapomělová-
508	Kozlíková E, Delawská K, Sivonen K, Kopecký J, Hrouzek P. 2016. A liquid
509	chromatography-mass spectrometric method for the detection of cyclic beta-amino
510	fatty acid lipopeptides. J Chromatogr A 1438:76-83.
511	14. Cheel J, Urajová P, Hajek J, Hrouzek P, Kuzma M, Bouju E, Faure K, Kopecký J.
512	2017. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by
513	countercurrent chromatography combined with polymeric resins and HPLC. Anal
514	Bioanal Chem 409:917–930.
515	15. Moore RE, Bornemann V, Niemczura WP, Gregson JM, Chen JL, Norton TR,
516	Patterson GML, Helms GL. 1989. Puwainaphycin C, a cardioactive cyclic peptide
517	from the blue-green alga Anabaena BQ-16-1. Use of two dimensional carbon-13-
518	carbon-13 and carbon-13-nitrogen-15 correlation spectroscopy in sequencing the
519	amino acid units. J Am Chem Soc 111:6128-6132.

Applied and Environmental Microbiology

AEM

SO		
ot Pe	520	16. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F,
crip	521	Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J. 1999. The
nus	522	mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid
Ma	523	between a peptide synthetase, an amino transferase, and a fatty acid synthase. P
teo	524	Nat Acad Sci USA 96:13294–13299.
Accepted Manuscript Post	525	17. Tsuge K, Akiyama T, Shoda M. 2001. Cloning, sequencing, and characterization of
Ac	526	the iturin A operon. J Bacteriol 183:6265-6273.
	527	18. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J,
	528	Borriss R. 2004. Structural and functional characterization of gene clusters
	529	directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus
	530	amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096.
nental	531	19. Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, von der Ohe W,
nvironi ology	532	Steinert M, Daniel R, Muller R. 2014. Paenilarvins: Iturin family lipopeptides from
d and Environ Microbiology	533	the honey bee pathogen Paenibacillus larvae. ChemBioChem 15:1947–1955.
Applied and Environmental Microbiology	534	20. Ramaswamy AV, Sorrels CM, Gerwick WH. 2007. Cloning and biochemical
AF	535	characterization of the hectochlorin biosynthetic gene cluster from the marine
	536	cyanobacterium Lyngbya majuscula. J Nat Prod 70:1977–1986.
	537	21. Micallef ML, D'Agostino PM, Sharma D, Viswanathan R, Moffitt MC. 2015. Genome
	538	mining for natural product biosynthetic gene clusters in the Subsection V
5	539	cyanobacteria. Bmc Genomics 16:669.
AE	540	22. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick

22. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick 540 WH. 2004. Structure and biosynthesis of the jamaicamides, new mixed polyketide-541 peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem 542 Biol 11:817-833. 543

544	23. Galica T, Hrouzek P, Mareš J. 2017. Genome mining reveals high incidence of
545	putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl-AMP
546	ligase genes in biofilm-forming cyanobacteria. J Phycol 53:985–998.
547	24. Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M,
548	Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS. 2009.
549	Mechanistic and functional insights into fatty acid activation in Mycobacterium
550	tuberculosis. Nat Chem Biol 5:166–173.
551	25. Liu Z, Ioerger TR, Wang F, Sacchettini JC. 2013. Structures of Mycobacterium
552	tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. J
553	Biol Chem 288:18473–18483.
554	26. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE,
555	Gerwick L, Gerwick WH. 2014. Characterization of cyanobacterial hydrocarbon
556	composition and distribution of biosynthetic pathways. Plos One 9:e85140.
557	27. Mohanty D, Sankaranarayanan R, Gokhale RS. 2011. Fatty acyl-AMP ligases and
558	polyketide synthases are unique enzymes of lipid biosynthetic machinery in
559	Mycobacterium tuberculosis. Tuberculosis 91:448-455.
560	28. Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. 2012.
561	Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic
562	enzymes of Mycobacterium tuberculosis. J Mol Biol 416:221–238.
563	29. Villiers BRM, Hollfelder F. 2009. Mapping the limits of substrate specificity of the
564	adenylation domain of TycA. ChemBioChem 10:671-682.
565	30. Christiansen G, Philmus B, Hemscheidt T, Kurmayer R. 2011. Genetic variation of
566	adenylation domains of the anabaenopeptin synthesis operon and evolution of
567	substrate promiscuity. J Bacteriol 193:3822-3831.

Applied and Environmental Microbiology

568	31. Brandenburger E, Braga D, Kombrink A, Lackner G, Gressler J, Künzler M,
569	Hoffmeister D. 2018. Multi-genome analysis identifies functional and
570	phylogenetic diversity of basidiomycete adenylate-forming reductases. Fungal
571	Genet Biol 112:55–63.
572	32. Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. 2010 Two alternative
573	starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin
574	variants in Anabaena (Cyanobacteria). Chem Biol 17:265–273.
575	33. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan
576	BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH. 2015.
577	Combining mass spectrometric metabolic profiling with genomic analysis: A
578	powerful approach for discovering natural products from cyanobacteria. J Nat Prod
579	78:1671–1682.
580	34. Voráčová K, Hájek J, Mareš J, Urajová P, Kuzma M, Cheel J, Villunger A, Kapuscik
581	A, Bally M, Novák P, Kabeláč M, Krumschnabel G, Lukeš M, Voloshko L,
582	Kopecký J, Hrouzek P. 2017. The cyanobacterial metabolite nocuolin A is a
583	natural oxadiazine that triggers apoptosis in human cancer cells. Plos One
584	12:e0172850.
585	35. He J, Hertweck C. 2004. Biosynthetic origin of the rare nitroaryl moiety of the
586	polyketide antibiotic aureothin: Involvement of an unprecedented N-oxygenase. J
587	Am Chem Soc 126:3694–3695.
588	36. Choi YS, Zhang HJ, Brunzelle JS, Nair SK, Zhao HM. 2008. In vitro reconstitution
589	and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in
590	aureothin biosynthesis. P Natl Acad Sci USA 105:6858-6863.

591	37. Fewer DP, Wahlsten M, Osterholm J, Jokela J, Rouhiainen L, Kaasalainen U,
592	Rikkinen J, Sivonen K. 2013. The genetic basis for O-Acetylation of the
593	microcystin toxin in cyanobacteria. Chem Biol 20:861-869.
594	38. Murray IA, Shaw WV. 1997. O-acetyltransferases for chloramphenicol and other
595	natural products. Antimicrob Agents Chemother 41:1-6.
596	39. Zapomělová E, Jezberová J, Hrouzek P, Hisem D, Řeháková K, Komárková J. 2009.
597	Polyphasic characterization of three strains of Anabaena reniformis and
598	Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to
599	Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). J Phycol 45:1363–1373.
600	40. Skulberg OM, Mysterud I, Karlsen J, Tønnesen HH, Laane CMM, Schumacher T.
601	2012. Alveld research per annum 2012: Searchlight on cyanobacteria we have
602	minor knowledge of. (In Norwegian). Biolog 30: 32-41.
603	41. Tønnesen HH, Mysterud I, Karlsen J, Skulberg OM, Laane CMM., Schumacher T.
604	2013. Identification of singlet oxygen photosensitizers in lambs drinking water in
605	an alveld risk area in West Norway. J Photochem Photobiol B 119: 37-45.
606	42. Hegge AB, Mysterud I, Karlsen J, Skulberg OM, Laane CMM, Schumacher T,
607	Tønnesen HH. 2013. Impaired secondary oxidant deactivation capacity and
608	enhanced oxidative stress in serum from alveld affected lambs. J Photochem
609	Photobiol B 126: 126–134.
610	43. Heinze R. 1996. A biotest for hepatotoxins using primary rat hepatocytes. Phycologia
611	35 (Supplement), 89–93.
612	44. Skulberg, OM. 1996. Toxins produced by cyanophytes in Norwegian inland waters -
613	health and environment. – In Chemical data as a basis of geomedical
614	investigations. (J. Låg, J. Ed), pp. 197–216, The Norwegian Academy of Science
615	and Letters.

Applied and Environmental Microbiology

616	45. Jones CG, Firn RD. 1991. On the evolution of plant secondary chemical diversity. Phil
617	Trans R Soc Lond B 333:273–280.
618	46. Firn RD, Jones CG. The evolution of secondary metabolism - a unifying model. Mol
619	Microbiol 37: 989–994.
620	47. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic
621	assignments, strain histories and properties of pure cultures of cyanobacteria. J
622	Gen Microbiol 111: 1–61.
623	48. Skulberg R, Skulberg OM. 1990. Research with algal cultures – NIVA's Culture
624	Collection of Algae. Norwegian Institute for Water Research, 1-32. ISBN: 82-
625	577–1743–6.
626	49. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. 2003. Cyanobacterial
627	diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry
628	valleys, Antarctica): A morphological and molecular approach. Appl Environ
629	Microbiol 69:5157–5169.
630	50. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes
631	and endosymbiont DNA with Glimmer. Bioinformatics 23:673-679.
632	51. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin V,
633	Nikolenko S, Pham S, Prjibelski A, Pyshkin A, Sirotkin A, Vyahhi N, Tesler G,
634	Alekseyev MA, Pevzner PA. 2012. SPAdes: A new genome assembly algorithm
635	and its applications to single-cell sequencing. J Comput Biol 19:455-497.
636	52. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA,
637	Muller R, Wohlleben W, Breitling R, Takano E, Medema MH. 2015. antiSMASH
638	3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.
639	Nucleic Acids Res 43:W237–W243.

640	53. Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, Duran HGS,
641	Santos E, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R,
642	Takano E, Lee SY, Weber T, Medema MH. 2017. antiSMASH 4.0-improvements
643	in chemistry prediction and gene cluster boundary identification. Nucleic Acids
644	Res 45:W36–W41.
645	54. Wang MX, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD,
646	Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV,
647	Meehan MJ, Liu WT, Criisemann M, Boudreau PD, Esquenazi E, Sandoval-
648	Calderon M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ,
649	Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B,
650	Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J,
651	Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers
652	RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, et al. 2016. Sharing and
653	community curation of mass spectrometry data with Global Natural Products
654	Social Molecular Networking. Nat Biotechnol 34:828-837.
655	55. Johansen JR, Bohunická M, Lukešová A, Hrčková K, Vaccarino MA, Chesarino NM.
656	2014. Morphological and molecular characterization within 26 strains of the genus
657	Cylindrospermum (Nostocaceae, Cyanobacteria) with descriptions of three new
658	species. J. Phycol. 50:187-202.
659	56. Tamrakar A. 2016. Isolation of benthic cyanobacteria and screening of bioactivities
660	and natural products from culture collection strains. Master Thesis. University of
661	Helsinki, Faculty of Agriculture and Forestry, Department of Food and
662	Environmental Sciences.

663	57. Kantz T., Bold HC. 1969. Phycological studies IX. Morphological and taxonomic
664	investigations of Nostoc and Anabaena in culture. Publication no. 6924. University
665	of Texas, Austin.
666	58. Skulberg OM, Mysterud I, Karlsen J, Třnnesen HH, Laane CMM, Schumacher T.
667	2012. Alveld research per annum 2012: Searchlight on cyanobacteria we have
668	minor knowledge of. (In Norwegian). Biolog 30: 32-41.

669

Accepted Manuscript Posted Online

670 Table 1. Strains analyzed for PUW/MIN production

alatosporum CCALA Mountain National Park, soil 2 Cylindrospermum moravicum CCALA A. Lukešová 2008 Czech Republic, South Moravia, Moravian Karst, Amaterska Cave, cave sediment 3 Cylindrospermum cCALA A. Lukešová 2011 Czech Republic, Moravian Karst, Amaterska Cave, cave sediment 3 Cylindrospermum cCALA A. Lukešová 2011 Czech Republic, Moravian Karst, Amaterska Cave, cave sediment 4 Anabaena sp. UHCC- M. Wahlsten 0399 N/A Finland, Jurmo, Southwestern Archipelago National Park, copepods Tar	Johansen <i>et al.</i> 2014 , n Johansen <i>et al.</i> 2014 ed
moravicum CCALA 993Moravia, Moravia Karst, Amaterska Cave, cave sediment3Cylindrospermum alatosporum CCALA 994A. Lukešová2011Czech Republic, Moravian Karst, earthworms collected from soil above Amaterska Cave, earthworm casingsJoh Karst, earthworms collected 	, n Johansen <i>et al.</i> 2014 sed sa
 <i>alatosporum</i> CCALA 994 Karst, earthworms collected from soil above Amaterska Cave, earthworm casings <i>Anabaena</i> sp. UHCC- M. Wahlsten 0399 <i>N/A</i> Finland, Jurmo, Southwestern Archipelago National Park, copepods <i>Anabaena minutissima</i> T. Kantz 1967 South Texas, USA, soil 	ed .a
0399 Southwestern Archipelago National Park, copepods 5 Anabaena minutissima T. Kantz 1967 South Texas, USA, soil Kanta	Tamrakar 2016 ⁵⁶
	Kantz & Bold 1969
 Symplocastrum Mire og Romsdal Skulberg Svorter NIVA-CYA Kulberg Norway; Møre og Romsdal Skucounty; Halsa municipality, western slope of Slettfjellet mountain in semiterrestrial alpine habitat, biofilm on turf in ombrotrophic blanket bog 	y, et al

678 including length and functional annotation. ACP, acyl carrier protein; FAAL, fatty acyl-

679 AMP ligase; PKS, polyketide synthase; NRPS, non-ribosomal peptide synthetase.

Protein					Strain	No.		Predicted Function
		1	2	3	4	5	6	
ORF1		659	664	664	643	643	647	ABC transporter
PuwA		2870	2870	2870	2854	2854	2866	NRPS
ORF2		1116	1499	1875	643	670	376	patatin-like phospholipase
ORF3		-	-	-	696	696	-	dynamin family protein
PuwI		-	-	-	709	702	711	FAAL, ACP
PuwJ		-	-	-	427	427	529	cytochrome-like protein
PuwB	-	2534	2592	2592	2549	2537	2555	hybrid PKS/NRPS, aminotransferase, oxygenase
PuwC	Length (aa)	597	590	590	597	589	-	FAAL
PuwD	Len	101	104	96	93	92	-	ACP
PuwK		-	-	-	-	465	-	halogenase
PuwE		3077	3121	3121	3099	3112	3113	NRPS
PuwF		2370	5051	5051	5877	5071	3310	NRPS
PuwG		3492	5851	5851		5871	2620	NRPS
PuwH		1102	1081	1102	1121	1121	1408	NRPS
PuwL		-	-	-	-	-	217	O-acetyltransferase

Applied and Environmental Microbiology

AEM

63 Cable 3. Fragmentation of PUW variants from Symplocastrum muelleri strain 6 bearing acetyl substitutions on the FA moiety revealed by high

6 mergy (100 eV) fragmentation, and amino acid composition deduced by fragmentation at 60 eV.

	X=Ala, Y=Thr, FA=C ₁₆			X=Gly, Y=Thr, FA=C18			X=Ala, Y=Thr, FA=C ₁₈			X=Gly, Y=Val, FA=C18			X=Ala, Y=Val, FA=C ₁₈		
Low fragmentation energy (60eV)	m/z	$\Delta(\text{ppm})$	Sum formula	m/z	$\Delta(\text{ppm})$	Sum formula	m/z	$\Delta(\text{ppm})$	Sum formula	m/z	$\Delta(\text{ppm})$	Sum formula	m/z	$\Delta(\text{ppm})$	Sum formula
[M] ⁺	1265.7338	+0.7	$C_{59}H_{101}N_{12}O_{18}$	1279.7496	+0.9	$C_{60}H_{103}N_{12}O_{18}$	1293.7654	+0.8	$C_{61}H_{105}N_{12}O_{18}$	1277.7695	+1.6	$C_{61}H_{105}N_{12}O_{17}$	1291.7870	+0.1	$C_{62}H_{107}N_{12}O_{17}$
[M-CH ₃ OH] ⁺	1233.7170	-6.6	$C_{58}H_{97}N_{12}O_{17}$	1247.7194	+4.1	$C_{59}H_{99}N_{12}O_{17}$	1261.7494	-7.3	$C_{60}H_{101}N_{12}O_{17}$	low int.		$C_{60}H_{101}N_{12}O_{16}$	low int.		$C_{61}H_{103}N_{12}O_{16}$
[M-CH ₃ OH-NMeAsn] ⁺	1105.6558	-4.9	$C_{53}H_{89}N_{10}O_{15}$	1119.6619	+3.7	$C_{54}H_{91}N_{10}O_{15}\\$	1133.681	+0.6	$C_{55}H_{93}N_{10}O_{15}$	1117.6924	-5.0	$C_{55}H_{93}N_{10}O_{14}$	1131.7307	-25.0	$C_{56}H_{95}N_{10}O_{14}$
[M-CH ₃ OH-NMeAsn-dhb] ⁺	1022.6180	-4.7	$C_{49}H_{84}N_9O_{14}\\$	1036.6365	-7.3	$C_{50}H_{86}N_9O_{14}\\$	1050.6478	-3.1	$C_{51}H_{88}N_9O_{14}\\$	1134.6603	-10.3	$C_{51}H_{88}N_9O_{13}\\$	1048.6671	-1.7	$C_{52}H_{90}N_9O_{13}\\$
[M-CH ₃ OH-NMeAsn-dhb-X]*	951.5785	-2.5	$C_{48}H_{83}N_8O_{13}\\$	979.589	+18.8	$C_{48}H_{83}N_8O_{13}\\$	979.6041	+3.4	$C_{48}H_{83}N_8O_{13}\\$	977.6481	-20.5	$C_{49}H_{85}N_8O_{12}\\$	977.6518	-24.1	$C_{49}H_{85}N_8O_{12}\\$
[M-CH3OH-NMeAsn-dhb-X-Gln]*	823.5253	-9.4	$C_{41}H_{71}N_6O_{11}\\$	851.5473	+1.8	$C_{43}H_{75}N_6O_{11}\\$	851.5478	+1.2	$C_{43}H_{75}N_6O_{11}\\$	849.5838	-16.7	C44H76N6O10	849.5589	+12.5	$C_{44}H_{77}N_6O_{10}\\$
[M-CH3OH-NMeAsn-dhb-X-Gln-Y]+	722.4729	-4.2	C37H64N5O9	750.5005	+0.9	$C_{39}H_{68}N_5O_9$	750.5147	-18.1	C39H68N5O9	low int.		C ₄₀ H ₇₂ N ₅ O ₈	low int.		$C_{40}H_{72}N_5O_8$
[M-CH ₃ OH-NMeAsn-dhb-X-Gln-Y- Thr] ⁺	621.4223	-0.2	$C_{33}H_{57}N_4O_7$	649.4526	+1.4	$C_{35}H_{61}N_4O_7\\$	649.4539	-0.6	$C_{35}H_{61}N_{4}O_{7} \\$	649.465	-17.8	$C_{35}H_{61}N_4O_7\\$	649.4483	+8.0	$C_{35}H_{61}N_{4}O_{7} \\$
High fragmentation energy (100eV)															
Fragment 1	411.3208	+2.2	$C_{23}H_{43}N_2O_4$	439.3559	-6.5	$C_{25}H_{47}N_2O_4$	439.3556	-5.8	C25H47N2O4	439.3556	-5.8	$C_{25}H_{47}N_2O_4$	439.3508	+5.1	C25H47N2O4
Fragment 1 - C ₂ H ₄ O ₂	351.3006	+0.0	$C_{21}H_{39}N_2O_2$	379.3334	-4.0	$C_{23}H_{43}N_2O_2$	379.3329	-2.6	$C_{23}H_{43}N_2O_2$	379.3328	-2.4	$C_{23}H_{43}N_2O_2$	379.3360	-10.8	$C_{23}H_{43}N_2O_2$
Fragment 2	284.2583	+0.4	$C_{17}H_{34}NO_2 \\$	312.2919	-6.9	$C_{19}H_{38}NO_2 \\$	312.2892	+1.6	$C_{19}H_{38}NO_2 \\$	low int.		C19H38NO2	low int.		C19H38NO2
Fragment 2 - C ₂ H ₄ O ₂	224.2367	+2.6	C15H30N	252.2686	0.0	$C_{17}H_{34}N$	252.2687	-0.5	C17H34N	252.2684	+0.7	$C_{17}H_{34}N$	252.2677	+3.5	$C_{17}H_{34}N$
682	221.2507	. 2.0	01511301	252.2000	0.0	C1/11341	202.2007	5.5	C1/11341	252.2004	. 5.7	01/11/1	252.2011	. 5.5	-

- **Table 4. Bacterial and yeast strains used for antimicrobial testing of PUW F and MIN A,**
- 685 C, and D. HAMBI, culture collection of University of Helsinki, Faculty of Agriculture

686 and Forestry, Department of Microbiology.

Test organisms (HAMBI nr.)	Media ^a	Incubation	Incubation	Gram strain		
		temp. (°C)	time (h)	reaction (+\-)		
Pseudomonas sp. (2796)	TGY	28	24	-		
Micrococcus luteus (2688)	TGY	28	24	+		
Bacillus subtilis (251)	TGY	28	24	+		
Pseudomonas aeruginosa (25)	TGY	37	24	-		
Escherichia coli (396)	TGY	37	24	-		
Bacillus cereus (1881)	TSA	28	24	+		
Burkholderia cepacia (2487)	TSA	37	24	-		
Staphylococcus aureus (11)	TSA	37	24	+		
Xanthomonas campestris (104)	NA	28	24	-		
Burkholderia pseudomallei (33)	NA	37	24	-		
Salmonella typhi (1306)	NA	37	24	-		
Arthrobacter globiformis (1863)	NA	28	24	-		
Kocuria varians (40)	NA	28	24	+		
Candida albicans (261)	YM agar	37	24	yeast		
Cryptococcus albidus (264)	YM agar	28	24	yeast		
Saccharomyces cerevisiae (1164)	YM agar	28	24	yeast		

687

^aThe composition of all media was obtained from the American Type Culture Collection (ATCC).

689 TGY, tryptone glucose yeast; TSA, tryptic soy agar; NA, Nutrient agar; YM agar, yeast malt agar.

690

Applied and Environ<u>mental</u>

Microbiology

691 Figure legends

692

Fig. 1. HPLC-HRMS/MS analysis of crude extracts from the investigated strains. Major puwainaphycin (PUW) and minutissamide (MIN) variants are highlighted. Numbers in brackets following the peak designation refer to the corresponding Supplementary Figure containing full MS/MS data. For variants without complete structural information, only m/zvalues are shown.

Fig. 2. Molecular network created using the Global Natural Products Social Molecular 698 Networking (GNPS) web platform. Two separate networks were obtained during GNPS 699 700 analysis; (a) a group containing Cylindrospermum strains 1-3 and Anabaena strains 4-5, and 701 (b) a group containing only variants detected in Symplocastrum muelleri strain 6. The separate 702 groups differ mainly in the peptide core of the molecule. Numbers in brackets following the 703 peak designation refer to the corresponding Supplementary Figure containing full MS/MS 704 data. For variants without complete structural information, only m/z values are shown. (*) 705 refers to compounds present in trace amounts and (#) refers to compounds for which MS/MS 706 data failed to resolve the structural information.

Fig. 3. Structural variability of the peptide core of PUW/MIN variants. Examples of structural variants PUW F (a) and PUW A (b) with designated aminoacid positions representing the two major peptide cores. (c) Table summarizing all types of the PUW/MIN peptide core found in known compounds reported in literature and compounds (Comp.) detected in studied strains. Columns shaded in grey highlight the conserved aminoacid positions.

Fig. 4. Structural variability of the FA moiety of PUW/MIN variants. The relative proportion
of variants with differences in FA length and substitution (y-axis) is depicted using a color
scale (z-axis). For comparison, the peak area of a given variant was normalized against the

peak area of the major variant present in the strain (MIN A for strains 1–5, and m/z 1235.7 for strain 6).

Fig. 5. Structure of the *puw* gene cluster in the six investigated cyanobacterial strains. Gene
arrangement and functional annotation of *puwA–L* genes and selected PKS/NRPS tailoring
domains is indicated by colored arrows. The distribution of the two observed types of putative
starter modules (shaded boxes) is indicated by bars.

Fig. 6. Schematic view of the proposed biosynthesis assembly line of puwainaphycins and

723 minutissamides. Variable amino acid positions and the ranges of fatty acyl lengths

incorporated by the two putative alternative starter units are listed for individual strains. A,

adenylation domain; ACP, acyl carrier protein; AmT, aminotransferase; AT, acyltransferase;

726 C, condensation domain; DH, dehydratase; E, epimerase; ER, enoylreductase; FAAL, fatty

acyl-AMP ligase; MT, methyltransferase; NRPS, non-ribosomal peptide synthetase; KR,

ketoreductase; KS, ketosynthetase; Ox, monooxygenase; PCP, peptidyl carrier protein; PKS,

729 polyketide synthetase; TE, thioesterase.

Fig 7. MS/MS fragmentation of MIN A (a, c, e) and the PUW variant at m/z 1279 bearing an

731 acetyl substitution of the fatty acid chain (b, d, f). (a–b) base peak chromatograms; (c–d)

fragmentation of the protonated molecule at low fragmentation energy, yielding b series of

ions corresponding to the losses of particular amino acid residues, (e–f) fragmentation of the

734 protonated molecule at high energy (100 eV) yielding fragments characteristic for the β-

amino fatty acid.

736 Fig. 8. Antifungal activity of PUW F against yeast strains (a) Saccharomyces cerevisiae

HAMBI 1164 and (b) *Candida albicans* HAMBI 261. Discs were treated with a concentration range from 25.2 μ g mL⁻¹ to 0.0394 μ g/mL to determine the minimum inhibitory concentration (MIC). Numbers represent concentrations: (1) = 25.2 μ g mL⁻¹; (2) = 12.6 μ g mL⁻¹; (3) = 6.3

740 $\mu g \text{ mL}^{-1}$; (+) = positive control (10 μg of nystatin). (-) = negative control (10 μL of methanol).

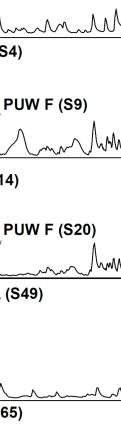
3.0e+5

2.0e+5

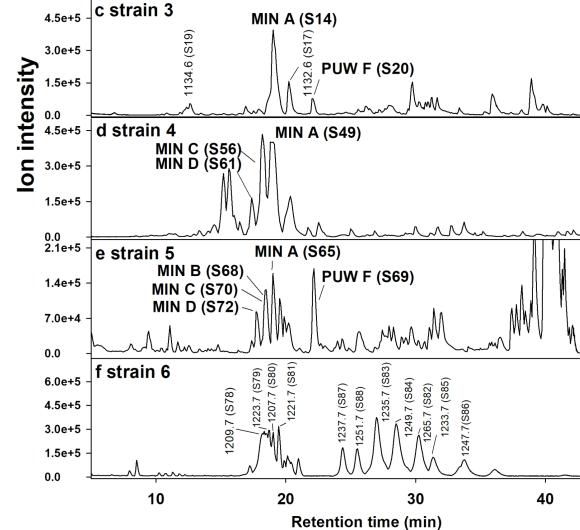
1.0e+5

4.5e+5

3.0e+5


1.5e+5

0.0


0.0

a strain 1

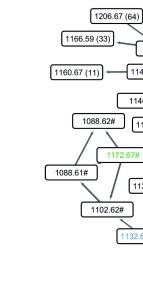
b strain 2

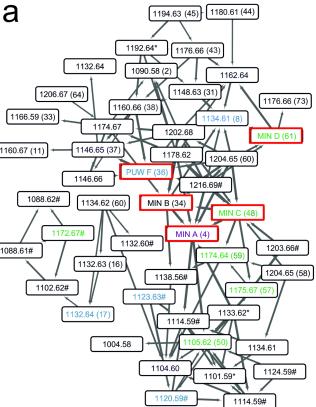
MIN A (S26)

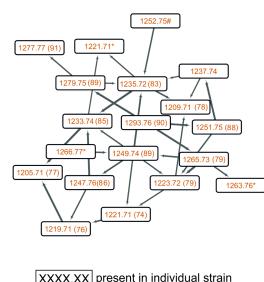
PUW F (S37)

-1132.6 (S34)

MIN A (S4)

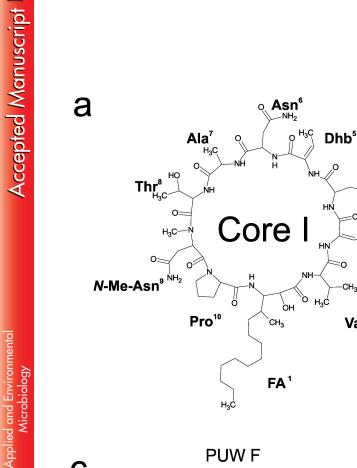

1132.6 (S7)

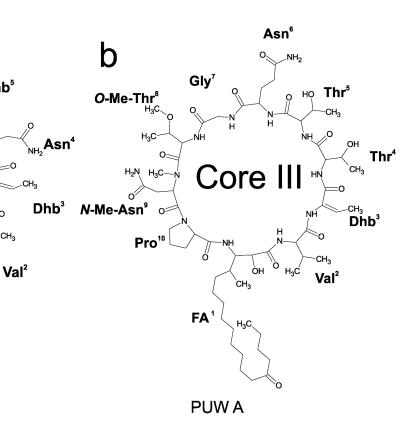

1162.6 (S42)


~1134.6 (S30)

1134.6 (S8)

50

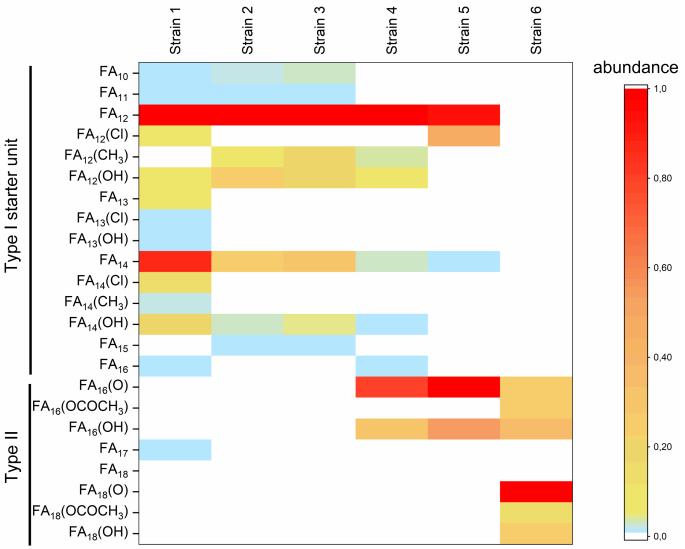




b

	present in individual strain
XXXX.XX	present in strain 6 only
XXXX.XX	present in strains 1-3
XXXX.XX	present in strains 4 and 5
XXXX.XX	present in strains 1-5

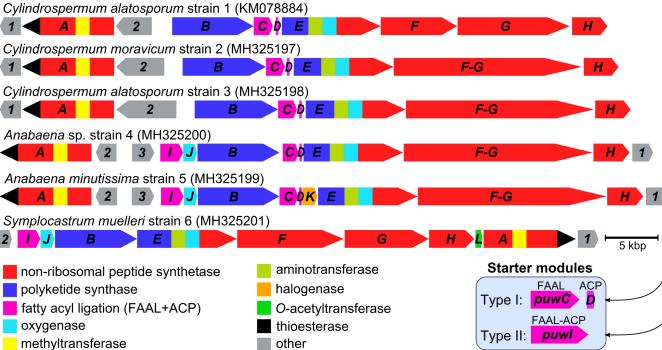
PUW F

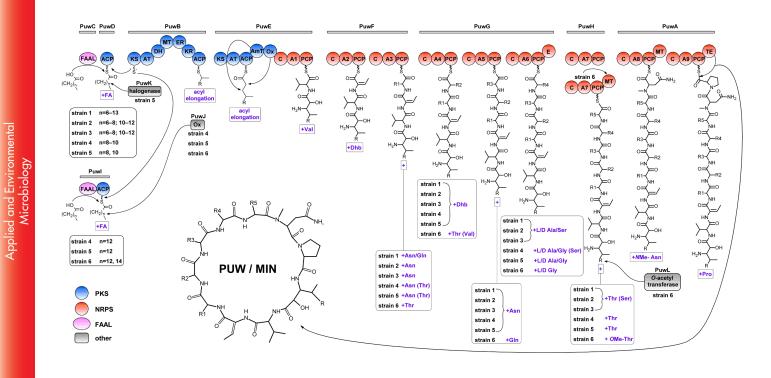

H₃Ċ

FA¹

С	PUVV F										PUW A					
		AA ₁ AA ₂ AA ₃ AA ₄ AA ₅ AA ₆ AA ₇ AA ₈				AA ₈	AA ₉	AA_{10}	known compounds	variants found in strains 1-6						
	Core I	FA	Val	Dhb	Asn	Dhb	Asn	Ala	Thr	N-Me-Asn	Pro	MIN A, MIN B, MIN C, MIN D, PUW F	MIN A, MIN B, MIN C, MIN D, PUW F, Comp.1,3,10,11,12,14,16,19,20, 25,26,28,30,31,37,45,51			
	Core II	FA	Val	Dhb	Gln	Dhb	Asn	Ala	Thr	N-Me-Asn Pro		PUW G	PUW G, Comp.2,6,13,15,17,27,29,32			
	Core III	FA	Val	Dhb	Thr	Thr	Gln	Gly	0-Me-Thr	N-Me-Asn	Pro	PUW A, PUW C, PUW E, MIN I, MIN K	Comp. 38,46,50,52,53,56,58			
	Core IV	FA	Val	Dhb	Thr	Thr	Gln	Ala	0-Me-Thr	N-Me-Asn	Pro	MIN E, MIN G	Comp.39,47,53,57,59			
	Core V	FA	Val	Dhb	Thr	Val	Gln	Gly	O-Me-Thr	N-Me-Asn	Pro	PUW B, PUW D, MIN L	Comp. 40,48,54,60			
	Core VI	FA	Val	Dhb	Thr	Val	Gln	Ala	O-Me-Thr	N-Me-Asn	Pro	MINH	Comp. 41,49,55,61			
	Core VII	FA	Val	Dhb	Asn	Dhb	Asn	Gly	Thr	N-Me-Asn	Pro		Comp. 7,36,44			
	Core VIII	FA	Val	Dhb	Asn	Dhb	Asn	Ser	Thr	N-Me-Asn	Pro		Comp. 8,23,35			
	Core IX	FA	Val	Dhb	Asn	Dhb	Asn	Ala	Ser	N-Me-Asn	Pro		Comp. 9,18,24			
	Core X	FA	Val	Dhb	Thr	Dhb	Asn	Ala	Thr	N-Me-Asn	Pro		Comp. 5,34,43			

Accepted Manuscript Posted Online


Applied and Environmental Microbiology

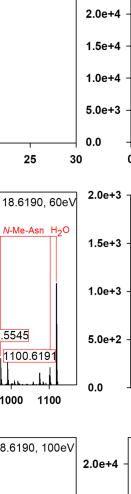


- fatty acyl ligation (FAAL+ACP)
- methyltransferase

Applied and Environmental

Microbiology

Applied and Environmental


Microbiology

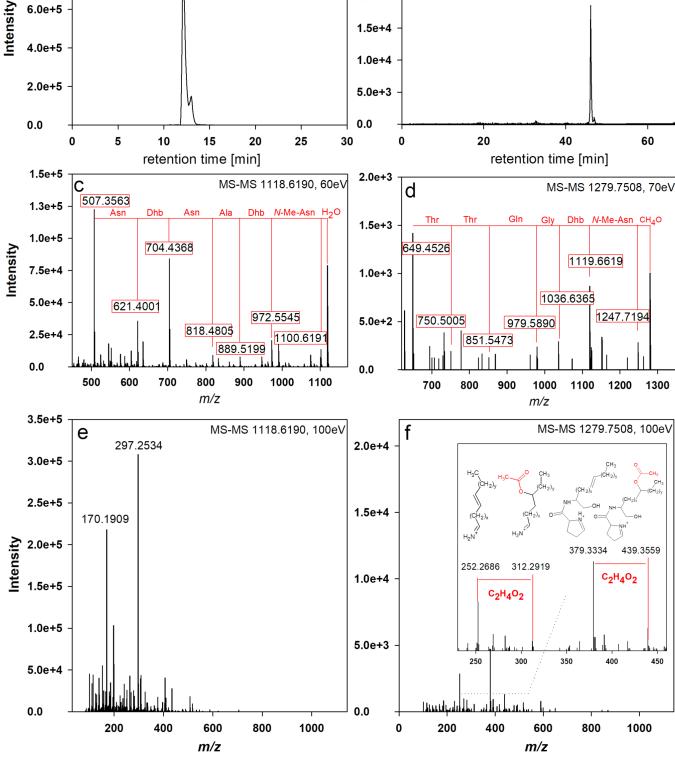
1.0e+6

8.0e+5

6.0e+5

а

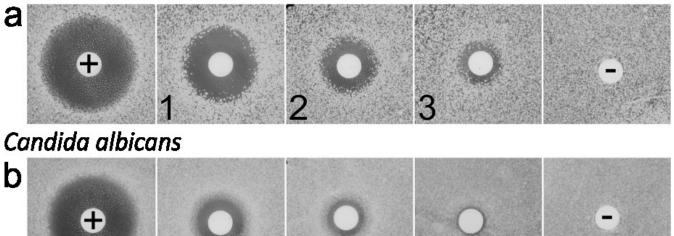
3.0e+4


2.5e+4

b

EIC 1118.6190± 0.02

Val - Dhb - Asn - Dhb - Asn - Ala - Thr - N-Me-Asn - Pro - FA(C₁₂)



AEM

EIC 1279.7508 ± 0.02

- Thr - Thr - Gin - Giy - O-MeThr - N-Me-Asn - Pro - FA(C18, OC(O)CH3)

Saccharomyces cerevisiae

2

3

Applied and Environmental Microbiology