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Abstract: Cyanobacterial blooms are considered a major threat to global water security with
documented impacts on lake ecosystems and public health. Given that cyanobacteria possess highly
adaptive traits that favor them to prevail under different and often complicated stressor regimes,
predicting their abundance is challenging. A dataset from 822 Northern European lakes is used to
determine which variables better explain the variation of cyanobacteria biomass (CBB) by means
of stepwise multiple linear regression. Chlorophyll-a (Chl-a) and total nitrogen (TN) provided the
best modelling structure for the entire dataset, while for subsets of shallow and deep lakes, Chl-a,
mean depth, TN and TN/TP explained part of the variance in CBB. Path analysis was performed
and corroborated these findings. Finally, CBB was translated to a categorical variable according
to risk levels for human health associated with the use of lakes for recreational activities. Several
machine learning methods, namely Decision Tree, K-Nearest Neighbors, Support-vector Machine and
Random Forest, were applied showing a remarkable ability to predict the risk, while Random Forest
parameters were tuned and optimized, achieving a 95.81% accuracy, exceeding the performance of all
other machine learning methods tested. A confusion matrix analysis is performed for all machine
learning methods, identifying the potential of each method to correctly predict CBB risk levels and
assessing the extent of false alarms; random forest clearly outperforms the other methods with very
promising results.

Keywords: cyanobacteria blooms; eutrophication; lakes monitoring data; path analysis; machine
learning algorithms; Decision Tree; K-Nearest Neighbor; Support-vector Machine; Random Forest;
model validation

1. Introduction

Cyanobacterial harmful algal blooms pose a major concern for freshwater and coastal ecosystems
worldwide. The occurrence, frequency and duration of cyanobacterial blooms has increased significantly
in recent years as eutrophication, a state of high primary productivity, is appearing in more and
more lake ecosystems [1–3]. Cyanobacteria may potentially produce a variety of toxins (cyanotoxins),
responsible for a wide range of adverse environmental and health impacts. As a result, authorities are
occasionally forced to block the intended use of lakes in order to protect public health [4–6]; indeed,
surface freshwater uses, such as water supply, irrigation, fishing and recreation, can be critically affected
by the excessive presence of cyanobacteria and raise health safety issues [7]. Moreover, cyanobacteria
biomass is a component of the classification system of the ecological status for lakes according to
the European Water Framework Directive [8], since a high abundance of cyanobacteria can reduce
aquatic biodiversity and food quality for zooplankton. The identification of synergistic factors favoring
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cyanobacterial abundance in lakes has been the focus of several past and current studies that have
highlighted different hydrological, climatic and human-oriented conditions. Cyanobacterial blooms are
not a modern phenomenon and have been reported in scientific literature for more than 130 years [9];
however, they tend to appear much more frequently in recent decades, mainly due to anthropogenic
activities that tend to change the global climatic and environmental regime. Examples of such activities
include changes in hydrological flow pathways, excessive use of fertilizers and the gradual removal
of natural buffering zones between terrestrial and freshwater ecosystems [10]. On the contrary, there
are some anthropogenic changes, such as flooding and flushing, that tend to reduce the growth of
cyanobacteria more than other algae [11].

Empirical modeling has recognized the fundamental effect of phosphorus and nitrogen on the
fluctuation of cyanobacterial biomass, incriminating over-enrichment of lakes with nutrients as a
major driver of cyanobacterial blooms [12–16]. In addition, high air or water temperature [11,17],
calm weather (low wind speed) [18], high water residence time [19,20], low nitrogen-to-phosphorus
ratios [21,22] and low light availability [23,24] are documented as significant factors and possible
predictors that determine the dominance of cyanobacteria. However, predicting the concentration of
cyanobacterial biomass in lakes is a complex and challenging task and this article comes to address
this challenge. The evidence to date highlights the ability of cyanobacteria to adapt under different
conditions [25], indicating that cyanobacterial response to anthropogenic stressors is likely not identical
across lakes. The growth and proliferation of cyanobacteria appears to be triggered under different
thresholds of the above-mentioned predictor variables, showing a significant sensitivity to case-specific
spatial, hydrological and climatic conditions [26–30]. Otherwise stated, the relative importance of
factors influencing the abundance of cyanobacteria, which are characterized by a case-specific and
almost idiosyncratic character, varies among different lake ecosystems. This fact makes establishing a
generalized prediction methodology difficult. Previous studies have investigated the impact of lake
type variables on how cyanobacteria respond to the combined effect of nutrients and water temperature,
engaging trophic state [31], mixing type [32], shallow vs. deep lakes and artificial vs. natural lakes [17].
Nevertheless, although different modelling structures influence the outcome of the models used, the
predictive power remains questionable and relatively low, failing to explain cyanobacteria dynamics
effectively. In this article, we use a novel prediction scheme with four different machine learning
methods that allows us to predict cyanobacteria taking into account not only nutrients, but also a series
of variables, such as latitude, elevation, surface area and depth, which are indicative of the case-specific
nature of lake ecosystems. To our knowledge, this type of analysis is innovative and has not been
implemented before. Even though other scientists have used artificial intelligence methodologies
to predict cyanobacterial concentrations or algal blooms [33,34], they usually model a single lake
ecosystem and have available a long time series of several lake variables. In this article, we use data
from 822 Northern European lakes and model their cyanobacteria dynamics as a whole.

According to the World Health Organization (WHO), recreational water safety is defined by a series
of guideline values for cyanobacteria, which are associated with incremental severity and likelihood of
health impacts [35]. Lake recreational risk assessment is a costly, time-consuming process that requires
specially equipped laboratories and skilled personnel for precise testing of the presence and abundance
of cyanobacteria. Machine learning algorithms can provide a reliable alternative approach to predicting
the risk to human health associated with recreational activities, based on explanatory variables that can
be easily measured and obtained at low cost. These classification algorithms are gaining ground due
to their ability to effectively “understand” the dataset given and determine which label or category
should be given new data by associating patterns to the unlabeled new data. Moreover, linking
environmental conditions with cyanobacterial concentrations and assigning them to corresponding
risk levels could improve model predictability and inform authorities whether water is appropriate
or not to serve specific uses. It is well known that cyanobacterial toxins can cause high acute and
chronic toxicities, since they are classified mostly as hepatotoxins and neurotoxins, affecting the liver
and nervous system, respectively [36]. The novelty of this article is that it focusses on predicting the



Water 2020, 12, 1191 3 of 19

relative risk to human health associated with the level of cyanobacterial abundance in fresh waters,
facilitating water management.

Validation is an important component of the modelling procedure; however, many of the empirical
models presented in the literature lack a consistent validation methodology, which adds controversy
on whether they are capable to perform with similar efficiency on different datasets out of the training
ones. Training and validating the models used to predict CBB would empower their capability and
effectiveness to adequately perform on a different dataset. In this article, we address this gap and
perform model validation of the reported results.

In this study, we use a large-scale monitoring dataset compiled from 822 lakes belonging to
six Northern European countries to (i) predict cyanobacterial biomass concentration from a series
of possible explanatory variables and check the predictive power of multiple regression on the
entire dataset and on subsets of shallow and deep lakes by following a 10-fold cross-validation
procedure; (ii) investigate through path analysis how nutrients, chlorophyll-a and air temperature affect
cyanobacteria by evaluating all possible direct and indirect pathways; and (iii) calibrate, validate and/or
optimize a series of machine learning algorithms, namely Decision Tree (DT), K-Nearest Neighbors
(k-NN), Support-vector Machine (SVM) and Random Forest (RF), towards the prediction of risk levels
to human health associated with the use of lakes for recreational activities.

2. Materials and Methods

The methodology followed in this study consists of five steps. In Step 1, the dataset is thoroughly
described, followed by spatial visualization of variables and box plots for CBB and the main candidate
explanatory variables considered in the analysis. In Step 2, a correlation matrix is constructed,
and pairwise linear correlation coefficients of all variables are presented. In Step 3, we perform stepwise
multiple linear regression in order to define which variables explain most of the variation of CBB;
the analysis is done on the whole dataset and on shallow and deep lakes subsets. In Step 4, we continue
with path analysis and examine all possible direct and indirect effects of the predictor variables on
CBB. Finally, in Step 5, we implement four different machine learning methods to predict the risk to
human health associated with the level of cyanobacterial abundance for recreational water use. For this
analysis, continuous CBB data are transformed to categorical classifying data in levels that correspond
to three distinct health risk levels (low–medium–high), as defined by the WHO for recreational use [35].
In Figure 1, all five steps describing the sequence of the methodology are presented.
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2.1. Dataset

The original dataset used in this study, which contains a wide range of hydrological, biological,
chemical and geomorphological features of European lakes, was extracted from the central database [37]
of the EU-funded project WISER, which aimed at developing integrative systems to assess the ecological
status of water bodies according to the Water Framework Directive (WFD) [38]. Under the umbrella
of the project, monitoring data from rivers, lakes and coastal waters were compiled from several
European research institutions and environmental agencies, to analyze the responses of biological
quality elements to physico-chemical stressors under varying environmental conditions. The extracted
dataset contained data on the abovementioned features for 1851 lakes, covering the growing season
period (from the 5th to 10th month) from 1980 to 2009. However, the dataset exhibited a great
heterogeneity in terms of the number and frequency of the observations and monitored features for
each lake. Consequently, each lake contributed a variable number of observations and features, for a
variable time period and for different months during the growing season. In order to obtain the
same number of monitored features per lake, a preliminary screening was conducted that produced
an optimized dataset with data for as many features as possible. The resulting dataset consists of
822 lakes from six Northern European countries, namely, the UK, Denmark, Norway, Sweden, Finland
and Lithuania. The data include observations for cyanobacteria biomass (CBB, mg/L), chlorophyll-a
concentration (Chl-a, µg/L), total nitrogen concentration (TN, µg/L), total phosphorus concentration
(TP, µg/L), mean air temperature (MeanATemp, ◦C), max air temperature (MaxATemp, ◦C) and the
geomorphological characteristics of the lakes—elevation (Elev, m above sea level (a.s.l.)), surface area
(SurArea, km2), mean lake depth (MeanDep, m) and maximum lake depth (MaxDep, m). Table 1
summarizes the number of lakes per country included in the dataset, the median and mean number
of observations per lake (variable), the sampling months and the corresponding sampling years. As
stated above, the dataset is temporally unbalanced, reflecting the different monitoring schemes of
the countries that provided data to WISER [39]. For some lakes, there may be a complete dataset
covering all sampling months with multiple measurements, while for others we may have a single
measurement for the whole time period. To deal with this temporal heterogeneity, there were several
options, such as averaging all values to one per lake, selecting only the latest observation per lake, or
using a mixed-effects hierarchical model. In this research, no temporal aggregation was applied and all
values per lake were used with no weighing/selection. This was done because any type of aggregation
would shrink the size of the dataset, a factor that greatly impacts the performance of machine learning
algorithms, rendering small datasets unsuitable [40].

Table 1. Lake dataset geographical distribution, along with the corresponding number of observations,
sampling month and yearly range.

Country Number of Lakes Median/Mean No. of
Observations Per Lake Sampling Month Time Period

UK 81 3/3.39 June to October 2007–2008
Denmark 20 19/17.06 June to September 1989–2012
Norway 408 4/5.41 May to October 1988–2009
Sweden 77 4.5/6.71 May to October 2001–2009
Finland 217 1/3.42 May to October 1993–2009

Lithuania 19 1/2.47 June to September 2011–2012

Across the Northern European lakes included in the dataset, there is a wide variation in
environmental variables. The large geographic extent covers various climatic conditions with the mean
air temperature ranging between −0.33 and 21.1 ◦C. This is a typical temperature variation within
the temperate zone and especially within the Atlantic and Continental types of climate. Although
the cyanobacteria biomass is low in most lakes, it ranges between 0 and 71.47 mg/L under different
combinations of biochemical and geomorphological conditions. The distribution of variables across
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the lakes in this study is summarized in Table 2, which shows the minimum, maximum, median and
mean values for each lake variable.

Table 2. Distribution of variables across the dataset.

Variable Minimum Maximum Median Mean

Latitude 50.078 69.897 59.866 60.341
Elevation (m a.s.l.) −4 1057 126 79.9
Surface area (km2) 0.019 1377 39.1 2.1

Mean depth (m) 0.096 239 12.1 6.6
Max depth (m) 1 516 35.79 22

Mean air temperature (
◦

C) −0.3 21.1 13.6 14.1
Max air temperature (

◦

C) 9.8 34.1 23.58 23.8
Total nitrogen (µg/L) 47 6841.7 656.9 435

Total phosphorus (µg/L) 0.5 1270 28.86 12
TN/TP 0.92 565 34.5 43.3

Chlorophyll-a (µg/L) 0 310.1 10.89 4.4
Cyanobacteria biomass (mg/L) 0 71.5 0.642 0.00844

Figure 2 shows the variation in the observed values of the main variables considered for all the
lakes under study. Since each lake has one or more observations for each variable, the record with the
highest CBB value has been chosen for mapping in the figure. Therefore, for each of the 822 lakes,
the visualization was driven by the maximum CBB observed in each lake and the corresponding
observations for the remaining variables. The rest of the variables mapped are the ones that correspond
to that maximum CBB record for each lake. The analysis was conducted with ArcGIS software.

Figure 2. Cont.
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Figure 2. Spatial distribution of the biochemical and geomorphological variables across the subset of
the WISER lakes database: (a) cyanobacteria biomass (CBB); (b) Chl-a; (c) total nitrogen (TN); (d) total
phosphorus (TP); (e) mean air temperature; (f) mean depth; (g) surface area; (h) elevation. All variables
correspond to the record with the maximum CBB concentration for each lake.

Exploratory data analysis was carried out and box plots for the dependent (CBB) and the
explanatory variables were constructed for displaying the data distribution (Figure 3).
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All box plots are displayed by filtering the outliers except for CBB (Figure 3a1). The latter shows
that the main bulk of observations is concentrated around zero—indicating that most lakes have very
low cyanobacteria biomass concentrations. In Figure 3a2, CBB is shown after the removal of higher
values, with most values ranging between 0 and 0.07.

2.2. Explorative Analysis

Prior to the modeling analysis, the set of explanatory variables was processed to establish a
unified scale of 0–1 for all features considered. For this purpose, the “min–max” normalization formula
was applied:

Zij = (Xij - Xjmin) / (Xjmax - Xjmin), (1)

where Zij is the normalized value for the ith observed value of the jth variable (feature), Xij is the ith
observed value of the jth variable, and Xjmax and Xjmin are the maximum and minimum observed
values of the jth variable, respectively.

The next step was to investigate how CBB is correlated with all the candidate predictor
variables (Table 2). In this regard, a correlation matrix was produced under the Pearson’s correlation
coefficient method using the “psych” package [41] and the “pairs.panels” function in the programming
environment R version 3.6.2 [42]. The relationships between the lake monitoring, meteorological and
geomorphological data were examined by bivariate linear correlation and scatter plot smoothing, while
the distribution of each variable was also investigated. In the upper right panel of Figure 4, pairwise
linear correlation coefficients of the variables are illustrated, while the lower left panel displays the
data as scatter plots with smooth regression curves. According to the correlation matrix in Figure 4,
the explanatory variables with the highest linear correlation compared with CBB were Chl-a (r = 0.52),
TN (r = 0.3) and TP (r = 0.26), which indicates that the correlation of CBB with Chl-a is the highest; in
turn, the correlations of CBB with TN and TP are comparable, and even though lower than those with
Chl-a, are still significant.
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Water 2020, 12, 1191 8 of 19

2.3. Stepwise Multiple Linear Regression

Stepwise multiple linear regression was applied to the whole dataset containing all the lakes, to
the subset containing shallow lakes (mean depth less or equal to 3 m) and to the subset containing
deep lakes (mean depth above 3 m), in order to decide which subset of predictor variables results
in the best model that explains the biggest variation in CBB in each case. Even though the response
of cyanobacteria to eutrophication is typically non-linear [8,43], multiple linear regression models
are commonly used in predicting cyanobacteria abundance in several studies, which in many cases
outperform non-linear ones in predictability and are much less complicated [17,28,44]. Furthermore,
cyanobacteria abundance is far from normally distributed, which can be confirmed with the large
difference between the mean and median in Table 2 and the histogram in Figure 4. The distribution
has a strong positive skewness and normalization is not expected to be very helpful; as a result,
assumptions underlying linear regression are violated. This is not uncommon and is tolerated because
of the simplicity of multiple linear models and their satisfying predictability.

Among the predictor variables (Figure 4), max depth and max air temperature showed high
collinearity with mean depth (0.94) and mean air temperature (0.75), respectively, and were omitted
from the final set considered in our analysis. The final set of the predictor variables includes
latitude (Lat), elevation (Elev), surface area (SurArea), mean depth (MeanDep), mean air temperature
(MeanATemp), total nitrogen (TN), total phosphorus (TP), total nitrogen-to-total phosphorus ratio
(TN/TP) and chlorophyll-a (Chl-a). The stepwise regression consists of iteratively adding and removing
predictors, in the predictive model, in order to find the subset of variables in the dataset resulting
in the best performing model; that is, a model that lowers the prediction error. In our analysis we
performed backward selection or backward elimination, which starts with all predictors, iteratively
removing the least contributive predictors, and stops when the model includes the predictors that
are statistically significant. The Akaike Information Criterion (AIC) was used as an estimator of
out-of-sample prediction error and thereby determined the best predictive model produced by the
backward selection method. The performance criteria R-squared, Schwarz Bayesian Criterion (BIC)
and RMSE were also calculated to compare the produced models. The dataset used in each case—the
all-lakes dataset, as well as the shallow-lake and deep-lake subsets—was split in training and testing
sets by the 10-fold cross-validation method in order to better assess the prediction strength of each
model and to prevent overfitting. The stepwise multiple linear regression analysis was conducted in R
by using the “tidyverse”, “caret”, “leaps” and “MASS” packages [45–48].

2.4. Path Analysis

Path analysis was used to decompose correlations into different pieces for interpretation of effects
(e.g., how does TN, TP and MeanATemp influence CBB, directly or indirectly through Chl-a). Although
cyanobacteria biomass is a component of total algal biomass, which is also measured by Chl-a, Chl-a
is often used as a predictor for CBB [19]. With this type of causal modeling, we can test the cause
and effect relationship of various variables that are theoretically assumed to be causally related; we
can now see whether and to what degree this assumption is supported by the data. The resulting
models show the causal mechanisms and the direct and indirect effects of the explanatory variables on
CBB. In our case, Chl-a, TN, TP along with MeanATemp were used to construct models under various
scenarios that explore all possibilities, with different combinations of direct and indirect effects of the
predictor variables on CBB. All variables were chosen as the strongest predictors resulting from the
literature [15], but also from the stepwise multiple regression performed. Validation of the produced
models was carried out by examining the z-values and Pr (>|z|); the former is computed as the test
statistic for the hypothesis test that the true corresponding regression coefficient β of variable X (Chl-a,
TN, TP and MeanATemp) in predicting variable Y (CBB) is 0. The latter is the significance level of
the hypothesis test, with the value of 0.05 taken as the threshold. In other words, with path analysis,
we determined whether a variable matters or not, i.e., whether it has a significant relationship with
variable Y. A series of permutations are explored to define the importance of each variable in predicting
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either Chl-a or CBB. Overall statistics, such as AIC, BIC, Root Mean Square Error of Approximation
(RMSEA) and Chi-square indices are also used to assess goodness of fit in each case. All statistical
calculations and representations were done in R with the “lavaan” package [49].

2.5. Machine Learning Methods

The prediction of risk to human health associated with the level of cyanobacterial abundance
for recreational water use was conducted by means of a series of machine learning algorithms.
The WHO [35] has published a guideline for safe practice in managing recreational water according
to which there is a relatively low probability of adverse health effects when cyanobacterial cell count
is less than or equal to 20,000 cells/mL; a medium or moderate probability when cyanobacterial cell
count ranges from 20,000 cells/mL to 100,000 cells/mL and a high probability when that cell count is
above 100,000 cells/mL. Since the dataset includes concentrations and not cell counts, the latter had
to be transformed to cyanobacterial biomass, to enable the classification of data in the WHO data
ranges. Considering that the mean cyanobacterial cell weighs approximately 10−7 mg we converted
cyanobacterial cell density to biomass [43]. Table 3 presents the three risk categories for recreational
use, according to cyanobacteria biomass.

Table 3. The three risks to human health categories for the recreational use of lakes according to
cyanobacteria biomass.

Risk Category Limits According to Cyanobacterial Biomass

Low CBB ≤ 2 mg/L
Medium 2 mg/L< CBB ≤ 10 mg/L

High CBB > 10 mg/L

By matching CBB to the three risk categories, the continuous dependent variable was transformed
to a categorical one representing three levels—low, moderate and high. Subsequently, the whole
dataset was divided into training and testing subsets following an 80% to 20% ratio, respectively. Four
machine learning algorithms were applied in order to determine which algorithm has better efficiency
in predicting the risk categories with the input parameters being the eleven explanatory variables
presented in Table 2 and in the correlation matrix in Figure 4. Since machine learning algorithms are
based on the simple idea of “the wisdom of the crowd” and the aggregation of the results of multiple
predictors gives better predictions, all explanatory variables were used [50]. The machine learning
methods used were Decision Tree (DT), K-Nearest Neighbors (k-NN), Support-vector Machine (SVM)
and Random Forest (RF), which are briefly described as follows:

• DT is a supervised machine learning technique for inducing a decision tree from training data.
A decision tree, also referred to as a classification tree, is a flowchart-like diagram that shows the
various outcomes from a series of decisions. Practically, it is the mapping of observations about
an item to conclusions about its target value [51].

• k-NN is a relatively simple approach to classification that is completely nonparametric. Given a
point x0 that one wishes to classify into one of the K groups, the algorithm finds the k observed
data points that are nearest to x0. The classification rule is to assign x0 to the population that has
the most observed data points out of the k-nearest neighbors. Points for which there is no majority
are either classified to one of the majority populations at random or left unclassified [52].

• SVM is an algorithm that classifies data by determining the optimal hyperplane that separates
observations according to their class labels. The central concept of this method is to accommodate
classes that are separable by linear and non-linear class boundaries [53].

• RF is a classifier algorithm that evolved from decision trees. It collects the classifications and
chooses the most voted prediction as the result. RFs sample data from the original dataset and
a subset of features is randomly selected from the optional features to grow the tree at each
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node. The strength of the RFs relies on the capability to enable a large number of weak or weakly
correlated classifiers to form a strong classifier [54].

To evaluate the strength of each algorithm in predicting CBB risk levels, Accuracy and Kappa
were selected as performance criteria. All calculations were performed in R by calling the “ggplot2”,
“rpart”, “rpart.plot”, “gmodels”, “e1071”, “gridExtra” and “randomForest” packages [55–59].

3. Results and Discussion

3.1. Identifying Variables Explaining CBB Variation

By applying stepwise linear regression with backward elimination to the original dataset and to
the subsets of shallow and deep lakes with AIC as performance indicator, the following results were
obtained. Regarding the all-lakes dataset, the best overall model structure that explains the most variation
in CBB is the one including Chl-a and TN as predictors (R2 = 0.33). Although Chl-a, as a single predictor,
showed a proportional ability to capture the variation in CBB (R2 = 0.33), when Chl-a is combined with
TN, the overall performance of the model exceeds that of Chl-a, as indicated by the performance criteria
summarized in Table 4 (BIC, AIC and RMSE). In the subgroup of shallow lakes, stepwise regression
resulted in a four-variable linear model, including Chl-a, TN, MeanDep and TN/TP as best predictors
according to the AIC criterion (R2 = 0.27). Similarly to the all lakes dataset, although the best single-variable
linear model (Chl-a) and the best two-variable (Chl-a and TN) and three-variable models (Chl-a, TN
and MeanDep) had similar R-square values, their overall performance was weaker compared to the
four-variable model. Furthermore, the predictive power of the best linear model for the subgroup of
shallow lakes was weaker compared to the model that represents the subgroup of the original dataset
for all lakes. Finally, in the subgroup of deep lakes, the model that better predicted the variation of the
CBB included Chl-a, TN and TN/TP (R2 = 0.44). The two-variable (Chl-a and TN/TP) and single-variable
(Chl-a) best models in this case, showed lower R2 values and weaker predictive performance criteria. In
general, the linear models predicting CBB in deep lakes exhibited a remarkable improvement against the
all-lakes and shallow-lakes models. Although it is somewhat surprising, since cyano-blooms is a more
common problem in shallow lakes, this finding is justified by the fact that prediction is more difficult
in shallow lakes because of more fluctuating conditions. However, similar results, where modelling
efficacy improves in deep lakes, can be found in other studies [17,28]. In Table 4, the best univariate and
multivariate models as well as their performance indicators are summarized. Our analysis shows that
using linear models to predict CBB concentration from biological and physical–chemical lake variables
has a relatively low reliability, which is reflected by the low R2 values. To deal with this, we explored the
possibility of producing more reliable results by predicting health risk levels, instead of concentrations.
This is presented in Section 3.3.

Table 4. Predictive linear models for CBB.

Linear Model R2 BIC AIC RMSE

All lakes
CBB = −0.32 + 27.33 × Chl-a 0.33 20,662 20,643 2.698
CBB = −0.45 + 25.71 × Chl-a + 2.1 × TN 0.33 20,651 20,626 2.697
Shallow lakes
CBB = 0.03 + 24.99 × Chla 0.28 4704 4690 5.667
CBB = −0.56 + 21.44 × Chl-a + 5.83 × TN 0.27 4698 4680 5.676
CBB = −2.26 + 21.86 × Chl-a + 6.16 × TN + 250.2×MeanDep 0.27 4695 4672 5.648
CBB = −2.64 + 22.26 × Chl-a + 9.63 × TN + 268.13 ×
MeanDep – 18.13 × TN/TP 0.27 4694 4669 5.643

Deep Lakes
CBB = −0.4 + 29.48 × Chl-a 0.43 11,695 11,676 1.294
CBB = −0.4 + 26.98 × Chl-a + 35.67 × TN/TP 0.43 11,598 11,568 1.291
CBB = −0.21 + 26.2 × Chl-a – 3.47 × TN + 86.68 × TN/TP 0.44 11,594 11,565 1.278
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3.2. Describing Dependent Relationships among Variables

Path analysis was performed for four different competing scenarios, in order to explore how
strongly certain variables (TN, TP and MeanATemp) act in mediating the relationship between Chl-a
and CBB. We explore how the model regresses Chl-a on TN, TP and MeanATemp and how the model
directly regresses CBB on Chl-a, TN, TP and MeanATemp. Results of the path analysis, as produced
from the R studio package, are shown in Table 5. In Scenario (1), we explore how the model regresses
Chl-a on TN, TP and MeanATemp. For all three variables, we see that z-value > 2 and Pr (>|z|) < 0.05,
so they are all significant in determining Chl-a. We also explore how CBB is regressed on Chl-a and
again we see that Chl-a is significant. In Scenario (2) and having secured that TN, TP and MeanATemp
are significant, we further explore how the model regresses CBB directly on TN (in addition to Chl-a).
Results show that TN is indeed significant. Similarly, in Scenarios (3) and (4) we explore sequentially
the significance of TP and MeanATemp, respectively, in influencing CBB directly. In Scenario (3),
results show that TP is not significant, since the z-value is less than 2 and Pr (>|z|) > 0.05. In Scenario 4,
the z-value (1.736) is close to 2 and Pr (>|z|) (0.083) is close to 0.05, indicating a marginal significance of
MeanATemp in influencing CBB directly.

Table 5. Results of the path analysis concerning the four competing scenarios tested. For each direct
relationship the z-value and Pr (>|z|) are presented.

Scenario z-Value Pr (>|z|)

1
Chl-a ~ TN 21.985 0.000
Chl-a ~ TP 24.122 0.000
Chl-a ~ MeanATemp 8.346 0.000
CBB ~ Chl-a 39.611 0.000
2
Chl-a ~ TN, TP,
MeanATemp As in Scenario 1

CBB ~ Chl-a 32.946 0.000
CBB ~ TN 4.389 0.000
3
Chl-a ~ TN, TP,
MeanATemp As in Scenario 1

CBB ~ Chl-a 34.31 0.000
CBB ~ TP 0.929 0.353
4
Chl-a ~ TN, TP,
MeanATemp As in Scenario 1

CBB ~ Chl-a 38.327 0.000
CBB ~ MeanATemp 1.736 0.083

In Figure 5, we see a schematic representation that shows the standardized path coefficients
for Scenarios (1), (2) and (4), while other statistics, such as Chi-square, RMSEA, AIC and BIC are
shown as well. According to the statistics, Scenario (2) is the best, since the statistics are the lowest.
The dashed lines depict the correlation coefficients between the two variables they connect (repeated
from Figure 4). Our path analysis shows that TP is not included in the variables that are significant for
CBB, while TN is included. This fact indicates a potential nitrogen limitation, meaning that even when
TP increases, it stops being significant since CBB is nitrogen dependent; similar results are reported in
the literature [60]. This is especially true since the lakes in our dataset seem to be highly P enriched
(see Table 2).



Water 2020, 12, 1191 12 of 19

Water 2020, 12, x FOR PEER REVIEW 13 of 20 

 

Scenario 1 Scenario 2 

 
(a) 

 
(b) 

Scenario 4 

 
(c) 

Figure 5. Schematic representation of path analysis scenarios predicting CBB using the main variables 
TN, TP, MeanATemp and Chl-a. Standardized path coefficients and relevant statistics are shown for 
each scenario. (a) TN, TP and MeanATemp have indirect effects while Chl-a has a direct effect on 
CBB. (b) Similar to (a) with the addition of TN having a direct effect on CBB. (c) Similar to (a) with 
the addition of MeanATemp having a direct effect on CBB.  

A series of machine learning algorithms were used to compare their predictive potential towards 
identifying the risk to human health associated with CBB level for recreational activities. In Figure 6, 
confusion matrices and the corresponding performance indices for algorithms DT, k-NN, SVM and 
RF are presented. These matrices depict the number of instances that the predicted values of the CBB 
risk levels matched the reference (actual) risk levels or failed to predict the risk levels correctly. The 
instances presented on the diagonal are all True Positives, since the algorithm prediction matches the 
actual classification (what is predicted as a low is actually a low, a predicted medium is a medium, 
etc.) In Figure 6a, this number is 784. The sum of the actual instances that are not predicted correctly 
are the False Negatives; in Figure 6a, the False Negatives are 17 for “Low”, 25 for “Medium” and 10 
for “High”, and they are calculated as the sum of each column minus the True Positives. False 
Positives are the instances that are predicted falsely and are the sum of each row minus the True 
Positives. In Figure 6a, the False Positives are 23 for “Low”, 25 for “Medium” and 4 for “High”. 
Finally, the True Negatives for a certain class are those instances that do not belong in that class 
(either predicted or reference), so in Figure 6a, we have 29 True Negatives for “Low”, 771 True 
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Figure 5. Schematic representation of path analysis scenarios predicting CBB using the main variables
TN, TP, MeanATemp and Chl-a. Standardized path coefficients and relevant statistics are shown for
each scenario. (a) TN, TP and MeanATemp have indirect effects while Chl-a has a direct effect on
CBB. (b) Similar to (a) with the addition of TN having a direct effect on CBB. (c) Similar to (a) with the
addition of MeanATemp having a direct effect on CBB.

3.3. Evaluating the Performance of the Machine Learning Methods

A series of machine learning algorithms were used to compare their predictive potential towards
identifying the risk to human health associated with CBB level for recreational activities. In Figure 6,
confusion matrices and the corresponding performance indices for algorithms DT, k-NN, SVM and
RF are presented. These matrices depict the number of instances that the predicted values of the
CBB risk levels matched the reference (actual) risk levels or failed to predict the risk levels correctly.
The instances presented on the diagonal are all True Positives, since the algorithm prediction matches
the actual classification (what is predicted as a low is actually a low, a predicted medium is a medium,
etc.) In Figure 6a, this number is 784. The sum of the actual instances that are not predicted correctly
are the False Negatives; in Figure 6a, the False Negatives are 17 for “Low”, 25 for “Medium” and 10 for
“High”, and they are calculated as the sum of each column minus the True Positives. False Positives
are the instances that are predicted falsely and are the sum of each row minus the True Positives.
In Figure 6a, the False Positives are 23 for “Low”, 25 for “Medium” and 4 for “High”. Finally, the True
Negatives for a certain class are those instances that do not belong in that class (either predicted or
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reference), so in Figure 6a, we have 29 True Negatives for “Low”, 771 True Negatives for “Medium”
and 820 True Negatives for “High”.Water 2020, 12, x FOR PEER REVIEW 14 of 20 
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Figure 6. Confusion matrices for Distance Tree (DT), K-Nearest Neighbor (k-NN), Support-vector
machine (SVM) and Random Forest (RF). On top of each matrix the performance indices—Accuracy and
Kappa—are illustrated. (a) Results of the DT algorithm, (b) results of the k-NN algorithm, (c) results of
the SVM algorithm and (d) results of the RF algorithm.

The overall metrics we use to assess the performance of these algorithms are “Accuracy” and
“Kappa”—a single value per confusion matrix is calculated for these two variables. Accuracy is
defined as the ratio of all True Positives of the matrix divided by the sum of all instances in the
dataset and it expresses the ability of the model to correctly identify Low, Medium and High instances.
Kappa statistics considers the fact that some of the correct predictions may be identified as such by
chance, so it adjusts the reported model accuracy by considering the effect of randomness in correct
predictions [61]. Comparing the four implemented machine learning algorithms, in Figure 6 we see that
both for accuracy and Kappa statistics, the RF performs best. Thus, according to the results, RF has the
highest metrics (Accuracy = 95.45% and Kappa = 58.84%) and was selected for tuning its parameters,
in order to further improve its performance. The tuning procedure was conducted in R by using the
packages “randomForest”, “mlbench” and “caret” [46,59,62]. We applied the grid search method under
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10-fold repeated cross validation, in order to search for the best combination of parameters, namely the
functions “mtry” and “ntree”. Mtry is the number of variables randomly sampled as candidates for
each split, while ntree is the number of trees to grow [63]. After exhaustively checking all parameters
and combinations with the grid search method, we concluded that the highest levels of accuracy are
achieved for a mtry equal to 2 and for ntree taking the values of 1000 and 2000. Results of this analysis
is shown in Figure 7: Each colored line represents the fluctuation of accuracy (y-axis) when different
ntree values (x-axis) are applied on each of the possible values for mtry (colored lines). We focus on
the highest accuracy, i.e., which one of the colored lines achieves the highest y value (this is true for the
purple line that has the highest peaks and corresponds to mtry = 2, according to the legend in Figure 7).
For this line, the highest peaks correspond to ntree (x-axis) values of 1000 and 2000; thus, these are the
chosen model parameters that optimize accuracy.
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Figure 7. Custom tuning of Random Forest parameters in R. This diagram illustrates how Random
Forest performs in terms of accuracy for different combinations of the parameters under tuning (mtry
and ntree) and for 10-fold repeated cross-validation.

In order to check the performance of RF under these two prevailing combinations of parameters
on the dataset, we produced two confusion matrices—one for mtry = 2 and ntree = 1000 and another
for mtry = 2 and ntree = 2000. As we show in Figure 8, the best performance was achieved for mtry = 2
and ntree = 2000 (Accuracy = 95.81% and Kappa = 60.97%) (Figure 8b). According to [64], a model is
considered to produce accurate predictions when Kappa exceeds 60%, which in our case is succeeded.

To further analyze the modeling results, we compared in detail the performance of the four
algorithms by using three metrics: precision, recall and specificity [61]. Precision is defined for each
class (Low, Medium and High) as the ratio of True Positives by the sum of True Positives and False
Positives for that class. In Figure 9, we see that precision is the highest for the Low class, most probably
due to the large number of observations in that class; it approaches 1, which means that given many
observations, all algorithms predict with great precision. In the High class, where we have the least
observations, precision is close to 80% for SVM and RF, with SVM giving slightly better results. It is
weakest in the Medium class, with RF still giving the best results. It should be noted that precision
becomes important when the cost of False Positives is high. In our case, this means the cost of predicting
that CBB concentrations are High (Low) when they are actually medium or Low (High). The former
case of having high CBB concentrations being falsely predicted as low, which is an undesirable scenario
in terms of public health, has a precision of about 80%. Given the very small number of observations
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in the High category, this is a strong outcome in terms of the capacity of the optimized RF scheme to
predict events with excellent precision.
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Figure 8. Confusion matrixes for the RF algorithm under different combinations of tuning parameters
regarding the test subset. On the top of each matrix the performance indices—Accuracy and Kappa—
are illustrated. (a) The RF results for mtry = 2 and ntree = 1000 and (b) RF results for mtry = 2 and
ntree = 2000.

Water 2020, 12, x FOR PEER REVIEW 15 of 19 

 

Figure 8. Confusion matrixes for the RF algorithm under different combinations of tuning parameters 
regarding the test subset. On the top of each matrix the performance indices—Accuracy and Kappa— 
are illustrated. (a) The RF results for mtry = 2 and ntree = 1000 and (b) RF results for mtry = 2 and 
ntree = 2000. 

To further analyze the modeling results, we compared in detail the performance of the four 
algorithms by using three metrics: precision, recall and specificity [61]. Precision is defined for each 
class (Low, Medium and High) as the ratio of True Positives by the sum of True Positives and False 
Positives for that class. In Figure 9, we see that precision is the highest for the Low class, most 
probably due to the large number of observations in that class; it approaches 1, which means that 
given many observations, all algorithms predict with great precision. In the High class, where we 
have the least observations, precision is close to 80% for SVM and RF, with SVM giving slightly better 
results. It is weakest in the Medium class, with RF still giving the best results. It should be noted that 
precision becomes important when the cost of False Positives is high. In our case, this means the cost 
of predicting that CBB concentrations are High (Low) when they are actually medium or Low (High). 
The former case of having high CBB concentrations being falsely predicted as low, which is an 
undesirable scenario in terms of public health, has a precision of about 80%. Given the very small 
number of observations in the High category, this is a strong outcome in terms of the capacity of the 
optimized RF scheme to predict events with excellent precision. 

 
Figure 9. Analysis of the confusion matrix results for the four machine learning algorithms: DT, k-
NN, SVM and RF. Results are presented for the three risk level classes—Low, Medium and High—
and for three relevant metrics—precision, recall and specificity.  

Recall is calculated as the ratio of True Positives by the sum of True Positives and False 
Negatives, which is the ratio of True Positives by Total Actual Positives. Recall calculates how many 
of the actual Lows (Highs) the algorithm captures through labeling them as Lows (Highs). We see 
that, again, in the Low class where we have many observations, recall is almost 1. In the Medium and 
High classes, recall is lower, but the optimized RF algorithm performs significantly higher in all 
classes. The recall metric becomes important when there is a high cost associated with False 
Negatives; in our case, a False Negative would mean that a High risk level is falsely predicted by the 
model as either Medium or Low. In terms of protecting public health, this would have a really high 
cost and authorities want to have the right tools to avoid such situations. In the High and Medium 
classes, where we have few data, we see that recall values are between 50% and 60%, which indicates 

Figure 9. Analysis of the confusion matrix results for the four machine learning algorithms: DT, k-NN,
SVM and RF. Results are presented for the three risk level classes—Low, Medium and High—and for
three relevant metrics—precision, recall and specificity.

Recall is calculated as the ratio of True Positives by the sum of True Positives and False Negatives,
which is the ratio of True Positives by Total Actual Positives. Recall calculates how many of the actual
Lows (Highs) the algorithm captures through labeling them as Lows (Highs). We see that, again, in the
Low class where we have many observations, recall is almost 1. In the Medium and High classes,
recall is lower, but the optimized RF algorithm performs significantly higher in all classes. The recall
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metric becomes important when there is a high cost associated with False Negatives; in our case, a
False Negative would mean that a High risk level is falsely predicted by the model as either Medium
or Low. In terms of protecting public health, this would have a really high cost and authorities want to
have the right tools to avoid such situations. In the High and Medium classes, where we have few data,
we see that recall values are between 50% and 60%, which indicates that the instances that the model
will predict False Negatives is relatively high. The fact that the numbers are close to 1 for the Low class,
in which we have many observations, signifies the importance of the number of data observations.

Finally, specificity is the true negative rate and is calculated as the number of correct negative
predictions (for the Low class, this is the sum of observations that are actually Medium and High
minus the ones that are falsely predicted as Low) divided by the total number of Negatives (True
Negatives + False Positives—for the Low class, this includes all observations that are actually Medium
and High). This metric is an indication of how good the model is at avoiding false alarms. So, when we
report High (Medium), we have a probability of almost 100% to avoid false alarms, which means that
the CBB concentrations are indeed High (Medium). When the Low class is reported, then the results
show that there is an average probability for avoiding false alarms, which means that it is possible
that a false alarm is created. This possibility for a false alarm is the highest in the Low class, which
is not ideal, since it means that we may report Low but actual risk levels may indeed be Medium or
High. Specificity would improve if we had more data in the Medium of High class. The fact that
our dataset is very unbalanced, with many more observations in the Low class than in the other two
classes, creates the corresponding imbalance in our results, with excellent predictions for the Low
class and less accurate predictions in the other two classes. This of course is an important finding,
since it indicates that the multitude of observations is critical in obtaining solid predictions. When
authorities have the capacity to obtain such observations through online real-time monitoring, for
example, resulting in large datasets, they can count on machine learning algorithms for reliable results
that will assist them in taking informed decisions that protect public health and wellbeing.

4. Conclusions

This article explores the complexity of mechanisms that determine cyanobacteria abundance in
lake ecosystems through stepwise multiple linear regression and a series of machine learning methods,
namely Decision Tree, K-Nearest Neighbors, Support-vector Machine and Random Forest. The analysis
advocates the multifactorial nature of cyanobacteria response to environmental conditions. Path
analysis on the direct–indirect and cause–effect relationships of the stressors reveals that when Chl-a is
included as one of the predictors of CBB, TN significantly affects CBB, air temperature only marginally
affects its abundance, while TP is found to be not significant. Multiple linear regression analysis reports
R2 values that are in line with values reported by previous studies, even though they are relatively low
(R2 = 0.33 for all lakes, R2 = 0.27 for shallow and R2 = 0.44 for deep lakes). When differentiating the
predicting approach and translating CBB to risk categories associated with impacts on public health
by the recreational use of lakes, predictive ability was fundamentally improved. Machine learning
methods and especially Random Forest proved to be a reliable and highly accurate tool towards the
categorization of lakes to risk levels, achieving model accuracy levels as high as 95.81% after having
optimized the parameters of the algorithm. Confusion matrix analysis resulted in the quantification
of the probability of false alarms for the three different risk levels. Focusing on current machine
learning techniques to assess cyanobacteria risk levels to human health can give crucial insights to
water managers and consequently raise public awareness in a timely manner as to when the lake water
is inappropriate to serve recreational uses.
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